
 

Quantum distinction of inertial frames: Local versus global
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We study the response function of Unruh-deWitt detectors placed in a flat spacetime inside a thin matter
shell. We show that the response function distinguishes between the local and global (Minkowski) inertial
frames and picks up the presence of the shell even when the detector is switched on for a finite time interval
within which a light signal cannot travel to the shell and back as required by a classical measurement. We
also analyze how the response of the detector depends on its location within the shell.
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I. INTRODUCTION

Discerning the structure of spacetime is a task that is
classically performed with clocks and rulers. One locally
sets up (in principle, if not in practice) a grid of rulers and
an array of synchronized clocks and then performs mea-
surements on a variety of test bodies to determine their
behavior and from this infer the metric and curvature of
spacetime in one’s vicinity.
This procedure has limitations, one of the most notable

being the distinction of local from global flatness. An
observer located inside a uniform static spherical shell does
not experience any gravitational field. All local measure-
ments will indicate that test bodies move on straight-line
geodesics. However, this is the same result that would be
obtained if the shell were absent, i.e., in a globally flat
spacetime. The only way this observer could classically
detect the presence of the shell would be by sending out a
probe and wait a sufficiently long time for the probe to hit
the shell and send a signal back. The minimal time required
for the observer at the center of the shell to detect its
presence would be the light-crossing time of the shell.
Recently, it has been suggested that the situation is

markedly different if one exploits quantum effects [1]. An
observer making use of an Unruh-deWitt (UdW) detector
[2] (a two-level qubit that can be excited by a scalar field)
can distinguish between the locally flat spacetime within
the shell and globally flat Minkowski spacetime, even when
it is effectively switched on (a Gaussian switching was
used) for a time shorter than the light-crossing time. Even if
the shell is transparent (i.e., noninteracting with the scalar

field), having no net effect on the local gravitational field
around the UdW detector, the nonlocal effects of gravity on
the field vacuum yield a response in the detector that
exhibits small but measurable differences from globally flat
spacetime.
The reason for this is that the detector effectively exploits

the fact that the vacuum state of a quantum field contains
information about global features of spacetime. This
phenomenon has been seen in other contexts, including
vacuum entanglement harvesting [3–11], probing topologi-
cal features of spacetime that can induce preferred direc-
tions [12], or that are even hidden behind event horizons
[13]. Not only does the vacuum state of a quantum field
carry nonlocal information about the gravitational field—a
detector can read out such information locally. Objects in
the vacuum likewise modify the mode structure of the
vacuum in their vicinity, a feature that was recently
exploited to demonstrate that a UdW detector can see in
absolute darkness, i.e., without exchanging any real
quanta [14].
Here we explore this phenomenon further, demonstrating

that a UdW detector that is causally disconnected from the
external environment of the shell can still detect its
presence. We close a loophole present in previous work
[1,14], in which the interaction between the UdW detector
and the quantum field had a Gaussian profile χGðτÞ ¼
e−τ

2=ð2σ2Þ where τ is the proper time of the detector. This
profile ensures that the UdW/field interaction never really
drops to zero outside some finite time interval but instead
persists for an infinitely long time, albeit being suppressed
at large τ. We consider instead a smooth, compact inter-
action profile for the detector and place the detector at
different radial positions within the shell. Our results not
only confirm previous studies [1], they strengthen them by
causally isolating the detector from the shell during the time
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it is “switched on,” which is for a time interval that is
shorter than the light-travel time across the shell.

II. SETUP

In this section, we briefly review the setup of the problem
as presented in [1].

A. Scalar field solution

The shell spacetime is obtained by “gluing” together the
Schwarzschild spacetime outside the shell with flat space-
time inside the shell, with the metric being at r < R,

ds2 ¼ −fðRÞdt2 þ dr2 þ r2ðdθ2 þ sin2 θdϕ2Þ ð1Þ

and

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2ðdθ2 þ sin2 θdϕ2Þ ð2Þ

at r > R, where fðrÞ ¼ 1–2M=r, with M being the mass
and R the radius of the shell. As shown in [1], this metric
satisfies the two junction conditions (see, for example,
Sec. 3.7 of [15]) needed for the spacetime to be a well-
defined solution to the Einstein field equations. The shell is
massive, exhibiting a spherically symmetric gravitational
field outside, but does not interact with the scalar field—it
is transparent to scalar matter.
Using this metric, the massless scalar field equation

∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΨÞ ¼ 0 ð3Þ

admits the usual separable solutions of the form

Ψωlmðt; r; θ;ϕÞ ¼
1ffiffiffiffiffiffiffiffiffi
4πω

p e−iωtYmlðθ;ϕÞψωlðrÞ: ð4Þ

In the above, the mode indices ω ∈ ð0;∞Þ, l ∈ Z, m ¼
−l;−lþ 1;…;l − 1;l and Yml are the spherical har-
monics normalized as

Z
S2
Y�
m1l1

Ym2l2dA ¼ δm1;m2
δl1;l2 :

The resulting radial equation for ψωlðrÞ is

ω2ψωlðrÞ þ
α

βr2
d
dr

�
αr2

β

d
dr

ψωlðrÞ
�

−
�
α2lðlþ 1Þ

r2

�
ψωlðrÞ ¼ 0; ð5Þ

where the functions α and β are

αðrÞ ¼
( ffiffiffiffiffiffiffiffiffiffi

fðRÞp
; r ≤ Rffiffiffiffiffiffiffiffiffi

fðrÞp
; r > R

;

βðrÞ ¼
(
1; r ≤ R

1=
ffiffiffiffiffiffiffiffiffi
fðrÞp

; r > R:
ð6Þ

Inside the shell, the radial equation explicitly reads

ω2

fðRÞ r
2ψωl þ 2r

d
dr

ψωl þ r2
d2

dr2
ψωl − lðlþ 1Þψ ¼ 0;

ð7Þ

whose solutions are spherical Bessel functions of the first
kind, jlðω̃rÞ, where ω̃ ¼ ωffiffiffiffiffiffiffi

fðRÞ
p . The solution outside the

shell has to be determined numerically and matched to the
solution on the shell.
Continuity of the radial solution is imposed at the

boundary of the shell by setting ψωlðRÞ ¼ jlðω̃RÞ. This
in turn fixes the jump in the derivatives of ψωl across the
shell. To find the value of dψωl=drjRþ , we integrate Eq. (5)
across the shell, obtaining the condition

�
αðrÞ
βðrÞ

d
dr

ψωl

�
¼ 0; ð8Þ

where the square brackets represent the difference in the
value of the term across the shell. Noting the discontinuity
in the coefficient βðrÞ across the shell, (6), this yields the
desired initial conditions ψωlðRþÞ and ψ 0

ωlðRþÞ for
numerically solving the radial equation outside the shell.
Finally, to normalize the solution, we will follow the

scheme presented in [1]. First, the radial equation (5) for
r > R can be rewritten in terms of a new coordinate r⋆ such
that d=dr⋆ ¼ α

β d=dr. Further, defining ρωl ¼ rψωl, the
radial equation reads

d2

dr⋆2 ρωl þ ðω2 − VðrÞÞρωl ¼ 0; ð9Þ

where

VðrÞ ¼ α2lðlþ 1Þ
r2

þ 1

r
α

β

d
dr

�
α

β

�
: ð10Þ

Asymptotically, VðrÞ → 0 as r → ∞ and hence
ψωl ∼ sinðωr⋆Þ=r⋆. Let the normalized radial solution be
written as ψωlðr⋆Þ ¼ Aωlψ̃ωlðr⋆Þ. Given any two wave
functions Ψ1, Ψ2, the Klein-Gordon inner product between
them is

ðΨ1;Ψ2Þ ¼ i
Z
Σ
dσnμðΨ�

1∇μΨ2 −Ψ2∇μΨ�
1Þ; ð11Þ
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whereΣ is a Cauchy surfacewith normal nμ. The solution (4)
will be normalized with respect to the Klein-Gordon inner
product if we choose the normalization constant Aωl such
thatAωlψ̃ωlðr⋆Þ → 2 sinðωr⋆Þ=r⋆ as r⋆ → ∞ [1]. This fixes
the boundary condition at infinity for the determination of
Aωl. Meanwhile, the normalization constant in the
Minkowski case is 2ω, giving the full normalized solution,
ΨM

ωlmðt; r; θ;ϕÞ ¼
ffiffiffi
ω
π

p
e−iωtYmlðθ;ϕÞjlðωrÞ [1].

B. UdW response

A UdW detector is a two-level quantum mechanical
system that interacts locally with a scalar quantum field ϕ̂
as it moves along some trajectory xðτÞ in spacetime. Let Ω
denote the energy gap of the detector and

μ̂ðτÞ ¼ e−iΩτσ̂þ þ eiΩτσ̂−

its monopole moment (in the interaction picture), where σ̂�
are the ladder operators. The Hamiltonian governing the
detector/field interaction reads

ĤðτÞ ¼ λχðτÞμ̂ðτÞ ⊗ ϕ̂ðxðτÞÞ; ð12Þ

where τ is the proper time of the detector and λ is the
dimensionless coupling constant. We choose the switching
function χcðτÞ to be

χcðτÞ ¼
�
cos4ðητÞ; − π

2η ≤ τ ≤ π
2η

0; otherwise
ð13Þ

so as to ensure a finite duration of interaction. Thus, the
interaction switches on and off smoothly and takes place
between the finite time interval τ ∈ ð− π

2η ;
π
2ηÞ for some

η > 0. We have chosen this particular form of the switch-
ing, because it has a shape similar to the Gaussian
switching function χG used in [1] (see Fig. 1).
If the detector starts off in the ground state and interacts

with the quantum vacuum via the above Hamiltonian, there
may be a nonzero probability of finding the detector in its
excited state after the interaction. The probability of
excitation of the detector can be calculated using perturba-
tion theory and is well known in the literature. It is given by
[7,16]

P ¼ λ2
Z

∞

−∞
dτ1

Z
∞

−∞
dτ1χcðτ1Þχcðτ2Þe−iΩðτ2−τ1Þ

×Wðxðτ1Þ; xðτ2ÞÞ ð14Þ

to second order in λ, where Wðxðτ1Þ; xðτ2ÞÞ is the
Wightman function of the field evaluated along the detector
trajectory.
The field operator can be expanded in terms of the

normalized field modes Ψωlm as

ϕ̂ðxðτÞÞ¼
X
l;m

Z
∞

0

dωâωlmΨωlmðxðτÞÞþ â†ωlmΨ
†
ωlmðxðτÞÞ;

ð15Þ

with âωlm denoting the mode annihilation operators. Let
j0i denote the field vacuum such that âωlmj0i ¼ 0. This
corresponds to the vacuum with respect to an observer
located at infinity. We note that this vacuum also corre-
sponds to that of an inertial observer inside the shell, since
the mode solutions in Eq. (4) are positive frequency with
respect to the proper times of both these observers—the
Bogoliubov transformation between the inside and outside
modes does not mix creation and annihilation operators.
The Wightman function with respect to this vacuum

Wðxðτ1Þ; xðτ2ÞÞ ≔ h0jϕ̂ðxðτ2ÞÞϕ̂ðxðτ1ÞÞj0i is given by

Wðxðτ1Þ; xðτ2ÞÞ ¼
X
l;m

Z
∞

0

dωΨ†
ωlmðxðτ1ÞÞΨωlmðxðτ2ÞÞ:

ð16Þ

From the previous section, we have seen that the
normalized mode solutions are given by Ψωlm ¼

1ffiffiffiffiffiffi
4πω

p e−iωtYlmðθ;ϕÞAωljlðω̃rÞ inside the shell. We are

interested in studying how the response of the detector
differs when placed, respectively, in a spherical shell and
globally flat Minkowski spacetime. A simple choice for the
trajectory xðτÞ of the detector is r ¼ rd, θ ¼ π=2, ϕ ¼ 0. In
this case, noting that t ¼ τ=

ffiffiffiffiffiffiffiffiffiffi
fðRÞp

, we have

FIG. 1. Plot of Gaussian χG and χc switching. Here, the
parameters used are η ¼ 1.2, σ ¼ 3

8η

ffiffi
π
2

p
. These parameters give

the same area under the graph for the two switching profiles.
Although both look similar, χc is compactly supported. The
interaction duration between the detector and the quantum field
can thus be made truly shorter than the light-crossing time
of the shell.
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F ¼
Z

∞

−∞
dτ1

Z
∞

−∞
dτ2χcðτ1Þχcðτ2Þe−iΩðτ2−τ1Þ

X
lm

Z
∞

0

dωΨ†
ωlmðxðτ1ÞÞΨωlmðxðτ2ÞÞ

¼
Z

∞

−∞
dτ1

Z
∞

−∞
dτ2χcðτ1Þχcðτ2Þe−iΩðτ2−τ1Þ

X
lm

Z
∞

0

dω
4πω

e−iω̃ðτ2−τ1Þ
����Ylm

�
π

2
; 0

�����
2

jAωlj2jjlðω̃rdÞj2

¼
X
lm

Z
∞

0

dω
4πω

Z
∞

−∞
dτ1

Z
∞

−∞
dτ2χcðτ1Þχcðτ2Þe−iðΩþω̃Þðτ2−τ1Þ

����Ylm

�
π

2
; 0

�����
2

jAωlj2jjlðω̃rdÞj2 ð17Þ

for the response function F ¼ P=λ2 of the field, where in
the last step we switched the order of integration since the
integrand is smooth. This expression can be further
simplified by integrating over the τ1 and τ2 variables,
which amounts to performing Fourier transforms on the
switching functions. Denoting the Fourier transform of the
switching function as

χ̂cðkÞ ¼
1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dτχcðτÞe−ikτ; ð18Þ

the response function (17) simplifies to

F ¼
X
lm

Z
∞

0

dω
2ω

jχ̂cðΩþ ω̃Þj2jAωlj2

×

����Ylm

�
π

2
; 0

�����
2

jjlðω̃rdÞj2 ð19Þ

upon using the fact that χ̂cð−kÞ ¼ χ̂cðkÞ for a real switching
function. Explicitly, we have

χ̂cðkÞ ¼
ffiffiffi
2

π

r
24η4 sin πk

2η

64η4k − 20η2k3 þ k5
: ð20Þ

III. RESULTS

We are now ready to study how the presence of the shell
affects the response of a UdW detector inside a shell
compared to its response in globally flat Minkowski space.
We find small but significant differences between the two
cases, using F S to denote the response of a detector placed
in a spherical shell and FM to denote its response in global
Minkowski space.
Plotting F against Ω in Fig. 2, we see that the detector is

indeed sensitive to the presence of the shell. This is most
apparent when we plot the difference F S − FM. Note that
Ω < 0 physically means that the detector starts off in its
excited state. We have chosen the parameter η such that
interaction duration π=η ≈ 2.6 between the field and
detector is less than 2R ¼ 6, the time needed for a light
signal to travel from the detector at the center to the shell
and back. This is in contrast to the classical case, where the
fastest way a detector inside the shell can detect its presence

is by sending and waiting for a light signal to come back
from the shell. We thus strengthen the claim made in [1]: a
UdW interacting with the quantum vacuum can detect the
shell faster than a classical detector even if its interaction
time is causally disconnected from the shell.
We next consider the response of the detector as we vary

its location rd within the shell. Figure 3 shows a plot of
F S − FM against rd with Ω ¼ 0.5 and various choices of
the interaction duration 1=η. For each η, as rd increases, the
difference in response first decreases very slightly, before
increasing to a peak lying between the left and right dashed

FIG. 2. Detector response against Ω. Top: plot of F against Ω
for both the shell (yellow) and globally flat Minkowksi spacetime
(blue) for M ¼ 0.5, R ¼ 3, η ¼ 1.2, rd ¼ 0. The two cases are
indistinguishable on the scale of this figure, but the differences
can be studied by looking at the bottom figure. Bottom: plot of
the difference F S − FM against Ω. The results obtained using χc
and χG (σ ¼ 3

8η

ffiffi
π
2

p
) are qualitatively similar.
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lines in the figure. This can be interpreted as the existence
of an optimal position at which the UdW detector can best
detect the presence of the shell. However, at this position,
the detector is switched on for a time longer than the light-
crossing time. The largest rd beyond which this happens is
indicated by the vertical dashed lines for each η.

We close this section by commenting on the stability of
our results, which were computed by evaluating expression
(19) numerically. In doing so, we have chosen upper cutoffs
for the summation over l and for the integral over ω. Both
the integral and summation exhibit clear numerical con-
vergence, as shown in Fig. 4, with

SL ¼
XL
l¼0

Xl
m¼−l

Ilm; ð21Þ

Ilm ¼
Z

b

0

dω
2ω

jχ̂cðΩþ ω̃Þj2jAωlj2
����Ylm

�
π

2
;0

�����
2

jjlðω̃rdÞj2:

ð22Þ

For the results presented in this paper, we have chosen
the cutoffs L and b such that the contribution of the next
term in the summation or the next integral interval is less
than 10−7.

IV. CONCLUSIONS

The quantum vacuum affords much opportunity to
explore the structure of spacetime in ways that are not
possible classically. We have demonstrated that a UdW
detector that is causally disconnected from the external
environment of the shell can still detect its presence relative
to globally flat spacetime. In doing so, we have demon-
strated a quantum detection of local frame phenomenon, in
which nonlocal information about the global structure of
spacetime contained in the vacuum state of a quantum field
can be read locally by a detector.
A similar effect was also found in an idealized model in

[17], where it was shown that the in-vacuum in a (1þ 1)-
dimensional dilatonic black hole spacetime formed by a
left-moving null wall has a thermal spectrum with respect
to inertial observers located at the left side of the wall. Like
the shell scenario considered in this paper, the spacetime
around these observers is locally flat. A UdW placed there
will similarly record a difference in response depending on
whether the wall is present or not. However, the difference
in response in this case is an Unruh-like effect, caused by
nontrivial Bogoliubov transformation between the modes
of the two vacua. In contrast, our UdW detector in the shell
registers zero particle expectation number, as noted already
in Sec. II B.
We have also shown that the detector can be placed

within the shell in different locations to optimally distin-
guish the local/global cases, but this optimal placement is
not causally disconnected from the shell boundary.
We note that, although our work was carried out in the

context of general relativity, its implications are consid-
erably broader. The Aωl quantities depend on the form of
the effective potential (10) and thus upon the theory of
gravity that governs the dynamics of spacetime. In this
sense, a UdW detector is a nonlocal probe of the local

FIG. 3. Plot of F S − FM against rd. This plot is obtained by
setting Ω ¼ 0.5,M ¼ 0.5, R ¼ 3ðblack; dashedÞ, and η ¼ 0.9, 1,
1.1, 1.2. The peaks indicate the optimal rd inside the shell at
which the detector, for a given η, can best detect the presence of
the shell. The vertical dashed lines indicate, for a given η, the
causal boundary of the interaction duration: to the left of these
lines this duration is less than the light-travel time across the shell.

FIG. 4. Numerical convergence. In evaluating (19) numerically,
an upper cutoff for the sum in l has to be chosen. Top: plot of the
partial sum SL against L. We see that the summation over l is
clearly convergent. The parameters used here are the same as
those in Fig. 3, with rd ¼ 3. Bottom: plot of

P
m Ilm against the

upper cutoff b. For each l (two examples are shown here), the
integral over ω is also clearly convergent.
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dynamics of gravity outside of the shell. A more complete
study of this would be an interesting subject for future
investigation.
We can likewise ask if a detector could be used to discern

other effects, such as the dragging of inertial frames. Work
on this is in progress.
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