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We continue to study black holes subjected to strong sources of gravity, again paying special attention to
the behavior of geometry in the black-hole interior. After examining, in two previous papers, the deformation
arising in the Majumdar-Papapetrou binary of extremally charged black holes and that of a Schwarzschild
black hole due to a surrounding (Bach-Weyl) ring, we consider here the system of two Schwarzschild-type
black holes held apart by the Appell ring. After verifying that such a configuration can be in a strut-free
equilibrium along certain lines in a parameter space, we compute several basic geometric characteristics of
the equilibrium configurations. Then, like in previous papers, we calculate and visualize simple invariants
determined by the metric (lapse or, equivalently, potential), by its first derivatives (gravitational acceleration),
and by its second derivatives (Kretschmann scalar). Extension into the black-hole interior is achieved along
particular null geodesics starting tangentially to the horizon. In contrast to the case involving the Bach-Weyl
ring, here each single black hole is placed asymmetrically with respect to the equatorial plane (given by the
Appell ring), and the interior geometry is really deformed in a nonsymmetrical way. Inside the black holes, we
again find regions of the negative Kretschmann scalar in some cases.
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I. INTRODUCTION

With the aim of studying the geometry of black holes
surrounded by other strong sources of gravity, we first [1]
considered the Majumdar-Papapetrou binary made of two
extremally charged black holes and found that the horizon
interior is not much deformed within this class of solutions.
Therefore, in a second paper [2], we tried to distort a black
hole which is far from being extreme (actually the
Schwarzschild one), surrounding it by a concentric static
and axisymmetric thin ring (described by the aged Bach-
Weyl solution). A much stronger effect was found inside
such a black hole, including an occurrence of the regions of
negative Kretschmann invariant.
Keeping the static and axially symmetric setting, we turn

to another Weyl-type superposition in the present paper,
namely a binary of Schwarzschild black holes held apart
by an Appell ring. As opposed to the previous paper
treating the black hole surrounded by a ring, the present
system is hardly relevant astrophysically but is very
interesting theoretically because it provides a strut-free
possibility of keeping two uncharged (and nonrotating)
black holes in static equilibrium. The cost is the inclusion
of a source (the Appell ring) which produces, similarly to
the (rotating) Kerr source, a “repulsive” field in the central

part, and the interpretation of which rests on either a
negative-mass density layer or a double-sheet topology.
Below, we first give the metric functions for the

Schwarzschild and Appell space-times in appropriate
coordinates and describe how to make their nonlinear
superposition corresponding to the configuration described
above (Sec. II). In Sec. III, we show that such a configu-
ration can be in a strut-free equilibrium, find the lines of
these equilibria in a parameter space, and compute their
basic geometric measures. Basic properties of the horizons
are given in Sec. IV. After briefly exemplifying, in Sec. V,
the shape of the geometry outside the black holes, we show,
in Sec. VI, how the metric can be extended to also describe
the interior of (any of) the black holes and illustrate how the
geometry is affected there by the other sources. In par-
ticular, we compute the free-fall time from the opposite
poles of the horizon to the singularity and plot the basic
invariants determined by the metric (lapseN) and by its first
and second derivatives (gravitational-acceleration scalar κ2

and Kretschmann scalar K).
The (vacuum) static and axisymmetric problem is

most easily solvable in the Weyl coordinates ðt; ρ; z;ϕÞ,
t and ϕ being Killing time and azimuth and ρ and z
covering, isotropically, the meridional planes (orthogonal
to both Killing directions). In such coordinates, the metric
reads

ds2 ¼ −N2dt2 þ ρ2

N2
dϕ2 þ e2λ

N2
ðdρ2 þ dz2Þ
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and only contains two unknown functions N ≡ eν and λ of
ρ and z, of which ν, representing the Newtonian potential,
is given by the solution of the Laplace equation, so it
superposes linearly when the field of multiple sources is
being sought.1 For the Weyl-type metric, the above invar-
iants N, κ, and K are given by

N2 ≡ e2ν ≔ −gtt; ð1Þ

κ2 ≔ gμνN;μN;ν ¼
N2

e2λ
½ðN;ρÞ2 þ ðN;zÞ2�; ð2Þ

e4λ−4ν

16
K≔

e4λ−4ν

16
RμνκλRμνκλ

¼ðν;ρρÞ2þðν;zzÞ2þðν;ρzÞ2þν;ρρν;zz

þ3ð1−ρν;ρÞ½ðν;ρÞ2þðν;zÞ2�2þρ2½ðν;ρÞ2þðν;zÞ2�3
þ3ν;ρρðν;ρÞ2þ3ν;zzðν;zÞ2þ6ν;ρzν;ρν;z

þρν;ρ½3ðν;zÞ2−ðν;ρÞ2�ðν;ρρ−ν;zzÞ
þ2ρν;ρzν;z½ðν;zÞ2−3ðν;ρÞ2�: ð3Þ

II. WEYL-METRIC FUNCTIONS FOR
SCHWARZSCHILD AND FOR THE APPELL RING

Following, e.g., Ref. [3], let us remind the reader of the
Weyl-coordinate form of the Schwarzschild and Appell-
ring metrics. The first of them is given by

νSchw ¼ 1

2
ln
d1 þ d2 − 2M
d1 þ d2 þ 2M

ð4Þ

¼ 1

2
ln

�
1 −

2M
r

�
; ð5Þ

λSchw ¼ 1

2
ln
ðd1 þ d2Þ2 − 4M2

4d1d2
ð6Þ

¼ 1

2
ln

rðr − 2MÞ
rðr − 2MÞ þM2sin2θ

; ð7Þ

where M is the mass parameter,

d1;2 ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz ∓ MÞ2

q
¼ r −M ∓ M cos θ;

and the second expressions are in Schwarzschild coordi-
nates ðr; θÞ. The Schwarzschild → Weyl transformation
reads

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr − 2MÞ

p
sin θ; z ¼ ðr −MÞ cos θ; ð8Þ

and its inverse, above the horizon, is

r −M ¼ d2 þ d1
2

; M cos θ ¼ d2 − d1
2

: ð9Þ

The simplest Appell-ring metric is given by

νApp ¼ −
Mffiffiffi
2

p
Σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σþ ρ2 þ z2 − a2

q
ð10Þ

¼ −
MR
Σ

; ð11Þ

λApp ¼
M2

8a2

�
1 −

ρ2 þ z2 þ a2

Σ
−
2a2ρ2ðΣ2 − 8z2a2Þ

Σ4

�
ð12Þ

¼ −
M2sin2ϑ

4Σ

�
1þ ðR2 þ a2ÞðΣ2 − 8R2a2cos2ϑÞ

Σ3

�
;

ð13Þ

where M is the mass and a is the Weyl radius of the ring,

l1;2 ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ ∓ aÞ2 þ z2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ a2

p
∓ a sinϑ;

Σ ≔ l1l2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ2 − a2 þ z2Þ2 þ 4a2z2

q
¼ R2 þ a2cos2ϑ;

and the second expressions are in ellipsoidal (oblate
spheroidal) coordinates ðR;ϑÞ. The oblate → Weyl trans-
formation reads

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ a2

p
sinϑ; z ¼ R cos ϑ; ð14Þ

and its inverse is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ a2

p
¼ l2 þ l1

2
; a sinϑ ¼ l2 − l1

2
: ð15Þ

General relativistic space-times of Appell rings (this type of
solution appeared in electrostatics originally) have been
mainly treated by Ref. [4] (see also Ref. [5]). As discussed
and illustrated in Ref. [3] (see Appendix A there), the
spatial structure of the Appell solution is similar to that of
the Kerr solution (where, however, ρ and z must be
understood as the Kerr-Schild cylindrical coordinates rather
than the Weyl ones), but there is (of course) no horizon
and no rotational dragging. In particular, both space-times
have the disk ðz ¼ 0; ρ ≤ aÞ ⇔ R ¼ 0 at their center,
which is intrinsically flat but of which the ringlike
boundary ðz ¼ 0; ρ ¼ aÞ ⇔ ðR ¼ 0; ϑ ¼ π=2Þ represents
a curvature singularity (Σ ¼ 0). If approaching the disk
from either side (along ϑ ≠ π=2), R decreases to zero,
whereas its gradient does not vanish, which has to be

1We do not repeat all the basics on Weyl space-times; please
see, for example, the first paper [1] of this series, including
references.
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interpreted either as a presence of a layer of mass with
effective surface density

σ ¼ −
Ma

2πða2 − ρ2Þ3=2 ¼ −
M

2πa2cos3ϑ
ð16Þ

or as an indication that the manifold continues, across the
disk serving as a branch cut, smoothly to the second
asymptotically flat sheet characterized by R < 0. The
double-sheeted topology may seem artificial, but only
before one realizes that the above density is negative
everywhere and diverges to −∞ toward the disk edge; at
the very singular rim, it finally jumps to þ∞, to yield the
finite positive total mass M. Irrespectively of the inter-
pretation, in the spherical region ρ2 þ z2 < a2 ⇔ 0 ≤ R <
ajcos ϑj, the field is repulsive in the sense that momentarily
static particles (those at rest with respect to infinity) are
accelerated away from the central disk.
It is obvious from (5) and (11) that both νSchw and νApp

are negative everywhere, just with νApp ¼ 0 in the interior
of the ring (on z ¼ 0, ρ < a). The second function λ is
negative for the Schwarzschild field alone (7), while for the
pure Appell field, it is also positive in a certain region.
Actually, for a2 cos2 ϑ ¼ 3R2 (thus Σ ¼ 4R2), for example,
Eq. (13) yields λ ¼ M2 sin2 ϑ

128R4 ða2 − 7R2Þ, which for a suffi-
ciently small R is positive. Along the symmetry axis
(ρ ¼ 0), both λSchw and λApp vanish, except for the
divergence of λSchw along the black-hole segments; in
the Appell-ring plane (z ¼ 0), λApp is otherwise negative
everywhere, both inside and outside the ring. Basic proper-
ties of the Appell ring has been visualized in Ref. [5] (in
comparison with several other thin-ring solutions).

A. Superposition

In the present paper, we first want to check the
intuition that the central repulsive region of the Appell
space-time could serve as a “support” for two (attrac-
tive) sources (see Fig. 1). Indeed, for test particles, the
locations ρ ¼ 0, z ¼ �a, symmetrically placed with
respect to the Appell center, are equilibrium (the
particles left there with zero velocity will stay there).
In the Weyl coordinates, the Appell source is a ring
(z ¼ 0, ρ ¼ a), while the Schwarzschild black hole is a
massive line segment (ρ ¼ 0, jzj ≤ M). Rather than
estimate that (ρ ¼ 0, z ¼ �a) will remain equilibrium
locations also for heavy bodies (actually black holes in
our case), let us consider a generic location (ρ ¼ 0,
z ¼ �h). Placing two (same) Schwarzschild holes there
requires shifting them to z → z� h (with ρ kept zero)
and then superposing like

ν ¼ νAppðzÞ þ νSchwðz− hÞ þ νSchwðzþ hÞ with M < h:

ð17Þ

Being given by very simple functions, the resulting
potential is easily verified to have a reasonable and
expectable shape, with divergences only found at the
sources themselves. Clearly, ν < 0 everywhere.
However, ν is just the first, Newtonian part of the story.

The relativistic field is also described by the second metric
function λ which does not add up linearly and which can
also give rise to various features including singularities. It is
given by line integrals of

λ;ρ ¼ ρðν;ρÞ2 − ρðν;zÞ2; λ;z ¼ 2ρν;ρν;z; ð18Þ

which are usually tackled starting from some vacuum part
of the symmetry axis where λ has to vanish. At several
special locations, one finds

λ;z ∼ z at z ¼ 0; ρ > a;

λ;z ∼ ρ2 at ρ ¼ 0; except along black-hole parts;

λ;z ¼ 2ν;z at ρ ¼ 0; h −M ≤ jzj ≤ hþM ðblack holesÞ;
λ;ρ ∼ ρ at ρ ¼ 0; except along black-hole parts;

λ;ρ ≃ ρ−1 at ρ ¼ 0; h −M ≤ jzj ≤ hþM ðblack holesÞ:

On the central circle z ¼ 0, 0 < ρ < a, the gradient of λ is
obtained from (18) by using

FIG. 1. A Weyl-coordinate scheme of the configuration, made
of two equal black holes placed symmetrically with respect to an
Appell ring, is considered (its meridional section). Relevant
dimensions are labeled.

SCHWARZSCHILD BINARY SUPPORTED BY AN APPELL RING PHYS. REV. D 99, 064050 (2019)

064050-3



ν;ρ ¼
2Mρ

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðh −MÞ2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðhþMÞ2

p i
ðρ2 þ h2 −M2Þ2 þ 4M2ρ2 þ ðρ2 þ h2 −M2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ2 þ h2 −M2Þ2 þ 4M2ρ2

p ; ð19Þ

ν;zðz → 0�Þ ¼ ∓ Ma

ða2 − ρ2Þ3=2 ; ð20Þ

which can be integrated to get

eλ ¼ eλðρ¼0;z¼0Þ
�
1

2
þ ρ2ðh2 þM2Þ þ ðh2 −M2Þ2
2ðh2 −M2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ2 þ h2 −M2Þ2 þ 4M2ρ2

p �
exp

�
−
M2ρ2ð2a2 − ρ2Þ
4a2ða2 − ρ2Þ2

�
: ð21Þ

After multiplying this by

e−ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðh −MÞ2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðhþMÞ2

p
þ 2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ ðh −MÞ2
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðhþMÞ2

p
− 2M

ð22Þ

(remember we are still on the circle z ¼ 0, 0 < ρ < a), one
can ask about the proper radius of the central ring,R
a
0 eλ−νðz ¼ 0Þdρ. The integrand is finite everywhere on
the central circle, starting from

eλ−νðρ ¼ 0; z ¼ 0Þ ¼ eλðρ ¼ 0; z ¼ 0Þ hþM
h −M

and falling to zero quickly toward ρ → a−, so the proper
radius is finite.
The second simple measure is the Appell-ring proper

circumference, as taken from its inside (z ¼ 0, ρ → a−),
which is given by

Z
2π

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gϕϕðz ¼ 0; ρ → a−Þ

q
dϕ

¼
Z

2π

0

ρe−νðz¼0;ρ→a−Þdϕ

¼ 2πae−νðz¼0;ρ→a−Þ

¼ 2πa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ðh −MÞ2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ðhþMÞ2

p
þ 2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ ðh −MÞ2
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ðhþMÞ2

p
− 2M

:

ð23Þ

Clearly, this is finite, in contrast to the circumference
computed from outside (z ¼ 0, ρ → aþ), which is infinite.
In the next section, we illustrate how the ring’s circum-
ference and radius depend on parameters for equilibrium
(strut-free) configurations.
Outside of the ring, at z ¼ 0, ρ > a, one has ν;z ¼ 0, and

hence λ;ρ ¼ ρðν;ρÞ2. This is slightly longer explicitly, but
anyway it behaves like λ;ρ ∼ ðρ − aÞ−3 at ρ → aþ, which
means that λðz ¼ 0Þ ∼ −ðρ − aÞ−2 in this limit. Since, on
the other hand, νðz ¼ 0Þ ∼ −ðρ − aÞ−1=2 there, the proper

radial distance to the ring measured from outside along the
equatorial plane,

R
ρ>a
a eλ−νðz ¼ 0Þdρ, is also finite. Due to

the strong exponential damping brought by λ, the proper
equatorial radius almost does not change in the ring’s
vicinity (this holds from both sides). This is very different
from the other aged ring solution, the Bach-Weyl ring (we
considered it previously in Refs. [2,5]), which is at finite
proper distance from outside but infinitely far when
approached from below. Let us add that the νðz ¼ 0Þ ∼
−ðρ − aÞ−1=2 behavior also means that the proper circum-
ference of the ring 2πae−νðz ¼ 0Þ is infinite if taken from
outside (ρ → aþ), as mentioned already. (On the other
hand, the circumference of the Bach-Weyl ring is infinite,
whether taken from inside or outside—see Ref. [5].)
A crucial task in static superpositions is to check whether

there are no supporting “struts” of which the presence
indicates that the given system is artificial and could not by
itself remain static. In the axially symmetric case, such a
check naturally starts on the symmetry axis (see, e.g.,
Ref. [6]). The axis is regular if the symmetric sections
z ¼ 0 are flat in its neighborhood, which requires λ to
vanish at ρ ¼ 0.

III. EQUILIBRIUM CONFIGURATIONS

It is natural to assume that the system is asymptotically
flat and that λ ¼ 0 on the “outer” parts of the axis (ρ ¼ 0,
jzj > hþM). To check whether the “inner” part of the axis
(ρ ¼ 0, jzj < h −M) can also stay regular under certain
conditions, one needs to integrate the equations (18) along
some path going from the outer axis to the inner one
through the vacuum region. Since the black holes are just
linear segments (ρ ¼ 0, h −M ≤ jzj ≤ hþM), it is suffi-
cient to take, e.g., the path

ðρ ¼ 0; z ¼ hþM þ ϵÞ → ðρ ¼ ϵ; z ¼ hþM þ ϵÞ
→ ðρ ¼ ϵ; z ¼ h −M − ϵÞ
→ ðρ ¼ 0; z ¼ h −M − ϵÞ

in the ϵ → 0þ limit. Integration yields
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Z
ϵ

0

λ;ρðz ¼ hþM þ ϵÞdρþ
Z

h−M−ϵ

hþMþϵ
λ;zðρ ¼ ϵÞdz

þ
Z

0

ϵ
λ;ρðz ¼ h −M − ϵÞdρ ¼ ϵOðρ → 0Þ

−
Z

hþMþϵ

h−M−ϵ
λ;zðρ ¼ ϵÞdz − ϵOðρ → 0Þ:

The integrand of the only contributing part can be found
to read

λ;zðρ ¼ ϵ; h −M ≤ z ≤ hþMÞ

¼ 2Mðz2 − a2Þ
ðz2 þ a2Þ2 −

2

z − hþM

−
8Mhz

½z2 − ðhþMÞ2�½z2 − ðh −MÞ2� þOðϵ2Þ ð24Þ

along the “upper” black hole, which yields

λðρ ¼ 0; 0 < z < h −MÞ

¼ − lim
ϵ→0þ

Z
hþMþϵ

h−M−ϵ
λ;zðρ ¼ ϵÞdz

¼ 4MMða2 − h2 þM2Þ
ða2 − h2 þM2Þ2 þ 4a2h2

− ln
h2

h2 −M2
: ð25Þ

Hence, the condition for a strut-free equilibrium,
λðρ ¼ 0; 0 < z < h −MÞ ¼ 0, reads

4MMða2 − h2 þM2Þ
ða2 − h2 þM2Þ2 þ 4a2h2

¼ ln
h2

h2 −M2
: ð26Þ

First, without the ring (M ¼ 0), the only solution is
M ¼ 0, as expected. In a nontrivial case, h > M > 0 must
hold; hence, the right-hand side logarithm is always
positive, and one obtains an upper bound for h,
h2 < a2 þM2, which obviously says that the black hole
must not be too far from the ring in order to be repelled at
all. There are two limits within which the equilibrium
solution always lies, both being given by M → ∞ (and
M ≠ 0); the condition can then be satisfied only by h2 →
ðM2 þ a2Þ− or h → Mþ. The former yields the top boun-
dary (the red dotted hyperbola), and the latter yields the
bottom boundary (the red dotted diagonal) in Fig. 2.
The figure can be read in various ways, of which we

suggest the following one: for each ring mass M=a > 0,
one has a certain equilibrium line in the ðM; hÞ plane
which connects two test-particle limits, at M ¼ 0, h ¼ a
(where the ring provides an equilibrium location) and at
M ¼ 0, h ¼ 0 (where, in the limit, the energy with respect
to infinity of each of the two bodies exactly equals their
rest energy, so their mutual attraction there is just as
strong as repulsion exerted by the disk R ¼ 0). From the

behavior of the test-particle limit, we infer that the
repulsion wins to the left of the equilibrium lines (inside
them), while to the right of the lines (outside them), it is
the attraction between the two black holes which prevails.
Hence, for any positiveM=a, there is a range of M going
from zero to a certain positive value, for which two
equilibrium solutions exist; we will choose the larger-h
solution which represents the “expected branch,” reduc-
ing to the test-particle case h ¼ a in theM → 0þ limit and
stable in the z direction (the latter follows from the above
fact that inside the equilibrium lines the holes are
repelled, whereas outside they are attracted toward each
other).
Note a shortcut for derivation of the equilibrium con-

dition, starting from the relation λ;z ¼ 2ν;z which is valid on

FIG. 2. Lines of the strut-free equilibria within the ðM; hÞ
plane, where z ¼ �h is the position of the black holes on the
symmetry axis andM is their mass, both given in units of the ring
radius a. Curves obtained for several different ring masses M=a
are given. Below the dotted red line h ¼ M, the equilibrium is not
possible because the black holes would be too close, reaching
down to z ¼ 0 or even beyond. The red dotted hyperbola h2 ¼
M2 þ a2 divides the cases M > 0 (below) and M < 0 (above).
In theM > 0 case, in the configurations situated to the left of the
curves (“inside” them), the black holes would be repelled, while
in those situated to the right of the curves (“outside” them), the
holes would fall toward each other. Consequently, the larger-h
branches of equilibria are stable, whereas the lower-h equilibria
are unstable in the vertical direction.
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the horizons and yields λ ¼ 2νþ const there.2 The main
benefit of this relation is that it is linear: since ν superposes
linearly everywhere, this means that specifically on the
horizon λ does so, too. Therefore, the λ;z ¼ 2ν;z relation has
to also hold separately for each of the three contributions.3

Consider one of the black holes, say the “top” one
(at z > 0). Its own contribution νSchwðz − hÞ naturally
satisfies the relation, however, diverging on the horizon,
so one is left with the potentials from the Appell ring and
from the second black hole which are finite there. The
function λ has the same value on both parts of the axis (thus
on all three actually) if it satisfies this at the horizon “poles”
ðρ ¼ 0; z ¼ h�MÞ, which is now clear to hold if the sum
of the “external” potentials, ½νAppðzÞ þ νSchwðzþ hÞ�,
assumes the same value at both poles (this is a well-known
condition; see Ref. [7]). Substituting

νAppðρ ¼ 0; zÞ ¼ −
Mz

z2 þ a2
;

νSchwðρ ¼ 0; zþ hÞ ¼ 1

2
ln
zþ h −M
zþ hþM

into the above, one really arrives at the condition (26).
For the equilibrium system, the first term in (21) is

eλðρ ¼ 0; z ¼ 0Þ ¼ 1, so the integrand of the integralR
a
0 eλ−νðz ¼ 0Þdρ starts from

eλ−νðρ ¼ 0; z ¼ 0Þ ¼ e−νðρ ¼ 0; z ¼ 0Þ ¼ hþM
h −M

≥ 1

and falls to zero at the ring. The behaviors of the ring’s
proper circumference and proper radius are best illustrated
if plotted against each other; see Fig. 4. The curves are
parametrized by the black-hole mass M (the ranges
correspond only to vertically stable, upper branches of
the M > 0 equilibria from Fig. 2 again), with Euclidean
relation added (dotted blue line) for reference. The circum-
ference-radius dependence would indicate negative curva-
ture for smallM, while it would indicate positive curvature
for larger M.
As a basic illustration of what field the system generates,

Fig. 5 shows the meridional equipotentials for two
examples of equilibrium configurations, one rather “heavy”
(with M ¼ 3a, M ¼ 0.9a, and h ≐ 1.1515a) and the
other three times lighter (with M ¼ a, M ¼ 0.3a, and
h ≐ 0.8713a). Quite a steep gradient of the potential is
visible between the ring’s center and the black-hole
horizons, mainly in the heavier case, which promises to

FIG. 3. Proper distance from the Appell-ring center (ρ ¼ 0,
z ¼ 0) to the black-hole horizons, drawn in dependence on the
black-hole massM for several values of the Appell-ring massM,
for the equilibrium configurations shown in Fig. 2 (we already
consider just the vertically stable branches of the M > 0 case).

FIG. 4. Proper interior circumference (z ¼ 0, ρ → a−) of the
central Appell ring, drawn against the ring’s proper radius. Both
the radius and the circumference grow with black-hole mass M,
which parametrizes the curves. The dotted blue line indicates the
Euclidean relation given by 2πr; in Weyl coordinates, the radius
is kept unit (ρ ¼ a), and the circumference remains 2πa, which
would correspond just to the starting point of the dotted line. We
again consider the equilibrium configurations shown in Fig. 2,
specifically, the vertically stable branches of the M > 0 case.

2Should λ be zero at the poles (ρ ¼ 0, z ¼ h�M), it has to
read λ ¼ 2ν − 2νðz ¼ h�MÞ, specifically.

3One might doubt about linearity between ν and λ at the very
poles where the functions are singular. However, this singularity
is only a coordinate one; in terms of the Schwarzschild-type
latitude θ, the horizon-valid relation also reads λ;θ ¼ 2ν;θ and is
regular everywhere including the poles.
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yield interesting deformation of the field and curvature inside
the black holes. We are also appending the plots of the
second (negative-R) sheets for the same two superpositions;
see Fig. 6. The potentials appear the same there; just the
Appell-ring contribution (11) has an opposite (positive) sign.
Hence, in this second sheet, the Appell ring is repulsive
(effectively, its mass is negative), only the central circle
R ¼ 0 (actually the whole region 0 ≥ R > −ajcos ϑj) is
“attractive,” and “mirror images” of the black holes are
present at the same locations as in the R > 0 sheet. Figure 7
confirms that the potential ν continues smoothly across the
central R ¼ 0 circle. The regionR < 0 is of course irrelevant
(nonexisting) if one accepts the interpretation with negative-
density mass layer on R ¼ 0.
It is worth remarking that when adopting the smooth-

central-circle view (the double-sheeted topology) any of the
black holes feels not only its symmetrical counterpart lying
in the same sheet yet “behind” the R ¼ 0 throat (leading to
the other sheet) but also—through the R ¼ 0 throat—its
counterpart lying in the other sheet. Actually, there clearly
exist geodesics following the axis of symmetry and con-
necting the two black holes in the opposite sheets.
However, the field at a given location and the equilibrium

configurations are independent of the adopted interpreta-
tion, so it would have little sense, in the case of the second
interpretation, to try to split the attractive part of the effect
on a given black hole into the above contributions.

A. Negative ring mass?

When speaking of black holes, it is automatically
assumed that their mass is positive. When speaking of
sources like the Appell ring (but also, e.g., the Kerr source),
however, the choice is not that clear because what is called
“positive” mass there means that, for test particles at rest,
the ring is attractive at R > aj cos ϑj (and also at
0 > R > −aj cosϑj), whereas it is repulsive in the remain-
ing regions (R < −aj cosϑj and 0 < R < aj cosϑj). Like in
the case of the Kerr solution, the positive-mass choice is
standardly connected with choosing R > 0 (i.e., the region
where, at medium and large radii, the field is attractive
then) as the relevant half of space-time. With the opposite
choice, it would not be unreasonable to also consider
negative masses.
ForM < 0 (andM > 0), the equilibrium condition (26)

can only be satisfied if h2 > M2 þ a2. The region of

FIG. 5. Meridional picture in the Weyl coordinates ρ, z of the equipotential contours ν ¼ const for one heavier and one lighter
realization of the equilibrium of the Appell ring and two symmetric black holes. In the left plot,M ¼ 3a,M ¼ 0.9a, and h ≐ 1.1515a,
while in the right plot,M ¼ a,M ¼ 0.3a, and h ≐ 0.8713a. The equatorial plane (given by the ring) is horizontal, (ρ) and the symmetry
axis is vertical (z), with the length unit given by the ring radius a, which is clearly visible. The potential values drawn have been chosen
“by hand”; they range from −7.50 to −1.75 in the left plot, while they are within three times weaker values (from −2.50 to −0.58) in the
right plot. The deep potential is dark blue, while the more shallow one is light green. For easier orientation, we have emphasized the
ν ¼ −2.86 contour in the left plot and the corresponding ν ¼ −0.95 contour in the right plot.
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equilibria is again bound by the limitM → −∞, which can
only hold for h2 → ðM2 þ a2Þþ. In Fig. 2, we also include
parts of several curves of equilibria corresponding to
M < 0, but in the other plots as well as in the rest of the
paper, we restrict ourselves to the M > 0 case. Note in
passing that the equilibria obtained with M < 0 are gen-
erally given by larger h=M than those obtained withM > 0,
so one may expect that the effect of the ring on the black hole
is weaker (and thus less interesting) in those cases.

IV. SIMPLE PROPERTIES OF THE HORIZONS

Let us now check basic dimensions of the black holes.
The proper distance between the ring’s center at (ρ ¼ 0,
z ¼ 0) and the horizons of the black holes, measured along
the z axis, amounts to

Z
h−M

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gzzðρ ¼ 0Þ

p
dz ¼

Z
h−M

0

e−νðρ¼0Þdz

¼
Z

h−M

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − ðhþMÞ2
z2 − ðh −MÞ2

s
exp

Mz
z2 þ a2

dz; ð27Þ

where we assumed the equilibrium configuration, corre-
sponding to λðρ ¼ 0Þ ¼ 0 along the integration path. The
results have been given in Fig. 3.
The proper azimuthal circumference of the horizons is

found to read

2π lim
ρ→0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gϕϕðh −M < jzj < hþMÞ

q
¼ 2π lim

ρ→0
ðρe−νÞjh−M<jzj<hþM

¼ 4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðjzj þ hþMÞðjzj − hþMÞðhþM − jzjÞp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijzj þ h −M

p
× exp

Mjzj
a2 þ z2

: ð28Þ

Although the horizons are not represented reasonably in the
Weyl coordinates, it is clear that their azimuthal circum-
ference depends on z and that in our composed system it is
not likely to be maximal exactly at z ¼ h. This will become
clear in Fig. 8.
The “proper length” of the horizons along the z axis—

actually 1=2 of their proper meridional circumference

FIG. 6. The second sheets (described by R < 0) of the same potential superpositions as in Fig. 5, plotted in the same way. The picture
differs only in the different (positive) sign of the Appell-ring contribution (11). In the left plot, M ¼ 3a, M ¼ 0.9a, and h ≐ 1.1515a,
while in the right plot,M ¼ a,M ¼ 0.3a, and h ≐ 0.8713a again. The level values range from −7.5 to þ7.5 in the left plot, while they
are within three times weaker values in the right plot. The deep potential is dark blue, while the more shallow or even positive one (in
regions dominated by the Appell ring) is light green. For comparison with Fig. 5, we have again emphasized the contour ν ¼ −2.86 in
the left plot and the corresponding ν ¼ −0.95 contour in the right plot (they enclose the black holes quite tightly) and also their
counterparts ν ¼ þ2.86=ν ¼ þ0.95 (which enclose the ring) as well as the ν ¼ 0 contours (the “largest” of the emphasized ones).

O. SEMERÁK, M. BASOVNÍK, and P. KOTLAŘRÍK PHYS. REV. D 99, 064050 (2019)

064050-8



if imagining in more appropriate coordinates—is
given byZ

hþM

h−M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gzzðρ ¼ 0Þ

p
dz ¼

Z
hþM

h−M
eλ−νðρ ¼ 0Þdz;

where λ ¼ 2ν − 2νðz ¼ hþMÞ. Consider again the top
black hole. Although νSchwðz − hÞ is of course singular
there, from linear addition of ν (and thus of λ), we find
easily that at its horizon (BHþ)

νBHþ ¼ ln
ρ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðz − hþMÞðhþM − zÞp

þ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zþ h −M
zþ hþM

r
−

Mz
a2 þ z2

þOðρ2Þ; ð29Þ

λBHþ ¼ ln
Mρ

ðz − hþMÞðhþM − zÞ þOðρ2Þ; ð30Þ

hence, the logarithmic divergence (brought by the given
black hole itself) cancels out,

expð2λBHþ − 2νBHþÞ

¼ 4M2ðzþ hþMÞ
ðz − hþMÞðhþM − zÞðzþ h −MÞ exp

2Mz
a2 þ z2

:

ð31Þ

Knowing the proper “vertical” (in fact latitudinal) length
along the horizon and its azimuthal circumferential radius
in dependence on z, we can plot its “true shape,” namely its
meridional-section outline plotted isometrically within the
Euclidean plane; this is done in Fig. 8 (left-hand plot) for
several values of the masses M and M. The figure shows
that with increasing masses the horizon gets oblate, with
flattening mainly occurring on the side toward the central
ring. The right-hand plot of Fig. 8 confirms that with
increasing masses the maximal azimuthal circumference
grows more quickly than the latitudinal one, consistently
with the flattening. The horizon, however, cannot be drawn
as a whole, which is a familiar problem in case when the
Gauss curvature turns negative in certain regions including
the axis, mainly on the side of the repulsive ring. These
regions grow when masses of the sources are enlarged.
To find the Gauss curvature of the horizon means to

compute (half of) the Ricci scalar for the metric of the two-
dimensional (2D) horizon ft ¼ const; ρ ¼ 0; h −M ≤
z ≤ hþM;ϕg, which in the Weyl coordinates appears as

dσ2 ¼H lim
ρ→0þ

ðρ2e−2νdϕ2 þ e2λ−2νdz2Þh−M<z<hþM

¼ 4
zþ hþM
zþ h −M

exp
2Mz
a2 þ z2

�
ðz − hþMÞðhþM − zÞdϕ2 þ M2dz2

ðz − hþMÞðhþM − zÞ
�
: ð32Þ

We can remember the connection between the Gauss
curvature of some surface and the possibility of its
isometric embedding. Actually, the difficulty with embed-
ding arises where the azimuthal circumferential radius (the
“x”-coordinate of the surface) changes faster than its
latitudinal circumference (the infinitesimal step of which
should be

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx2 þ Δy2

p
)—cf. Fig. 11. The change of the

azimuthal circumferential radius being given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gϕϕðzþ dzÞ

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gϕϕðzÞ

q
≃ ð ffiffiffiffiffiffiffi

gϕϕ
p Þ;zdz

and the latitudinal-circumference step being given byffiffiffiffiffiffi
gzz

p
dz, the embedding condition reads

jð ffiffiffiffiffiffiffi
gϕϕ

p Þ;zj ≤
ffiffiffiffiffiffi
gzz

p
:

FIG. 7. Total potential ν in the central region of the equilibrium
configuration specified by M ¼ a, M ¼ 0.3a, and h ≐ 0.8713a,
with the R > 0 (top half) and R < 0 (bottom half) sheets
smoothly connected across the circle R ¼ 0 (i.e., z ¼ 0,
ρ < a). For the smoothness to be seen clearly, axes are not
shown (symmetry axis is vertical and equatorial plane is hori-
zontal, like in Figs. 5 and 6); outside the ring, there is a dark-light
discontinuity (different sheets) across the equatorial plane.
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But the derivative of the ratio of these two is proportional to
the Gauss curvature of the surface [see Ref. [2], Eq. (62)],

∂
∂z

�ð ffiffiffiffiffiffiffigϕϕ
p Þ;zffiffiffiffiffiffi

gzz
p

�
¼ − ffiffiffiffiffiffiffiffiffiffiffiffiffi

gϕϕgzz
p ð2ÞR

2
; ð33Þ

where ð2ÞR is the Ricci scalar of the given 2D surface.
Hence, if

emb ≔
ð ffiffiffiffiffiffiffigϕϕ
p Þ;zffiffiffiffiffiffi

gzz
p

is a decreasing function of z everywhere, there should be no
problem with embedding. The opposite statement is more
subtle. In our case—the spheroidal and axisymmetric
surface—we know, however, that for the poles to be
“elementary flat” the circumferential radius has to change
there exactly as the proper latitudinal (or z) circumference,
namely that

embðz ¼ hþMÞ ¼ 1; embðz ¼ h −MÞ ¼ −1:

Therefore, the emb-function has to be more decreasing than
increasing when going from the top pole to the bottom one.

It is still possible that it increases within some segment—
and such a circumstance need not imply that the embedding
is impossible, not even that it is impossible there. The
problem only arises if the negative-ð2ÞR region involves the
axis, i.e.,—in the axisymmetric case—if the region is
simply connected. Even in such a case, however, it is
not so that the embedding would fail exactly in the region
where ð2ÞR < 0. (This is standardly being illustrated on a
saddle surface of which Gauss curvature is negative every-
where, yet still a certain part of it can be drawn.)
In order to illustrate even more the change of the

horizon geometry with parameters, we add Figs. 9 and 10,
which show, for any of the black holes placed in the first
space-time sheet (at R > 0) and for its counterpart lying in
the second sheet (at R < 0), an isometric embedding of the
horizon in the Euclidean space. Each of the figures
actually contains nine plots, which correspond to nine
different values of the ratio M=h (from 0.05 to 0.85, by
0.10), and each of the plots contains 19 horizon profiles
obtained for 19 different ratios h=a (from 0.05 to 0.95, by
0.05). For each specific choice of the parameters a (which
serves as the length unit), M and h, the ring mass M is
determined by the equilibrium condition (26), so it is
different for each of the horizons. The embeddings are

FIG. 8. Left: Isometric picture of the horizon’s meridional section within the Euclidean plane: the azimuthal circumferential radius
is plotted along the horizontal axis, while the proper distance goes along the outlines. Several equilibrium configurations are
included (taken from upper branches of Fig. 2), namely those with M=a ¼ 0.5, 1, 1.5, 2, 2.5, and 3, and with M ¼ 0.3M, as
indicated; the corresponding equilibrium z-positions are h=a ¼ 0.8408, 0.8713, 0.9202, 0.9851, 1.0632, and 1.1515, respectively.
The outlines cannot be drawn as a whole when the Gauss curvature of the horizon is negative in a certain region including the pole;
this typically happens on the side toward the central ring. The vertical axis is adjusted so that its zero corresponds to the “parallel of
latitude” with maximal azimuthal circumference. Right: Comparison of the black-hole azimuthal and latitudinal circumferences in
dependence on the Appell-ring mass M, computed for the equilibrium configurations again. Solid lines show half of the maximal
azimuthal (ϕ) circumference, while dashed lines show half of the latitudinal circumference (computed as the length of the horizons
along the z axis in Weyl coordinates). The respective pairs of curves correspond (from bottom to top) to the black-hole masses
M ¼ 0.1M, M ¼ 0.2M, and M ¼ 0.3M.
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made so that the plots show correctly the proper distance
between the ring center and the “bottom” point of the
horizons, and of course the horizon shape. For higher
values of the parameters (which generally correspond to
larger strain the black hole is subjected to), some of the
horizons can no longer be globally embedded, so only
parts of them are drawn.

V. GEOMETRY IN THE BLACK-HOLE
EXTERIOR

Outside of the black holes, the properties of the system
can be analyzed in theWeyl coordinates. Since the potential
(thus, the lapse function) contours have already been
exemplified, for the strut-free configuration, in Figs. 5–7,

we only add illustrations of the second metric function λ
(Fig. 12) and of acceleration and curvature invariants
(Fig. 13). The meridional contours of the quantities are
drawn for three examples of the strut-free equilibrium. The
values are positive everywhere, with the brown color
indicating heights and dark green (asymptotically black)
indicating valleys. The geometry is seen to be strongly
deformed in the vicinity of the sources, mainly close to
the ring.

VI. GEOMETRY IN THE BLACK-HOLE
INTERIOR

In order to describe the black-hole interior, we transform
from the Weyl coordinates ρ, z to the Schwarzschild-type

FIG. 9. Isometric representation of the top-black-hole horizon for a number of different parameter combinations. From top to bottom
and from left to right, the M=h is set to 0.05, 0.15, 0.25, …, 0.85, and each of these nine plots contain 19 different horizon outlines
obtained for h=a ¼ 0.05; 0.10; 0.15;…; 0.95 (and the ring mass fixed by the condition for strut-free equilibrium). The ring radius a is
used as a length unit, so the ring section is on the horizontal axis at�1 (red dots). The plot dimensions are h−2;þ2i × h0; 4i. For higher
values of M=h, some of the horizons are no longer completely embeddable, with the problem first occurring at the symmetry axis
(vertical axis of the plots).
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coordinates r, θ. Adapting the latter to the top/bottom black
hole [contributing by the potential νSchwðz ∓ hÞ], thus
taking ρ ¼ 0 and z ¼ �h as the origin, such a trans-
formation reads

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr − 2MÞ

p
sin θ; z ∓ h ¼ ðr −MÞ cos θ: ð34Þ

A. Free fall to the singularity

The first obvious question which arises is whether the
central singularity of the black holes is shifted off its
symmetric position (central to the horizon). It is clear from
symmetry that the singularity remains on the axis
(sin θ ¼ 0), while its “actual” vertical position can be
deduced from the time of a free fall from the horizon.
Since the limit case of a test particle (with rest mass m)
dropped from rest from the horizon corresponds to a
vanishing conserved energy with respect to infinity,

0 ¼ E ≔ −pt ¼ −gttmut;

one sees that ut has to vanish as well along the whole
geodesic, starting on the horizon and ending at the
singularity. Restricting to the geodesics following the
symmetry axis (sin θ ¼ 0), for which both uθ ¼ 0 and
uϕ ¼ 0, the four-velocity normalization thus reduces to

grrðaxisÞðurÞ2 ¼ −1 ⇒
dr
dτ

¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−grrðaxisÞ
p ;

and the total time of flight is found by integrating this from
r ¼ 2M to r ¼ 0. Substituting gρρ ¼ gzz ¼ e2λ−2ν for the
Weyl-metric components, one finds that

grr ¼
�∂ρ
∂r

�
2

gρρ þ
�∂z
∂r

�
2

gzz

¼ ðr −MÞ2 −M2cos2θ
rðr − 2MÞ e2λ−2ν:

On the axis (sin θ ¼ 0), one has λ ¼ 0 in order to ensure
local flatness of the ft ¼ const; r ¼ constg surfaces there

FIG. 10. The same sequence of plots as in Fig. 9, but now computed for the counterpart of the black hole lying on the second sheet of
space-time (at R < 0).
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(this has to hold below the horizon as well), and the

prefactor ðr−MÞ2−M2cos2θ
rðr−2MÞ reduces to unity, so it is sufficient to

compute

ν ¼ νAppðzÞ þ νSchwðz − hÞ þ νSchwðzþ hÞ

for (sin θ ¼ 0 ⇒) ρ ¼ 0 and z ¼ h� ðr −MÞ, where the
plus/minus sign comes from cos θ ¼ �1 and applies
respectively for the fall from the top/bottom pole of the
black hole. At ρ ¼ 0, one has

νAppðzÞ ¼ −
Mz

z2 þ a2
¼ −

M½h� ðr −MÞ�
½h� ðr −MÞ�2 þ a2

; ð35Þ

νSchwðz − hÞ ¼ 1

2
ln

�
1 −

2M
r

�
; ð36Þ

νSchwðzþ hÞ ¼ 1

2
ln
zþ h −M
zþ hþM

¼ 1

2
ln
2h� ðr −MÞ −M
2h� ðr −MÞ þM

; ð37Þ

hence,

− grrðcos θ ¼ �1Þ ¼ −e−2νðcos θ¼�1Þ

¼ r
2M − r

2h� ðr −MÞ þM
2h� ðr −MÞ −M

exp
2M½h� ðr −MÞ�
½h� ðr −MÞ�2 þ a2

:

ð38Þ

FIG. 12. Meridional plot of total λ for three strut-free configu-
rations: ðM; h;MÞ ¼ ð0.7; 0.753; 0.3Þ=ð1.5; 0.936; 0.3Þ=ð2.5;
0.982; 0.3Þ (top/middle/bottom) in the units of a. Red segments
are horizons (fixing the symmetry axis), and red dots are ring
sections (fixing the equatorial plane). The R > 0=R < 0 sheets
are shown above/below the ring plane, like in Fig. 7.

FIG. 11. A scheme of the meridional outline of the horizon, as
showing properly its azimuthal circumferential radius (x coor-
dinate) as well as its meridional circumference (along the out-
line). For a given step Δx, the corresponding step in the
meridional circumference has to at least equal Δx, otherwise
the curve cannot be drawn in E2. The spherical radius of a given
horizon point may be loosely understood as its latitudinal
circumferential radius.

SCHWARZSCHILD BINARY SUPPORTED BY AN APPELL RING PHYS. REV. D 99, 064050 (2019)

064050-13



The integration of ð−grrÞ−1=2 given by this expression
clearly yields different results for the top/bottom signs,
which means that the times of free fall from the top/bottom
pole of the (top) black hole are different. In a single-
Schwarzschild limit, one is left just with the first fraction
and obtains the well-known value

ΔτSchw ¼
Z

2M

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
r

− 1

r
dr ¼ πM:

Needless to say, the second fraction of (38) is due to the
second black hole, and the exponential is due to the Appell
ring. Figure 14 shows how the result depends on the mass
of the ring M and on that of the black holes (M); it takes
slightly longer to fall from the horizon pole closer to the
Appell ring than from the opposite pole, but the difference
is very small. This indicates that the external source does
not affect the black-hole interior very strongly on the level
of field intensity.

FIG. 13. Meridional plot of the acceleration and Kretschmann scalars κ2 and K (left/right column) for the same three configurations as
in Fig. 12. All quantities are positive in both figures, with brown/dark green indicating large/small values.
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B. Describing the black-hole interior

In Ref. [2], dealing with a black hole surrounded by a
concentric Bach-Weyl ring, we managed to extend the
analysis into the black-hole interior (which is not covered
by the original Weyl coordinates) along a limit case of null
geodesics starting tangentially from the horizon and reach-
ing the singularity after making an arc of exactly one π in
the angular (latitudinal) direction. Here, we will proceed in
a similar manner.
More precisely, there are two straightforward ways to

extend below the horizon. First, for a function which is
analytic on the horizon (ρ ¼ 0, jzj ≤ M) and which can be
extended to a holomorphic function on the whole plane
(0 ≤ ρ ≤ iz, jzj ≤ M), with ρ being pure imaginary now,
one can use the standard transformation (8), with r and θ
representing Schwarzschild-type coordinates adapted to
the given black hole, i.e., having their origin at the
respective singularity, and now assuming values below
the given horizon (r < 2M). This approach is suitable for
the external potential νext (represented by the Appell ring
and by “the other” black hole in the present paper), which,
in contrast to the potential of the given black hole itself, is
typically analytic at its horizon. One can in particular
compute the external potential by integral

νextðρ; zÞ ¼
1

π

Z
π

0

νextð0; z − iρ cos αÞ dα; ð39Þ

which yields a holomorphic result if νext is real analytic
on the ρ ¼ 0 axis. Then, the complete interior solution

for ν is obtained, like elsewhere, by adding the νext result
to the known νSchw generated by the given black hole.
Specifically in the configuration we consider here, the
potential of the Appell ring as well as that due to the black-
hole counterpart lying on the other side of the ring are
regular and analytic everywhere inside the given black hole,
so they can be extended there holomorphically without a
problem.
Second, for functions which cannot be extended hol-

omorphically below the horizon, one has to cover the
interior region by suitable coordinates, write the relevant
equations in them, and solve the latter for the required
functions. In our problem, this applies mainly to the
second metric function λ (and thus to various scalars that
contain it). In the previous paper [2], it proved useful to
cover the meridional plane, inside the given black hole, by
angular coordinates θ− and θþ (0 < θ− < θþ < π), accord-
ing to the transformation

r ¼ M
�
1þ cos

θþ − θ−
2

�
; θ ¼ θþ þ θ−

2
;

iρ ¼ M
2
ðcos θþ − cos θ−Þ; z� h ¼ M

2
ðcos θþ þ cos θ−Þ:

In terms of these angles, the interior metric reads (it is no
longer diagonal)

ds2 ¼ −
�
1 −

2M
r

�
e2νextdt2

þ r2e−2νextðe2λextdθþdθ− þ sin2θdϕ2Þ; ð40Þ

where r ¼ rðθþ; θ−Þ. The geometrical meaning of the new
coordinates is tied to the null geodesics which start

FIG. 14. Time of free fall from rest, along the symmetry axis,
from the horizon poles to the black-hole singularity. Fall times
from the pole which is remote/close to the central Appell ring are
shown by black/red lines, for several values of the ring massM=a
(as indicated at the lines) and in dependence on the black-hole
massM=a. For givenM=a andM=a, the black-hole position h is
chosen so as to correspond to the “vertically” stable branch of the
equilibrium configurations described in Sec. III and illustrated in
Fig. 2. It is seen that the time of free fall from the side of the Appell
ring is slightly longer, but the difference is not large, mainly when
the participating masses (M, M) are small.

FIG. 15. We denote by θþ, θ− the latitudes on the horizon from
where the null geodesics start tangentially and then “counter
inspiral” toward the singularity, crossing each other at some
ðr; θÞ. The angles are used as coordinates covering the meridional
plane inside the black hole.
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tangentially to the horizon and inspiral toward the singu-
larity; namely, θþ and θ− are the latitudes on the horizon
from where the geodesics intersecting at a given position
ðr; θÞ start—see Fig. 1 in Ref. [2] and Fig. 15 here.
In the new coordinates, the equation for λext ≔ λ − λSchw

(where λSchw is the value due to the given black hole alone)
reads (see Eq. (57) in Ref. [2])

∂2λext
∂θþ∂θ− ¼ Mðνext;θþ − νext;θ−Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð2M − rÞp − νext;θþνext;θ− ð41Þ

(this is actually an integrability condition for the gradient
of λ provided by Einstein equations).
Finally, one should not forget that the black-hole interior

is a dynamical region, so it is not as obvious which section
to portray (as obvious as in the external region where
t ¼ const is a clear choice because of t being Killing time).
In order to cover all the interior down to the singularity, one
cannot manage with any cut which would be spacelike
everywhere (like in the exterior). It thus seems natural to
choose a cut which is timelike everywhere—and the
simplest of these is to keep t ¼ const like outside.

FIG. 16. Meridional t ¼ const contours of jνj and λ (left and right column) inside the bottom’ black hole, omitting the (divergent) parts
νSchwðzþ hÞ, λSchwðzþ hÞ due to that black hole alone. Coloring is “geographical”, just shifted for jνj which is positive everywhere (ν
itself is negative). In the top/middle/bottom rows, we chose ðM; h;MÞ ¼ ð1; 0.8713; 0.3Þ=ð9.053; 2.1; 2Þ=ð8.379; 1.25; 0.8333Þ in the
units of a.
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C. Lapse function

The lapse function of the total field is N ¼ eν, with the
potential ν given by superposition (17) (hence, the total
lapse is given by product of the lapse functions “generated”
by individual sources). It is somewhat difficult to plot the
total-potential (or lapse) contours because its pure-
Schwarzschild part behaves too wildly in comparison with
the external contribution. We thus rather plot, in Fig. 16,
just the external part, i.e., that due to the Appell ring
and the other black hole. We depict the interior of the

bottom black hole, so the Appell ring and the symmetric
black hole are (would be) at the top in the figure. The left
column shows νext, and the right column shows λext,
choosing three different parameter values (the three
rows)—see the figure caption. Let us remember that,
since ν superposes linearly, νext is really just the part
due to other sources, whereas λ does not superpose linearly,
so λext also contains a nonlinear, interaction part. We use
“geographical” coloring, going—in principle—from brown
(heights) to blue (depths).

FIG. 17. Meridional t ¼ const contours of the acceleration and Kretschmann scalars κ2 and K (left/right column) inside the bottom
black hole. Geographical coloring, with positive and negative values separated by a red border. Top/middle/bottom rows correspond to
parameters ðM; h;MÞ ¼ ð3; 1.1515; 0.9Þ=ð9.053; 2.1; 2Þ=ð8.379; 1.25; 0.8333Þ in the units of a.
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D. Gravitational acceleration

Below the horizon, when using the ðt; θþ; θ−;ϕÞ coor-
dinates, relation (2) reads

κ2 ¼ 2gθþθ−N;θþN;θ−

¼ e4νext

r4e2λext
ðM þ 2

ffiffiffiffiffiffiffi−Δp
νext;θþÞðM − 2

ffiffiffiffiffiffiffi−Δp
νext;θ−Þ;

ð42Þ

where Δ ≔ r2 − 2Mr and, so,

ffiffiffiffiffiffiffi−Δp
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð2M − rÞ

p
¼ M sin

θþ − θ−
2

:

E. Curvature

In vacuum space-times, the Ricci tensor vanishes, and,
especially in the static case, there is only one nontrivial
quadratic curvature invariant—the Kretschmann scalar
K ≔ RμνκλRμνκλ. We gave its various expressions in pre-
vious papers, just repeating one of them in (3). Below the
horizon, we again transform to the ðt; θþ; θ−;ϕÞ coordi-
nates and obtain

K ¼ 12ðRθ−θþ
θ−θþÞ2 þ 16Rtθ−

tθþR
tθþ

tθ− : ð43Þ

The t ¼ const meridional sections of the acceleration
(actually its square, κ2) and Kretschmann-scalar (K) con-
tours are shown in Fig. 17, the left column containing κ2

and the right column containing K, while the rows
represent three different choices of the parameters (which
correspond to the gradual increase of the strain the black
hole is subjected to). The whole range of geographical
coloring is employed here, since both the acceleration
square and Kretschmann scalar get negative in certain
regions. In the former case, it simply means that the
gradient of N (or ν) is timelike in those regions.
Negative values of the Kretschmann scalar are not very
usual, but they have already been met in the literature. We
also had this experience in a previous paper [2] and tried to
interpret it there by analyzing how the individual compo-
nents of the Riemann tensor contribute. In particular, we
learned that it is electric-type components that make the
result negative, rather than the magnetic-type ones. Here,
we are arriving at a similar conclusion: there again occur
negative-K zones inside the black hole, although there is no
rotation in space-time. However, we again found such
regions to only occur inside the black hole, which seems to
indicate that some type of “dragging”—here connected
with dynamical nature of the black-hole interior—has to be
present (cf. Ref. [8]).

Let us also remember that κ is uniform over the horizon
(so the horizon is actually also a contour) and that the
regions of negative K touch the horizon at points where the
Gauss curvature of the t ¼ const section of the horizon
vanishes (see the preceding paper [2]).

VII. CONCLUDING REMARKS

After considering, in previous two papers, an extreme
black hole within the Majumdar-Papapetrou binary and a
Schwarzschild-type black hole encircled by a Bach-Weyl
thin ring, we have now subjected a black hole to a strain
providing a static equilibrium to a system of two (or
actually four) black holes kept in their positions by a
repulsive effect of an Appell thin ring. We first confirmed
that such a system can rest in a strut-free configuration and
then studied its various properties. Focusing mainly on the
geometry of black-hole interior (specifically, geometry of
its t ¼ const sections), we employed the same method as in
the preceding paper [2], namely integration of the relevant
Einstein equations along special null geodesics which
connect the horizon with the singularity.
The geometry within this system of sources is quite

strongly deformed, as illustrated in figures showing
meridional-plane contours of the lapse/potential, acceler-
ation, and Kretschmann scalars. In particular, if the system
is sufficiently “dense” (meaning that the sources are close
to each other and have sufficient masses), the Kretschmann
scalar turns negative in some regions inside the black holes.
Such a circumstance has already been met in the preceding
paper, and there we also interpret it in terms of the nature of
the relevant Riemann-tensor components and using the
relation between the Kretschmann scalar and the Gauss
curvature of the horizon.
Besides the option to subject a black hole to a yet another

strong source of gravity, two apparent plans arise: to check
whether a “negative” system made of two Appell rings
placed symmetrically with respect to a black hole can also
be in a strut-free equilibrium (and compare its properties
with those of the present configuration) and to try to
understand the regions of the negative Kretschmann scalar
on a more generic and fundamental (geometrical) manner.
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