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Abstract
A new model for cosmic strings (i.e. conical singularities) attached to black holes is
proposed. These string are obtained by a explicit construction via limiting process
from the so-called Bonnor rocket. This reveals quite surprising nature of their stress–
energy tensor which contains first derivative of Dirac δ distribution. Starting from
the Bonnor rocket we explicitly construct the Schwarzschild solution witch conical
singularity and the C-metric. In the latter case we show that there is a momentum flux
through the cosmic string, causing the acceleration of the black hole and the amount
of this momentum is in agreement with the momentum taken away by gravitational
radiation.
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d.kofron@gmail.com

1 Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, V
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1 Introduction

Among the many solutions of Einstein’s equations with non-trivial topology, those
possessing topological defects of various kind are of special interest. Beside their
specific geometrical properties, such spacetimes are often inspired by considerations in
particle physics and cosmology. In particular, defects knownas cosmic strings typically
arise as a result of spontaneous symmetry breaking in Yang–Mills theories [1]. Phase
transitions of this kind were conjectured to happen in the early universe [2] and strings
produced by this mechanism could be sources of presently detectable gravitational
radiation [3,4]. Another intriguing feature of cosmic strings is the possibility that their
presence could be responsible for the actual existence of magnetic monopoles.

In this paper we do not intend to study the microscopic origin of strings and treat
them from purely geometrical point of view. Topologically, the presence of a cosmic
string is reflected in the non-triviality of the first homotopy group of the spacetime,
meaning that there exist closed curves surrounding the string that cannot be contin-
uously deformed to a point. Metrically, spacetimes exhibiting a cosmic string suffer
from conical singularities in the planes transversal to the string [5].

The cosmic string spacetimes—flat vacuum spacetimeswith conical singularity and
cylindrical symmetry—are known and for a long time. The structure of the singularity
wasfirst studied bySokoloff andStarobinskii [6] and thefirst attempt tomodel a cosmic
string was due to Villenkin [7] in the linearized theory. In the full general relativity
Hiscock [8] reconstructed the same results.

Hiscock used the Weyl form [9] of static, cylindrically symmetric metric which is
given by

ds2 = −e2ν dt2 + e2λ
(
dr2 + dz2

)
+ e2ψdϕ2, (1)

where ν, λ and ψ are functions of r only.
He considered an infinite cylinder of matter with density � = ε and negative

pressure p = −ε in the direction of the axis and vacuum outside of this cylinder. Then
the stress energy tensor reads

T t
t = T z

z = −ε for r ≤ l, (2)

T t
t = T z

z = 0 for r > l, (3)

with all the other components trivially equal to zero. The constant l defines the radius
of the cylinder and the junction conditions by Israel [10,11] are imposed on the surface
r = l.

Then, in the limit when the radius of the cylinder is decreased and the density is
increased simultaneously so that the ”mass per unit length” (defined as integral of Ttt
over surfaces of constant t, z) remains constant a vacuum cosmic string spacetime is
constructed, resulting in deficit angle around the axis.

In paper by Geroch and Trashen [12] which deals with distributional sources in
general relativity is shown that the sources of the cosmic strings cannot be found
unambiguously (in the sense that there is no relation in between the deficit angle and
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the “mass per unit length”). Let us present here their example briefly. They consider
the same model as Hiscock, this time in cylindrical coordinates

ds2 = −dt2 + dz2 + dr2 + β2(r) dϕ2, (4)

where

β(r) =

⎧⎪⎨
⎪⎩

l
γ
sin
( γ r

l

)
, r ≤ l,

[
r − l + l

γ
tan γ

]
cos γ, r > l.

(5)

This metric is C1 across r = l (the surface of the cylinder) and γ ∈ (0, 2π) is a
constant. The stress energy tensor corresponding to the metric (5) is identically zero
for r > l (vacuum) and for r ≤ l

T = β ′′(r)
β(r)

[
dt2 − dz2

]
= −γ 2

l2

[
dt2 − dz2

]
(6)

which allows us to calculate the mass per unit length of the cylinder

μl = 2π (1 − cos γ ) . (7)

The string (with a deficit angle given by 2πγ ) is obtained by taking the limit l → 0.
But then they suggest the following modification of the metric (4)

ds2 = e2λ f ( r
l )
(
−dt2 + dz2 + dr2 + β2(r) dϕ2

)
, (8)

where f is an arbitrary smooth nonnegative function with support on 〈1/2, 1〉 (this
modifies the matter content of the outer half of the cylinder, keeping the axis regular).
The calculations of mass per unit length yield the following value

μl = 2π (1 − cos γ ) − 2πλ2
∫ 1

0

sin γ x

x

[
f ′(x)

]2 dx, (9)

which is strictly less (but otherwise quite arbitrary up to the restrictions imposed on
the function f (x) above) than the value (7), even though the strong energy condition
is fulfilled (although the stress–energy tensor is more complicated).

Aside from these ambiguities more sophisticated matter models of cosmic strings
have been proposed since then, see [13–15], but all of them consider cylindrical
symmetry only.

Now, the same property—deficit angle and, thus, the cosmic string—is inevitably
found also in the C-metric spacetime and can be implemented in an arbitrary axisym-
metric solution.

The question we raise in this paper is whether it is possible to interpret these strings
(piercing the event horizon and extending to infinity) on the same level as a priori
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cylindrically symmetric cosmic strings? That is usually done by attributing ”mass per
unit length” to them.

To our best knowledge the only attempt to resolve string like sources in GR in
general has been done by Israel [16]. His pioneering work suggests to investigate the
strings in the near string limit. In this paper Israel himself considered, amongst other
examples, static spacetime containing two black holes endowed with cosmic string
which keeps them apart in Weyl coordinates. But his near axis limit somehow pushes
aside the black hole horizon (which itself is degenerate in Weyl coordinates).

In order to understand the origin of strings in the Schwarzschild solution or the
C-metric one should provide a constructive and well-controlled procedure. We will do
so in the following text. We do not attempt to provide a general treatment of string-like
sources.

The Sect. 2 introduces relevant mathematical definitions employed later in the text
and fixes the notation.

In Sect. 3 the starting point of our calculations—the so calledBonnor rocket solution
of Einstein field equations—is reviewed. The Bonnor rocket [17] is a quite general
black hole solution which contains an arbitrary axisymmetric and time dependent null
dust along outgoing geodesic (being thus a generalization of Vaidya solution [18]).
The Schwarzschild solution, resp. the C-metric, as a particular example of the Bonnor
rocket is treated in Sect. 3.1, resp. 3.2. Dynamical processes which lead to the string
formation or to the smooth transition of Schwarzschild black hole to the C-metric are
discussed.

The dynamical situations are difficult to treat, thus, the following Sect. 4 contains
the detailed calculations of the structure of the string in a sequence of static spacetimes.

2 Mathematical prerequisites

2.1 Step functions

We shall use step functions of different profiles. One of them is the nonanalytic, yet
smooth step function S(x)

S(x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 for x < x0,
f
(

x−x0
x1−x0

)

f
(

x−x0
x1−x0

)
+ f
(
1− x−x0

x1−x0

) for x ∈ 〈x0, x1〉,
1 for x > x1,

(10)

where f (x) = e−1/x , which is a step in between x0 and x1.
The another class of step functions, so called smooth-step functions, are polynomi-

als of order 2n+1 with boundary conditions prescribed by f (x0) = 0, f (x1) = 1 and
d j f (x0)/dx j = d j f (x1)/dx j = 0 for j = 1, 2, . . . n which are simple to construct,
manage analytically and are smooth up to the order n.
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In general we will have a step up function �S(a,b)(x) which vanishes for x < a, has
a desired interpolation in between 0 and 1 for x ∈ 〈a, b〉 and is equal 1 for x > b.
The step down is then simply �S(a,b)(x) = 1 − �S(a,b)(x).

Also the “table” function

T(a,b,c,d)(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for x < a,

�S(a,b)(x) for x ∈ 〈a, b〉,
1 for x ∈ 〈b, c〉,
�S(c,d)(x) for x ∈ 〈c, d〉,
0 for x > d,

(11)

will be of use.

2.2 Fourier–Legendre series

L2 functions on the interval 〈−1, 1〉 can be expanded in the basis of Legendre poly-
nomials as

f (x) =
∞∑
n=0

an Pn(x), (12)

where, due to the normalization of Legendre polynomials, the coefficients an are

an = 2n + 1

2

∫ 1

−1
f (x)Pn(x) dx . (13)

The expansion of the Dirac δ distribution to this basis is given by [19, (1.17.22)]

δ(x − a) =
∞∑
n=0

(n + 1/2) Pn(x) Pn(a). (14)

Legendre polynomials arise as the result of Gramm–Schmidt orthogonalization of
monomials {x j , j = 0 . . . ∞}. In the following calculation the inverse relation is
necessary

xk =
k∑
j=0

a(k)
j Pj (x). (15)

This will allow us to rewrite polynomial series in term of Legendre polynomials and
sum them up.
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The explicit formulae (which differ for even and odd powers of x) we found to be

x2k = √
π

Γ (2k + 1)

22k+1

k∑
j=0

ã(2k)
2 j P2 j (x),

ã(2k)
2 j = 4 j + 1

Γ (k + j + 3/2) Γ (k − j + 1)
,

(16)

for even powers of x and

x2k+1 = √
π

Γ (2k + 2)

22k+2

k∑
j=0

ã(2k+1)
2 j+1 P2 j+1(x),

ã(2k+1)
2 j+1 = 4 j + 3

Γ (k + j + 5/2) Γ (k − j + 1)
, (17)

for odd powers.

3 Bonnor rocket

In 1996Bonnor [17] found an explicit solution of Einstein field equationswith null dust
in which the central black hole can radiate the null dust with an arbitrary axisymmetric
pattern and time profile. This solution belongs to the Robinson–Trautman class and
thus posses an expanding null geodesic congruence which is shear free and twist free.
The modern version of this metric can be found in [20] and reads as follows

ds2 = −
(

−1

2
G,xx − 2m(u)

r
− r (bG),x − b2Gr2

)
du2

− 2 du dr + 2br2 du dx + r2
(
dx2

G
+ G dϕ2

)
, (18)

where

b(x, u) = −A(u) −
∫

G,u(x, u)

G2(x, u)
dx, (19)

G(x, u) =
(
1 − x2

) [
1 +

(
1 − x2

)
h̃(x, u)

]
, (20)

with A(u) an arbitrary function of u and h̃(x, u) > −1 an arbitrary smooth bounded
function. This represents a Bonnor rocket, a particle emitting null dust (pure radiation)
with the angular (as the x = cos θ ) dependence

4π n2(x, u) = −1

8

(
GG,xxx

)
,x + 3

2
m (bG),x − m,u . (21)
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Corresponding stress energy tensor reads

Tab = � lalb, � = n2

r2
, la =

(
∂

∂r

)a
. (22)

The formofG(x, u) given by (20) is not themost general one. It had been chosen by
Bonnor so that the axis is regular. And, clearly, it does not guarantee that the quantity
n2 defined in (21) is positive.

Let us relax these restrictions, first of all we will consider the function

G(x, u) =
(
1 − x2

)
(1 + h(x, u)) (23)

and then we will omit the second power in the definition of n(x).
Investigating the regularity condition [21] of the axis (x = ±1) given in terms of

the norm of the axial Killing vector ξ (ϕ)

1

4
lim

x→±1

F,a F ,a

F
= 1 + h(±1, u), (24)

where F = ξ(ϕ) · ξ(ϕ), it is clear the function h(x, u) determines the regularity of the
axis.

The Bonnor rocket (18)–(20) was fine tuned and thus in its original form does not
contain conical singularities. We can introduce them by rescaling G → KG which is
equivalent to the choice h(x, u) = const.

Then, scaling the coordinates and parameters as

ũ = √
K u, r̃ = r/

√
K , (25)

m̃ = m/K
√
K , Ã = A/

√
K , (26)

leads to the same form (18) the metric, except the term K 2dϕ2 which shows the
presence of conical singularity as we consider ϕ to run form 0 to 2π strictly.

This “relaxed” class of Bonnor rockets contains as a special cases Schwarzschild
solution with conical singularities and the C-metric.

3.1 The Schwarzschild solution

Themetric (18) with b = 0 andG = (1−x2) is the Schwarzschild solution. For b = 0
and G = K (1 − x2) and after the aforementioned rescaling the Schwarzschild black
hole with the horizon pierced by cosmic string is obtained. (For regular Schwarzschild
solution x = cos θ where θ is standard polar coordinate on sphere.)
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Fig. 1 Space-time diagram of dynamical formation of the cosmic string in the Schwarzschild solution (a),
and the smooth transition (nonuniform acceleration) of the Schwarzschild black hole to the C-metric(b),
accompanied with the formation of cosmic strings with different stress energy tensors along the north and
south poles. The black hole horizon is depicted by bold red line. At u = u0 the radiation phase starts,
the gray scale represents the time evolution of the intensity of the radiation, and at u = u1 the spacetime
becomes static again, with conical singularities present

Using

G(x, u) =
(
1 − x2

)(
1 + 2w�S(u0,u1)(u)e

− �S(u0,u1)(u)

1−x2

)
,

A(u) = 0. (27)

we get a transition between Schwarzschild for (u < u0) through a radiating phase
u ∈ 〈u0, u1〉 during which the axis is still regular, to a Schwarzschild pierced by
cosmic string with K = 1 + 2w which appears at u = u1 and there is no evolution
later, see Fig. 1a for a schematic picture.

Investigating the radiation pattern (21) we can see that the radiation gets more
and more focused (see Fig. 3 for an example for the C-metricor the Fig. 4 for the
Schwarzschil solution—the latter one is in polar coordinates and thus some of the
properties are better readable from the picture) until the string appears and propagates
to the infinity along a null world-line.

3.2 The C-metric

The C-metric in Robinson–Trautman coordinates [20, (Eq. 19.4 therein)] reads

ds2 = −2 du dr + A2r2G

(
x − 1

Ar

)
du2

− 2Ar2 du dx + r2
(

dx2

G(x)
+ G(x) dϕ2

)
, (28)
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with

G(x) =
(
1 − x2

)
(1 + 2Amx) . (29)

Clearly, the metric element (18) of the Bonnor rocket contains the C-metric (28) as
a special case, we simply have to set

m(u) = m, (30)

b(x, u) = −A, (31)

G(x, u) =
(
1 − x2

)
(1 + 2Amx) . (32)

Choosing the functions G(x, u) and A(u) in general Bonnor rocket metric (18) as

G(x, u) =
(
1 − x2

)(
1 + 2A(u)mx e

− �S(u0,u1)(u)

1−x2

)
,

A(u) = A�S(u0,u1)(u), (33)

we get a smooth transition from the static Schwarzschild solution for u < u0, through
a dynamic radiation phase for u ∈ 〈u0, u1〉 during which the radiation gets more a
more focused along the still regular axis (but this time this radiation pattern is not
reflection symmetric) to the C-metric for u > u1. See Fig. 1b for schematic picture.
The axis start to posses a conical singularity at u = u1 when the radiation is completely
focused into an infinitely narrow beam and this singularity propagates along the null
direction to infinity.

This dynamically obtained C-metric is for u > u1 diffeomorphic to the C-metric
but, clearly, cannot be analytically extended and does not contain the second black
hole accelerated in the opposite direction.

The term
∫

G(x, u),u

G2(x, u)
dx (34)

hidden in the definition of the function b(x, u) and thus in the radiation patternn(x, u),
see (21), is difficult, even impossible, to threat analytically; see Fig. 2 for an example
of the function governing the time evolution.. Therefore, in the next section, we will
investigate these spacetimes as a sequence of different static spacetimes parameterized
either by continuous parameter ε or integer N .
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h

x

u

u0

u1

Fig. 2 The function h = �S(u0,u1)(u) e
− �S(u0,u1)(u)

1−x2 which enters the structure function G(x, u) given by
(20) and changes it dynamically in between u0 and u1

4 Static treatment

The Bonnor rocket emits null radiation and thus loses its mass, given by the energy
outflow

− dm(u)

du
=
∮

r2� dΩ =
∮

n(x) dΩ. (35)

Even if there is no time evolution there can be pure radiation, therefore our demand
for staticity requires

∮
n(x) dΩ = 0, m(u) = m. (36)

From this follows that n(x) cannot be positive for ∀x ∈ 〈−1, 1〉.
The arbitrariness in the choice of function h(x) is almost infinite. Let us consider

a sequence of spacetimes labelled by N ∈ (N ∪ 0) given by

G(x, u) =
(
1 − x2

) (
1 + 2w

(
1 − x2N

))
,

A(u) = 0.
(37)

which can be treated completely analytically.
For N = 0 we get a standard Schwarzschild solution while in the limit N → ∞ the

Schwarzschild solution with a cosmic string is obtained. During the limiting process
the axis is regular all the time.

Evaluating the radiation pattern (21) for the structure function (37) leads trivially
to

4π nN (x) = −2w2 (4N + 1)(2N + 1)(N + 1)N x4N
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+ 4w2 (2N 2 + 1)(4N − 1)N x4N−2

− 2w2 (4N − 3)(2N − 1)N (N − 1) x4N−4

+ (2w + 1)w (2N + 1)2 (N + 1)N x2N

− 2(2w + 1)w (2N 2 + 1)(2N − 1)N x2N−2

+ (2w + 1)w (2N − 1)(2N − 3)N (N − 1) x2N−4. (38)

In this explicit and exact form the monomials x j can be expressed (or expanded) in
the basis of Legendre polynomials as shown in the Sect. 2.2. Then the limit N → ∞
of nN (x) leads to

4π n(x) =
(
w2 + w

) ∞∑
n=0

2n (2n + 1/2) (2n + 1) P2n(x). (39)

This series can be summed up using the expansion of Dirac δ distribution (14) in the
basis of Legendre polynomials from which we get

Δ+ ≡ δ(x + 1) + δ(x − 1) = 2
∞∑
n=0

(2n + 1/2) P2n(x). (40)

Now, employing the standard properties of Legendre polynomials and applying the
following differential operator we get

1

2

d

dx

[(
1 − x2

) d

dx
Δ+
]

= − d

dx
δ(x + 1) + d

dx
δ(x − 1)

= −
∞∑
n=0

2n (2n + 1/2) (2n + 1) P2n(x), (41)

in which we recognize the right hand side of (39) and thus the final radiation pattern
is

4π n(x) = −(w2 + w)

[
d

dx
δ(x + 1) − d

dx
δ(x − 1)

]
. (42)

This leads us to one of the main results of this paper—to the explicit form of stress
energy tensor for the cosmic string piercing the Schwarzschild black hole

Tab = −(w2 + w)

[
d

dx
δ(x + 1) − d

dx
δ(x − 1)

]
lalb
r2

. (43)
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Analogously, the C-metric can be obtained as a limiting case of the following
sequence of spacetimes

G(x, u) =
(
1 − x2

) (
1 + 2Amx

(
1 − x2N

))
,

A(u) =
(
1 − 1

N + 1

)
A,

(44)

for which the condition (36) of zero mass flux through an arbitrary sphere holds.
Evaluating the radiation pattern is straightforward (but not short enough to be pre-
sented). Expressing monomials in the basis of Legendre polynomials and taking the
limit N → ∞ yields

4π n(x) = A2m2
∞∑
n=0

2n (2n + 1/2) (2n + 1) P2n(x)

+ Am
∞∑
n=0

(2n + 1) (2n + 3/2) (2n + 2) P2n+1(x). (45)

After some rearrangement of the expansion of the Dirac δ distribution in Legendre
polynomials,

Δ− ≡ δ(x + 1) − δ(x − 1) = 2
∞∑
n=0

(2n + 3/2) P2n+1(x), (46)

and employing the properties of Legendre polynomials again we get

1

2

d

dx

[(
1 − x2

) d

dx
Δ−
]

= − d

dx
δ(x + 1) − d

dx
δ(x − 1)

= −
∞∑
n=0

(2n + 1) (2n + 3/2) (2n + 2) P2n+1(x). (47)

As a result, we can recognize (45) to be

4π n(x) = −Am (Am + 1)
d

dx
δ(x + 1) + Am (Am − 1)

d

dx
δ(x − 1), (48)

with the stress energy tensor given again by Tab = � lalb.
A different profile whose advantages lie in the fact that for x ∈ 〈−1 + ε, 1 − ε〉

the spacetime is locally Schwarzschild or the C-metric can be found

G(x, u) =
(
1 − x2

) (
1 + 2w�S(−1,0)(−ε) T(−1,−1+ε,1−ε,1)(x)

)
, (49)
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Fig. 3 An example of radiation pattern nε(x) and its focusing properties. These particular profiles are
calculated for the structure function G(x) given by (52) for ε = (2, 1, 1/2, 1/4). In (a) the plot for the
whole angle is shown, whereas in (b) the grey patch of (a) is zoomed. Also, for the sake of clarity, there
is an offset in the y axis for every value of ε. The maxima of a every curve is depicted and the enveloping
curve of these maxima is shown by dashed line, which is continuous function of ε (with zero offset in the
y axis; thus it in this picture passes just through the maxima of the curve for ε = 1/4)

for the Schwarzschild or

G(x, u) =
(
1 − x2

) (
1 + 2Amx�S(−1,0)(−ε) T(−1,−1+ε,1−ε,1)(x)

)
, (50)

for the C-metric. Step functions are now the polynomial smooth-step of order 7 or
higher. In these caseswe can calculate nε(x) and then, using computer algebra systems,
its Fourier–Legendre expansion. In the next step—in the limit ε → 0+ we recover the
results (39) and (45).

A completely different approach, which shows that these results are robust, is to
use the functions

Gε(x, u) =
(
1 − x2

) (
1 + 2we

− ε

1−x2 �S(0,1)(ε)
)

,

A(u) = 0, (51)

for Schwarzschild

Gε(x, u) =
(
1 − x2

) (
1 + 2Amxe

− ε

1−x2 �S(0,1)(ε)
)

,

A(u) = A�S(0,1)(ε), (52)

for C-metric.
Evaluating the radiation pattern nε(x) is straightforward but it is impossible to

express this function in the Fourier–Legendre series due to the integrals—they consist
of rational function multiplied by e−ε/(1−x2).

For the Schwarzschild solution we get

4π nε(x) = −2w2�S2(0,1)(ε) p8(x)

(x − 1)6(x + 1)6
ε2 e

− 2ε
1−x2 − w�S(0,1)(ε) q8(x)

(x − 1)6(x + 1)6
ε2 e

− ε

1−x2 , (53)
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z
θ

�

c 0 −c

(a) ε = 1/2

z

�

(b) ε = 1/4

z

�

(c) ε = 1/8

z

�

(d) ε = 1/32

Fig. 4 The radiating pattern nε(x = cos θ) for the structure function (51) with w = −1/10 depicted in
polar plot. As the function nε(x) is not strictly positive for all x ∈ 〈−1, 1〉 an offset has been introduced
as is clear from (a)—the value c is at the outermost dash-dotted circle, zero is represented by the middle
circle and −c is represented as the innermost circle (the origin of coordinates is in the centre). In this case
the value of c = −400. The focusation of radiation along the z axis is clearly visible. In (d) the scaling had
to be readjusted so the circles are closer to each other. The visualisation of n(x, u), Eq. (21), with G(x, u)

as in (27) is visually indistinguishable

where p8(x) and q8(x) are polynomials

p8(x) = 8ε2x4 − 2x2
(
1 − x2

) (
11x2 + 9

)
ε

+ 3
(
3x4 + 8x2 + 1

) (
1 − x2

)2
, (54)

and

q8(x) = p8(x) − 4ε2x4 + 2x2
(
1 − x2

) (
7x2 + 6

)
ε. (55)

Therefore, for now, consider the nε(x) as a distribution and let it act on test functions.
We anticipate the result, of course. The behavior of nε(x) is governed by the term
e−ε/(1−x2), for x ∈ (−1, 1) the limit ε → 0+ tends to 0.

In the radiation pattern nε(x) we can interpolate for small ε

e
− ε

1−x2 ∼ e− 1
2

ε
x+1 , for x ∈ 〈−1, 1); denoted by n−

ε

e
− ε

1−x2 ∼ e
1
2

ε
x−1 , for x ∈ (−1, 1〉; denoted by n+

ε (56)

and similarly for e−2ε/(1−x2).
Using computer algebra systems it can be analytically calculated how this distribu-

tion acts on basis of polynomials, i.e. evaluate the integral nε(x)
[
xN
] = ∫ 1x0 xNnε(x).

In the limit the result, independent on x0 ∈ (−1, 1), is

lim
ε→0+

∫ 1

x0
xNn+

ε (x) dx = (w2 + w)N

= −(w2 + w) δ′(x + 1)
[
xN
]
, (57)

lim
ε→0+

∫ x0

−1
xNn−

ε (x) dx = (−1)N N (w2 + w)
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z1

ε=1/4�
ε=1���
ε→∞�

ε→0+

�

ε=1/16

�

� 1

Fig. 5 The embedding of surface of constant u and r for the structure function (51) for various values of the
parameter ε ∈ (0+, 1/16, 1/4, 1, ∞) and w = −4/10. Basically the transition from a sphere (ε → ∞)—a
dashed halfcircle—through a cigar shaped surfaces, ε ∈ (1, 1/4, 1/16), with a regular axis—in red—into
a sphere with cut-out angle (ε → 0+) and thus a singularity around poles is seen (color figure online)

= −(w2 + w) δ′(x − 1)
[
xN
]
, (58)

and thus it acts as derivative of Dirac δ distribution as in (42).
The same procedure can be repeated for the C-metric with results as in (48), of

course.
So far we have calculated the stress energy tensor for the strings attached to the

Schwarzschild blackhole and theC-metric using three different regularization schemes
with the same results. This shows that the procedure is robust.

Moreover, another interesting conclusion is at hand: in the case of the C-metric the
null dust is not radiated away in a symmetric manner and thus carries the momentum
away, in the rest frame of the black hole we find

Pz =
∫ 1

−1
n(x) x dx = Am, (59)

where x is spherical harmonics Y 0
1 (x, ϕ) and actually should be replaced by the solu-

tion of eigenfunctions on two sphere t = const and r = const as we have done in
[22,23]. Unfortunately the solution can be found only in terms of Heun general func-
tion and cannot be normalized. Yet, this solution for small Am tend to x and the
corrections to Pz given by (59) would be of order A2m2.

Finally, let us investigate the geometry of surfaces (with spherical topology) of
constant u and r as embedded surfaces into R3. Assume its embedding in spherical
coordinates ds2 = dr2 + r2(dθ2 + r2dϕ2) is of the form r = R(θ(x)) (we apply the
coordinate transformation θ = θ(x) at the simultaneously). Then by comparison of
the induced metrics

ds2 =
(
R2

,x + R2θ2,x

)
dx2 + R2 sin2 θ dϕ2, (60)

ds2 = 1

G(x)
dx2 + G(x) dϕ2, (61)
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we get the following differential equation for a newly introduced function f (x)

R(x) =
√

f (x)2 + G(x), f,x =
√

−G
(
G2

,x − 4
)

2G
. (62)

In general the function f (x) can be found in term of integral, the embedding in R3 is
not possible if G2

,x > 4.
The embedding is the a surface of revolution defined by a curve in Euclidean

coordinates

[z, �] =
[
f (x),

√
G(x)

]
. (63)

We numerically evaluate and plot these surfaces for G(x) given by (51) in Fig. 5. And
it can be nicely seen how the axis remains regular until the very last moment of the
procedure.

5 Israel’s approach

Let us briefly discuss the approach proposed by Israel [16] applied to our case. This
approach relies on explicit construction of coordinates in the vicinity of the axis such
that the metric is of the form

ds2 = d�2 + A2(z, t)dz2 + B2�2dϕ2 − C2(z, t)dt2, (64)

and investigatingThe extrinsic curvature Kab (and its densitized formK b
a ) of cylinders

of constant �

Kab = 1

2

∂gab
∂�

, K b
a = √− det g Kb

a , (65)

and its limit

C b
a = lim

�→0+ K b
a . (66)

Let us have a Schwarzschild solution endowed with cosmic string in Weyl coordi-
nates

ds2 = −e2ψ dt2 + e2(λ−ψ)
(
dr2 + dz2

)
+ e−2ψ r2 dϕ2, (67)

where

ψ = 1

2
ln

[
R+ + R− − 2m

R+ + R− + 2m

]
, λ = 1

2
ln

[
(R+ + R−)2 − 4m2

4R+R−

]
+ K , (68)
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with R± =
√
r2 + (z ± m)2. The parameter K controls the regularity of the axis—

regularity condition reads λ(0, z) = 0.
We can find the transformation fromWeyl coordinates (r , z) to approximate coor-

dinates (�, ζ ) in which � is the affine parameter of geodesic connecting the axis with
the point in its vicinity to an arbitrary order of precision (for ζ > m)

r = 0 + e−K

√
ζ − m

ζ + m
� + e−3K

6

√
ζ 2 − m2m

(ζ + m)4
�3

− e−5K

120

√(
ζ 2 − m2

)
m(2m + 9ζ )

(ζ + m)7
�5 + · · · , (69)

z = ζ − e−2K

2

m

(ζ + m)2
�2 − e−4K

24

m (m − 3ζ )

(ζ + m)5
�4

+ e−6K

720

m
(
35m2 + 6mζ − 45ζ 2

)

(ζ + m)8
�6 + · · · , (70)

and then the Schwarzschild metrics reads

ds2 = −ζ − m

ζ + m

(
1 + me−2K 1

(ζ + m)3
�2

− me−4K

12

13m − 9ζ

(ζ + m)6
�4 + o(�6)

)
dt2

+
(
1 + o(�6)

)
d�2 + o(�7) d� dζ

+ ζ + m

ζ − m

(
e2K + m

(ζ + m)3
�2

+ me−2K

12

7m − 3ζ

(ζ + m)6
�4 + o(�6)

)
dζ 2

+ e−2K�2
(
1 − 2

3

e−2K

(ζ + m)3
�2 + o(�4)

)
dϕ2. (71)

The limit of densitized external curvature tensor is simply

C b
a =

⎛
⎝
0 0 0
0 0 0
0 0 1

⎞
⎠ , (72)

in coordinates (t, ζ, ϕ). But this tensor has null eigenvectors; and therefore the
Israel’s approach does not have to provide an decisive answer, as “Condition (vi)
excludes “lightlike” sources which (like null surface layers) require special treat-
ment”.1 Although the axis itself is not a null hypersurface, the stress energy tensor is
composed of null dust.

1 Citation from [16].
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Wehave already seen in Sects. 3.1 and 3.2 that the nature of singularities is lightlike.
This shows that the conical defects are a very subtle subject which has to be treated

carefully.

6 Conclusions

We have proposed a new model of cosmic strings attached to black holes and revealed
their corresponding stress energy tensor in the case of Schwarzschild black hole and
the C-metric. The strings are made of null dust.

Our explicit construction proved to be quite regularization independent (we used
three different schemes).

For the C-metric the deficit angle is different on the north pole and on the south pole.
This asymmetry suggests that there is a momentum flux through the cosmic strings.
This flux has been calculated.
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manuscript.
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