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Abstract: We study a critical limit in which asymptotically-AdS black holes develop

maximal conical deficits and their horizons become non-compact. When applied to sta-

tionary rotating black holes this limit coincides with the “ultraspinning limit” and yields

the Superentropic black holes whose entropy was derived recently and found to exceed the

maximal possible bound imposed by the Reverse Isoperimetric Inequality [1, 2]. To gain

more insight into this peculiar result, we study this limit in the context of accelerated AdS

black holes that have unequal deficits along the polar axes, hence the maximal deficit need

not appear on both poles simultaneously. Surprisingly, we find that in the presence of

acceleration, the critical limit becomes smooth, and is obtained simply by taking various

upper bounds in the parameter space that we elucidate. The Critical black holes thus

obtained have many common features with Superentropic black holes, but are manifestly

not superentropic. This raises a concern as to whether Superentropic black holes actually

are superentropic.1 We argue that this may not be so and that the original conclusion is

likely attributed to the degeneracy of the resulting first law.
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1We use the upper case Superentropic to indicate the specific black hole solution, and lower case super-

entropic to indicate the property that entropy violates the Reverse Isoperimetric Inequality.
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1 Introduction

Black hole thermodynamics represents a fascinating insight into the interaction of quantum

physics with gravity. Without assigning an entropy to a black hole [3], we would have a

violation of the second law of thermodynamics, widely considered to be one of the most

fundamental laws of nature. Moreover, the discovery of black hole radiation by Hawking [4],

consistent with the notion of black body radiation, presented definitive proof that black

holes can indeed be assigned quantum properties. As the thermodynamics of black holes

was extended and explored, a natural question was: what is the black hole equivalent of the

pressure/volume term, PdV ? Early work [5, 6] proposed that the cosmological constant

Λ could fulfil this role, however this was largely unexplored (though see [7, 8]) until the

importance of anti-de Sitter (AdS) spacetime came to the fore in the context of the gauge-

gravity duality in string theory. A crucial conceptual insight was that the ‘mass’, M ,

for the black hole should more properly be interpreted as enthalpy [9], the pressure with

the (negative) cosmological constant, P = −Λ/(8π), and the black hole volume with the

corresponding conjugate quantity, V = ∂M/∂P [10–12], and with this, the subject enjoyed

a renaissance, with many interesting critical phenomena and thermodynamic processes

being explored, see [13] for a review.

Within the context of extended black hole thermodynamics there has been an inter-

esting conjecture — the Reverse Isoperimetric Inequality [14], which is a statement about
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the relation between the thermodynamic volume of the black hole and its entropy, or area.

In mathematics, the Isoperimetric Inequality states that the surface area enclosing a given

volume is minimised for a spherical surface, and indeed the area can be unboundedly large

if a suitably deformed or wrinkly surface is chosen. From the physical perspective of black

hole thermodynamics, however, this would be a disturbing inequality as, if true, the second

law would imply that a black hole would want to be as deformed as possible to maximise

its entropy, thus indicating a classical instability of black holes. However, in Cvetic et

al. [14], it was demonstrated that in all (then) studied black hole solutions, the reverse of

this inequality held, hence the Reverse Isoperimetric Inequality Conjecture (see also [15]

for the de Sitter version of this conjecture).

Not long after a rather peculiar solution was investigated. In exploring possible black

hole solutions in four-dimensional Fayet-Iliopoulos gauged supergravities, Gnecchi et al. [16]

briefly presented a black hole with a novel horizon topology. The solution emerged as a

certain limit of the Carter-Plebanski metric [17, 18] where the metric function governing

the longitudinal angle develops a certain double root. That it can be interpreted as the

ultra-spinning limit of the Kerr-AdS solution, where the rotation parameter a is taken to

be critically large (equal to the AdS radius `) was suggested in a letter by Klemm [1],

and the corresponding limiting procedure was explicitly found in [2, 19, 20]. The result

is a non-compact horizon of finite area, which is roughly spherical near its equator but

becomes hyperbolic near the axis. The poles are removed from the spacetime and the

horizon topology is that of a sphere with two punctures.

In a series of papers, Hennigar et al. [2, 19, 20] explored the thermodynamic implica-

tions of having such an extraordinary spacetime. These papers argued a distinct definition

of thermodynamic variables from the standard Kerr-AdS variables, and intriguingly discov-

ered that the black hole appeared to be superentropic. Specifically, the reverse isoperimetric

conjecture [14, 15] was found to be violated by the ultra-spinning black hole, leading the au-

thors to impose more stringent conditions under which the bound might be valid — the Su-

perentropic black holes with non-compact horizons had to be excluded from the conjecture.

In this paper, we seek to determine the uniqueness of this latter discovery. A curious

feature of the ultra spinning spacetime is that it is seemingly isolated from regularly-

spinning black holes by any physical process. It is interesting therefore to ponder whether

it truly is a special case, or whether this violation is present in further extensions of this

solution. One way in which the set of black hole solutions can be extended beyond the usual

generalisations to charged and/or rotating solutions is to consider acceleration. The solu-

tion that describes the accelerated black hole is known as the C-metric [21–27]. It is similar

in form to Kerr-AdS, but has conical defect(s) along the polar axes that are different in mag-

nitude, the differential deficit providing a nett force on the black hole, hence acceleration.

To probe superentropicity in this setting, we will re-visit the ultraspinning limit of

Kerr-AdS black holes discussed above. We show that the same Superentropic black holes

are obtained by running a conical deficit through the Kerr-AdS spacetime,1 and making

1In a physical picture, one might think about such a conical deficit as being caused by a cosmic string

threading the black hole, though it is not entirely clear that this is a complete story for rotating black

holes [28, 29].
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this conical deficit maximal, equal to 2π. This provides an alternative to the ultraspinning

limit that is also applicable to (not necessarily spinning) accelerated black holes. While

the characteristic feature of the ultra-spinning black hole is the pair of maximal deficits at

each pole, the accelerated solution has by default one deficit greater than the other, which

means that we may only have one such maximal defect. Further, because the conical defects

are present a priori, it is possible to maximise one simply by choosing a suitable values of

the mass parameter, independent of whether the black hole is charged or rotating [30, 31].

The term “ultra-spinning” is therefore no longer appropriate to designate these special

solutions, so we will use the term critical (for lack of an original word) to designate any

black hole solution which exhibits a single (or a pair of) 2π-conical deficit(s).

The thermodynamic properties of black holes in AdS have been known for a while [7,

32–36], however the thermodynamics of accelerating black holes have only more recently

been elucidated [37–44], and in the context of thermodynamics, we observe these acceler-

ated critical solutions to behave differently to the original ultra-spinning black hole. For the

ultra-spinning case, the thermodynamic quantities cannot simply be obtained by taking the

a→ ` limit of the thermodynamic quantities of Kerr-AdS black holes, as these diverge in the

limit a → `. Instead, the thermodynamics of ultra-spinning black holes were constructed

in [2, 19, 20] “afresh”, starting from the Superentropic metric and applying the standard

procedures, such as the method of conformal completion [45]. In this way, a new set of con-

sistent (and finite) thermodynamic quantities, that are evidently disconnected from those

of Kerr-AdS black holes, were obtained and shown to satisfy the corresponding (degener-

ate) first law, and violate the reverse isoperimetric inequality. In contrast, here we find that

when accelerated black holes are critical, their thermodynamic quantities can be obtained

as a smooth (and finite) limit of the original thermodynamic quantities for the accelerated

black holes [37, 38]. It then follows that the reverse isoperimetric conjecture, shown to be

valid for the accelerated black holes [42], remains true also for the critical black holes.

The discrepancy of the two results is astonishing. We attribute it to the two inter-

related basic facts. First, a crucial step towards establishing thermodynamics of rotating

black holes is to correctly identify a possible rotation at infinity Ω∞ [7, 32]. This affects the

conjugate quantity to the angular momentum, and in its turn also modifies the thermody-

namic mass. In the case of ultra-spinning black holes it is very difficult to identify Ω∞ as

this formally diverges; a particular choice of Ω∞ = 0 was made in [2, 19, 20]. Second, due

to the ultraspinning limit a→ `, the (would be) mass or enthalpy MS is directly dependent

on the (would be) angular momentum charge JS , the two obeying the ‘chirality condition’

JS = MS` that clearly interrelates MS , JS , and P [1]. The corresponding first law is thus

degenerate and the thermodynamic quantities in it are no longer uniquely defined. To

illustrate this point, in section 4 we construct a different set of thermodynamic quantities

for ultraspinning black holes, that are also consistent and can be derived from the stan-

dard methods (with different Ω∞), but do not violate the reverse isoperimetric inequality.

Together with the results on the thermodynamics of the critical black holes this raises an

interesting question: are the original Superentropic black holes truly superentropic?

In the next section we review the accelerating black hole geometry, focussing on the

slowly accelerating black hole [24], discuss the corresponding admissible parameter space,
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conical deficits, and thermodynamics. In section 3, we construct the critical black holes

and confirm that they obey the reverse isoperimetric inequality. In section 4 we compare

the obtained accelerating results to those of ultra-spinning black holes; a novel ‘derivation’

of the ultra-spinning thermodynamics is presented and subjected to critical comments. We

summarise in section 5, and discuss the example of superentropic thermodynamics in the

BTZ black hole.

2 Accelerated black holes

2.1 The generalized C-metric

The geometry of an accelerating black hole is given by the “C-metric” (so called because

of a classification scheme of axisymmetric metrics [21]) that describes a local black hole

type of horizon, distorted by conical deficits that provide the accelerating force acting on

the black hole [22, 23]. In anti de Sitter (AdS) spacetime, where ` =
√
|Λ|/3 is the AdS

lengthscale, the metric can be written in the following form [46–48]:

ds2 =
f(r)

ΣH2

[
dt

α
− a sin2 θ

dφ

K

]2

− Σdr2

f(r)H2
− Σr2

g(θ)H2
dθ2

− g(θ) sin2 θ

Σr2H2

[
adt

α
− (r2 + a2)

dφ

K

]2

,

(2.1)

where the metric functions are

f(r) = (1−A2r2)

[
1− 2m

r
+
a2 + e2

r2

]
+
r2 + a2

`2
,

g(θ) = 1 + 2mA cos θ + (Ξ− 1) cos2 θ ,

Σ = 1 +
a2

r2
cos2 θ , H = 1 +Ar cos θ ,

Ξ = 1 + e2A2 − a2

`2
(1−A2`2) ,

(2.2)

and the electromagnetic potential is given by

B = − e

Σr

[
dt

α
− a sin2 θ

dφ

K

]
+ Φtdt , Φt =

er+

α(a2 + r2
+)

. (2.3)

The parameters a, e, m, and A > 0 are related to the angular momentum, charge, mass

and acceleration of the black hole, respectively. It is worth commenting on a few aspects

of this geometry before turning to the features we will be exploring in the next section.

Note the presence of the parameter K associated with the φ coordinate. In (2.1), the

range of the angular parameter φ is taken to be 2π, thus the parameter K will encode

in part the conical deficits along each axis. Next, note that the time coordinate has

been rescaled by α. It might seem therefore that a new parameter has been introduced,

however, because the time coordinate is non-compact, the rescaling by α represents a gauge

degree of freedom: time is usually chosen relative to an asymptotic observer, which for the
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accelerating black hole is not entirely straightforward to define. In [41], using holographic

renormalization, this was found to be

α =

√
(Ξ + a2/`2)(1−A2`2Ξ)

1 + a2A2
. (2.4)

The conformal factor, H, sets the location of the boundary at rbd = −1/A cos θ, that

lies “beyond infinity” for θ < π/2. The coordinates in (2.1) therefore do not cover the full

spacetime (though can easily be extended — see subsection 2.2), but are nonetheless useful

coordinates as they intuitively extend the familiar Kerr metric to include acceleration.

Finally, note that usually a uniformly accelerating observer has an acceleration horizon,

however, if A` < O(1) (again see section 2.2), the function f is positive outside the black

hole event horizon, suggesting that there is no acceleration horizon and the black hole is

simply suspended in AdS at a finite displacement from the centre. This is known as a

slowly accelerating black hole [24], and will be the focus of our study, although the actual

bound on A` is slightly modified to account for the lack of an acceleration horizon beyond

r =∞ as we describe below. We now turn to this, and other parametric restrictions before

discussing the conical deficit structure and the critical limit.

2.2 Coordinate ranges and parametric restrictions

To explore what restrictions might apply to the parameters in this metric, we must translate

the physical requirements for the slowly rotating black hole into statements about the

functions f(r) and g(θ) that then give constraints on the parameters in the metric. That

we are dealing with a black hole means that we have a zero for f(r) that corresponds to

2m in the limit that ` → ∞, e, a,A → 0, and lies entirely inside the AdS bulk. That the

black hole lacks an acceleration horizon means that there is no other relevant zero of f .

Finally, that θ corresponds to the angular coordinate on the (deformed) 2-sphere requires

that g(θ) ≥ 0 on [0, π].

The constraint that there is a black hole horizon corresponds to the existence of an r+

such that f(r+) = 0, with f ′(r+) ≥ 0, and that this horizon lies fully within the spacetime.

The former requirement is relevant in the case of a charged or rotating black hole, and

corresponds to the black hole being sub-extremal, or extremal if f ′(r+) = 0. The latter

requirement translates to Ar+ < 1; as otherwise it would be possible for 1/Ar+ = − cos θ+

for some θ+, hence the event horizon would reach the boundary.

To explore these constraints, for convenience set the scale of the dimensionful param-

eters using the acceleration:

r̃ = Ar , m̃ = Am , ẽ = Ae , ã = Aa , ˜̀= A` . (2.5)

We can now solve the extremality constraint f(r+) = f ′(r+) = 0 leading to constraints on

the mass and cosmological constant (i.e. `) expressed in terms of the charge and angular mo-

mentum (or vice versa). These can conveniently be parametrised in terms of horizon radius:

m̃ =
(r̃2

+ + ã2)2 + ẽ2(ã2 − r̃4
+ + 2r̃2

+)

r̃+

(
ã2(1 + r̃2

+) + r̃2
+(2− r̃2

+)
) , ˜̀2 =

r̃2
+(r̃2

+ − ã2r̃2
+ − 3r̃2

+ − ã2)

(1− r̃2
+)2(r̃2

+ − ã2 − ẽ2)
. (2.6)
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In order to explore the constraint from slow acceleration, note that outside the black

hole horizon f(r) is positive, but while r is a familiar coordinate for describing the properties

of the black hole, it does not cover the full spacetime, instead y = −1/Ar, running from

−1/Ar+ on the horizon to cos θ on the boundary proves to be a better coordinate. The

region of spacetime beyond r = ∞ is now covered by positive values of y, and the lack of

an acceleration horizon in this region corresponds to F (y) > 0, where

F (y) = ˜̀2y2f(−1/Ay) = 1 + ã2y4 − ˜̀2(1− y2)
(
1 + 2m̃y + (Ξ− 1)y2

)
. (2.7)

F has a minimum on [0, 1], so the borderline case as the acceleration horizon forms is

F (y0) = F ′(y0) = 0, giving

m̃ = y0
(1 + ã2y2

0)2 − ẽ2(1− 2y2
0 − ã2y4

0)

1− y2
0

(
3 + ã2(1 + y2

0)
) , ˜̀2 =

1− 3y2
0 − ã2y2

0(1 + y2
0)

(1− y2
0)2
(
1− y2

0(ã2 + ẽ2)
) . (2.8)

Finally, the constraint that g(θ) ≥ 0 on [0, π], i.e.

1 + 2m̃x+ (Ξ− 1)x2 ≥ 0 for x ∈ [−1, 1] (2.9)

translates to

m̃ ≤

{
Ξ/2 Ξ ≤ 2
√

Ξ− 1 Ξ > 2 .
(2.10)

However, the requirement that Ar+ < 1 implies that the term in f(r+) inside square

brackets is negative:

r̃2
+ − 2m̃r̃+ + ẽ2 + ã2 < 0 . (2.11)

Clearly this quadratic must have real roots, and this in turn requires that its discriminant

be positive:

m̃2 > ẽ2 + ã2 = Ξ− 1 +
ã2

˜̀2
≥ Ξ− 1 , (2.12)

in clear contradiction with (2.10) for Ξ ≥ 2. Thus, the constraints arising from the angular

coordinate require

Ξ < 2 and m̃ ≤ Ξ/2 . (2.13)

To sum up: the constraint from g(θ) gives an upper bound on m̃, the constraint from

extremality gives a lower bound on m̃, and the constraint from slow acceleration gives an

upper bound on ˜̀, that is m̃-dependent.

2.3 The conical defect

The presence of a conical deficit in the spacetime is parametrised (in part) by the parameter

K. Whether or not there is acceleration, if K 6= 1, the metric will not be flat along at least

one of the axes. To see this, expand the angular part of the metric in (2.1) near the poles

by setting θ = θ± ± ρ (with θ+ = 0 and θ− = π) near each axis:

ds2 ∼ 1

H2

Σr2

g(θ±)

[
dρ2 +

g2(θ±)ρ2

K2
dφ2

]
. (2.14)

– 6 –
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The deficit on each axis is then read off as:

δ± = 2π

[
1− g(θ±)

K

]
= 2π

[
1− Ξ± 2mA

K

]
. (2.15)

If A = 0, both deficits are identical and can be interpreted as a cosmic string through the

black hole [49, 50] of tension

µ =
δ

8π
=

1

4

[
1− Ξ

K

]
. (2.16)

If A is nonzero however, then there is an asymmetry in the spacetime, with differing deficits

at north and south poles:

µ± =
1

4

[
1− Ξ± 2m̃

K

]
, (2.17)

that produces a nett force on the black hole, hence acceleration.

It is now evident that if we choose K to obtain a particular value of the conical deficit on

one axis, that choice of K has a global impact: A then regulates the distribution of tensions

between the axes. It is also worth mentioning that although a negative deficit (otherwise

known as an excess) is possible, it would be sourced by a negative energy object and hence

in general associated with instabilities (though see [51–54]). We therefore restrict ourselves

to positive energy sources, thus (taking A > 0 without loss of generality) K > Ξ + 2m̃.

In most of the literature on accelerating black holes, the deficit along one axis (here, the

north) is chosen to vanish, i.e. K = Ξ + 2m̃. However, we will not make this restriction

here, unless stated explicitly.

2.4 Thermodynamics of accelerated black holes

The properties of slowly accelerating black holes have been studied in recent years and

our understanding of their thermodynamics has greatly improved over time [37–40]. The

full thermodynamics for the general accelerating black hole is given by the extended first

law [38]:

δM = TδS + ΦδQ+ ΩδJ + V δP + λ+δµ+ + λ−δµ− , (2.18)

where the enthalpy is

M =
m
(
Ξ + a2/`2

) (
1−A2`2Ξ

)
KΞα (1 + a2A2)

, (2.19)

(with α defined in (2.4)) and the six thermodynamic charges S,Q, J, P, µ± together with

their corresponding potentials T,Φ,Ω, V, λ± are given in terms of the six black hole pa-
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rameters A, a,m, e, `,K as [41]

T =
f ′+r

2
+

4πα(r2
+ + a2)

, S =
π(r2

+ + a2)

K(1−A2r2
+)

,

J =
ma

K2
, Ω = ΩH − Ω∞ =

(
Ka

α(r2
+ + a2)

)
−
(
− aK(1−A2`2Ξ)

`2Ξα(1 + a2A2)

)
,

Q =
e

K
, Φ = Φt =

er+

(r2
+ + a2)α

,

P =
3

8π`2
, V =

4π

3Kα

[
r+(r2

+ + a2)

(1−A2r2
+)2

+
m[a2 +A2`4Ξ2]

(1 + a2A2)Ξ

]
,

λ± =
−r+

α(1±Ar+)
+
m

α

[Ξ + a2

`2
(2−A2`2Ξ)]

(1 + a2A2)Ξ2
± A`2(Ξ + a2/`2)

α(1 + a2A2)
.

(2.20)

These charges also satisfy a Smarr relation [55]

M = 2(TS + ΩJ − PV ) + ΦQ . (2.21)

A description of how the potentials were obtained, using both conformal and holographic

techniques is given in Anabalon et al. [41].

Despite the fact that the tensions µ± are natural variables, and indeed correspond to

physical objects (cosmic strings emerging from the event horizon [50, 56]), expressing the

charges and potentials in terms of extensive variables [42] reveals that the thermodynam-

ics is more naturally delineated into an overall and differential conical deficit, ∆ and C

respectively:

∆ = 1− 2(µ+ + µ−) =
Ξ

K
,

C =
µ− − µ+

∆
=

m̃

∆K
=
mA

Ξ
.

(2.22)

Since the tensions are bounded from below by the positivity of energy, and above by the

maximum conical deficit of 2π, we have

0 6 µ+ 6 µ− 6 1/4 , (2.23)

which translates into bounds for C:

0 6 C 6 min

{
1

2
,

1−∆

2∆

}
. (2.24)

The Christodulou-like formula for the enthalpy then reads [42]

M2 =
∆S

4π

[(
1 +

πQ2

∆S
+

8PS

3∆

)2

+

(
1 +

8PS

3∆

)(
4π2J2

∆2S2
− 3C2∆

2PS

)]
, (2.25)
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while the other expressions are

V =
2S2

3πM

[
1 +

πQ2

∆S
+

8PS

3∆
+

2π2J2

(∆S)2
+

9C2∆2

32P 2S2

]
,

T =
∆

8πM

[(
1 +

πQ2

∆S
+

8PS

3∆

)(
1− πQ2

∆S
+

8PS

∆

)
− 4π2J2

(∆S)2
− 4C2

]
,

Ω =
πJ

SM∆

(
1 +

8PS

3∆

)
,

Φ =
Q

2M

(
1 +

πQ2

S∆
+

8PS

3∆

)
,

λ± =
S

4πM

[(
8PS

3∆
+
πQ2

∆S

)2

+
4π2J2

(∆S)2

(
1 +

16PS

3∆

)
− (1∓ 2C)2 ± 3C∆

2PS

]
,

(2.26)

or considering the conjugates to ∆ and C instead,

λ∆ = − S

8πM

[(
8PS

3∆
+
πQ2

∆S

)2

+
4π2J2

(∆S)2

(
1 +

16PS

3∆

)
− 1 + C2

(
4− 3∆

PS

)]
,

λC = −∆CS

πM

[
1 +

3∆

4PS

]
.

(2.27)

These expressions, (2.25), (2.26), and (2.27) are most useful for exploring the general

thermodynamical properties of the black holes, however, we will refer to the parametric

expressions (2.20) when discussing the ultraspinning black hole.

2.5 Reverse Isoperimetric Inequality

The fact that the thermodynamic quantities of the accelerated black holes obey the Reverse

Isoperimetric Inequality [14] (roughly, a statement that black holes like to be round) has

been shown in [42]. Let us repeat here the corresponding argument.

Squaring the formula (2.26) for V , we have(3V

4π

)2(π
S

)3
=

S

4π

1

M2

[
1 +

πQ2

∆S
+

8PS

3∆
+

2π2J2

(∆S)2
+

9C2∆2

32P 2S2

]2

. (2.28)

Thence, upon using the Christodulou formula (2.25) to eliminate M , this yields

∆
(3V

4π

)2(π
S

)3
=

[
1 + πQ2

∆S + 8PS
3∆ + 2π2J2

(∆S)2
+ 9C2∆2

32P 2S2

]2

[(
1 + πQ2

∆S + 8PS
3∆

)2
+
(
1 + 8PS

3∆

) (
4π2J2

∆2S2 − 3C2∆
2PS

)]
≥

[
1 + πQ2

∆S + 8PS
3∆ + 2π2J2

(∆S)2

]2

[(
1 + πQ2

∆S + 8PS
3∆

)2
+ 2

(
1 + πQ2

∆S + 8PS
3∆

)
2π2J2

∆2S2

] ≥ 1 . (2.29)

We have thus verified the refined Reverse Isoperimetric Inequality [42](
V

V0

)2

≥ 1

∆

(
A

A0

)3

, (2.30)

where V0 and A0 are the volume and area of a unit ball, V0 = 4
3π and A0 = 4π, and the

inequality is saturated if and only if C = 0 = J .

– 9 –
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(a) (b) (c)

Figure 1. Horizon embedding of critical black holes. We display the horizon embeddings in R3 of

the critical C-metrics for m = 9`, A = 0.04` and (a) K = 2Ξ (b) K = 2.4Ξ (c) K = 4Ξ.

3 Critical black holes and their thermodynamics

3.1 Critical limit

Having discussed the slowly accelerating C-metric, and the parametric restrictions that this

geometry requires, we now turn to the critical black holes we are interested in exploring.

The term critical is used to describe a geometry in which at least one of the tensions

has its maximal value of 1/4, i.e., where the deficit becomes 2π as in the ultra-spinning

black hole. For the ultraspinning Kerr-AdS black hole, this corresponds to saturating an

upper bound on rotation, however, in our accelerating black hole metric, the deficit along

one axis can become 2π, even in the absence of rotation, e.g. for mA = 1/2 in the ‘black

bottles’ of [30, 31]. We can therefore think of criticality as saturation of an upper bound

for the mass parameter m̃,

mA = Ξ/2 . (3.1)

With this choice, the south pole axis is effectively removed from the spacetime, while the

north pole axis may still have a conical deficit, determined by the ratio of K/Ξ, see figure 1,

where the embedding of the event horizon of a critical black hole is displayed for various

such ratios.

Since in the process of taking the critical limit, only one parameter is eliminated,

by imposing (3.1), we have a three-parameter family of critical accelerating black holes,

parametrised by ẽ = eA, ã = aA, and ˜̀ = A`, with the mass given by (3.1). Once again,

these parameters are constrained by g(θ), and the slow-acceleration/extremal limits for the
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0.0 0.2 0.4 0.6 0.8 1.0
ℓ
˜20.0

0.1

0.2

0.3

0.4

0.5
ẽ2

ã=0

ã=0.1

ã=0.4

Figure 2. The allowed values of ˜̀ and ẽ: the upper bound for ẽ from extremality is shown in

black/grey, and the upper bound for ˜̀ from the slow acceleration limit is shown in red/pink for

sample values of ã as labelled. The upper bound for ã is ã2 = 3− 2
√

2.

black hole:

extremal limit


˜̀2
ext =

ã2 + 3ã2r̃+ + 4r̃3
+ + r̃4

+ − r̃5
+

(1− r̃+)3(1 + r̃+)2
,

ẽ2
ext =

−ã4 − 3ã4r̃+ + 2ã2r̃2
+ − 2ã2r̃3

+ + 3r̃4
+ + r̃5

+

ã2 + 3ã2r̃+ + 4r̃3
+ + r̃4

+ − r̃5
+

,

slow acc. limit


˜̀2
acc =

1 + y+ − 4y2
+ − 3ã2y4

+ + ã2y5
+

(1− y+)2(1 + y+)3
,

ẽ2
acc =

−1 + 3y+ + 2ã2y2
+ + 2ã2y3

+ + 3ã4y4
+ − ã4y5

+

1 + y+ − 4y2
+ − 3ã2y4

+ + ã2y5
+

.

(3.2)

See figure 2 for a plot of parameter space. Note, the constraint from g(θ) is automatically

(marginally) satisfied due to the choice of m̃.

3.2 Thermodynamics and absence of superentropicity

The above constructed critical black holes (µ− = 1/4) were simply obtained by setting

2mA = Ξ, that is,

C =
1

2
, ∆ =

1

2
− 2µ+ . (3.3)

The associated allowed range for ∆ is ∆ ∈ [0, 1/2], with the lower (upper) bound corre-

sponding to the upper (lower) value that µ+ can take; thus µ+ = 0 ←→ ∆ = 1/2, and

µ+ → 1/4←→ ∆→ 0.

The criticality condition (3.3) is hard to impose at the parametric level, (2.20), but

very simple for the expressions (2.25), (2.26), and (2.27). The limit is smooth and simply
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yields

M2 =
∆S

4π

[(
1 +

πQ2

∆S
+

8PS

3∆

)2

+

(
1 +

8PS

3∆

)(
4π2J2

∆2S2
− 3∆

8PS

)]
,

V =
2S2

3πM

[
1 +

πQ2

∆S
+

8PS

3∆
+

2π2J2

(∆S)2
+

9∆2

128P 2S2

]
,

T =
∆

8πM

[(
1 +

πQ2

∆S
+

8PS

3∆

)(
1− πQ2

∆S
+

8PS

∆

)
− 4π2J2

(∆S)2
− 1

]
,

Ω =
πJ

SM∆

(
1 +

8PS

3∆

)
,

Φ =
Q

2M

(
1 +

πQ2

S∆
+

8PS

3∆

)
,

λ∆ = − S

8πM

[(
8PS

3∆
+
πQ2

∆S

)2

+
4π2J2

(∆S)2

(
1 +

16PS

3∆

)
− 3∆

4PS

]
.

(3.4)

These quantities obey the full cohomogeneity first law,

δM = TδS + ΦδQ+ ΩδJ + V δP + λ∆δ∆ , (3.5)

together with the corresponding Smarr relation (2.21).

Of course, the proof of the reverse isoperimetric inequality (2.30) presented above for

accelerated black holes goes through exactly the same way for their critical subfamily and

this is despite the fact that the horizon of critical black holes is non-compact (as is the

horizon of ultraspinning black holes). Note also that since C = 1/2 the inequality can no

longer be saturated and is a strict inequality.

Also, note that by taking another limit, ∆ → 0, one formally obtains a critical black

hole with maximal conical deficits on both poles, that in fact is the superspinning black

hole. However, it is obvious from the expressions (3.4) above, that the thermodynamic

quantities such as mass M , and angular velocity Ω diverge in this limit. Therefore, either

one accepts that the thermodynamics is ill-defined in this limit, or one looks for new

(renormalised) thermodynamic parameters.

4 Comparison to ultraspinning black holes

4.1 The superentropic argument

Let us now compare the critical limit to the ultraspinning limit of the Kerr-AdS spacetime.

The charged Kerr-AdS black holes are obtained by setting A = 0 in the metric (2.1). For

simplicity, and without loss of generality for the purposes of this discussion, we will also

take the uncharged limit e = 0, so that the metric becomes

ds2 =
f(r)

Σ

[
dt− a sin2 θ

dφ

K

]2

− Σdr2

f(r)
− Σr2dθ2

g(θ)
− g(θ) sin2 θ

Σr2

[
adt− (r2 + a2)

dφ

K

]2

, (4.1)
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where we now have

f(r) =

[
1− 2m

r
+
a2

r2

]
+
r2 + a2

`2
, g(θ) = 1 + (Ξ− 1) cos2 θ ,

Σ = 1 +
a2

r2
cos2 θ , Ξ = 1− a2

`2
.

(4.2)

In the previous literature, one sets K ≡ Ξ, so that there is no conical deficit in the

spacetime. The thermodynamics of these black holes was worked out definitively in [7, 32],

the key insight being that the boundary has a non-zero angular velocity,

Ω∞ = lim
r→∞

−
gtφ
gφφ

= −aK
`2Ξ

, (4.3)

implying that the total angular velocity ought to be re-normalised, Ω = ΩH−Ω∞. Further,

a computation of the mass of the spacetime, using an appropriately normalised Killing

vector, ∂t−Ω∞∂φ, yielded M = m/Ξ2 for the enthalpy. These results are entirely consistent

with (2.19), (2.20), once one sets K = Ξ. Crucially, when considering a varying Λ, the

inclusion of these normalisations for enthalpy and angular velocity leads to an enthalpy

dependent correction term in the thermodynamic volume:

V = V0 + V1 =
4πr+(r2

+ + a2)

3K
+

4πMa2

3
. (4.4)

The ultra-spinning limit is obtained by taking the limit in which a → ` (Ξ → 0), but

because of the identification of K with Ξ, this results in an apparently singular metric. This

was resolved in [1, 2] by defining a new angular coordinate, ψ = φ/Ξ, so that ψ formally

becomes noncompact in the ultra-spinning limit. This new angular coordinate is then given

a finite range, ∆ψ = µS . Since g(θ)→ sin2θ the limit yields the Superentropic black hole

ds2 =
f(r)

Σ

[
dt− ` sin2 θdψ

]2
− Σdr2

f(r)
− Σr2dθ2

sin2θ
− sin4θ

Σr2

[
`dt− (r2 + `2)dψ

]2
,

f(r) =
`2

r2

(
1 +

r2

`2

)2

− 2m

r
, Σ = 1 +

`2

r2
cos2θ , (4.5)

which was assigned the following thermodynamic parameters [1, 2]:

MS =
µSm

2π
, SS =

µS
2

(r2
+ + `2) , TS =

f ′(r+)r2
+

4π(r2
+ + `2)

, JS = Ms` ,

ΩS =
`

r2
+ + `2

, VS =
2µSr+

3
(r2

+ + `2) , λS =
m

4π

(`2 − r2
+)

(r2
+ + `2)

, (4.6)

where the subscript S is used to denote these specific ‘superentropic’ definitions, and we

have relabelled the thermodynamic length parameter, denoted K in [2] as λS , dual to a

variation of the parameter µS ,

δMS = TSδSS + ΩSδJS + VSδP + λSδµS . (4.7)
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The first law is obviously degenerate as only 3 parameters, {r+, `, µS}, can be varied inde-

pendently; the mass MS and angular momentum JS charges obey the ‘chirality condition’

JS = MS`.

Note that ΩS is simply the angular velocity, defined by ω = −gtψ/gψψ, evaluated on

the horizon, ΩS = ω(r+), while the corresponding quantity at infinity diverges. That is,

in [2] the authors set formally Ω∞ = 0, there is no renormalisation of angular velocity, nor

of the timelike Killing vector, and in consequence, there is no adjustment of the enthalpy

‘M ’, nor a correction to the thermodynamic volume. As a result, the volume is simply

the geometric volume, thus the standard mathematical Isoperimetric inequality applies,

and the entropy is now minimised by the contained volume. This fascinating result has

caused some puzzlement, as the thermodynamic parameters (4.6) are not obtained as an

“a → `” limit of the conventional parameters, (2.20), nor does it seem possible to obtain

one of these black holes by some sort of continuous process. In addition, the idea that

the entropy can be unbounded for a fixed volume suggests that superentropic black holes

should be somehow unstable, a notion explored (in a different context) by Johnson [57],

see also [58, 59]. Thus the Superentropic black hole is worthy of further study.

One of the problems of the thermodynamic parameters of [2] is that setting a ≡ ` means

that the angular momentum and thermodynamic pressure are no longer independent vari-

ables. In other words, the first law no longer has full cohomogeneity. Further, the discrete

alteration of the periodicity of the angular coordinate is equivalent to a sudden shift of the

conical deficit from 0 to 2π, as one is setting K = Ξ for the sub-rotating black holes (giving

µ = 0) but for a = `, the periodicity of the original φ coordinate, set to µΞ by Hennigar

et al. [2], now vanishes. However, since we have a set of thermodynamic variables that

include potential variations in the conical deficit, we can now examine this superentropic

ultra-spinning limit afresh, and try to understand what lies behind this phenomenon.

4.2 Kerr-AdS with conical deficits

Let us return to the general metric (4.1), retaining the parameter K, and re-examine the

thermodynamics of the ultraspinning Kerr in the light of allowing for conical deficits. First,

note that in the limit a→ `, g(θ)→ sin2 θ, thus defining a new angular coordinate

Θ = log tan
θ

2
, (4.8)

the angular part of our metric in terms of Θ and φ is manifestly non-compact. The

parameter K however now has no apparent physical meaning, as the deficit along the axis,

defined by the tension (2.16) becomes maximal:

δ = 8πµ = 2π

[
1− Ξ

K

]
→ 2π . (4.9)

However, guided by the discussion in [2], define

µS =
2π

K
=

2π

Ξ
(1− 4µ) , (4.10)

that will play the role of a “spectator tension”.
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We now re-derive the thermodynamics of the superspinning black hole by taking a con-

tinuous limit of the generic, fully cohomogeneous, variables given in (2.20) by approaching

the limit a → ` from a more continuous perspective, taking a family of black holes with

a/` =
√

1− Ξ fixed, then taking the limit Ξ→ 0.

Imposing the constraint that Ξ is a constant means that J and P are no longer in-

dependent thermodynamic variables (δa = aδ`/`), thus keeping a first law with variations

of both angular momentum and pressure is a bit disingenuous, and such a first law no

longer has full cohomogeneity. Instead, the variation of the angular momentum yields

contributions to the pressure variation, as well as terms that contribute to the enthalpy.

δJ = aδ
( m
K2

)
+

m

K2
δa = aδ

( m
K2

)
− 4π`2

3

ma

K2
δP . (4.11)

Therefore, in deriving the superentropic variables (4.6), Hennigar et al. have effectively

used this equivalence between the variation of J and P to “re-organise” terms in the

thermodynamic potentials, and (roughly) the angular momentum subtraction at infinity

term cancels off the compensating thermodynamic volume term to yield an uncorrected V ,

hence a standard Isoperimetric inequality.

To track through the play-off between the various terms, start with the first law

δM = T δS + Ω δJ + V δP + 2λ δµ , (4.12)

with the thermodynamic variables pertinent to the discussion being:

M =
m

KΞ
, J =

ma

K2
, Ω = ΩH − Ω∞ =

Ka

(r2
+ + a2)

+
aK

`2Ξ
,

V = V0 + V1 =
4πr+(r2

+ + a2)

3K
+

4πma2

3KΞ
, λ = −r+ +

m

Ξ2

(
1 +

a2

`2

)
.

(4.13)

Now, using the fact that Ξ is a constant, and noting the definition of µS above, (4.10),

we see that

δM =
1

Ξ
δ
(m
K

)
=

1

Ξ
δ
(µsm

2π

)
=

1

Ξ
δMS , (4.14)

where MS is the superentropic variable in (4.6), but now defined at finite Ξ. We can also

relate the variation of tension to the rescaled ‘spectator’ tension µS :

δµ = − Ξ

8π
δµS . (4.15)

Finally, looking at the angular momentum, and using (4.10), (4.11), (4.14) we see that

J = aMs/K, and we can write the variation of J in two useful alternate forms:

δJ =
a

K
δMS +

am

K

δµS
2π
− 4π`2

3

ma

K2
δP

=
1

K
δ(aMS) + aMS

δµS
2π

,

(4.16)

thus using the first expression in Ω∞δJ , and the second in ΩHδJ , we see that

ΩδJ =
a2

`2Ξ
δMS +

a

r2
+ + a2

δ(aMS) +

[
am

r2
+ + a2

+
a2m

`2Ξ

]
δµS
2π
− 4π

3

ma2

KΞ
δP . (4.17)
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Note, the last piece in the above expression is in fact −V1δP , so we now see how the

compensating term in the thermodynamic volume that maintains the reverse isoperimetric

inequality is cancelled.

Putting together all these pieces, we see our first law becomes

δMS = T δS +
a

r2
+ + a2

δ(aMS) + V0 δP +

[
am

r2
+ + a2

+
a2m

`2Ξ
− λΞ

2

]
δµS
2π

= T δS +
a

r2
+ + a2

δ(aMS) +
2µSr+

3
(r2

+ + a2) δP +

[
r+Ξ−m

r2
+ − a2

r2
+ + a2

]
δµS
4π

.

(4.18)

We see a clear parallel with the thermodynamic variables of (4.6), indeed, defining a new

angular momentum charge, potential, and thermodynamic length

JS = aMS , ΩS =
a

r2
+ + a2

, λS =
1

4π

(
r+Ξ−m

r2
+ − a2

r2
+ + a2

)
, (4.19)

which are identical to those in (4.6) when a = `, we do indeed confirm the consistency of

the Hennigar et al. first law, (4.7), but now for finite Ξ. We stress that although consistent

for any finite Ξ, such a first law is not the correct one — it uses the wrong thermodynamic

quantities, e.g., ΩS lacks the contribution from rotation at infinity. Note also that after

the limit a → `, the spectator tension should really not be varied (the parameter K is no

longer physical) and the term λSδµS in (4.7) should be omitted.

However, studying the system at finite Ξ reveals something interesting that was missed

in [2]. Conventionally, consistency of thermodynamics has been used as the principle upon

which to define the thermodynamic parameters, and provided there is full cohomogeneity

this seems to be correct. However, once there is not full cohomogeneity, one must be

more disciplined in deriving a consistent first law, and allow for general variations in the

definition of variables. Note that

δJS = δ(aMS) = aδMS −
4π

3
a`2MSδP . (4.20)

Thus, if we return to our angular velocity subtraction, and notionally define2

Ω∞ = −α
a
, (4.21)

then

(ΩS − Ω∞) δJS = ΩS δJS + αδMS −
4π

3K
ma2 α

1− Ξ
, (4.22)

that is, our first law (4.7) is also consistent (for any fixed a/`) for the one-parameter family

of variables

Mα
S = (1 + α)MS , V α

S =
2µSr+

3
(r2

+ + a2) +
4π

3K

αma2

1− Ξ
, Ωα

S =
a

r2
+ + `2

+
α

a
. (4.23)

Thus there is a one parameter freedom that can be thought of as the ‘choice of angular

velocity at infinity’. The actual computation yields infinite Ω∞ so one can think of the

2This form may be motivated by the expression (4.3), by identifying α = K(1 − Ξ)/Ξ, which is a

‘constant’ once the a→ ` limit is taken and K becomes a redundant parameter.
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above value as some sort of renormalization. One can easily check that for α < 1/2 the

reverse isoperimetric inequality is violated, whereas it becomes satisfied for α > 1/2.

Note that similar to what was done in [2], the thermodynamic quantities (4.23) (in

the limit a→ `) can be directly obtained from the Superentropic metric (4.5) by using the

conformal method [45]. Namely, denoting Q(ξ) a conformal charge corresponding to the

Killing vector ξ, we find

Q(∂t) = MS , Q(∂φ) = JS , (4.24)

and therefore

Mα
S = Q(∂t − Ω∞∂φ) = (1 + α)MS . (4.25)

To summarize, simply demanding consistency does not lead to a unique thermody-

namics for the constrained Kerr-AdS black hole, for which a =
√

1− Ξ`. The procedure

is ambiguous in that there is (at least) a 1-parameter family of consistent thermodynamic

quantities some of which do satisfy the isoperimetric inequality and some of which do

not. The origin of this ambiguity is the degeneracy of the first law, which is no longer

of full cohomogeneity and thence no longer fixes the thermodynamic quantities uniquely.

We demonstrated this explicitly by working down from the full expressions (2.20), taking

a =
√

1− Ξ`, and defining a set of consistent parameters that can be seen to reduce to the

Hennigar et al. expressions in the limit that both Ξ and α tend to zero.

5 Conclusions

In this paper we have discussed the general parameter space for slowly accelerating black

holes and defined a critical limit in which at least one of the conical deficits becomes

maximal at δ = 2π. We then discussed thermodynamics of these critical black holes, in

particular focussing on the Reverse Isoperimetric Inequality, reviewing a proof of the in-

equality and confirming that it holds in the critical limit, which is now smoothly connected

to non-critical black holes. This is manifestly distinct from the argument for Superentropic

Black Holes [2] therefore we have revisited this particular solution and critically examined

the arguments in the literature.

We presented two possible alternate continuous ways of taking the superspinning limit,

one by fixing a/` and allowing it to tend to unity; the second taking an accelerating black

hole, fixing one deficit to its maximal value of 2π and allowing the other deficit to approach

2π. In each case, the fully co-homogeneous thermodynamic parameters M , V and Ω

diverge in the superspinning limit, thus in order to have finite charges a renormalisation

prescription is required. Using the degeneracy of the thermodynamic variables that results

from fixing a/`, we showed how the first law can be reorganised, with a redefinition of the

thermodynamic charges that results in a one parameter family. This new degree of freedom

in turn raises doubts on the correctness of the superentropic thermodynamics and gives an

alternate argument in favour of non-superentropic thermodynamics.

It remains to be shown whether similar doubts could arise also for other Superentropic

black holes, for example the recently studied charged BTZ black holes [57–60] have an
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apparently similar issue. The charged BTZ black hole is a three dimensional electrically

charged solution of the Einstein-Maxwell equations [61]

ds2 = f(r)dt2 − dr2

f(r)
− r2dϕ2 , F =

Q

r
dt ∧ dr , (5.1)

where Q is the black hole charge, f(r) satisfies

f ′ =
2r

`2
− 8πGQ2

r
, (5.2)

and ` is the AdS radius, defined by Λ = −1/`2. In [61], the Newton’s constant is fixed

by setting 16πG = 1, however, we will temporarily retain this dimensionful parameter,

writing 8πG = Lp = M−1
p the 3D Planck length, in order to emphasise the source of

superentropicity.

Integrating (5.2) yields the potential

f(r) =
r2

`2
− LpQ2 log

(
r

r0

)
− 2m, (5.3)

where m is an integration constant we identify as the mass parameter, and r0 is a dimen-

sionful integration parameter inserted to render the argument of log dimensionless. This

is in part the reason for maintaining the dimensionful parameter G, if we set 8πG = 1, or

1/2 as in the original paper [61], then r becomes dimensionless, and we need not add any

scale inside the logarithm, however, in keeping with convention, we introduce the scale r0

as a second integration constant.

The extended thermodynamics of this black hole has been studied in [60, 62], and is

shown to crucially depend on the choice of the integration parameter r0. The conventional

choice in the literature is to set r0 = `, however, in extended thermodynamics this has

an important consequence: ` is related to the thermodynamic pressure, so varying P has

the consequence of varying the integration constant. Imposing this value of r0 leads to the

thermodynamic variables

M =
m

4
=
r2

+

8`2
− Q2

16
log

(
r+

`

)
, T =

r+

2π`2
− Q2

8πr+
, S =

πr+

2
,

V = πr2
+ −

1

4
Q2π`2 , Φ = −1

8
Q log

(
r+

`

)
, P =

1

8π`2
,

(5.4)

that obey the standard 1st law and Smarr relations:

δM = TδS + ΦδQ+ V δP , TS = 2PV , (5.5)

where we have set Lp = 1/2 to align with the literature [61].

Note the non-geometric correction to the black hole volume V , originating from the

aforementioned variation of the integration constant. This is precisely the term that implies

the violation of the reverse isoperimetric inequality. Although preferred in [60], this option

is questionable from various perspectives. First, the potential Φ in (5.4) is that of the elec-

trostatic potential evaluated on the horizon, however this is not gauge invariant; usually
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one takes the potential difference between the horizon and infinity as a gauge invariant

thermodynamic potential, however this is problematic in 3D as the potential at infinity

obviously diverges. Secondly, the introduction of r0 can be viewed as part of a renormal-

isation procedure, and indeed is discussed as such in [61]. If a cutoff is introduced, then

one would expect that this cutoff would remain fixed as one is varying physical parame-

ters in a thermodynamic process. This perspective leads to an alternative formulation of

thermodynamics, where we identify r0 in (5.1) as ‘enclosing’ the BTZ black hole in a circle

of radius r0 as in [61, 63]. Upon this, the potential at ‘infinity’ (r = r0) vanishes and we

obtain the following thermodynamic quantities [60]:

M =
m

4
=
r2

+

8`2
− Q2

16
log

(
r+

r0

)
, T =

r+

2π`2
− Q2

8πr+
, S =

πr+

2
,

Φ = −1

8
Q log

(
r+

r0

)
, V = πr2

+ , P =
1

8π`2
,

(5.6)

together with the circumference C = 2πr0 and a dual thermodynamic potential µC =

Q2/16C if one wishes to vary the physical enclosure around the black hole. With these the

first law (5.5) remains satisfied, but the Smarr relation now picks up a CµC term due to

the scaling properties of r0. The thermodynamics (5.6) is obviously non-superentropic.

We therefore suspect that the traditional thermodynamics of this somewhat patho-

logical solution is most likely not the correct one. Finally, in an interesting recent twist,

the rotating (uncharged) BTZ black hole, which as a traditional Einstein solution is not

superentropic, can be reimagined as a solution of the gravitational Chern-Simons ac-

tion [58, 64]. The thermodynamic parameters become “exotic” (with mass and angular

momentum charges reversed and the entropy no longer given by the horizon area). This

it seems may also violate the reverse isoperimetric inequality, however since the Reverse

Isoperimetric Inequality conjecture of [14] was originally put forward for Einstein gravity,

this can not be regarded as a counter-example. What it abundantly clear however is that

the existence and origin of superentropicity most certainly deserves further investigation.
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