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We study the self-force acting on a static charged pointlike particle near a Schwarzschild black hole. We
obtain the pointlike particle as a limit of a spacetime describing a big neutral black hole with a small
charged massive object nearby. The massive object is modeled by a black hole or a naked singularity. In this
fully interacting system the massive object is supported above the black hole by a strut. Such a strut has a
nonzero tension which corresponds to the external force compensating the gravitational force and the
electromagnetic self-force acting on the massive object. We discuss details of the limiting procedure
leading to the pointlike particle situation. As a result, we obtain the standard gravitational force in the static
frame of the Schwarzschild spacetime and the electromagnetic self-force. The electromagnetic self-force
differs slightly from the classical results in a domain near the horizon. The difference is due to taking into
account the influence of the strut on the electromagnetic field. We also demonstrate that higher order
corrections to the gravitational force, a sort of gravitational self-force, are not uniquely defined, and they
depend on details of the limiting procedure.
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I. INTRODUCTION

The self-force problem is a problem of computing the
motion of charged particles in an external gravitational field
by taking into account a self-interaction of a particle with its
own field. This problem has a long history going back to the
classical works [1–4]. Even in flat spacetime it is not quite
trivial to take into account radiation-reaction effects and the
fact that an electromagnetic mass of a charged particle is not
localized at a point. In curved spacetime the task becomes
much more involved and subtle. In the four-dimensional case
many approaches were developed for how to deal with this
complicated problem. Three decades ago the study of self-
force and self-energy was mostly related to the electric
charges [5–16]. The perturbative approach was developed by
Zerilli [17] and proved to be very effective in computations
of the gravitational and electromagnetic self-force [18–20].
Currently, development in this field is mainly motivated by
the study of various processes in the vicinity of black holes
or during black-hole collisions.
After the discovery of gravitational waves from binary

black-hole mergers, a study of the self-force of compact
objects in the black-hole background gained new interest. It
can provide a very effective tool to test general relativity in
a strong gravity limit. There are excellent reviews of the

topic [21–23], where one can find a description of the
contemporary methods, results, and applications of the self-
force approaches discussed in the literature.
In four dimensions computation of the self-force in a

strong gravitational field is technically quite involved, but
conceptually, it is now well understood. It was surprising
[24,25] that the generalization of the widely accepted and
well-tested methods of computation of the self-energy
[25–45] to higher-dimensional spacetimes led to unex-
pected ambiguities. It was noted [24–26] that in odd-
dimensional spacetimes, the standard calculation of the
self-force leads to some logarithmic terms depending on an
unknown scale parameter. This problem appears even in a
flat (Rindler) geometry [25]. A few approaches were
proposed [24,25,46,47] for how to fix these unpleasant
ambiguities in higher dimensions. But although physically
reasonable, they do not necessarily provide an invariant
description of the self-force.
In four dimensions there remain some subtle problems

with the invariant description of the gravitational self-force.
In a first-order perturbation of the metric, everything is clear:
Any compact object moves as a test particle in the certain
effective metric satisfying the linearized Einstein equations.
Taking into account the self-force effects requires compu-
tations up to a second order of perturbations of the geometry,
which are nonlinear. Nevertheless, a similar statement is still
valid [48], but it requires a refinement of a test point-particle
approximation.
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This approximation, like in electromagnetism, considers
an extended object in the limit when mass, charge,
momentum, and size scale to zero in a proportional manner
[45]. The self-force is given by the quadratic in these
parameters. This limiting procedure leads to a physically
satisfactory description of self-force effects for a test
particle [37,42–44,49–52], but invariance of the self-force
effects up to second order in these small parameters
requires a special analysis [23,53]. We will return to this
point at the end of the Introduction.
One of the ways to test our intuition and computational

methods is to apply them to the exactly solvable models.
This approach was successfully applied to study a self-
force acting on a static charge in Schwarzschild spacetime
[5,7–11], Kerr-Newman spacetime [13], Schwarzschild–de
Sitter spacetime [35], and cosmic string spacetime [54], or
to probe the spacetime global structure [55]. Let us recall
that, for a particle at the static orbit in Schwarzschild
spacetime, the “classical” answer for the magnitude of the
electromagnetic self-force in the static frame is

Fsf ¼
q2oM
r3

; ð1:1Þ

and the self-force is pointing radially, away from the black
hole [8,10,11].
In this paper we study the effect of a self-force exerted

on a static electric charge placed in the vicinity of an
uncharged black hole. The idea is to use the exact double
black-hole solutions of the Einstein-Maxwell equations,
where all backreaction effects are taken into account
exactly. Then, we take the point-particle limit, when the
mass and the charge of one component proportionally
scale to zero. In this limit we obtain the test charged particle
in the background geometry of the Schwarzschild black
hole. We analyze the force which keeps the system in
equilibrium.
The limiting system contains the black hole, the test

charge, the electromagnetic field due to the charge, and the
agent, which balances the particle at its position: the test
strut between the black hole and the particle. The pertur-
bation of the geometry due to the last term is frequently
overlooked in some approaches. It is true that the strut is a
test object which does not affect the limiting Schwarzschild
geometry. However, the self-force of a test charge is the
second-order perturbation effect. The test strut or string
influences the geometry and modifies the surrounding
electromagnetic field, which in turn affects the self-force.1

In our model of the fully interacting system, two
black holes are kept in equilibrium by a strut described
by a conical defect between them. The geometry and,

consequently, the electromagnetic field are affected by the
presence of this conical defect. We compute the limiting
self-force on the particle by taking into account this effect.
As a result, we obtain

Fsf ¼
q2oM
r3

1 − M
r

1 − 2M
r

: ð1:2Þ

This expression differs from the classical result (1.1). The
reason for this difference is that it also takes into account
the influence of the strut which keeps the particle at its
position. Both expressions for the self-force agree suffi-
ciently far from the horizon, but they differ near the
horizon, when the tension and the linear energy density
of the strut are big.
Finally, let us comment on the well-definiteness of our

limiting procedure. Limits of the spacetimes are rather
involved and depend on many ingredients [57,58]. The
spacetime description itself must deal with the standard
diffeomorphism freedom, and the limiting procedure adds
additional ambiguity. For example, in our system of a test
particle near the black hole, even the answer to the simple
question—what position of the black hole corresponds to a
position of the point particle—depends on the limiting
procedure.
In Ref. [58] three types of “gauge freedom” have been

described: (i) identification of points in the perturbed
spacetime with points in the background spacetime; (ii) the
freedom to perform a coordinate transformation (or dif-
feomorphism) on the background, inducing, via an iden-
tification map, a coordinate transformation in the full
spacetime; (iii) the choice of the spacetime family used
in the limiting procedure. This freedom corresponds to a
choice of “what to hold fixed” while taking the limit.
The first two freedoms are related to the standard

diffeomorphism gauge freedom of general relativity, and
we do not discuss them in much detail. In our paper, we fix
the identification of points during the limit using the Weyl
coordinates. Other choices could lead to diffeomorphically
equivalent results—if the identification of points does not
differ significantly; or one obtains qualitatively different
results—if the identification of points during the limiting
procedure does, for example, infinitely zoom in on some
particular area or stretch some particular direction.2

In this paper, we are not interested in these phenomena.
We are primarily concerned with the third type of freedom
above. As discussed in [58], this freedom, in general,
cannot be removed or compensated by small coordinate
transformations. This freedom reflects the choice of a
particular limiting procedure. The choice is fixed by
coordinate independent physical observables that are used
to identify points of a set of different spacetimes. Different

1A similar approach has been adopted in the work of LaHaye
and Poisson [56], which appeared during the publication process
of this paper.

2Typical examples of such a dependence on the point iden-
tification are near-horizon limits of black-hole geometries.
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gauge-invariant limiting procedures may lead to physically
different predictions for the gravitational self-force of a test
particle, while the electromagnetic self-force is independent
of these choices. The position of the test particle is defined
by physical observables, like proper distance, thermody-
namic length, red shift factor, and other invariant observ-
ables. In the literature, though, it is common to fix the
distance from the black hole as a coordinate distance, e.g.,
Schwarzschild or Weyl radial coordinate. Mathematically,
it is a very convenient gauge choice, especially for
perturbative computations, but implicitly, it assumes a very
particular gauge-noninvariant limiting procedure.
This ambiguity may affect the expressions for the

self-energy, the self-force, and the effective equations of
motion of the particle. It is important to find out which
effects and quantities are robust and which ones depend on
the limiting procedure. This freedom can be fixed by
choosing operationally defined quantities that are held
fixed while taking the limit. There may be several physi-
cally motivated operational choices for these quantities, and
it is not guaranteed that they will provide the same
prediction for the self-force. Of course, if one makes the
choice of the limiting procedure, i.e., the choice of
experimentally measurable observables which are kept
fixed, then the prediction for the self-force becomes
unambiguous.
We demonstrate the robustness of the electromagnetic

self-force, i.e., its independence on the limiting procedure.
As for the gravitational self-force, we find that it does
depend on the choice of variables that are kept fixed in the
limiting procedure. For example, keeping the total mass
measured at spatial infinity constant gives a different
gravitational self-force than when keeping the surface
gravity of the black hole fixed. Depending on the physical
motivations and further applications of the result, one can
thus have equally well justified but different expressions for
the gravitational self-force.
The plan of our work is as follows: First, in Sec. II,

we describe the system of two black holes and review
its geometrical and thermodynamical characteristics. In
Sec. III, we briefly recall the concept of the test charge and
previously known results for the electromagnetic self-force.
In Sec. IV, we describe the limiting procedure to a point test
particle, derive the gravitational and electromagnetic self-
forces, and discuss their properties. In Sec. V, we summa-
rize and discuss our results.

II. DOUBLE BLACK-HOLE SOLUTION

A. Geometry

An asymptotically flat static solution of Einstein-
Maxwell equations describing two nonextreme charged
black holes in equilibrium was obtained in [59–63]. Its
metric and the electromagnetic vector potential can be
written in cylindrical Weyl coordinates as

ds2 ¼ −fdt2 þ f−1½h2ðdρ2 þ dz2Þ þ ρ2dφ2�; ð2:1Þ

At ¼ −Φ; Aρ ¼ Az ¼ Aφ ¼ 0: ð2:2Þ

Here f, h, and Φ are the functions of the coordinates ρ and
z only.
The Weyl coordinates describe the exterior of the

black holes. Horizons of both black holes degenerate into
two rods localized on the axis ρ ¼ 0; see Fig. 1. The centers
of these rods are localized at zH and zh, respectively, and
their coordinate distance is given by the separation param-
eter R,

R ¼ jzh − zHj: ð2:3Þ

Without loss of generality, we can set the origin of the z
coordinate such that zH ¼ 0. The half-lengths Σ and σ of
the rods are given by

Σ2 ¼ M2 −Q2 þ 2 μQ; σ2 ¼ m2 − q2 − 2 μq;

ð2:4Þ

where M, m and Q, q are masses and charges of the
black holes, respectively. Here and below, we use several
constants:

μ ¼ mQ −Mq
RþM þm

;

ν ¼ R2 − Σ2 − σ2 þ 2μ2;

ϰ ¼ Mm − ðQ − μÞðqþ μÞ;
K� ¼ 4ΣσðR2 − ðM −mÞ2 þ ðQ − q − 2μÞ2Þ: ð2:5Þ

FIG. 1. The spacetime of two back holes in Weyl coordinates
ρ, z, (t ¼ const, φ ¼ const). The horizons of both holes are
squeezed into coordinate-singular rods placed on the symmetry
axis ρ ¼ 0. The centers of these rods are at zh and zH; the half-
lengths of the rods are σ and Σ. The quantities r� and R� are
evaluated as coordinate distances from the ends of the rods. They
play a role in the expressions for the metric functions. The figure
is adjusted to the case investigated in this paper, when one of the
black holes is uncharged,Q ¼ 0 (which implies Σ ¼ M), and it is
placed at the origin, zH ¼ 0.
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The metric functions f and h are

f ¼ A2 − B2 þ C2

ðAþ BÞ2 ; h2 ¼ A2 − B2 þ C2

K2�RþR−rþr−
; ð2:6Þ

and the potential for the Maxwell field is

Φ ¼ C
Aþ B

: ð2:7Þ

Here, A, B, C are complicated auxiliary functions [60–63],
which are listed in Appendix A. They are written in terms
of coordinate distances from the endpoints of the rods,
cf. Fig. 1:

R� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − zH ∓ ΣÞ2

q
;

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − zh ∓ σÞ2

q
: ð2:8Þ

The solution describes two black holes when the
quantities σ and Σ are real and satisfy the condition

R > Σþ σ: ð2:9Þ

The equality in this condition would represent the limit of
touching black holes. In the uncharged case, Q; q ¼ 0, it
leads to the spacetime with one black hole of massM þm.
Negative Σ2 and/or σ2 correspond to the presence of

naked singularities instead of black holes [59]. Although in
this case Σ and/or σ are imaginary, and, as a consequence,

R� and/or r� are complex (but complex conjugate to each
other), the metric functions turn out to be real as needed for
a physical interpretation.
In the black-hole case, the Weyl potential 1

2
log f is, in

fact, the Newtonian potential corresponding to the two
horizon rods as sources with density 1

2
in an auxiliary

Euclidian space covered by the cylindrical coordinates
ρ;φ; z. In the naked singularity case the rods are replaced
by disks positioned at zH and/or zh of the radii jΣj and/or
jσj, respectively, cf. Fig. 2.
Both rods and disks are just coordinate singularities of

the Weyl coordinates. The rods correspond to horizons, and
the spacetime can be extended through them into the
interior of black holes. The disks are just branch surfaces
of the Weyl coordinates, and they can be viewed as
wormholes into other parts of the spacetime. At each disk
one needs to glue the Weyl coordinates with another patch
of coordinates on the other side of the disk. Such a patch
describes a prolongation of the spacetime. When following
the symmetry axis through the disk, at the coordinate
distance M (or m for the other disk), one encounters a
naked curvature singularity [59].

B. Double black-hole solution. Physical quantities

The described solution has been thoroughly analyzed in
[59–64]. The most physically interesting quantities have
been calculated, and we list them here. The formulas
assume the black-hole case. But typically, the quantity
defined for one of the black holes remains well defined
when the other black hole is changed to a naked singularity.
In this case one has to remember that the corresponding Σ2

or σ2 is negative.
The total mass of the system is

M ¼ M þm: ð2:10Þ

The areas of the horizons of both black holes are

A ¼ 4π
ððRþM þmÞðM þ ΣÞ −QðQþ qÞÞ2

ðRþ ΣÞ2 − σ2
;

a ¼ 4π
ððRþM þmÞðmþ σÞ − qðQþ qÞÞ2

ðRþ σÞ2 − Σ2
; ð2:11Þ

the surface gravities are

K ¼ ΣððRþ ΣÞ2 − σ2Þ
ððRþM þmÞðM þ ΣÞ −QðQþ qÞÞ2 ;

κ ¼ σððRþ σÞ2 − Σ2Þ
ððRþM þmÞðmþ σÞ − qðQþ qÞÞ2 ; ð2:12Þ

and the electric potentials on the horizons are

Φ ¼ Q − 2μ

M þ Σ
; ϕ ¼ qþ 2μ

mþ σ
: ð2:13Þ

FIG. 2. Spacetime of an uncharged black hole with a charged
naked singularity nearby, shown in Weyl coordinates ρ, z
(t ¼ const, φ ¼ const). The horizon of the black hole is repre-
sented by the rod placed on the symmetry axis ρ ¼ 0 at
z ¼ zH ≡ 0. At the coordinate z ¼ zh ≡ R, positioned symmet-
rically around the axis, there is a disklike coordinate singularity of
the radius jσj. It plays the role of a wormhole: the spacetime can
be extended through the disk by gluing another patch of Weyl
coordinates with analytically extended metric functions. At the
coordinate m behind the wormhole along the symmetry axis,
there is a naked curvature singularity. The quantities R� are the
coordinate distances from the ends of the rod. Similar quantities
r� associated with the naked singularity are complex; however,
they still lead to the real metric functions.
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The total charges of each black hole are Q and q,
respectively. It is not a simple task to identify a mass of
each black hole separately since one cannot avoid the
nonlinear nature of the mutual interaction. But it is argued
in [60] that the parameters M and m directly describe the
individual masses of the black holes. One can also observe
a remarkable property that both of these parameters satisfy
the Smarr relations in the form

M ¼ 2TSþΦQ; m ¼ 2tsþ ϕq; ð2:14Þ

where entropies S, s and temperatures T, t are defined in the
standard way,

S ¼ A
4
; s ¼ a

4
; ð2:15Þ

T ¼ K
2π

; t ¼ κ

2π
: ð2:16Þ

Both black holes (or naked singularities) interact, besides
through the gravitational and electromagnetic interaction,
also through a strut localized on the axis between them. It
can be shown that the axis between black holes is not
smooth but contains a conical singularity. Such a singu-
larity represents a thin physical source with an internal
energy and a tension. These can be related to the conical
defect on the axis [60,62,65]. When the angle Δϕ around
the axis is smaller than the full angle Δϕ ¼ 2π − δ, with
δ > 0, the object on the axis is called the cosmic string. If
the angle around the axis is bigger than 2π, then δ < 0, and
the object represents the strut [65]. The strut has a negative
energy density ε and a positive linear pressure τ, which is
also called the tension of the strut. These are related to the
angular excess −δ > 0 as τ ¼ −ε ¼ − δ

8π > 0. Intuitively,
because of the equality between linear energy density and
tension, the effective gravitational masses of the string or
the strut vanish. As a consequence, the influence on the
surrounding spacetime is special: It effectively causes only
the conical defect on the axis.
The system discussed contains a strut between the black

holes with the tension [62]

τ ¼ ϰ

ν − 2ϰ
¼ Mm − ðQ − μÞðqþ μÞ

R2 − ðM þmÞ2 þ ðQþ qÞ2 : ð2:17Þ

One can also associate with the strut a conjugate thermo-
dynamical observable called the thermodynamic length l;
see [66]. It has the meaning of the strut worldsheet area per
unit of the Killing time,

l ¼ 1

Δt

Z
strut

dA ¼ 1

Δt

Z
tþΔt

t

Z
z
hjρ¼0dzdt: ð2:18Þ

The metric function h is constant on the axis and between
the black holes (or naked singularities). It has the value

hjρ¼0 ¼ ho ≡ ν − 2ϰ

νþ 2ϰ
: ð2:19Þ

For the case of two black holes, one integrates over the part
of the axis between the horizons, and the thermodynamic
length is thus

lHh ¼ ðR − Σ − σÞ ν − 2ϰ

νþ 2ϰ

¼ ðR − Σ − σÞ R2 − ðM þmÞ2 þ ðQþ qÞ2
R2 − ðM −mÞ2 þ ðQ − q − 2μÞ2 :

ð2:20Þ
For the case of a naked singularity of mass m and charge q
near the black hole of massM and chargeQ, one integrates
between the horizon and the singularity, yielding

lHs ¼ ðR − ΣþmÞ ν − 2ϰ

νþ 2ϰ

¼ ðR − ΣþmÞ R2 − ðM þmÞ2 þ ðQþ qÞ2
R2 − ðM −mÞ2 þ ðQ − q − 2μÞ2 :

ð2:21Þ
The proper length of the strut is typically more compli-

cated, and it is evaluated in Appendix C.
Either of the black holes or both can be made extremal

independently. This happens when Σ2 ¼ 0 and/or σ2 ¼ 0.
The corresponding conditions for the charges are

Q ¼ M
RþM −m

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRþMÞ2 þ q2 −m2

q
− q
�
;

q ¼ m
Rþm −M

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRþmÞ2 þQ2 −M2

q
−Q

�
:

ð2:22Þ
Of course, the extremal case corresponds to the boundary at
which the black-hole spacetime changes into the naked
singularity spacetime.

C. Neutral black hole

In the following sections we study a small black hole or
naked singularity near a big neutral black hole of mass M.
In this case Q ¼ 0, Σ ¼ M, and the thermodynamic
quantities reduce to

S ¼ 4πM2
ðRþM þmÞ2
ðRþMÞ2 − σ2

;

s ¼ π
ððRþM þmÞðmþ σÞ − q2Þ2

ðRþ σÞ2 −M2
;

T ¼ 1

8πM
ðRþMÞ2 − σ2

ðRþM þmÞ2 ;

t ¼ 1

2π

σððRþ σÞ2 −M2Þ
ððRþM þmÞðmþ σÞ − q2Þ2 : ð2:23Þ
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The potentials on the horizons are

Φ ¼ q
RþM þm

; ϕ ¼ q
mþ σ

R −M þm
RþM þm

: ð2:24Þ

The tension of the strut has the form

τ ¼ ϰ

ν − 2ϰ
¼ Mm − ðQ − μÞðqþ μÞ

R2 − ðM þmÞ2 þ ðQþ qÞ2 : ð2:25Þ

The thermodynamic length in the case of a small black hole
reduces to

lHh ¼
ðR −M − σÞðR2 − ðM þmÞ2 þ q2Þ

R2 − ðM −mÞ2 þ q2 ðR−MþmÞ2
ðRþMþmÞ2

; ð2:26Þ

and in the case of a small naked singularity to

lHs ¼
ðR −M þmÞðR2 − ðM þmÞ2 þ q2Þ

R2 − ðM −mÞ2 þ q2 ðR−MþmÞ2
ðRþMþmÞ2

: ð2:27Þ

The extremality condition (2.22) for a small black hole
yields

q2 ¼ m2
RþM þm
R −M þm

: ð2:28Þ

For the square of charge q2 smaller than this critical value,
the spacetime describes two black holes; if q2 is larger, it
represents a charged naked singularity above the uncharged
black hole.

D. Schwarzschild geometry

For Q ¼ 0, m ¼ 0, and q ¼ 0, the geometry reduces to
the Schwarzschild solution of mass M. In the Weyl
coordinates it has the form given by the metric functions

f ¼ Rþ þ R− − 2M
Rþ þ R− þ 2M

; h2 ¼ ðRþ þ R−Þ2 − 4M2

4RþR−
:

ð2:29Þ

The transformation from the Weyl coordinates t; ρ; z;φ to
the Schwarzschild spherical coordinates t; r; ϑ;φ is [67,68]

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr − 2MÞ

p
sinϑ; z ¼ ðr −MÞ cosϑ: ð2:30Þ

In particular, along the semiaxis ϑ ¼ 0, i.e., ρ ¼ 0, z > 0,
we have

r ¼ zþM: ð2:31Þ

III. SELF-FORCE OF A TEST CHARGE

A test charged particle in a gravitational field, i.e., in a
curved spacetime, creates an electromagnetic field in the

spacetime. For an extended object, such a field interacts
with the object itself. Therefore, one can expect that in the
limit of a point particle, such an interaction survives in the
form of a self-force. The self-force acts on the generically
moving point particle already in Minkowski spacetime
[1–3]. This interaction can be understood as a reaction on
the field radiated by the particle. The self-force can also be
evaluated in the curved spacetime [4,69,70], where there
are additional contributions due to scattering of the electro-
magnetic field on the curvature.
For a static charged particle in the Schwarzschild or

Reissner-Nordstrom spacetimes, the electromagnetic self-
force has been evaluated by various methods; see, e.g.,
Refs. [5,7–11]. We phrase the results in terms of the
external force which is needed to support the particle at
the static orbit. The total force Fext ¼ Fexter needed to
support the test particle of a rest massmo and of a charge qo
floating at the Schwarzschild radius r near the black hole of
mass M is

Fext ¼
moM
r2

�
1 −

2M
r

�
−1
2

−
q2oM
r3

; ð3:1Þ

where er is the normalized radial vector in the static and
locally comoving frame. The first term balances a classical
gravitational force in the static frame at radius r. The
second term is equal to the additional self-force due to
the self-interaction of the charged particle with its own
electromagnetic field. The characteristic of the self-force is
that it is proportional to a square of the charge and to the
mass of the black hole, and it always points away from the
black hole.
In principle, there is a self-floating solution when the self-

force exactly balances the gravitational force. However, it
occurs only for unphysical values of the involved quantities,
namely, for the black hole with a gravitational radius smaller
than the classical “radius” of the point particle q2

mo
and at a

distance comparable with this radius (see discussion, e.g.,
in [10]).
Similarly to the electromagnetic self-force, one could

expect that the point particle acts on itself also through the
gravitational self-force. To estimate such an interaction,
however, is a much more difficult task since it involves an
evaluation of the backreaction of the singular source on the
spacetime geometry, which, due to the nonlinear nature of
the Einstein equation, is not an easily defined problem.
However, there is a wide variety of approaches to this
problem in the recent literature (see, e.g., Refs. [21–23] and
references therein).
In various approaches, a common feature of the gravi-

tational self-force is that it is not as unambiguous as the
electromagnetic self-force. It usually depends on details of
how the self-force is evaluated and how the approximation
of the pointlike particle is obtained.

PAVEL KRTOUŠ and ANDREI ZELNIKOV PHYS. REV. D 102, 024065 (2020)

024065-6



IV. SELF-FORCE FROM THE LIMIT OF A
FULLY BACKREACTING SYSTEM

A. Limiting procedure

In our approach of evaluating the self-force acting on
the static pointlike particle in the Schwarzschild geometry,
we start with an exact solution of the Einstein-Maxwell
equations representing a big uncharged black hole of mass
M and a small massive object of mass m and charge q,
which can be either a small black hole or a naked sin-
gularity, depending on the values of m and q. Such a
solution has been described in Sec. II.
This solution contains all of the information about the

gravitational and electromagnetic interaction between a
big black hole and a small massive object, including all
kinds of gravitational and electromagnetic “self-interaction.”
It also describes the agent which keeps both objects in a
static equilibrium, namely, the strut localized on the axis
between the objects. This strut has a linear energy ε and a
linear pressure (tension) τ along the axis. This pressure
exactly corresponds to the external force which is needed to
keep the massive object at a constant distance above the
black hole.
Next we perform a limit in which the mass and charge

of the massive object become small and the massive
object changes into a pointlike test particle. The strut also
becomes a test source, which no longer influences the
resulting background geometry. However, it still has a
tension which corresponds to the external force needed
to support the test particle at the static orbit, and it
balances both the gravitational and electromagnetic
interactions.
As already mentioned, we perform the limit in the class

of double black-hole spacetimes characterized by param-
eters M, R, m, and q. We know that for m ¼ 0, q ¼ 0,
the geometry reduces to the Schwarzschild geometry,

Fig. 3. This means that we need to approach the values
½M0; R0; 0; 0� with a curve ½MðϵÞ; RðϵÞ; mðϵÞ; qðϵÞ� in the
parametric space, whereM0 and R0 are just limiting values
of the mass of the big black hole and of the separation
parameter.
However, to identify the position of the test particle

in the final Schwarzschild geometry of mass M0, it is
necessary to identify points of the manifolds during the
limiting process. It is well known [57] that different
identifications can lead to different limiting spacetimes.
Indeed, the suitably chosen identification of points can
incorporate zooming of some parts of the spacetime and
squeezing of others.
In our procedure we identify points by fixing the Weyl

coordinates during the limiting process. The points for
different values of the spacetime parameters are identified if
they have the same Weyl coordinates. Of course, this
defines the identification only in the static domain outside
the black holes, but it is the domain which we are interested
in. We also assume that the big uncharged black hole is
localized at zH ¼ 0 during the limiting procedure.3

With such an identification, as a result of the limit, the
small black hole or naked singularity reduces to a pointlike
object localized on the axis at z ¼ zh ≡ R0 in the Weyl
coordinates. In the Schwarzschild coordinates this corre-
sponds to

r ¼ R0 þM0; ð4:1Þ

cf. Eq. (2.31).

B. Limit m;q → 0 with m ∼ q

Now we have to stipulate, in more detail, how we
approach the limiting spacetime. For that we specify an
expansion of the parametric curve ½MðϵÞ; RðϵÞ; mðϵÞ; qðϵÞ�
near its limiting value ϵ ¼ 0,

mðϵÞ ¼ m̂ϵ;

qðϵÞ ¼ q1ϵþ q2ϵ2 þ…;

MðϵÞ ¼ M0 þM1ϵþ…;

RðϵÞ ¼ R0 þ R1ϵþ…: ð4:2Þ

It is essentially the limit in small mass m, and we require
that the charge scales to zero as well. We assume that the
mass and charge of the massive object approach zero in the
same order. Therefore, the massive object can represent
both a black hole and a naked singularity during the
limiting procedure.
By setting coefficients q1; q2;… to zero, we have

the case in which we shrink a small neutral black hole.

FIG. 3. Limiting Schwarzschild spacetime in Weyl coordinates.
The horizon of the neutral black hole of mass M0 is represented
by the rod of the half-length M0. The pointlike particle of a test
massm and charge q is localized at z ¼ R0, ρ ¼ 0. It is a remnant
of a small black hole (cf. Fig. 1) or a naked singularity (cf. Fig. 2)
in the limit m; q → 0, i.e., when the rod or the disk representing
the black hole or naked singularity, respectively, shrinks to
a point. 3This just fixes one degree of the diffeomorphism freedom.
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The case of a naked singularity with charge q much larger
than mass m will be explored in the next subsection.
We have kept the higher order coefficients in expan-

sions (4.2) to have control over details of the limiting
procedure. This is because we still need to specify,
based on physical grounds, how we should perform the
limit. It is natural to require that we perform the limit by
keeping the big hole and its separation from the massive
object “unchanged.” However, the spacetime changes
during the limit, so we do not expect that the big black
hole remains completely unchanged. We can choose a
particular characteristic which remains the same in the
limiting procedure.
A natural candidate is the mass M of the black hole. But

one could also consider the entropy S (the area) of the black
hole, or temperature T (the horizon surface gravity), or
maybe the total mass M of the system.
For the separation of the massive object from the black

hole, the situation is even more ambiguous. We can keep
the separation parameter R constant, but this does not have
a direct physical meaning—it is a coordinate distance
between fictitious centers of the black holes. A more
plausible choice for two black holes could be to keep
the coordinate distance between the horizons, R − Σ − σ,
constant. For a naked singularity near the black hole, one
could consider the coordinate separation up to the singu-
larity: Rþm from the black hole “center” or R − Σþm
from the horizon. Moreover, instead of the coordinate
separation, it would be more natural to use the thermody-
namic length l or the proper distance L. All of these
choices define different limiting curves in the parametric
space. Therefore, we have to investigate whether this
choice influences the resulting force acting on the test
particle.
For that we need to expand the tension (2.25) along the

limiting curve. See Appendix B for expansions of some
intermediate quantities. Here, we just list a leading term of
σ for further reference,

σ ¼ σ1ϵþ…; σ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂2 − q21

R0 −M0

R0 þM0

s
: ð4:3Þ

The expansion of the tension is

τ ¼ m̂M
r2

�
1 −

2M
r

�
−1
ϵ

þ 2m̂2M2 þ m̂ðM1r2 − 2MðM1 þ R1Þðr −MÞÞ
r4ð1 − 2M

r Þ2
ϵ2

−
q21M
r3

1 − M
r

1 − 2M
r

ϵ2 þ… : ð4:4Þ

Here, for readability reasons, we have changed the
final mass M0 and the separation parameter R0 to M

and R in the last step.4 The force is expressed in terms of the
Schwarzschild coordinate r of the particle with the help
of (4.1).
We see that in the leading order, we have obtained just a

term that does not depend on the charge of the particle. It
should be compared with the gravitational force acting on
the particle in the static frame. However, first we have to
identify the rest mass of the particle. The mass m of the
massive object in the limiting procedure has the meaning of
the asymptotic mass [61]. For a point particle, the asymp-
totic mass m̂ is the energy evaluated at infinity, and thus it is
related to the rest mass mo as

m̂ ¼ mo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r
: ð4:5Þ

Substituting into the expansion of the tension, we find that
the first order term of the external force needed to support
the particle is

Fext1 ≡ τ1 ¼
moM
r2

�
1 −

2M
r

�
−1
2

; ð4:6Þ

which is exactly the force acting against the static gravi-
tational force, cf. the first term in (3.1).
If we were not sure about the interpretation of the mass

parameter m̂, we could reverse the argument. The leading
term should reproduce the gravitational force, and from that
we obtain the relation (4.5) between m̂ and the rest massmo.
Returning to the expansion (4.4) of the tension, we see

that we obtained the self-force contributions only in the
second order. The first term in order ϵ2, the term depending
on the mass m̂, is related to the gravitational self-force. The
second term, proportional to q21, is related to the electro-
magnetic self-force.
There is an important difference between these two

terms. The electromagnetic self-force does not depend on
the details of the limiting procedure hidden in coefficients
M1 and R1. On the contrary, the gravitational self-force
does depend on these details. We thus obtain that the
external force on the point particle needed to balance the
electromagnetic self-force is

Fext EM 2 ¼ −
q2oM
r3

1 − M
r

1 − 2M
r

; ð4:7Þ

where, for aesthetic reasons,5 we changed q1 → qo. This
result does not depend on further details of the limit.

4We will do this substitution in all final expressions for the
self-force. However, in the intermediate calculations, we still
have to use M ¼ M0 þM1ϵþ � � �, R ¼ R0 þ R1ϵþ � � �, and to
distinguish M, R and M0, R0. Mostly, this should not cause
confusion, and it improves the readability of the final results.

5Here, qo does not refer to a “rest” charge similarly to the rest
mass mo, but it just indicates that it is an intrinsic characteristic of
the test particle.
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Surprisingly, it is not the same as the standard electro-
magnetic self-force obtained earlier [8,10], cf. the second
term in (3.1). It coincides with the classical result for a large
radius, r ≫ M, but it differs closer to the horizon. This
difference is due to fact that we have consistently incorpo-
rated the backreaction of the agent causing the force,
namely, of the strut, on the spacetime. The electromagnetic
field of the massive object is influenced by the presence of
the strut in the fully interacting system. And this influence
modifies the resulting force in the limit. The effect is bigger
when the strut is short and its energy density and tension are
large. This corresponds exactly to the case when the point
particle is close to the horizon.
Finally, we should investigate the gravitational self-

force. We have already observed that, in contrast to the
electromagnetic self-force, it depends on the choice of the
family of spacetimes parametrized by the small parameter
ϵ; namely, it depends on what is held fixed in the limit
ϵ → 0. The main result could be as follows: The gravita-
tional self-force on the point particle has a well-defined
meaning only after an explicit description of how the limit
of a point particle is obtained.
In order to demonstrate this type6 of freedom, we choose

several reasonable limiting procedures and show the
corresponding self-forces.

1. Constant mass M and separation between centers

Mathematically, the simplest choice is to assume that the
mass MðϵÞ and the separation parameter RðϵÞ do not
change during the limit. This means

M1 ¼ 0; R1 ¼ 0; ð4:8Þ
leading to

Fext gr 2 ¼
2m̂2M2

r4ð1 − 2M
r Þ2

¼ 2m2
oM2

r4ð1 − 2M
r Þ

; ð4:9Þ

where the last formula is expressed in terms of the rest mass
mo using (4.5). The corresponding self-force is thus attrac-
tive; i.e., it points in the opposite direction to the electro-
magnetic self-force. It also decreases faster with the radius.

2. Constant mass M and separation between horizons

A more natural choice may be to keep the coordinate
separation between the horizons of two black holes fixed,

R − Σ − σ ¼ ðR0 −M0Þ þ ðR1 −M1 − σ1Þϵþ � � � ¼ const;

ð4:10Þ
with σ1 given by (4.3). Assuming also a constant mass,
M ¼ const, we obtain

M1 ¼ 0; R1 ¼ σ1; ð4:11Þ

and for the force,

Fext gr 2 ¼ −
2mo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

o − q2o
p

M
r3

þ 2moðmo −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

o − q2o
p

ÞM2

r4ð1− 2M
r Þ

:

ð4:12Þ

We see that the gravitational self-force is influenced by the
charge of the particle in this case. It is well defined only for
m2

o > q2o, which is related to the fact that we have assumed
the existence of both horizons, i.e., that the massive object
in the limiting process is a black hole. The first term is
dominant for large r, and it also remains for an uncharged
particle, qo ¼ 0, when

Fext gr 2 ¼ −
2m2

oM
r3

: ð4:13Þ

The self-force is repulsive from the black hole in this case.

3. Constant total mass and separation
between centers

Requiring the total mass M ¼ M þm and R constant,
we get

M1 ¼ −m̂; R1 ¼ 0; ð4:14Þ

and for the force, we obtain a rather simple expression,

Fext gr 2 ¼ −
2m2

o

r2
: ð4:15Þ

Surprisingly, it does not depend on the mass M of the
big black hole; it depends on r by the inverse square law.
Thus, it decreases at the same rate as the standard
gravitational force (4.6).

4. Constant entropy S and thermodynamic length

Assuming that the massive object is a black hole, we
can require the entropy of the big black hole S and the
thermodynamic length lHh to be constant during the limit.
Expanding the first expression in (2.23) and (2.26), we
obtain

S ¼ 4πM0 þ 8πM0

�
M1 þ

m̂M0

R0 þM0

�
ϵþ � � � ; ð4:16Þ

lHh ¼ ðR0 −M0Þ þ
�
R1 −M1 − σ1 −

4m̂M0

R0 þM0

�
ϵþ � � � :

ð4:17Þ

Requiring the first order terms to vanish, we get
6This is the type (iii) freedom discussed in the Introduction;

see [58].
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M1 ¼ −
m̂M0

R0 þM0

; R1 ¼ σ1 þ
3m̂M0

R0 þM0

: ð4:18Þ

Substituting into the formula (4.4), we get an unimpressive
result,

Fext gr 2 ¼ −
6m2

oM
r3

1 − 4M
3r2

1 − 2M
r

þ 2moðmo −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

o − q2o
p

ÞM
r3

1 − M
r

1 − 2M
r

: ð4:19Þ

Assuming that the massive object is a naked singularity,
we require that the thermodynamic length lHs given by
(2.27) is constant. Its expansion is

lHs ¼ ðR0 −M0Þ þ
�
R1 −M1 þ m̂ −

4m̂M0

R0 þM0

�
ϵþ � � � ;

ð4:20Þ
which yields

M1 ¼ −
m̂M0

R0 þM0

; R1 ¼ m̂
2M0 − R0

R0 þM0

: ð4:21Þ

For the force, we obtain

Fext gr 2 ¼
m2

oM
r3

�
1 −

2M
r

�
: ð4:22Þ

It is worth noting that the gravitational self-force is again
attractive in this case. It is also independent of the charge of
the particle.

5. Constant temperature T and thermodynamic length

Similarly to the entropy, we can keep the temperature
(the surface gravity) of the big black hole constant. Its
expansion reads

T ¼ 1

8πM0

−
1

8πM0

�
2m̂

R0 þM0

þM1

M0

�
ϵþ…: ð4:23Þ

For the limit of a small black hole, we require the
thermodynamic length lHh to be constant. This means that
the first order terms in expansions (4.23) and (4.17) must
vanish, which yields

M1 ¼ −
2m̂M0

R0 þM0

; R1 ¼ σ1 þ
2m̂M0

R0 þM0

: ð4:24Þ

The force turns out to be

Fext gr 2 ¼ −
4m2

oM
r3

1 − M
r

1 − 2M
r

þ 2moðmo −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

o − q2o
p

ÞM
r3

1 − M
r

1 − 2M
r

: ð4:25Þ

In the case of a naked singularity limit, we require the
thermodynamic length lHs to be fixed. From (4.23) and
(4.20) it follows that

M1 ¼ −
2m̂M0

R0 þM0

; R1 ¼ −m̂
R0 −M0

R0 þM0

: ð4:26Þ

Surprisingly, all contributions to the gravitational self-force
cancel each other in this case,

Fext gr 2 ¼ 0: ð4:27Þ

6. Constant mass M and proper length between horizons

As the last example, we discuss the limit of a small black
hole with massM and the proper length between black-hole
horizons LHh fixed. The expansion of the proper length
(C4) is discussed in Appendix C,

LHh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0 −M2

0

q
þ 2M0arctanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 −M0

R0 þM0

s

−
�
m̂

4M0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0 −M2

0

p þ ðM1 − R1Þ
R0 þM0

R0 −M0

þ 2

�
m̂
R2
0 þ 3M2

0

R2
0 −M2

0

−M1

�
arctanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 −M0

R0 þM0

s

þ m̂
R2
0 þ 3M2

0

R2
0 −M2

0

log
σ1M0ϵ

4ðR2
0 −M2

0Þ
�
ϵþ � � � : ð4:28Þ

A new feature here is that the expansion contains loga-
rithmic terms log ϵ. This reflects the nonanalytic depend-
ence of the proper length on the expansion parameter.
However, one can still require that the linear terms of
expansion of M and LHh vanish, yielding

M1 ¼ 0;

R1 ¼
4m̂M0

R0 þM0

þ m̂ log
σ1M0ϵ

4ðR2
0 −M2

0Þ

þ 2m̂ðR2
0 þ 3M2

0Þ
ðR0 þM0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0 −M2

0

p arctanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 −M0

R0 þM0

s
: ð4:29Þ

Substituting the tension (4.4) gives a complicated expres-
sion for the force,

Fext gr2 ¼ −
2m2

oM
r4ð1− 2M

r Þ

 
Mþ 2M

�
1−

2M
r

�

þ 2
r−Mffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 2M

r

q �
1−

2M
r

þ 4M2

r2

�
arctanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

2M
r

r

þ ðr−MÞ log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

o − q2o
p

Mϵ

4r2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 2M

r

q
!
: ð4:30Þ
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We derived this expression mainly because it shows that
the physically well-motivated condition of the fixed proper
distance can lead to logarithmic divergences in the self-
force. Of course, the self-force is of the second order in ϵ,
so the logarithmic term is of the type ϵ2 log ϵ, which is not a
real divergence. But it still documents a broad range of
behavior of the self-force, depending on the limiting
procedure.
A similar analysis can be made in the naked singularity

case, using the proper length LHs given by (C15). The
expansion of the elliptic integrals is even more proble-
matic, and the result is not a simple expression. It contains
logarithmic terms, and it depends on the charge of the
particle. Because it does not offer anything qualitatively
new, we skip it here.

C. Limit m; q → 0 with m ≪ q

By discussing various limiting procedures, we have
clearly demonstrated that the gravitational self-force in
this approximation is not uniquely defined. However, it
raises the question of the well-definiteness of the electro-
magnetic force, which is of the same order. Can one take
the expression (4.7) seriously if it should be combined with
a nonunique expression for the gravitational contribution?
One could argue that the electromagnetic self-force is
identified by its dependence on the square q2o of the test
charge. However, we have seen that the gravitational self-
force can also depend on the charge.
However, we can modify our approximation by assum-

ing that the mass m of the massive object is much smaller
than its charge q. This implies that the massive object must
be modeled by a naked singularity. Although this can raise
suspicions, the values of the charge and mass of elementary
particles satisfy the condition mo < jqoj. We implement
this by changing the expansion (4.2) as follows:

mðϵÞ ¼ m̂ϵ2;

qðϵÞ ¼ q1ϵþ q2ϵ2 þ � � � ;
MðϵÞ ¼ M0 þM1ϵþ � � � ;
RðϵÞ ¼ R0 þ R1ϵþ � � � : ð4:31Þ

The mass m thus approaches zero faster than the charge q.
Not surprisingly, the expansion of the tension (4.4)

changes to

τ ¼ m̂M
r2

�
1 −

2M
r

�
−1
ϵ2 −

q21M
r3

1 − M
r

1 − 2M
r

ϵ2 þ � � � : ð4:32Þ

It defines the force needed to support the test point particle
at a static position as

Fext ¼
moM
r2

�
1 −

2M
r

�
−1
2

−
q2oM
r3

1 − M
r

1 − 2M
r

; ð4:33Þ

where we again introduced the rest mass mo by (4.5) and
the symmetric notation for the charge, qo ≡ q1.
Clearly, the first term compensates the gravitational force

in the static frame, and the second term is the electromag-
netic self-force derived above in (4.7). Further corrections
corresponding to the gravitational self-force are now of
higher order, and we ignore them. In this context it makes
sense to discuss the electromagnetic self-force alone. The
result (4.33) should thus be compared with the classical
result (3.1). As discussed above, we have obtained a
modification of the self-force near the horizon due to the
gravitational influence of the strut on the electromag-
netic field.

V. SUMMARY

To obtain a better understanding of the nature of the
pointlike particle approximation, we investigate a fully
interacting system of a big neutral black hole with an
extended charged massive object nearby. The massive
object is modeled by a small black hole or a naked sin-
gularity, which corresponds, at the limit, to the particle with
mass and charge satisfying mo ≳ qo or mo ≲ qo, respec-
tively. This system obeys the full Einstein-Maxwell equa-
tions; the massive object is kept in equilibrium above the
black hole by a strut with a linear tension which balances
the gravitational and electromagnetic interaction with the
black hole.
By shrinking the massive object to a point, we obtain the

Schwarzschild spacetime with a test pointlike charged
particle supported on the static orbit by a test strut. The
tension of the strut defines the external force needed to
balance the gravitational force of the black hole and the
gravitational and electromagnetic self-forces.
When we choose the limiting procedure such that the

mass and the charge of the massive object approach zero in
the same order, we find that the leading term of the tension
of the strut corresponds to the standard gravitational force
(4.6) of the black hole acting on the particle. In the next
order we find that the tension also compensates the
electromagnetic and gravitational self-forces. The electro-
magnetic self-force is given by expression (4.7). It is
independent of any further details of the limiting procedure.
The gravitational self-force, on the other hand, depends

on the details of what is kept fixed while taking the limit of
small mass and charge of the test particle. We have
demonstrated that, by a suitable choice of the limit, one
can achieve very different results for the self-force: It can be
attractive or repulsive, cf. (4.9) vs (4.12); it may or may not
depend on the charge, cf. (4.19) vs (4.22); and it can be
independent of the mass of the black hole, see (4.15). It
may even completely vanish, cf. (4.27), or it can contain
terms logarithmic in the expansion parameter, see (4.30). It
is clear that one has to choose very well-founded physical
reasons for how to perform the limiting procedure in order
to obtain a trustworthy and unambiguous result.
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If we choose the particle mass to approach zero in higher
order than the charge, i.e., mo ≪ qo, we obtain to leading
order the standard gravitational force and the electromagnetic
self-force, together given by formula (4.33). The gravitational
self-force is of higher order now and can be ignored.
The electromagnetic self-force (4.33) obtained in our

model differs from the classical result (3.1) in a domain
near the horizon. The reason for this difference is that we
have taken into account the influence of the strut (the agent
supporting the massive object) on the surrounding geom-
etry and thus also on the electromagnetic field. The effect is
strong for a short strut with large linear energy density and
tension, i.e., exactly when the massive object is near the
horizon. As a consequence, our formula for the electro-
magnetic self-force diverges on the horizon.
When considering the result (4.33), one can easily check

that there exists a self-floating solution when the electro-
magnetic self-force compensates the gravitational force
and the strut is not needed (it has vanishing energy and
tension). However, as for a similar situation discussed for
the classical electromagnetic self-force [10], parameters of
such a solution are unphysical. This happens for the mass
of the black hole and the position of the particle being of the
order of the “classical radius” q2o

mo
of the point particle. In this

regime quantum effects spoil the validity of the classical
theory which we are assuming.
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APPENDIX A: METRIC FUNCTIONS

The metric functions f and h and the potential Φ have
been specified in (2.6) and (2.7) using auxiliary functions
A, B, and C. These functions read [60–63]

A ¼ Σσ½νðRþ þ R−Þðrþ þ r−Þ þ 4ϰðRþR− þ rþr−Þ�
− ðμ2ν − 2ϰ2ÞðRþ − R−Þðrþ − r−Þ; ðA1Þ

B ¼ 2Σσ½ðνmþ 2ϰMÞðRþ þR−Þ þ ðνMþ 2ϰmÞðrþ þ r−Þ�
− 2σ½νμðQ− μÞ− 2ϰðRM − μq− μ2Þ�ðRþ −R−Þ
− 2Σ½νμðqþ μÞ− 2ϰðRmþ μQ− μ2Þ�ðrþ − r−Þ;

ðA2Þ

C ¼ 2Σσ½ðνðqþ μÞ þ 2ϰðQ − μÞÞðRþ þ R−Þ
þ ðνðQ − μÞ þ 2ϰðqþ μÞÞðrþ þ r−Þ�
− 2σ½νμM þ 2ϰðμm − RQþ μRÞ�ðRþ − R−Þ
− 2Σ½νμmþ 2ϰðμM þ Rqþ μRÞ�ðrþ − r−Þ: ðA3Þ

The quantities involved have been introduced in Sec. II A.

APPENDIX B: EXPANSION OF VARIOUS
QUANTITIES

A derivation of the tension expansion in the limit (4.2) is
straightforward but tedious. First, we list some intermediate
expansions for the involved quantities.
We start with the expansion of the constant μ defined

in (2.5),

μ ¼ M0q1
R0 þM0

ϵ

þ
�
M1q1 þM0q2

R0 þM0

−
M0q1ðm̂þM1 þ R1Þ

ðR0 þM0Þ2
�
ϵ2 þ � � � :

ðB1Þ

Next, the half-length σ, cf. (2.4), is

σ ¼ σ1ϵ −
q1
σ1

q1ðm̂M0 þM0R1 −M1R0Þ þ q2ðR2
0 −M2

0Þ
ðR0 þM0Þ2

ϵ2

þ � � � ; ðB2Þ

where

σ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂2 − q21

R0 −M0

R0 þM0

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

o − q2o

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r
: ðB3Þ

The last formula is just expressed in terms of the rest
mass mo, charge qo ≡ q1, and the Schwarzschild coordi-
nate r ¼ R0 þM0.
Finally, for the constants ν and ϰ, cf. (2.5), the expan-

sions are

ν ¼ ðR2
0 −M2

0Þ þ 2ðR0R1 −M0M1Þϵþ � � � ; ðB4Þ

ϰ ¼ m̂M0ϵþ
�
m̂M1 −

q21M0R0

ðR0 þM0Þ2
�
ϵ2 þ � � � : ðB5Þ

APPENDIX C: PROPER LENGTH BETWEEN
THE BLACK HOLE AND A MASSIVE OBJECT

The proper length of the strut along the symmetry axis is

L ¼
Z
strut

ðhf−1=2Þ
���
ρ¼0

dz: ðC1Þ
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The metric function h is constant on the axis, and on the
strut it takes the value ho given by (2.19). The metric
function f on the strut takes the form

f ¼ ððz − zHÞ2 − Σ2Þððz − zhÞ2 − σ2Þ
ððz − zH þMÞðzh − zþmÞ −QqÞ2 : ðC2Þ

For the case of two black holes, the integration in (C1)
runs between the horizons z ∈ ðzH þ Σ; zh − σÞ, and we get

LHh ¼ ho

Z
zh−σ

zHþΣ

ðz − zH þMÞðzh − zþmÞ −Qqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððz − zHÞ2 − Σ2Þððz − zhÞ2 − σ2Þ

p dz:

ðC3Þ

After some substitutions and manipulations, and using
integral tables, one can derive the result in terms of elliptic
integrals,

LHh ¼
ho
ξ
ðξ2EðkÞ þ 4mΣΠðα2; kÞ þ 4MσΠðA2; kÞ

þ 2ðMm −Qq −Mσ −mΣ − ΣσÞKðkÞÞ; ðC4Þ

where

ξ2 ¼ R2 − ðΣ − σÞ2; α2 ¼ R − Σ − σ

Rþ Σ − σ
;

k2 ¼ R2 − ðΣþ σÞ2
R2 − ðΣ − σÞ2 ; A2 ¼ R − Σ − σ

R − Σþ σ
: ðC5Þ

In the test charge limit σ → 0 and, hence,

k2 → 1; A2 → 1: ðC6Þ

The expansion at k ¼ 1 of the functions EðkÞ and KðkÞ
does not pose any problems. But the expansion of the
elliptic integrals Πðα2; kÞ, and especially ΠðA2; kÞ in this
limit, is less evident.
First of all, we rewrite (C4) using the following property

of the elliptic integrals [see Eq. (19.7.9) in [71] ]:

σΠðA2; kÞ þ ΣΠðα2; kÞ ¼ 1

2
ðRþ Σþ σÞKðkÞ: ðC7Þ

This makes it possible to rewrite (C4) in an equivalent
nonsymmetrical form,

LHh ¼
ho
ξ
ðξ2EðkÞ − 4ΣðM −mÞΠðα2; kÞ

þ 2ðMRþMm −Qq − Σσ þ ΣðM −mÞÞKðkÞÞ:
ðC8Þ

This form is much better suited for the series expansion at
small m and q. Then, we use the following representation:

Πðα2; kÞ ¼ KðkÞ − αffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − α2

p

× ðEðkÞFðβ; kÞ − KðkÞEðβ; kÞÞ; ðC9Þ

where sin β ¼ α
k. This identity is valid for all 0 < k < 1

and 0 < α < k, and it is convenient to find the series
expansion at k ¼ 1 since the expansions of incomplete
elliptic integrals Eðβ; kÞ and Fðβ; kÞ at k ¼ 1 are
well known.
To write down these expansions, it is useful to introduce

the quantity k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

p
and compute the series at k0 ¼ 0.

The list of necessary expansions is

KðkÞ ¼ − ln
k0

4
−
1

4

�
ln
k0

4
þ 1

�
k02

−
9

64

�
ln
k0

4
þ 7

6

�
k04 þOðk06Þ; ðC10Þ

EðkÞ ¼ 1 −
1

2

�
ln
k0

4
þ 1

2

�
k02 −

3

16

�
ln
k0

4
þ 13

12

�
k04

þOðk06Þ; ðC11Þ

Fðβ; kÞ ¼ arctanhαþ 1

4

�
arctanhαþ α

1 − α2

�
k02

þ 9

64

�
arctanhαþ αð5 − 3α2Þ

3ð1 − α2Þ2
�
k04 þOðk06Þ;

ðC12Þ

Eðβ; kÞ ¼ αþ 1

2
arctanhαk02 þ 3

16

�
arctanhαþ α

1 − α2

�
k04

þOðk06Þ: ðC13Þ

Using the identity (C9) we get

Πðα2; kÞ ¼ −
ln k0

4
þ αarctanh α

1 − α2

−
1þ ð1þ α2Þ ln k0

4
þ 2αarctanhα

4ð1 − α2Þ2 k02

−
1

128ð1 − α2Þ3
�
6ð3þ 6α2 − α4Þ ln k

0

4

þ ð48αarctanhαþ 21þ 12α2 − 5α4Þ
�
k04

þOðk06Þ: ðC14Þ

Using the expansion (4.2) of the spacetime parameters in
formulas (2.19) and (C5), substituting these in the series
expansions above, and putting them all together in (C8), we
eventually obtain the result (4.28).
The case with a naked singularity is a bit more involved,

and here we present only the formula for the case we are
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interested in, namely, for a naked singularity of massm and
charge q near a neutral black hole of mass M. In this case
one has to integrate over z from the horizon up to the
naked singularity z ∈ ðzH þM; zh þmÞ, which gives the
expression

LHs ¼
ho
ξ

�
ξ2Eðψ ; kÞ − ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ σ̃2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R −M þm
RþM þm

r

− 4MðM −mÞΠðψ ; α2; kÞ

þ 2MðRþM − iσ̃ÞFðψ ; kÞ
�
: ðC15Þ

Here ξ, k2, α2, and ho are again given by (C5) and (2.19),
but with Σ ¼ M and an imaginary σ ¼ iσ̃, where a real σ̃ is

σ̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 2 μq −m2

q
: ðC16Þ

The constant ψ is given by

sinψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRþM − iσ̃ÞðR −M þmÞ
ðR −M − iσ̃ÞðRþM þmÞ

s
: ðC17Þ

The expression (C15) contains complex arguments; never-
theless, one can show that L is real, as it should be.
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