
Astronomy
&Astrophysics

A&A 625, A24 (2019)
https://doi.org/10.1051/0004-6361/201833429
© ESO 2019

Modeling of interactions between supernovae ejecta
and aspherical circumstellar environments

P. Kurfürst1,2 and J. Krtička1
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ABSTRACT

Context. Massive stars are characterized by a significant loss of mass either via (nearly) spherically symmetric stellar winds or pre-
explosion pulses, or by aspherical forms of circumstellar matter (CSM) such as bipolar lobes or outflowing circumstellar equatorial
disks. Since a significant fraction of most massive stars end their lives by a core collapse, supernovae (SNe) are always located inside
large circumstellar envelopes created by their progenitors.
Aims. We study the dynamics and thermal effects of collision between expanding ejecta of SNe and CSM that may be formed during,
for example, a sgB[e] star phase, a luminous blue variable phase, around PopIII stars, or by various forms of accretion.
Methods. For time-dependent hydrodynamic modeling we used our own grid-based Eulerian multidimensional hydrodynamic code
built with a finite volumes method. The code is based on a directionally unsplit Roe’s method that is highly efficient for calculations of
shocks and physical flows with large discontinuities.
Results. We simulate a SNe explosion as a spherically symmetric blast wave. The initial geometry of the disks corresponds to a den-
sity structure of a material that orbits in Keplerian trajectories. We examine the behavior of basic hydrodynamic characteristics, i.e.,
the density, pressure, velocity of expansion, and temperature structure in the interaction zone under various geometrical configurations
and various initial densities of CSM. We calculate the evolution of the SN–CSM system and the rate of aspherical deceleration as well
as the degree of anisotropy in density, pressure, and temperature distribution.
Conclusions. Our simulations reveal significant asphericity of the expanding envelope above all in the case of dense equatorial disks.
Our “low density” model however also shows significant asphericity in the case of the disk mass-loss rate Ṁcsd = 10−6 M� yr−1.
The models also show the zones of overdensity in the SN–disk contact region and indicate the development of Kelvin-Helmholtz
instabilities within the zones of shear between the disk and the more freely expanding material outside the disk.
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1. Introduction

Explosions of supernovae (SNe) are one of the most prominent
events in the universe. They may provide excellent observational
and theoretical material for studying a vast range of physics:
from cosmological principles to particle physics. The interaction
of the SN blast wave may serve as a probe of the progenitor mass
loss and its circumstellar matter (CSM).

Most of the core-collapse (type II) SN progenitors are con-
sidered to be red supergiants (Smartt 2009, 2015; Pejcha & Prieto
2015; Müller et al. 2017), however, there is strong evidence that
blue supergiants (BSG) can also be hydrogen-rich massive pro-
genitors of type II SN events (e.g., Vanbeveren et al. 2013). Most
famous example is SN 1987A, which in the time of explosion
was a BSG star evolved from the previous stage of red super-
giant; see, for example, Meynet et al. (2015). Furthermore, there
are indications of a strong connection between BSG progeni-
tors and superluminous SNe that are likely associated with very
massive stars that retained their thick hydrogen envelopes and
that explode within the dense CSM environment. There is also
a strong evidence of rugged and anisotropic nature of the CSM,
since some of these stars may have been similar to luminous blue
variables that lost a large amount of mass, up to several M�, prior
to explosion (Smith et al. 2007, 2008; Ofek et al. 2013; Smith
2017).

The interaction of SNe with CSM may significantly power
and modify the observed luminosity. After a radiation mediated
shock goes through the stellar body of a SN progenitor, then it
continues propagating through CSM. Depending on the optical
thickness of CSM in the direction to the observer, the radiation
is in the first phase more or less absorbed while an increasing
amount of energy is accumulated in the shocked region (Svirski
et al. 2012). After the optical depth of CSM drops, this energy
is released as a breakout pulse that is much more energetic than
a CSM-less breakout, however, the energy release in the pres-
ence of CSM happens over much longer timescales. Yet the
energy behind the shock grows, if the CSM density does not fall
abruptly, after this breakout, which is accompanied by the char-
acteristic profile of the light curve (e.g., Chevalier & Irwin 2011;
Svirski et al. 2012; Smith 2017).

It follows from the nature of (some) BSG stars that dur-
ing their pre-explosion epochs a CSM may be formed that is
anisotropic. In order to make a simulation of a hydrodynamic
interaction of exploding SN progenitor with such aspherical
CSM consisting of isotropic stellar wind component and a
circumstellar equatorial disk, we consider some typical represen-
tatives of relevant types of SN progenitors that may be associated
with BSG stars and with various types of circumstellar disks,
such as Pop III stars, sgB[e] stars and luminous blue variables
(Lee et al. 1991; Krtička et al. 2011; Kurfürst et al. 2014). We
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regard the structure of circumstellar disks for the purpose of
modeling as that corresponding to viscous outflowing disks,
which are typical for classical Be stars. However, we may assume
to find this disk type in sgB[e] stars as well (for a review see,
e.g., Zickgraf 1998; Hillier 2006), where a disk or rings of high
density material have been detected (Kraus et al. 2013). Other
types of dense equatorial disks or disk-like density enhancements
may also be formed owing to, for example, magnetically com-
pressed winds or binarity and accretion around certain classes of,
for instance, B[e] stars (e.g., Hillier 2006), luminous blue vari-
ables (e.g., Schulte-Ladbeck et al. 1994; Davies et al. 2005), and
post-AGB stars (e.g., Heger & Langer 1998).

Although there have been a number of studies regarding
interactions of SNe expansion with various forms of spher-
ically symmetric CSM, there is a lack of multidimensional
hydrodynamic models that describe SNe interaction with dense
aspherical CSM containing equatorial disks. The importance of
examining such a CSM configuration is further enhanced by the
fact that the disk densities can be significantly higher in the near-
stellar region than the spherically symmetric wind densities in
the case of the same stellar mass-loss rate Ṁ. This is because
of their concentration only in the stellar equatorial area along
with their much lower velocity of radial outflow. We calculate
time dependent evolution of such SN–CSM interactions for three
different values of pre-explosion mass-loss rate Ṁ, which led
to different masses and densities of CSM and different ratios
of isotropic wind and circumstellar disk densities. We use our
models to explore and compare the profiles of basic hydrody-
namic quantities under the significantly aspherical conditions.
We ignore the initial density profile of the progenitor star and the
effects of radiative cooling and other nonadiabatic processes in
the models because our simulations cover only a relatively short
post shock-emergence time.

2. Basic physics and parameterization of the
circumstellar medium

We studied the interaction of a SNe blast wave with the CSM
consisting in the equatorial disk and spherically symmetric CSM
(stellar wind).

2.1. Spherically symmetric CSM

We assume a spherically symmetric CSM with a density profile
given as a power law

ρsw = ρ0,sw(R?/r)wsw , (1)

where r is radius in spherical coordinates and R? is the
radius of the central object. We examined various values of
spherically symmetric CSM base density ρ0,sw as well as var-
ious values of spherically symmetric CSM density slope fac-
tor wsw within the range from wsw = 0 to wsw = 5. However,
the naturally expected structures of the spherically symmet-
ric CSM that correspond to a steady mass loss Ṁsw = const.
fulfill ρsw = Ṁsw/(4πr23sw) ∝ r−2 (Chevalier & Soker 1989;
Chevalier & Fransson 1994; Chevalier & Irwin 2011; Moriya
et al. 2013a, among others) where we input the average ini-
tial outflow velocity 3sw = 100 km s−1 (Moriya et al. 2014). The
adopted spherically symmetric CSM base density ranges from
ρ0,sw ≈ 10−10 kg m−3 (corresponding to stellar winds of OB stars;
see, e.g., Kudritzki & Puls 2000) to ρ0,sw ≈ 10−6 kg m−3, cre-
ated, for example, by enhanced mass loss from violent convective

motion caused by the unstable nuclear burning at latest stages
before core collapse or by pre-explosion pulses of a progenitor
prior to a SN event (cf. Moriya et al. 2014; Smith & Arnett 2014).
Since the interaction of the SN ejecta with a spherically symmet-
ric CSM is not a key problem in this study, we do not investigate
finer details in this point.

2.2. Circumstellar equatorial disks structure

The disks around massive stars result either from the rotation
of contracting matter and from the evacuation of its angular
momentum (accretion disks, see, e.g., Pringle 1981; Frank et al.
2002; Maeder 2009) or they stem from the angular momentum
loss from fast rotating central object (stellar decretion disks, e.g.,
Lee et al. 1991; Okazaki 2001; Krtička et al. 2011; Kurfürst et al.
2014).

In the following we briefly describe the equations that are
essential for modeling the structure of a rotating Keplerian disk
in this study: stationary, vertically integrated, and axisymmetric
equation of continuity takes the cylindrical form

Ṁ = 2πRΣVR = const., (2)

where Ṁ is the (constant) disk mass-loss rate, R is radius in
cylindrical coordinates, Σ =

∫ ∞
−∞ ρ dz is the disk surface density

in 1D thin disk approximation, and VR is the velocity of a radial
flow of the disk matter. We hereafter distinguish between cylin-
drical (R, φ, z) and spherical (r, θ, φ) coordinates using uppercase
and lowercase letters, i.e., radius and velocities in cylindrical
coordinates are denoted using uppercase letters, while radius and
velocities in spherical (and Cartesian) coordinates are denoted
using lowercase letters.

Disk density, pressure, and temperature are determined in
general by equations of radial momentum and angular momen-
tum, which we present in their stationary form (e.g., Okazaki
2001; Krtička et al. 2011; Kurfürst et al. 2014),

VR
∂VR

∂R
− RΩ2 +

1
Σ

∂ (a2Σ)
∂R

− F = 0, (3)

Ṁ
2π

∂ (R2Ω)
∂R

− ∂

∂R

(
αvis a2R2Σ

∂ ln Ω

∂ ln R

)
= 0, (4)

where Ω is the angular velocity, a is the speed of sound, and
αvis is the parameter of viscosity (Shakura & Sunyaev 1973).
The term F = −Σ−1

∫ ∞
−∞ ρgR dz is the density-weighted vertically

integrated radial component of gravitational force per unit vol-
ume, ρgR ≡ ρGM?R/r3, in the thin disk approximation, z � R,
where G is the gravitational constant and M? is the mass of a
central object (star).

We assume a disk initial radial temperature profile for the
purpose of the study in a form of the simple power law

T = T0(R?/R)p, (5)

where T0 is the temperature of the disk near the stellar sur-
face (disk base temperature) and p is a free parameter (p≥ 0)
with theoretically estimated values in range between 0 and 0.4
(cf. Carciofi & Bjorkman 2008). For simplicity we omit the verti-
cal (relatively shallow) variations of the temperature profile (e.g.,
Sigut & Jones 2007; Kurfürst et al. 2018). However, the temper-
ature profile serves in our study only as a basis for determining
the initial gas pressure of CSM (where ρ may be either ρsw or
ρcsd),

P = ρa2, where a2 = kT/(µmu), (6)
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Fig. 1. Color map of the initial density of the SN progenitor with
M? = 45 M�, R? = 80 R� (with mean density 〈ρ〉? ≈ 0.125 kg m−3) and
CSM with assumed Ṁsw = 10−1 M� yr−1 and Ṁcsd = 10−4 M� yr−1 (cor-
responding to Model A in Sect. 5). The base density of the spherically
symmetric part of CSM ρ0,sw ≈ 7× 10−6 kg m−3, while the equatorial
disk base density ρ0,csd ≈ 4× 10−4 kg m−3 (see also Table 1 in Sect. 5).

denoting k the Boltzmann constant, µ the mean molecular
weight, and mu the atomic mass unit. After doing various simula-
tions using different indices 0 ≤ p ≤ 0.4 with a minor impact on
the effect of the counterpressure, we use in the simulations per-
formed in the study the power-law index p = 0 (cf. also Sect. 5).
For the same reason in the calculations we neglect the disk veloc-
ities VR and Ω (which are negligible comparing to SN-CSM
interaction dynamics) as well as the effects of gravitational force
and viscosity.

For the analytical approximation of the disk midplane den-
sity profile ρeq(R) we use the equation which relates ρeq to the
vertically integrated density Σ(R) (e.g., Krtička et al. 2011),

Σ =
√

2π ρeqH. (7)

Following the analytical approach of, for example, Okazaki
(2001), Σ(R) ∼ R−2 and by denoting H the disk vertical scale
height, H = a/Ω, in the Keplerian disk, we (analytically) obtain

ρeq(R)≈ ρ0,csd(R?/R)3.5, (8)

where ρ0,csd is the disk base density and H ∼ R3/2 in the
disk Keplerian region (Kurfürst et al. 2014). Numerical mod-
els usually find the power d of disk midplane radial density
slope ρeq ∼R−d between 3 and 4, and the disk base density
ρ0,csd is, for example, in case of classical Be stars, estimated
between 10−10 kg m−3 to almost 10−6 kg m−3 (see, e.g., Granada
et al. 2013). In case of much denser disks around, for instance,
sgB[e]s, we assume disk base densities up to the values of on
the order of 10−4 kg m−3 (cf. Kurfürst et al. 2018). The vertical
profile of the thin circumstellar disk for z � R, which is the case
for disks up to the distance of several stellar radii from the cen-
tral object, takes the Gaussian form (e.g., Pringle 1981; Okazaki
2001); this reflects the disk vertical hydrostatic balance (see also
Fig. 1),

ρcsd(R, z) = ρeq(R) e−
GM?

a2R3
z2

2 . (9)

The initial structure of the disk is in this study basically
parameterized by the disk mass-loss rate Ṁ. The (density inde-
pendent) value of the disk base radial velocity VR(R?) is pre-
calculated from a 1D disk model (see Kurfürst et al. 2014;
Kurfürst 2015, for more details). The disk base surface den-
sity Σ0,csd is fully determined from Ṁ and VR(R?) using the
equation of mass conservation Eq. (2). The base surface density
Σ0,csd is subsequently converted to the base volume density ρ0,csd
using the Gaussian vertical hydrostatic equilibrium solution (see
Eqs. (7) and (9)). The complete initial disk profile in pressure
and density is obtained from Eqs. (5), (6), (8), and (9).

3. Hydrodynamics and similarity solution of
expanding supernova envelope

It is conventional to describe the evolution of a SN remnant
in several consecutive phases (e.g., Matzner & McKee 1999).
In the early phase the ejecta expands more or less ballistically
into the surrounding medium. Ahead of the ejecta a strong
shock is driven into the ambient medium while the high pressure
behind the forward shock drives a reverse shock into the ejecta
(Chevalier 1982; Chevalier & Soker 1989; Truelove & McKee
1999). This “ballistic” or free expansion phase ends when the
total amount of material swept up by the forward shock has a
mass comparable to that of the ejecta, or equivalently, the mean
density of the ejecta drops to that of the surrounding medium.

The basic analytical solution of the SN explosive event
follows the idea of homologous (u ∝ r/t) energy-conserving
hydrodynamic expansion, using the Sedov-Taylor blast wave
solution (Sedov 1959) and the Sakurai solution of a shock wave
in a nonuniform medium (Sakurai 1960) that has different den-
sity profiles of an internal gas and surrounding medium (Sedov
1977; Zel’dovich & Raizer 1967). Gravitational force is unimpor-
tant except for the very interior layers, and the radiative losses are
almost negligible in the early phase of expansion when compar-
ing to a kinetic energy of the gas. We thus may regard the process
as adiabatic. The scaling parameters are the energy of explo-
sion ESN, mass Mej of the expanding ejecta, and initial stellar
radius R?.

The main aim of our study is the modeling of interactions
between the spherically expanding SN remnant and the sur-
rounding CSM, which may be spherically symmetric (stellar
winds and/or pre-explosion gaseous shells) or asymmetric (cir-
cumstellar disks, disk-like density enhancements, and bipolar
lobes). Therefore, we neglect a pre-explosion SN interior density
distribution, which is completely transformed during the explo-
sion, and on the other hand is of little influence on the structure
of the studied interaction. We also do not introduce the com-
plete analytical formalism in this section, and we only briefly
review the main relations in the way in which we use these for
the comparative semi-analytical solution given in Appendix A.2.
For the complete description see the fundamental solutions of,
for example, Chevalier (1982) and Nadezhin (1985).

The basic hydrodynamic equations in an axially symmet-
ric slice of spherical coordinates in the plane φ= 0, where the
angle θ ranges therefore in full angle to include the plane φ= π,
and where x = R sin θ, z = R cos θ, θ ∈ 〈0, 2π〉 (involving only the
terms that are fundamental for nonviscous, non-self-gravitating,
and axially symmetric (∂/∂φ= 0) gas expansion), i.e., the con-
tinuity equation, radial and polar components of momentum
equation, and energy equation, take the form
∂ρ

∂t
+

1
r
∂

∂r
(rρur) +

1
r
∂ (ρuθ)
∂θ

= 0, (10)

∂ur

∂t
+ ur

∂ur

∂r
+

uθ
r
∂ur

∂θ
− u2

θ

r
+

1
ρ

∂P
∂r
− F0 = 0, (11)

∂uθ
∂t

+ ur
∂uθ
∂r

+
uθ
r
∂uθ
∂θ

+
uruθ

r
+

1
ρr
∂P
∂θ

= 0, (12)

∂ (Pρ−γ)
∂t

+ ur
(Pρ−γ)
∂r

+
uθ
r

(Pρ−γ)
∂θ

= 0, (13)

where ρ is the density, ur is the radial component of the flow
velocity, uθ is the polar component of the flow velocity, P is
the scalar pressure, F0 is the body force per unit mass (typically
gravitation), and γ is the ratio of specific heats. Equation (13) is
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obtained from the zero total derivative of the adiabatic trans-
formation of a perfect gas Pρ−γ = const. However, we further
neglect the gravity term F0 in the momentum Eq. (11), since
gravitational force is of very little importance for the studied
process.

In the reference frame that is co-moving with the forward
shock (for simplicity the planar propagation of the very thin
shocked layer) omitting viscosity and assuming constant adia-
batic index γ, which is astrophysically relevant (Nadezhin 1985),
we can rewrite the adiabatic hydrodynamic Eqs. (10)–(13) on
both sides of the shock front into the simple conservative form
(Zel’dovich & Raizer 1967),

ρ1u1 = ρ0u0, (14)

ρ1u2
1 + P1 = ρ0u2

0 + P0, (15)

γ

γ − 1
P1

ρ1
+

u2
1

2
=

γ

γ − 1
P0

ρ0
+

u2
0

2
, (16)

where the upstream and downstream quantities are labeled with
subscripts 0 and 1, respectively. The same velocities in the lab-
oratory frame are D − u0 and D − u1, where we denote D the
propagation speed of the forward shock. To get the analytical
solution, in the early phase after explosion we approximate the
process as a free expansion with the internal velocity u of the
gas proportional to radius. Assuming the density profile ρin in
the envelope as a (time-dependent) power law and the density
of the surrounding (initially static) medium ρout as an alternate
power law, we obtain

u =
r
t
, ρin(t) = Ar−ntn−3, ρout = Br−w. (17)

Assuming naturally the strong shock condition, Pout � Pin,
the proportionality for the inner pressure, Pin ∼ ρinu2 (in the
shock co-moving frame, or alternatively Pin ∼ ρoutD2 in the labo-
ratory frame; see Zel’dovich & Raizer 1967), gives the inner and
outer pressure in the form

Pin(t) = Ãr2−ntn−5, Pout = B̃ργout. (18)

We describe the formalism of the analytical similarity solu-
tion based on Rankine–Hugoniot relations (see the principles
given in Chevalier 1982; Nadezhin 1985) in the Appendix A.1,
while we describe the principles of semi-analytical model based
on analytical solution in Appendix A.2. We also describe in
Appendix A.3 the analytical principles of the fundamental limi-
tation of the adiabatic self-similar solution for only a certain time
interval. The specific values of this limitation are given within
the sections corresponding to the particular models.

4. Numerical method

For the modeling of the interaction with extremely sharp dis-
continuities characterized by extremely high pressure gradients
we have developed and used our own version of single-step
(unsplit, ATHENA-like, e.g., Stone et al. 2008) finite volume
Eulerian hydrodynamic code based on Roe’s method (Roe 1981;
Toro 1999; Kurfürst et al. 2018, see also the description of our
geometrical modifications of the algorithm used for different
astrophysical situations in Kurfürst & Krtička 2017).

For the time-dependent calculations we write the adiabatic
hydrodynamic Eqs. (10)–(13) in two different manners. The
primitive form generally is (see, e.g., Stone et al. 2008)

∂W
∂t

+ ∇ · F(W) = 0, (19)

where the primitive variables are W = ρ, u, P, and the fluxes
F(W) = ρu, ρu |u + P 1, ρuH, where | denotes the dyadic prod-
uct of two vectors, H = (E + P)/ρ is the enthalpy (+ specific
kinetic energy), 1 is the unit matrix, and E = ρε + ρu2/2 is total
energy (while ε is specific internal energy and u2 = u2

r + u2
θ). The

primitive (as well as conservative) form of continuity equation is
given by Eq. (10), while Eqs. (11) and (12) represent the primi-
tive form of radial and polar components of momentum equation.
We transform Eq. (13) into explicit primitive form of energy
equation by inserting Eq. (10),

∂P
∂t

+ ur
∂P
∂r

+
uθ
r
∂P
∂θ

+ γP
(
∂ur

∂r
+

ur

r
+

1
r
∂uθ
∂θ

)
= 0, (20)

where γ= 4/3 for the radiation dominated gas. Equations (10)–
(12) together with Eq. (20) are used in the primitive numerical
scheme (Eq. (19)).

The analogous conservative form is (see, e.g., Norman &
Winkler 1986; Hirsch 1989; Stone & Norman 1992; Feldmeier
1995; LeVeque et al. 1998)

∂U
∂t

+ ∇ · F(U) = 0, (21)

where the conservative variables are U = ρ, M, E and
F(U) = ρu, M |u + P 1, MH (where M = ρu is the momentum
density) for the mass, momentum, and energy equations, respec-
tively. Abbreviating γ′ = γ/(γ − 1), the explicit adiabatic form of
the enthalpy H used in the flux terms is H = γ′P/ρ + u2/2. The
explicit conservative form of radial (omitting the gravitational
force; see Sect. 3) and polar components of momentum equation
and of the energy equation, respectively, is

∂Mr

∂t
+

1
r
∂

∂r
(rMrur) +

1
r
∂(Mθur)
∂θ

− ρu2
θ

r
+
∂P
∂r

= 0, (22)

∂Mθ

∂t
+

1
r
∂

∂r
(rMruθ) +

1
r
∂(Mθuθ)
∂θ

+ ρ
uruθ

r
+

1
r
∂P
∂θ

= 0, (23)

∂E
∂t

+
1
r
∂

∂r
(rMrH) +

1
r
∂

∂θ
(MθH) = 0. (24)

Equation (10) together with Eqs. (22)–(24) are used in the
conservative numerical scheme (Eq. (21)).

The polar form of Roe matrices AW = ∂F(W)/∂W and
AU = ∂F(U)/∂U, resulting from the linearization of Eqs. (19)
and (21), is in this case identical and is supplemented by for-
malism introduced in Stone et al. (2008) and Skinner & Ostriker
(2010). We used the (fully capable) second-order piecewise lin-
ear reconstruction algorithm, without any necessity to alternate
the Roe’s method using the HLLE (Harten, Lax, van Leer, and
Einfeldt; cf. Einfeldt et al. 1991; Stone et al. 2008) solver or
similar positive-definite solvers in case of unexpected density
or pressure drop to negative values in the intermediate states
of computation (see Stone et al. 2008, for the details), even in
extremely thin zones of very strong shocks.

To derive the initial conditions for hydrodynamic quantities
at the explosion time t0 we assumed that the interior shock wave
basically rearranges the original density structure of the progeni-
tor. The density gradient between the inner and outer interstellar
region is reduced by the rapid expansion of the inner regions
(Arnett 1996, see also, e.g., Fig. 1 in Arnould & Prantzos 1986
showing the evolution of the density structure from core col-
lapse to mantle ejection). We therefore neglect the details in
a SN interior density structure that can barely affect the main
features of examined effects in a complex interaction between
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SNe and CSM. We thus assume for simplicity that the stellar
density is equal to the “averaged” homogeneous initial density
〈ρ〉? = 3M?/(4πR3

?) of an exploding star (according to the stellar
parameters introduced in Sects. 3, 5, and Appendix A.2) in the
range 0.1 − 1 kg m−3 (〈ρ〉? ≈ 0.125 kg m−3; cf. Fig. 1).

The injected SN explosion energy is ESN = 1044 J. A SN
explosion drives a radiation dominated shock, i.e., the inter-
nal energy inside the sphere of shock wave that propagates
through the star is dominated by radiation (Nakar & Sari 2010).
For that reason we assume the averaged homogeneous initial
internal pressure of a photon gas; we consider the whole stel-
lar volume as a “thermal bomb” and neglect the details of the
processes connected with the shock wave propagation through
the star which, in fact, have a secondary effect on the studied
interaction of SN with the aspherical CSM. The averaged homo-
geneous initial internal pressure of a photon of gas takes the
form, 〈P〉? = ESN/(3V?) = ESN/(4πR3

?), i.e., in the range between
1010 and 1011 Pa (〈P〉? ≈ 4.63× 1010 Pa).

We insert the initial state for the CSM in the following
explicit form: the density of a spherically symmetric CSM
is expressed simply by Eq. (1) while its outflow velocity
3sw = 100 km s−1 (see Sect. 2.1 and also Moriya et al. 2014) is
used only for initial density estimate and is neglected for the
calculation itself. We assume an isothermal initial temperature
structure of the CSM (of both the components) within the com-
putational domain, given as Tsw = Tcsd = 0.7Teff (cf. Carciofi &
Bjorkman 2008; Kurfürst et al. 2018). This also indicates the ini-
tial counterpressure of the CSM as P = ρa2, where the square
sound speed a2 is given by Eq. (6). The initial circumstellar
equatorial disk density structure (Eqs. (8) and (9)) is in the polar
coordinates specified in the following explicit form as

ρcsd(r, θ) = ρ0,csd

(
R?

r |sin θ|
)3.5

exp
(
−GM?

2a2r
cos2 θ

|sin3θ|

)
. (25)

We neglect the velocity field of the circumstellar equatorial
disk (see Sect. 2.2), since we regard its effects during the studied
process as negligible. The total CSM density profile is given as
ρsw (Eq. (1)) + ρcsd (Eq. (25)).

Within our considerations we may set R0 = R?, while t0 is
certainly less than one day, for example, for SN 1987A the time
t0 is estimated to be 53 min after core collapse (Arnett 1996). We
set the free boundary conditions at the inner (originally interstel-
lar region) as well as at the outer boundary of the computational
domain during the expansion phase. The values for the grid
boundary and ghost zones are extrapolated from mesh interior
values as a 0th order extrapolation.

We performed all the calculations on a center-symmetric area
domain (2D axially symmetric slice of the spherically symmet-
ric 3D domain) with a radius of 20 R?, and with a numerical
polar grid uniformly scaled in both directions r and θ. The star is
located in the center of the computational domain. We also tested
the Cartesian uniform grid, interlaced by an equatorial plane of
the spherical coordinate system, for comparison with the cal-
culated model; however, we achieved smoother profiles and the
optimal computational cost using the polar grid. The number of
spatial grid cells was 400 in radial and 300 in azimuthal direc-
tions for the models performed up to radius 20 R? and in 2π polar
domain. The complete physical time of the simulations corre-
sponds in this case to approximately 165 h. We also performed
the calculation on 2D grid containing one polar quadrant (π/2
polar domain) with 2400 grid cells in radial and 480 grid cells
in azimuthal direction with the complete physical time of the
simulations corresponding to approximately 180 h. The selected

Table 1. Parameters of the three models A, B, and C.

Model A – high density of the surrounding CSM

Ṁsw Ṁcsd ρ0,sw ρ0,csd

10−1 10−4 7× 10−6 4× 10−4

Model B – intermediate density of the surrounding CSM

Ṁsw Ṁcsd ρ0,sw ρ0,csd

10−2 10−4 7× 10−7 4× 10−4

Model C – low density of the surrounding CSM

Ṁsw Ṁcsd ρ0,sw ρ0,csd

10−4 10−6 7× 10−9 4× 10−6

Notes. Mass-loss rates Ṁsw and Ṁcsd are in units of M� yr−1 and the
(approximate) base densities ρ0,sw and ρ0,csd are in SI units (kg m−3).

grid aspect ratio has a stabilizing effect because the cells that
are stretched along the tangent to the shock have a damping
effect on the development of the carbuncle numerical instabil-
ity (Pandolfi & D’Ambrosio 2001). All the models are described
in Sect. 5 (see also Kurfürst et al. 2017, 2018; Kurfürst & Krtička
2017).

5. Numerical models

We selected a BSG star with M? = 45 M�, R? = 80 R�,
Teff = 25 000 K as the progenitor for all studied models; all of the
parameters of this star are described in Sect. 4 (see also Fig. 1).
The assumed properties of CSM of studied models (denoted as
Model A, B, and C), i.e., the adopted mass-loss rates Ṁ and
the approximate base densities ρ0,sw and ρ0,csd derived from the
mass conservation equation (see Sects. 2.1 and 2.2), are given in
Table 1. In all models we assume 3sw = 100 km s−1 (Moriya et al.
2014, see also Sect. 4), which is an order of magnitude latitudi-
nally averaged estimate considering the effects of possible high
rotation (Maeder & Meynet 2000; Kraus et al. 2008, 2010) and
high radiation pressure.

5.1. Model A: high density of the surrounding media

We first study the SN–CSM interaction for the case of high
density of surrounding media. The CSM consists in the spheri-
cally symmetric component and the aspherical circumstellar disk
described in Sect. 2. The parameters of the CSM and progenitor
star are given in Table 1 and in the first paragraph of Sect. 5.

Integrating the density profiles, we estimate the total mass of
the CSM components: for spherically symmetric component of
CSM we obtain the total mass Msw = 4πR2

?ρ0,sw
∫ r1

R?
dr≈ 0.15 M�

within the radius r1 = 20 R? (within the radius of the com-
putational domain), while we obtain the total mass for
circumstellar disk component within the same domain as
Mcsd = 2πR2

?Σ0,csd
∫ r1

R?
R−1 dR≈ 0.65 M� (cf. Krtička et al. 2011;

Kurfürst et al. 2014, 2018).
We show in Figs. 2 and 3 the 2D snapshots of density, veloc-

ity, and temperature, in equatorial (x)–polar (z) plane, at selected
times t = 16 h (only density) and t = 66 h. We also add illustra-
tively separated 1D slices of the graphs of selected quantities
in equatorial plane and in polar direction in Fig. 4 at the time
t≈ 66 h, supplemented by a graph of specific radiation entropy
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Fig. 2. Model A: color map of the density structure of the interaction of
SN (with progenitor and CSM parameters introduced in Sect. 3, Table 1,
and in Fig. 1) with asymmetric CSM that forms a dense equatorial disk,
at time t≈ 16 h since shock emergence. Contours denote the densities
ρ= 10−7, 10−6, 10−5, and 10−4 kg m−3.

s = 16σT 3/(3cρ), where σ is the Stefan-Boltzmann constant and
c is the speed of light (Zel’dovich & Raizer 1967). The fig-
ures show the regions of decelerated expansion velocity toward
the equatorial disk while the expansion is unlimited (relatively,
according to the density of the spherically symmetric CSM
component) in the polar direction. All the characteristics show
enhanced peaks in the SN-disk contact region and indicate
shoulders and strips of overdensity and enhanced temperature
that propagate around the equatorial disk.

We show in the upper panel of Fig. 5 the density slopes n and
w (see Eqs. (17) and (A.1)) and in the lower panel of Fig. 5 the
temperature slopes p (cf. Eq. (5)), calculated in the numerical
model at the same time t≈ 66 h since shock emergence. How-
ever, the outer shock, which roughly separates the outer region
(denoted in Sect. 3 by subscript “out”) from all the other regions
between the two shock waves, moves to the radius approximately
11 R? in the equatorial plane and 16.5 R? in the polar direction.
The inner envelope density slope ranges in the polar direction
between n = 0 and n≈ 9, while in the equatorial plane the den-
sity slope is highly discontinuous and becomes much steeper.
However, we cannot simply apply the analytical similarity rela-
tions in the equatorial plane with respect to the constraint w < 3
given by Eq. (A.21). The temperature slope in the smooth region
of the inner envelope (excluding the areas of sharp discontinu-
ities) ranges between p = 0 and p≈ 2.7 in the equatorial and in
the polar direction. In order to avoid inadequate computational
difficulties, we calculate the temperature in all the domain as
radiative (T ∼ P 0.25; the same applies for the other models). We
may regard the displayed distances reached by the forward shock
wave in the equatorial and in the polar direction as a certain scale
of the level of asphericity (except the slopes of the selected quan-
tities) of the SN explosion; the same also applies for another
models (see Figs. 11 and 18).

In Figs. 6 and 7 we demonstrate the semi-analytically found
(see Sect. A.2) similarity solution of density, velocity, pressure,
and temperature for two inner density slopes n = 7 and n = 9 that
correspond to the average and maximum numerically calculated
inner density slopes in the polar direction where the similarity
solution holds and where the parameter w< 3 (see Eq. (A.1) and
its consequences). In the disk-residing equatorial plane the ana-
lytical similarity solution is however violated because of the disk
equatorial plane density profile ρeq(R)∼R−3.5 (w> 3).
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Fig. 3. Model A: interaction of SN with asymmetric CSM at time
t≈ 66 h since shock emergence. Upper panel: color map of the density
structure. Contours denote the densities ρ= 10−6, 10−5, and
10−4 kg m−3. Middle panel: color map of the velocity structure.
Contours denote the radial (expansion) velocities u = 1000, 2000, and
3000 km s−1. Lower panel: color map of the temperature structure.
Contours denote the temperatures T = 105, 5× 105, and 106 K. Charac-
teristic 1D sections of the model in the equatorial and polar plane are
shown in Fig. 4.

Comparing slices of 2D numerical calculations in Fig. 4
with the 1D semi-analytical solution (cf. Sect. A.2) in polar
direction in Figs. 6 and 7, we find that the solutions well
agree in global parameters. That is, density ρ decreases
from the value ρ≈ 5× 10−6 kg m−3 at the radius r = 11.5 R? to
ρ≈ 3× 10−7 kg m−3 behind the outer shock, while it drops to
almost 10−8 kg m−3 outside the outer shock; the radial (expan-
sion) velocity u grows in the same domain from u≈ 3000 km s−1

to approximately 3500 km s−1 behind the shock wave zone. We
hereafter denote the radial velocity of expansion u for simplicity;
its value in fact does not much differ from the total magnitude
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Fig. 4. Model A: one-dimensional slices of variations of hydrodynami-
cal variables in the equatorial plane (x-coordinate, solid line) and in the
polar direction (z-coordinate, dashed line), at the same time as in Fig. 3.
Panel A: density ρ. Panel B: expansion velocity u. Panel C: pressure P
and temperature T . Panel D: specific entropy s.

of velocity since the nonradial velocity components are more
than an order of magnitude smaller. The pressure approaches
P≈ 106 Pa, while the corresponding temperature T is slightly
higher than 105 K (compare Figs. 6 and 7 with Fig. 4). The
semi-analytical solution is directly compared with 1D slices of
our 2D numerical solution for the same time of calculation.
We also add the 1D synchronous profile calculated using the
SNEC-1.01 code (Morozova et al. 2015), which takes into
account more realistic shape of the density enhancement zone
between reverse shock and contact discontinuity (between 13.5
and 13.8 r/R?) that is formed during propagation of the shock
wave through the stellar body (Sedov 1959; Sakurai 1960).
Since our current models use the whole stellar body as an ini-
tial thermal bomb, the shock wave directly propagates (like a
Riemann-Sod shock wave) to the region of dropped density.
However, this detail in the shock wave structure has only a minor
impact on the global solution within the study. For the SNEC
calculation we input the same initial profile of the progenitor
star and the CSM as for all the other calculations with radiation
included, the initial thermal bomb zone (Morozova et al. 2015) is
however limited only to a relatively small region near the stellar
center.

We also constructed similar comparative diagrams for other
values of parameter n lower than n = 7. However, in this case the
radial distance between the inner and outer shock waves becomes
too large and the values of analytically calculated quantities dif-
fer significantly from SNEC and from our 2D numerical result.
In any case, we found that the analytical versus numerical solu-
tions are closest (relatively) at this stage for the internal density
slope parameter n≈ 7 to n≈ 9.
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Fig. 5. Model A: upper panel: slope parameters n and w of the den-
sity (see Eq. (17)) in the equatorial (solid line) and polar (dashed line)
direction corresponding to the panel A in Fig. 4, at the same time. The
position of the outer shock wave is at r≈ 11 R? in the equatorial direc-
tion, while it is at r≈ 16.5 R? in the polar direction. There are preserved
the initial density slope parameters of CSM, wsw = 2 in the polar direc-
tion and wcsd = 3.5 in the equatorial direction, above these radii. The
inner envelope density slope parameter increases from n = 0 to n≈ 9 in
the polar direction. The numbers nmax and nmin above and below the
graph denote the maximal and minimal slopes within the peaks of the
density gradient discontinuities. Lower panel: slope parameters p of the
temperature (cf. Eq. (5)) in the equatorial (solid line) and polar (dashed
line) direction corresponding to the temperature graph (panel C) in
Fig. 4 at the same time. The inner envelope (smooth) temperature slope
parameter increases to p≈ 2.7 at r≈ 7.8 R? in the equatorial direc-
tion while it increases to approximately the same value at r≈ 11 R? in
the polar direction. The slope parameter p outside the outer shock is
p = 0.875 in the equatorial and p = 0.5 in the polar direction. The num-
bers pmax above the graph denote the maximal temperature slopes within
the peaks of the T gradient discontinuities.

We also checked the constraints on the applicability of the
adiabatic self-similar solution within the semi-analytical calcu-
lation (see Appendix A.3). For the model with high density
(Sect. 5.1) and the density slope n = 7 we found the upper limit
tmax ≈ 20 yr, while the lower limit tmin is on the order of several
minutes at the start of the calculation. The lower limit continu-
ously grows during the time evolution, however, the values of tmin
remain several orders of magnitude lower than the actual time of
simulation.

Figure 3 indicates that the zone of shear between the slower
expansion into the region of circumstellar equatorial disk, where
the vertical motion occurs owing to the violation of disk hydro-
static equilibrium caused by the interaction of the two masses.
Figure 3 also shows that the spherically symmetric fast SN
expansion may provoke the development of Kelvin-Helmholtz
instabilities. This is further demonstrated in Fig. 8, where we
show the snapshot of 2D density and expansion velocity field
in later time t≈ 165 h (up to the radius 50 R?) and in higher
numerical resolution. We thus get a comparison with the model
in Fig. 3, where we can distinguish the details of evolution of
the selected quantities in yet more evolved and more structured
stage. The shoulders of overdensity and significantly decelerated
expansion velocity at the zone of shear between the disk and
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Fig. 6. Model A: results of semi-analytical solution of the density ρ,
velocity u, pressure P, and temperature T (black line), with the slope
parameters n = 7 and wsw = 2, in the polar direction. The method of cal-
culation is described in Sect. A.2. The time is the same as in Figs. 3–5.
The velocity at the outer shock wave region (at approx. 16 R?) corre-
sponds to the polar expansion velocity in the panel B of Fig. 4 while the
other quantities and semi-analytical model input variables are described
in Appendix A.2. The blue line depicts the corresponding calculation
from our 2D model. The corresponding 1D profile calculated using
the SNEC-1.01 code is depicted with a red line (see the description in
Sect. 5.1).
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Fig. 7. Model A: as in Fig. 6, with the slope parameters n = 9 and
wsw = 2, in the polar direction (the same method of calculation as in
Fig. 6). The semi-analytical profiles are compared to the same polar
expansion velocity as in Figs. 4 and 6.

spherically symmetric CSM are illustrated in a more detailed
picture. There is also a clear indication of developing Kelvin-
Helmholtz and Rayleigh-Taylor instabilities along the zone of
shear interaction and SN-disk contact region.

5.2. Model B: intermediate density

We further studied interaction of an SN blast wave with the CSM
for the case of intermediate density (Model B). The progeni-
tor and CSM parameters are introduced in the first paragraph
of Sect. 5 and in Table 1. Integrating the CSM density profiles,

0 10 20 30 40 50

x / R
★

0

10

20

30

40

50

z
 /

 R
★

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

ρ
 (

k
g

 m
-3

)

10 -5

10 -6

10 -7

0 10 20 30 40 50

x / R
★

0

10

20

30

40

50

z
 /

 R
★

<1

10

10
2

10
3

10
4

u
 (

k
m

 s
-1

)

2500

3000

Fig. 8. Model A: detailed color maps of the density (upper panel) and
the radial velocity (lower panel) structure, up to the distance 50 R?

at time t≈ 165 h since shock emergence. Contours denote the den-
sities ρ= 10−7, 10−6, and 10−5 kg m−3 and the velocities 2500 and
3000 km s−1. The resolution of the simulation is 2400/480 grid cells
in the radial/azimuthal direction within the quadrant.

we obtain the following total mass of the CSM components: the
total mass Msw ≈ 0.015 M� within the radius of the computa-
tional domain r1 = 20 R? and Mcsd ≈ 0.65 M� (cf. Krtička et al.
2011; Kurfürst et al. 2014, 2018) within the same domain.

We show (analogous to Sect. 5.1) in Fig. 9 the 2D snapshots
of density profiles in equatorial (x)–polar (z) plane at selected
times t = 33 h and t = 66 h, respectively. The lower panel in Fig. 9
shows significant layers of overdensity that are formed near the
zone where the expanding matter is forced to move along the
interface between the spherically symmetric component of CSM
and the denser circumstellar equatorial disk region of CSM. The
development of Kelvin-Helmholtz instabilities is also remark-
ably indicated near the shear zones. We also add in Fig. 10 the
separated 1D slices of graphs of density, velocity, pressure, tem-
perature, and specific radiation entropy in equatorial and polar
plane at the time t = 33 h. The model shows higher difference
in expansion velocity between the equatorial and polar direc-
tion than in the previous model because of the lower density
(lower mass injection) of spherically symmetric CSM. The front
of the polar SN expansion reaches the velocity approximately
4000 km s−1 while it approaches 2000 km s−1 in the equatorial
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Fig. 9. Model B: upper panel: color map of the density structure
at time t≈ 33 h since shock emergence. Contours denote the den-
sities ρ= 10−8, 10−7, 10−6, 10−5, and 10−4 kg m−3. Characteristic 1D
sections of the model in the equatorial and polar plane are shown
in Fig. 10. Lower panel: color map of the density structure at
time t≈ 66 h since shock emergence. Contours denote the densities
ρ= 10−6, 10−5, and 10−4 kg m−3.

direction. Because the expansion shock front in the polar direc-
tion is too close to the limit of computational area in the time
for which we plotted the previous models (t≈ 66 h), we provide
for this model the profiles of most of the characteristics in ear-
lier time (t≈ 33 h) while, on the other hand, the graphs of the
previous model with high density would be in this time poorly
illustrative.

We also show (analogously to Sect. 5.1) in the upper panel
of Fig. 11 the density slopes n and w, while in the lower
panel we show the temperature slopes p, calculated at the same
time t≈ 33 h since shock emergence. The outer shock moves at
the radius of approximately 5.5 R? in the equatorial and 11 R?

in the polar direction. The inner envelope density slope ranges
in the polar direction between n = 0 and n≈ 16, the temperature
slope in the smooth region of the inner envelope ranges between
p = 0 and p≈ 1.9 in the equatorial direction and between p = 0
and p≈ 3.6 in the polar direction.

The calculation of the constraints of applicability of the adi-
abatic self-similar solution (see Appendix A.3) gives for the
model with intermediate density the upper limit tmax ≈ 21 yr
for the density slope n = 7, while for n = 12 it increases to
tmax ≈ 35 yr. For the lower limit tmin applies the same as in
previous model with high density in Sect. 5.1.

Analogous to the previous model, we show in Fig. 12 the
snapshots of 2D density, radial expansion velocity, and temper-
ature in time t≈ 180 h since shock emergence, up to the radius
50 R?, in high numerical resolution, performed on 2D grid with

 
10

-9
10

-8
10

-7
10

-6
10

-5
10

-4
10

-3
10

-2
10

-1

         

Aequatorial plane

polar plane

ρ
 (

k
g
 m

-3
)

 

1000

2000

3000

4000

 

         

B

u
 (

k
m

 s
-1

)

1

10
2

10
4

10
6

10
8

10
10

         

10
4

5×10
4

10
5

5×10
6

10
6

C

P
 (

P
a
)

T
 (

K
)

10
4

10
5

10
6

10
7

10
8

-20 -15 -10 -5 0 5 10 15 20

D

s
 (

J
 K

-1
 k

g
-1

)

x, z / R
★

Fig. 10. Model B: 1D slices of hydrodynamical variables in the equa-
torial plane (x-coordinate, solid line) and polar plane (z-coordinate,
dashed line) at time t≈ 33 h since shock emergence (as in Fig. 9).
Panel A: density ρ. Panel B: expansion velocity u. Panel C: pressure P
and temperature T . Panel D: specific entropy s.
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Fig. 11. Model B: upper panel: slope parameters n and w of the
density (analogous to Fig. 5) in the equatorial (solid line) and polar
(dashed line) direction, corresponding to panel A in Fig. 10 at the same
time t≈ 33 h. The position of the outer shock wave is at r≈ 5.5 R?

in the equatorial direction, while it is at r≈ 11 R? in the polar direc-
tion. The inner envelope density slope parameter increases from n = 0
to n≈ 16 in the polar direction. Lower panel: slope parameters p
of the temperature in the equatorial (solid line) and polar (dashed
line) direction corresponding to the temperature graph (panel C) in
Fig. 10 at the same time. The inner envelope (smooth) temperature
slope parameter increases to p≈ 1.9 at r≈ 4.1,R? in the equato-
rial direction while it increases to p≈ 3.6 at r≈ 6.6 R? in the polar
direction.
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Fig. 12. Model B: detailed color maps of the density (upper panel),
radial velocity (middle panel), and temperature (lower panel)
structure up to the distance 50 R? at time t≈ 180 h since shock
emergence, with the same numerical resolution as in Fig. 8. Con-
tours denote the densities ρ= 10−7, 10−6, 10−5, and 10−4 kg m−3, the
velocities 2500, 3000, 3500, and 4000 km s−1, and the temperatures
7× 104, 8× 104, 105, and 5× 105 K.

2400 grid cells in radial and 480 grid cells in azimuthal direc-
tion. Comparing this with Fig. 9, we distinguish the details of
evolution of the selected quantities, including the even more
significant shoulders of overdensity and over-heated gas near
disk – spherically symmetric CSM shear zone. Although the
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Fig. 13. Model B: 1D slices of density (left panel) and velocity
(right panel) in the equatorial plane (x-coordinate, solid line) and
in polar direction (z-coordinate, dashed line) at time t≈ 180 h since
shock emergence (corresponding to Fig. 12). The maximum of the
polar velocity, which is already outside the computational domain, is
approximately 4400 km s−1.
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Fig. 14. Model B: 1D slices of temperature (left panel) and specific
entropy (right panel) in the equatorial (x-coordinate, solid line) and in
polar direction (z-coordinate, dashed line) at the same time as in Fig. 13.

forward shock front is in the snapshot already out of the compu-
tational domain, it particularly well illustrates the development
of Kelvin-Helmholtz and Rayleigh-Taylor instabilities which is
clearly indicated.

We also add in this intermediate density model the 1D equa-
torial, polar slices of density and expansion velocity (Fig. 13),
and the temperature and specific entropy (Fig. 14), which corre-
spond to the instant time shown in Fig. 12. A qualitative compari-
son with the profiles in Fig. 10 (in less advanced time) shows the
decrease of density, however in a (roughly) self-similar mode.
This is accompanied by an increase of the equatorial velocity
peak. The peak of the polar velocity is currently already outside
the computational domain, nevertheless the results of the calcu-
lation before it reaches the outer boundary show that the polar
velocity increases very little (cf. the increase of polar velocity in
the model with high density (Sect. 5.1) by comparing the values
of the polar velocity maximum in Figs. 3 and 4 with Fig. 8).

5.3. Model C: low density

The asymetry of SN–CSM interaction zone is significant even
in the case of low density CSM (Model C). The progenitor and
CSM parameters are introduced in the first paragraph of Sect. 5
and in Table 1. The total masses of the spherical wind and cir-
cumstellar equatorial disk components within the radius of the
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Fig. 15. Model C: color maps of the hydrodynamical variables at time
t≈ 33 h since shock emergence. Upper panel: color map of the
density structure. Contours denote the densities ρ=10−8, 10−7,
10−6, 10−5, and 10−4 kg m−3. Middle panel: color map of the veloc-
ity structure. Contours denote the velocities u = 5000 and 7000 km s−1.
Lower panel: color map of the temperature structure. Contours denote
the temperatures T = 105 and 106 K. Characteristic 1D sections of the
model in the equatorial plane and in the polar direction are shown in
Fig. 17.

computational domain r1 = 20 R? are Msw ≈ 1.5× 10−4 M� and
Mcsd ≈ 6.5× 10−3 M�.

We show (analogous to Sects. 5.1 and 5.2) in Figs. 15 and 16
the 2D snapshots of density, velocity, and temperature, in equa-
torial (x)–polar (z) plane, at selected times t = 33 h and t = 66 h
(only density). We again also add in Fig. 17 the separated 1D
slices of graphs of density, velocity, pressure, temperature, and
specific radiation entropy in equatorial plane and in polar direc-
tion at the time t = 33 h. The figures in this case show the regions
of significantly decelerated SN expansion velocity toward the
equatorial disk in greater distance from the star than in the
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Fig. 16. Model C: color map of the density structure of the interaction
at time t≈ 66 h since shock emergence. Contours denote the densities
ρ= 10−6, 10−5, and 10−4 kg m−3.
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dashed line) at time t≈ 33 h since shock emergence (as in Fig. 15).
Panel A: density ρ. Panel B: expansion velocity u. Panel C: pressure
P and temperature T . Panel D: specific entropy s.

previous cases; in the corresponding time t≈ 66 h it is approx-
imately 13 R? (see Fig. 16), while it is approximately 11 R? in
the previous models (cf. Figs. 4 and 10). This is because the
higher absolute value of expansion velocity even in this direc-
tion of maximum deceleration compared to previous models (cf.
also Figs. 3, 9, and 17). The front of the polar SN expansion
propagates with much higher velocity, i.e., >7000 km s−1 while
it is ≈ 4000 km s−1 in the model with intermediate density and
≈3000 km s−1 in the model with high density in the same direc-
tion at the same time; the front should be within the same time
t≈ 66 h obviously in much larger distance than in the previous
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Fig. 18. Model C: upper panel: slope parameters n and w of the den-
sity (analogous to Figs. 5 and 11) in the equatorial (solid line) and polar
(dashed line) direction, corresponding to panel A in Fig. 17 at the same
time t≈ 33 h. The position of the outer shock wave is at r≈ 9 R? in the
equatorial direction while it is at r≈ 18 R? in the polar direction. The
inner envelope density slope parameter increases from n = 0 to n≈ 17 in
the polar direction. Lower panel: slope parameters p of the temperature
in the equatorial (solid line) and polar (dashed line) direction corre-
sponding to the temperature graph (panel C) in Fig. 17 at the same time.
The inner envelope (smooth) temperature slope parameter increases to
p≈ 3.6 at r≈ 6.3–6.5 R? in the equatorial and also in the polar direction.

models. This is why, outside the computational area, we plot
in this model the profiles of most of the characteristics in time
t≈ 33 h.

We show (analogous to Sects. 5.1 and 5.2) in the upper panel
of Fig. 18 the density slopes n and w and in the lower panel
the temperature slopes p, calculated at the same time t≈ 33 h
since shock emergence. The outer shock moves at the radius of
approximately 9 R? in the equatorial plane and 18 R? in the polar
direction. The inner envelope density slope ranges in the polar
direction between n = 0 and n≈ 17; the temperature slope in the
smooth region of the inner envelope ranges between p = 0 and
p≈ 3.6 in the equatorial and also in the polar direction.

The calculation of the applicability limits of the adiabatic
self-similar solution (see Appendix A.3) gives for the model
with low density the upper limit tmax ≈ 190 yr for the density
slope n = 7, while for n = 12 it gives tmax ≈ 3× 104 yr. The lower
limit tmin is still practically unimportant (cf. the model with high
density in Sect. 5.1).

As in both the previous models, we show in Fig. 19 the snap-
shots of 2D density and expansion velocity in a more evolved
stage (in time t≈ 105 h since shock emergence), up to the radius
50 R?, performed on 2D grid with 2400 grid cells in radial
and 480 grid cells in azimuthal direction. Comparing this with
Fig. 15, we distinguish again the details of evolution of the
selected quantities within the model.

6. Conclusions and future work

We studied the hydrodynamic behavior of interaction between
the expanding envelope of SNe and aspherical CSM contain-
ing an spherically symmetric stelar wind component and an
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Fig. 19. Model C: detailed color maps of the density (upper panel) and
radial velocity (lower panel) up to the distance 50 R? at time t≈ 105 h
since shock emergence, with the same resolution as in Fig. 8. Con-
tours denote the densities ρ= 10−7, 10−6, 10−5, and 10−4 kg m−3 and the
velocities 5000 and 7000 km s−1.

aspherial circumstellar equatorial disk (or disk-like) component
that is axially symmetric and resides in the equatorial plane of
the star. In the present model we used simplified initial condi-
tions, assuming homogeneous initial distribution of the stellar
density and pressure without gravity, which has only a minor
impact on the studied process of external interaction.

We discussed three particular 2D models, supplemented by
1D illustrative slices of basic hydrodynamic quantities and of
gradients (slopes) of density and temperature, for three different
values of stellar pre-explosion mass-loss rate that led to forma-
tion of CSM. All the models significantly demonstrate the higher
rate of deceleration of SN expansion in case of higher density of
CSM and the aspherical evolution of the density, velocity, and
temperature structure of the SNe ejecta, where the mass prefer-
ably expands to the area outside the dense equatorial disk (cf.
McKee & Cowie 1975; McKee et al. 1978; Cowie et al. 1981).
We conclude that in case the disk initial base density values
ρ0,csd are of an order of magnitude (or more) higher than the
base densities ρ0,sw of spherically symmetric CSM, such cir-
cumstellar equatorial disks effectively slow down the equatorial
SN expansion (compared to the SN expansion into regions out-
side the disk) with significant peaks of density, pressure, and
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temperature in the contact region of SN-disk interaction. This
is according to the presented models and other models with even
lower initial CSM densities down to Ṁcsd ≈ 10−9 M� yr−1 with
ρ0,csd of an order of 10−9 kg m−3, where the effects of asphericity
vanish, and down to Ṁsw ≈ 10−7 M� yr−1 with ρ0,sw of an order
of 10−12–10−11 kg m−3 below which the effects of CSM become
negligible. The comparison of power-law gradients of density
and temperature (basically described in Figs. 5, 11, and 18),
at least for the smooth parts of the expanding area (excluding
the regions of steep shocks and discontinuities), indicates their
higher values for lower pre-explosion mass-loss rates. The slopes
also decrease with time, however, this can be expected from the
similarity nature of expansion. We also checked the time limits
of similarity solution applicability, where all the models match
the time frame with considerable reserve.

The models also indicate the development of Kelvin-
Helmholtz instabilities in the zone of shear where the expanding
matter flow is distorted along the interface between the spher-
ically symmetric component and circumstellar equatorial disk
component of CSM, forming the nearby layers of overdensity.

In our models, we did not consider the effects of radiative
cooling, the influence of magnetic fields, or the energy input
from the compact remnant of the explosion. These effects are
typically mitigated and overlapped by the enormous SNe energy
and their impact on the dynamics of the problem is very small
(Truelove & McKee 1999), or are connected only with a spe-
cific situation or a type of the remnant (like magnetars; see, e.g.,
Metzger et al. 2017). The reverse shock formed in uniform ejecta
is assumed to be radiative for a certain time (Chevalier 1977),
but its velocity becomes eventually so high and the ejecta are so
tenuous that the cooling timescale for the gas behind the shock
exceeds the dynamical time of the SN expansion (Truelove &
McKee 1999). It is therefore relevant to use the nonradiative
approximation. In this point, Truelove & McKee (1999) showed
that the fraction of ejecta mass that cools is only a few percent
in the case of n < 5 ejecta, in case of typical values of param-
eters. Moreover, Chevalier & Fransson (1994) studied the early
radiative period for n > 5 ejecta and found it had very little effect
upon the dynamics of the SN expansion.

Because of the inclusion of radiative cooling, and there-
fore a violation of the energy conservation, the shocked shell
becomes thinner and denser than in the case of the used self-
similar analytical description (Chevalier 1982). Such a shell is
however expected to be unstable because of developing (the
Rayleigh-Taylor) instabilities (e.g., Chevalier & Blondin 1995),
whose effect reduces the rate of conversion of the kinetic energy
to radiation (Blinnikov et al. 1998; Moriya et al. 2013a). These
instabilities are usually included in 1D models via an approx-
imative “smearing term” (similar in principle to the numerical
viscosity). We currently omit such details owing to the complex-
ity of the SN–CSM interaction morphology, but they may be
included in the future calculations (cf. the study of Steinberg &
Metzger 2018).

Although the detailed description of observational signatures
connected with the conclusions of the models is not the subject
of this paper, we briefly comment on that issue. From an analytic
solution suggested, for example, by McDowell et al. (2018; see
also Moriya et al. 2013b or Chatzopoulos et al. 2013), it follows
that in cases in which the mass of the disk Mcsd is comparable
with the mass of the ejecta Mej, the ratio of the luminosity of the
light curve peak is approximately indirectly proportional to the
SN diffusion timescale τsn; the time when the opacity drops so
that the radiation can freely escape. In cases in which the mass of
the disk is much smaller (two orders of magnitude or more) than

the ejecta mass, then the peak luminosity ratio of the light curve
is significantly reduced; the peak luminosities for the same ratio
of the SN diffusion times are much closer. Comparing the first
two models A and B (where Mcsd is comparable with Mej ≡ M?)
with model C, we obtain a ratio of the diffusion timescales of
about 3/2. We may thus expect the light curve peak ratio to be
approximately 1.2–1.5 in favor of model C. We may also assume
that in case of yet lower disk masses the difference in luminosi-
ties would be even less distinct. However, the situation may be
complicated according to the line of sight of an observer. We
expect that in the case of pole-on observational direction the dif-
ference in light curve luminosities would be much smaller (if
any) while in case of equator-on (disk-on) observational direc-
tion the effects of the disk may correspond to the above estimate.
We also expect that because of the asymetry of the outflow the
resulting line profiles should depend on the direction of observa-
tion showing higher outflow velocities in the polar direction than
in the equator-on direction.

As an immediate future step we plan to modify the ini-
tial stellar profiles of the density and temperature into a more
realistic form, including the internal structure of the progeni-
tor pre-calculated from stellar evolution code. We also compare
the current 2D models calculated without gravity with the mod-
els with the stellar gravity included. However, in this point we
checked the influence of the gravitational force on the expan-
sion profiles using the 1D SNEC calculations, and there is a
remarkable impact only in the central region of the original pro-
genitor, which expands self-similarly together with the expansion
of the whole envelope. For future 2D models we will imple-
ment the equilibrium-diffusion radiation transport solver into the
code, taking into account recombination effects in the envelope
and the effects of radioactive heating. This will enable us to
perform the calculations in radiation-hydrodynamic mode with
radiation-matter coupling.

We expect that subsequent study of the SN light curves
powered by SN thermal energy excess will lead to a better under-
standing of the mass and density distribution of the CSM. It may
also provide more precise estimates of the disk mass-loss rates
and a deeper knowledge of the geometry and mechanism of the
mass loss of massive stars.
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Appendix A: Analytical solution of SN expansion

A.1. Basics of adiabatic similarity solution

Contact discontinuity separates the SN remnant and CSM and
propagates among the forward and reverse shock wave. An ana-
lytical approach requires a similarity solution (see, e.g., the
formalism in Chevalier 1982 or Nadezhin 1985) with the coef-
ficient of proportionality λ(r, t) defined as Kλ(r, t) = rt−α (where
the parameter α is different from αvis in Sect. 2 and K is the scal-
ing constant). Denoting λI = 1 the value of λ at the inner (reverse)
shock wave, λC at the contact discontinuity, and λII at the outer
forward shock wave (where obviously λin(r < rI) < λI < λC <
λII < λout(r > rII)), coupling of the densities in Eq. (17) gives

α=
n − 3
n − w. (A.1)

Substituting the equations for λ and α into Eq. (17), we intro-
duce the similarity variables U(λ),V(λ),W(λ), and C(λ), which
correspond to velocity, density, pressure, and sound speed. The
equations for u, ρ, and P are

u(r ≤ rII) = Ktα−1λU(λ),

u(r > rII) = 0, (A.2)

ρ(r ≤ rC) = AK−nt−αwV(λ),

ρ(r > rC) = BK−wt−αwV(λ), (A.3)

P(r ≤ rC) = AK2−ntα(2−w)−2λ2W(λ),

P(r > rC) = BK2−wtα(2−w)−2λ2W(λ). (A.4)

The similarity variable C(λ) is defined as C2 = γW(λ)/V(λ).
Following the relation for the coefficient λ, we may express the
velocity uC of the contact discontinuity,

uC =
drC

dt
=α

rC

t
, U(λC) =α. (A.5)

Substituting Eqs. (A.2)–(A.4) for the domain r ≤ rII into
Eqs. (10)–(13), assuming spherical symmetry, and partially
differentiating with respect to t and λ, we obtain the follow-
ing similarity relations (cf. Nadezhin 1985) for the continuity,
momentum, and energy equations, respectively,

λ (U − α)
V ′

V
+ 3U + λU′ − αw= 0, (A.6)

λ
V ′

V
+ γλU′

U − α
C2 + 2λ

C′

C
+ γU

U − 1
C2 + 2 = 0, (A.7)

λ (U − α)
[
(1 − γ)

V ′

V
+ 2

C′

C

]
+ 2(U − 1) + (γ − 1)αw= 0. (A.8)

The explicit form of Eqs. (A.6)–(A.8) for each particular
similarity variable derivative is

λU′ = − SC2 + (U − α) [3C2 − U(U − 1)]
C2 − (U − α)2 , (A.9)

λ
V ′

V
=
ηSC2 + (U − α) [(U − α) (3U − αw) − U(U − 1)]

(U − α) [C2 − (U − α)2]
,

(A.10)

λ
C′

C
= − ηSC2

2 (U − α) [C2 − (U − α)2]

+
2C2 + (γ − 1)U(U − 1) + (U − α) [2 − (3γ − 1)U]

2[C2 − (U − α)2]
, (A.11)

where we substitute the constant expressions η and S,

η=
(γ − 1)αw − 2(1 − α)
α(3γ − w) − 2(1 − α)

< 1, (A.12)

S=
α(3γ − w) − 2(1 − α)

γ
> 0. (A.13)

Multiplying Eq. (A.6) by an auxiliary constant β and sub-
tracting it from Eq. (A.8), the integration gives the implicit
adiabaticity integral (see, e.g., Sedov 1959; Nadezhin 1985)

λ2+3β|U − α|βV1+β−γC2 = Q = const., (A.14)

where the constant β is

β=
2(α − 1) + (γ − 1)αw

α(w − 3)
. (A.15)

The Rankine–Hugoniot relations (e.g., Zel’dovich & Raizer
1967) give the λ-independent similarity variables for the inner
strong shock,

UI =
2α + γ − 1
γ + 1

, VI =
γ + 1
γ − 1

, WI =
2(α − 1)2

γ + 1
, C2

I = γ
WI

VI
.

(A.16)

The similarity variables for the outer strong shock are

UII =
2α
γ + 1

, WII =
2α2

γ + 1
, C2

II = γ
WII

VII
, (A.17)

where only the variable VII has to be evaluated numerically using
the principles given in Appendix A.2.

We also express the similarity variables in the zones inside
the inner shock wave (λin < 1) and outside the outer shock
wave (λout > λII). Combining Eq. (17) with Eqs. (A.2)–(A.4) and
assuming uout, Pin, Pout = 0, we obtain

Uin = 1, Vin = λ−n
in , Cin = 0, (A.18)

Uout = 0, Vout =
γ − 1
γ + 1

(
λII

λout

)w
VII, Cout = 0. (A.19)

From Eq. (A.9) it follows that in very proximity of the con-
tact discontinuity (where U − α → 0) λU′ = − S. Integrating
the left-hand side of this relation from U(λC) to a nearby U and
the right-hand side from λC to a nearby λ, as well as integrating
analogously Eqs. (A.10) and (A.11), gives the similarity relations
close to rC in the form

U − α= − S ln
λ

λC
, V = ξ |U − α|−η , C2 = ζ |U − α|η ,

(A.20)

where ξ and ζ are arbitrary constants that differ in general
on both sides of rC. However, since u and P are continuous
(Zel’dovich & Raizer 1967) through rC (implying a constant
product VC2 in Eq. (A.20)), we may write (ξζ)i = (ξζ)o, where
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the subscript “i” denotes the zone between the inner shock wave
and the contact discontinuity while the subscript “o” denotes
the zone between the contact discontinuity and the outer shock
wave. To determine the constants ξ and ζ, Eq. (A.20) have to be
calculated numerically within the semi-analytical solution (see
Appendix A.2).

We obtain the relations for total mass MI,II and total energy
EI,II confined between the two shocks (Nadezhin 1985) by
integration of Eq. (17), with use of the formalism in this section,

MI,C =
4πA

(n − 3)Kn−3 t α(3−w), MC,II =
γ−1
γ+1

4πBK3−w

3−w VIIλ
3
II t α(3−w),

EI,II =
2πA

(n − 5)Kn−5 t(1−α)(n−5). (A.21)

This leads to the important constraint w < 3 and n > 5 for the
similarity solution, while Eq. (A.1) implies the condition α < 1.

To evaluate the constants A, B, and K, we identify the mass
Mej of the SN envelope as MI,C (which tends to be relevant
in an advanced time) and the energy Eej of the envelope as
EI,II. Integrating the first Eq. (A.3) from rI to infinity, with
use of Eq. (A.21), gives the constant A. The constant B results
from the mass conservation equation for CSM (cf. Eq. (17))
as B = Ṁsw/(4πR2−w

? 3sw), assuming the stationary pre-explosion
CSM velocity 3sw � u(r < rII). The constant K results from
Eq. (A.4) following the continuous pressure at the contact dis-
continuity rC. This also implies BK j−w ≡ A/Kn− j, where j is an
arbitrary integer.

A.2. Principles of semi-analytical solution of the similarity
equations

We basically adopt the principles of the numerical integration
of the analytically expressed solution given in Sect. 3 from
Nadezhin (1985). We first numerically integrate Eqs. (A.9)–
(A.11) with use of constant adiabaticity integral, Eq. (A.14),
in the region “i” (where rI < r < rC), until the condition 0 <
U − α � α is satisfied. The input values of the similarity vari-
ables for evaluation of the constant Q = Qi in Eq. (A.14) are given
by Eq. (A.16). We put the similarity variables U,V,C, and λ,
calculated in the previous step, to Eqs. (A.20). We thus deter-
mine ξi, ζi, and λC to complete the integration between rI and
rC. Then we integrate the region “o” (where rC < r < rII) in a
similar way by inserting an input value of λ slightly larger than
λC, until the condition 0 < U − α � α is satisfied (Eq. (A.20))
again.

We select a trial value of the constant ξo to determine the
constant ζo. The analogous initial conditions for the constant
Q = Qo in Eq. (A.14) , noting that Qo , Qi in general, are given
by Eq. (A.17). Integration continues until we reach the equal-
ity given by the second Eq. (A.4) for λ= λII. Because the value
of CII differs in this case from the value given by Eq. (A.17),
we use an algorithm that finds such a constant ζo, for which
Eq. (A.17) is satisfied with the required accuracy while the

second equation (A.4) holds as well. Once this ζo value is found,
the problem is completely resolved because in this case the val-
ues of the similarity variables VII and CII are also uniquely
determined. We study the cases with γo = γi (see explanation in
Sect. 3) and µo = µi; the possible difference between the mean
molecular weight µ of the matter expelled from the star and that
of the ambient medium has no effect on the structure of the
similarity solution (Nadezhin 1985).

A.3. Constraints of the adiabatic self-similar solution

Regarding the early stages of SN expansion, we may neglect
the energy losses due to the volume radiation (Nadezhin 1985).
However, the similarity solution is yet limited by the applica-
bility of the adiabatic gas dynamics. The first constraint results
from the condition that the length of the mean free path of the
particles must be small compared to the characteristic scale ∆r
of the expanding envelope. In other words, the width ` of the
shock front must be smaller than the characteristic scale, ` < ∆r.
Following the study of a strong shock wave front in hydrogen
plasma by Imshennik (1975; cf. also Nadezhin 1985), we adopt
the value (in SI units)

` ' 8.1× 1022

nin

(
ũin

103 km s−1

)4

m, (A.22)

where nin = ρin/mH is the number density of hydrogen atoms
before the shock wave front (mH is the mass of a hydrogen atom)
and ũin is the relative flow velocity of the expanding gas before
the corresponding shock wave (in the rest frame of the shock
wave). Taking the distance rI,C = |rI − rC| between the inner shock
wave and the contact discontinuity as the characteristic scale ∆r ,
where we do not consider the outer shock wave because it propa-
gates outside the SN gas, rII > rC, following the definition of the
coefficient λ gives

` < (λC − 1) Ktα. (A.23)

We evaluate the velocity ũin as uI − uin following the strong
shock Rankine–Hugoniot equations (e.g., Zel’dovich & Raizer
1967). Employing Eqs. (A.2) and (A.16) gives

ũin = (1 − α)
rI

t
. (A.24)

The second constraint obviously results from the finite
amount of the ejected matter Mej. The total mass in the SN
envelope must obey the inequality

MI,C < Mej, (A.25)

where MI,C is given by Eq. (A.21). The adiabatic similarity solu-
tion is thus applicable within the time interval tmin < t < tmax,
where we obtain tmin from Eq. (A.23) and tmax results from
Eq. (A.25).
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