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ABSTRACT
The All-Sky Automated Survey for Supernovae (ASAS-SN) provides long baseline (∼4 yr)
light curves for sources brighter than V � 17 mag across the whole sky. As part of our
effort to characterize the variability of all the stellar sources visible in ASAS-SN, we have
produced ∼30.1 million V-band light curves for sources in the Southern hemisphere using
the APASS DR9 (AAVSO Photometric All-Sky Survey Data Release) catalogue as our input
source list. We have systematically searched these sources for variability using a pipeline
based on random forest classifiers. We have identified ∼220 000 variables, including ∼88 300
new discoveries. In particular, we have discovered ∼48 000 red pulsating variables, ∼23 000
eclipsing binaries, ∼2200 δ-Scuti variables, and ∼10 200 rotational variables. The light curves
and characteristics of the variables are all available through the ASAS-SN variable stars data
base (https://asas-sn.osu.edu/variables). The pre-computed ASAS-SN V-band light curves
for all the ∼30.1 million sources are available through the ASAS-SN photometry data base
(https://asas-sn.osu.edu/photometry). This effort will be extended to provide ASAS-SN light
curves for sources in the Northern hemisphere and for V � 17 mag sources across the whole
sky that are not included in APASS DR9.
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1 IN T RO D U C T I O N

Recent large-scale sky surveys such as the All-Sky Automated
Survey (ASAS; Pojmanski 2002), the Optical Gravitational Lensing
Experiment (OGLE; Udalski 2003), the Northern Sky Variability
Survey (Woźniak et al. 2004), MACHO (Alcock et al. 1997),
EROS (Derue et al. 2002), the Catalina Real-Time Transient Survey
(CRTS; Drake et al. 2014), the Asteroid Terrestrial-impact Last

� E-mail: jayasinghearachchilage.1@osu.edu

Alert System (ATLAS; Tonry et al. 2018a; Heinze et al. 2018),
and Gaia (Gaia Collaboration et al. 2018a,b; Holl et al. 2018)
have revolutionized the study of stellar variability. Over time, these
surveys have collectively discovered �106 variable stars across the
whole sky.

Variable stars have been used to study astrophysics in multiple
contexts. Pulsating variables, including Cepheids, RR Lyrae stars,
and Mira variables are used as distance indicators as they follow
distinct period–luminosity relationships (PLR, e.g. Leavitt 1908;
Matsunaga et al. 2006; Beaton et al. 2018; Whitelock, Feast &
Van Leeuwen 2008, and references therein). Eclipsing binary stars
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14 T. Jayasinghe et al.

are used to study stellar systems and with sufficient radial velocity
followup, allow for the derivation of dynamical information and
fundamental stellar parameters, including masses and radii of
the stars in these systems (Torres, Andersen & Giménez 2010).
The precise measurements afforded by studying eclipsing binaries
allow for the test of stellar theory across the Hertzsprung–Russell
diagram. Variable stars are also used to study stellar populations and
Galactic structure (Mateu & Vivas 2018; Matsunaga 2018; Feast &
Whitelock 2014).

The All-Sky Automated Survey for SuperNovae (ASAS-SN,
Shappee et al. 2014; Kochanek et al. 2017) monitored the visible
sky to a depth of V � 17 mag with a cadence of 2–3 d using two
units in Chile and Hawaii each with four telescopes. ASAS-SN has
recently expanded to 5 units with 20 telescopes. All the current
ASAS-SN units are equipped with g-band filters and are currently
monitoring the sky to a depth of g � 18.5 mag with a cadence of
∼1 d. The ASAS-SN telescopes are hosted by the Las Cumbres
Observatory (LCO; Brown et al. 2013) in Hawaii, Chile, Texas, and
South Africa. The primary focus of ASAS-SN is the detection of
bright supernovae and other transients (e.g. tidal disruption events,
cataclysmic variables, AGN flares, stellar flares, etc.) with minimal
bias (e.g. Holoien et al. 2014, 2016, 2017, 2018a,b), but its excellent
baseline and all-sky coverage allows for the characterization of
stellar variability across the whole sky.

In Paper I (Jayasinghe et al. 2018a), we discovered ∼66 000 new
variables that were flagged during the search for supernovae, most of
which are located in regions that were not well sampled by previous
surveys. In Paper II (Jayasinghe et al. 2019a), we homogeneously
analysed ∼412 000 known variables from the International Variable
Stars Index (VSX, Watson, Henden & Price 2006), and developed
a versatile random forest (RF) variability classifier utilizing the
ASAS-SN V-band light curves and data from external catalogues.
As data from the Transiting Exoplanet Survey Satellite (TESS;
Ricker et al. 2015) became available, we have explored the synergy
between the two surveys. The ASAS-SN light curves have long time
baselines (�4 yr) and are sampled at a cadence of ∼1–3 d. Thus,
these light curves complement the high cadence TESS light curves
that have a shorter baseline. In Paper III (Jayasinghe et al. 2019b),
we characterized the variability of ∼1.3 million sources within
18◦ of the Southern Ecliptic Pole towards the TESS continuous
viewing zone and identified ∼11 700 variables, including ∼7000
new discoveries. We also identified the most extreme heartbeat
star system thus known, and characterized the system using both
ASAS-SN and TESS light curves (Jayasinghe et al. 2018d). We
have also explored the synergy between ASAS-SN and large scale
spectroscopic surveys using data from APOGEE (Holtzman et al.
2015) with the discovery of the first likely non-interacting binary
composed of a black hole with a field red giant (Thompson et al.
2018) and the identification of 1924 APOGEE stars as periodic
variables in Paper IV (Pawlak et al. 2019). During our search for
variables, we have also identified numerous unusual, rare variables,
including 2 very long period detached eclipsing binaries (Jayasinghe
et al. 2018b,c) and 19 R Coronae Borealis stars (Shields et al.
2018).

Here, we extracted the ASAS-SN light curves of ∼30.1 million
sources from the AAVSO Photometric All-Sky Survey (APASS;
Henden et al. 2015) DR9 catalogue with V < 17 mag in the
Southern hemisphere (δ < 0◦). In this work, we systematically
search this sample for variable sources. In Section 2, we discuss
the input catalogue and the data reduction procedures used to
obtain the ASAS-SN light curves. Section 3 discusses the RF-
based variability identification and classification procedures. In

Section 4, we discuss the ASAS-SN catalogue of variable stars
in the Southern hemisphere and present a summary of our work in
Section 5.

2 O B S E RVAT I O N S A N D DATA R E D U C T I O N

We started with the APASS DR9 catalogue as our input source
catalogue. We chose the APASS catalogue because the APASS
survey had a faint completeness limit (V � 16) comparable to
the ASAS-SN observations. We selected all the APASS sources
with V < 17 mag in the Southern hemisphere (δ < 0◦), ex-
cluding the ∼1.3M sources towards the Southern Ecliptic Pole
which were analysed in Paper III. This resulted in a list of
∼30.1M sources. Fig. 1 illustrates the spatial distribution of these
sources.

The ASAS-SN V-band observations used in this work were made
by the ‘Brutus’ (Haleakala, Hawaii) and ‘Cassius’ (CTIO, Chile)
quadruple telescopes between 2013 and 2018. Each ASAS-SN V-
band field is observed to a depth of V � 17 mag. The field of view
of an ASAS-SN camera is 4.5 deg2, the pixel scale is 8.0 arcsec and
the FWHM (full width at half-maximum) is typically ∼2 pixels.
ASAS-SN tends to saturate at ∼10–11 mag, but we attempt to
correct the light curves of saturated sources for bleed trails (see
Kochanek et al. 2017). The V-band light curves were extracted
as described in Jayasinghe et al. (2018a) using image subtraction
(Alard & Lupton 1998; Alard 2000) and aperture photometry on
the subtracted images with a 2 pixel radius aperture. The APASS
catalogue was also used for calibration. We corrected the zero-point
offsets between the different cameras as described in Jayasinghe
et al. (2018a). The photometric errors were recalculated as described
in Jayasinghe et al. (2019b).

While we decided to use the APASS DR9 catalogue as our
input source list due to its all-sky coverage, this catalogue has
several shortcomings (Henden et al. 2015; Marrese et al. 2019).
While the APASS DR9 sky coverage is nearly complete, there are
regions towards the Galactic plane that are missing (see Fig. 1). In
addition, the DR9 catalogue includes a number of duplicate entries,
which appear to be caused by the merging process, where poor
astrometry in a given field may cause two centroids to be included
for a single source. Centroiding in crowded fields is also poor and
blends cause both photometric and astrometric errors. The APASS
DR9 catalogue does not provide unique identifiers, thus we used
the VizieR (Oelkers et al. 2018) recno field as unique identifiers.
To address the issue of incomplete sky coverage we will use the
ATLAS All-Sky Stellar Reference Catalog (Tonry et al. 2018b) in
the next paper to produce light curves for the missing sources in
APASS DR9.

3 VARI ABI LI TY ANALYSI S

Here, we describe the procedure we used to identify and characterize
variables in the source list. We describe how we cross-matched the
APASS sources to external catalogues in Section 3.1. In Section 3.2,
we describe the procedure we took to identify candidate variable
sources using an RF classifier. In Section 3.3, we discuss the
classification of the candidate variables into the various standard
classes of variable stars using the V2 RF classifier model from
Jayasinghe et al. (2019a), in Section 3.4, we discuss our attempts
to mitigate the effects of blending on the list of candidate variables
and in Section 3.5, we discuss the quality checks that we used to
improve the final variables catalogue.
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ASAS-SN catalogue of variable stars – V 15

Figure 1. Sky density plot of the ∼30.1M APASS DR9 sources analysed in this work. Sources in the gap centred at the Southern Ecliptic Pole (α = 6 h, δ =
−66.55◦) were analysed in Jayasinghe et al. (2019b). The gaps near (α = 18 h, δ = −30◦) are in the input APASS DR9 catalogue.

Table 1. Variability features and their importances for variable star identification.

Feature Description Importance Reference
(per cent)

LS Per Best Lomb–Scargle period 1 –
LS Pow Power corresponding to the best Lomb–Scargle period 24 –
log(LS FAP) Base 10 logarithm of the FAP corresponding to the best Lomb–Scargle period 11 –
T(t) Lafler–Kinman string length statistic of the light curve sorted by time 4 Jayasinghe et al. (2019a)
T(φ|P) Lafler–Kinman string length statistic of the light curve sorted by phase 18 Jayasinghe et al. (2019a)
δ Normalized difference between T(t) and T(φ|P) 5 Jayasinghe et al. (2019b)
Skew Skewness of the magnitude distribution 2 –
Kurt Kurtosis of the magnitude distribution 2 –
Median Median of the magnitude distribution 1 –
σ Standard deviation of the light curve 2 –
IQR Difference between the 75th and 25th percentiles in magnitude 2 –
AHL Ratio of magnitudes brighter or fainter than the average 2 Kim & Bailer-Jones (2016)
MAD Median absolute deviation of the light curve 2 –
1/η Inverse of the η (Von Neumann index) value for the light curve 3 Von Neumann et al. (1941)
J − Ks 2MASS J − Ks colour 12 Skrutskie et al. (2006)
H − Ks 2MASS H − Ks colour 9 Skrutskie et al. (2006)

Table 2. Overall performance of the ASAS-SN RF source classifier.

Class Precision (%) Recall (%) F1 score (%) Sources

CONST 99 99 99 600 000
VAR 98 98 98 302 021

3.1 Cross-matches to external catalogues

We cross-match the APASS DR9 sources with Gaia DR2 (Gaia
Collaboration et al. 2018a) using a matching radius of 5.0 arcsec.
The sources were also cross-matched to the Gaia DR2 probabilistic
distance estimates from Bailer-Jones et al. (2018). Even though we
used a liberal matching radius, ∼84 per cent (∼94 per cent) of the
sources have a cross-match in Gaia DR2 within 2.0 (3.0) arcsec.

These sources were also cross-matched with the Two Micron All
Sky Survey (2MASS, Skrutskie et al. 2006) and AllWISE (Cutri
et al. 2013; Wright et al. 2010) catalogues using a matching radius
of 10.0 arcsec. The cross-matches to these catalogues provide useful
information that are later used in the identification and classification
of variable stars. We used TOPCAT (Taylor 2005) to cross-match the
APASS sources with these external catalogues.

Sources in the Small Magellanic Cloud (SMC) are also included
in our input source list. We used association information from
Gaia DR2 (Gaia Collaboration et al. 2018c) to identify ∼1600
sources from our source list that are SMC members. For sources
in the SMC, we use a distance of d = 62.1 kpc (Graczyk
et al. 2014) in our variability classifier instead of the distance
estimate from Bailer-Jones et al. (2018). The LMC was covered in
Paper III.
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16 T. Jayasinghe et al.

Figure 2. The normalized confusion matrix derived from the final version of
the trained RF classifier. The y-axis corresponds to the ‘input’ classification,
while the x-axis is the ‘output’ prediction obtained from the trained RF
model.

3.2 Random forest variable identification

In Paper III, we used several methods, including linear cuts on
Lomb–Scargle periodogram statistics, light-curve features, and
external photometry to identify variable sources. Here, we take
a different approach by training and apply an RF classifier to
distinguish candidate variables from constant sources. We built a
variability classifier based on an RF model using scikit-learn
(Pedregosa et al. 2012; Breiman 2001). An RF classifier is an
ensemble of decision trees whose output is the mean prediction
of the individual decision trees (Breiman 2001). The set of variable
sources used to train this classifier consisted of ∼302 000 variables
from Papers II and III with definite classifications. Variables with
uncertain classifications, including ‘VAR’ and ‘ROT:’, were not
included in this list as they reduced the accuracy of the final RF
classification model. The set of constant sources in the training list
consisted of ∼600 000 sources randomly selected from the list of
constant sources in Paper III.

The goal was to provide classifications into two broad groups:
CONST (constant stars) and VAR (potential variables). The poten-
tial variables will be analysed in further detail so it is more important
not to lose real variables than to accidentally include non-variables.
These broad classes were selected to reduce the complexity of
the classifier, and to provide an accurate initial separation prior
to reclassifying the variable sources with the RF variable type
classifier from Paper II. To generate periodicity statistics, we used
the ASTROPY implementation of the Generalized Lomb–Scargle
(GLS, Zechmeister & Kürster 2009; Scargle 1982) periodogram
to search for periodicity over the range 0.05 ≤ P ≤ 1000 d in
all ∼30.1M light curves. The GLS periodogram is an extension
of the standard Lomb–Scargle periodogram that uses a frequency-
dependent light-curve mean,

ymodel(t ; f ) = y0(f ) + Afsin
(
2f (t − φf )

)
,

(equation 41 from VanderPlas 2018). This floating-mean model is
more robust if there are gaps in the phased data than the standard
Lomb–Scargle periodogram (VanderPlas 2018). We utilize the best

GLS period, false alarm probability (FAP) and the power of the best
GLS period as features. The best GLS period is defined to be the
period with the largest power which is essentially a measure of the
signal-to-noise ratio (S/N) of the periodogram peak. The FAP is the
probability that a light curve with no signal would lead to a GLS
peak of a similar magnitude (VanderPlas 2018).

We further characterize the periodicity of the light curves using
the Lafler–Kinmann string length statistic (Lafler & Kinman 1965;
Clarke 2002). We use the definition

T (φ|P ) =
∑N

i=1(mi+1 − mi)2∑N
i=1(mi − m)2

× (N − 1)

2N
(1)

from Clarke (2002), where the mi are the magnitudes sorted by
phase and m is the mean magnitude. We also calculate the statistic
T(t) after sorting the light curve by time instead of phase. The
complete list of 16 features and their importances to the trained RF
model is summarized in Table 1. Feature importances are calculated
as Gini importances using the mean decrease impurity algorithm
(Pedregosa et al. 2012).

The overall results of the RF model are evaluated based on the

precision = α

α + β
, (2)

recall = α

α + γ
, (3)

and the harmonic mean of the two,

F1 = 2

(
precision × recall

precision + recall

)
, (4)

where α, β, and γ are the number of true positives, false positives,
and false negatives in a given class, respectively. These quantities
are evaluated for both the constant (CONST) and variable (VAR)
sources (Table 2).

The parameters of the RF model were optimized using cross-
validation to maximize the overall F1 score of the classifier.
The number of decision trees in the forest was initialized to
n estimators = 1000. We also limited the maximum depth
of the decision trees to max depth = 16 in order to mitigate
overfitting, set the number of samples needed to split a node
as min samples split = 10 and set the number of sam-
ples at a leaf node as min samples leaf = 5. To further
minimize overfitting, we also assigned weights to each class
with class weight = ‘balanced subsample’. For any
given source, the RF classifier assigns classification probabilities
Prob(Const) and Prob(Var) = 1 − Prob(Const). The output classi-
fication of the RF classifier is the class with the highest probability.
We split the training sample for training (80 per cent) and testing
(20 per cent) in order to evaluate the performance of the RF
classifier. The confusion matrix for the trained RF model is shown
in Fig. 2. The greatest confusion (2 per cent) arises from input
variable sources that are subsequently classified as constant stars.
The performance of the classifier is summarized in Table 2. The
overall F1 score for the classifier is 98.5 per cent.

We further investigate the performance variation of the RF
classifier with magnitude by binning the test sample by the median
V-band magnitude (Table 3). The F1 score for the classifier is lowest
(92.9 per cent) for sources with V ≤ 11 mag where 15 per cent of the
input constant sources are incorrectly classified as variable sources.
This is likely due to saturation artifacts that arise at these bright
magnitudes. The F1 score varies by < 1 per cent between 11 < V ≤
17 mag and the confusion between constant and variables sources is
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ASAS-SN catalogue of variable stars – V 17

Table 3. Performance of the ASAS-SN RF source classifier with magnitude.

Median magnitude F1 score (%) Constant star false positive rate (%) Variable star false positive rate (%) Sources (%)

V ≤ 11 mag 92.9 15 2 3.1
11 < V ≤ 13 mag 98.5 1 2 11.5
13 < V ≤ 15 mag 98.9 1 1 37.5
15 < V ≤ 17 mag 98.4 1 3 47.3
V ≥ 17 mag 95.5 5 4 0.8

Figure 3. Distribution of the sources classified as CONST and VAR in the LS Pow, T(φ|P), J − Ks, and log(LS FAP) features. Sources with log(LS FAP)<−10
are not shown for clarity.

also minimal. Most of the sources (96.3 per cent) in the test sample
have median magnitudes that fall within this range. For sources
at the ASAS-SN V-band faint limit of V ≥ 17 mag, the F1 score
drops to 95.5 per cent and the confusion between classes again rises.
This is not surprising as at these magnitudes the light curves are
dominated by noise.

We applied the trained RF classifier to the entire sample of
∼30.1M sources and identified 3 553 235 candidate variables.
The distinction between the constant sources and the candidate
variables is illustrated in Fig. 3 through the distributions of the
four features with the largest importance: LS Pow, T(φ|P), J − Ks

and log(LS FAP). We find that many candidate variable sources are
strongly periodic with high values of LS Pow and smaller values of
log(LS FAP) and T(φ|P). In addition, the distribution of the 2MASS
colour J − Ks differs significantly between constant and variable
sources. Variable sources are skewed towards redder near-infrared
(NIR) colours with J − Ks > 1 mag while constant sources largely
peak around J − Ks ∼ 0.5 mag. Cooler, evolved stars are more
likely to be variable, so this is not unexpected. Nevertheless, the

distributions of constant and variable sources overlap significantly
in the feature spaces illustrated in Fig. 3. It is crucial to note that
while we illustrated these distributions linearly, the RF classifier is
inherently non-linear and relies on a complex ensemble of decision
trees to predict the class of any given source. In this sense, even the
features with the least importance do matter for the overall success
of the classifications.

3.3 Variability classification

Once candidate variables are identified, we aimed at classifying
these sources into the various standard classes of variable stars.
We use the variability classifier implemented in Jayasinghe et al.
(2019a), which consists of an RF classifier plus several refinement
steps. Given the large number of candidates, we changed our
variability classification strategy as follows.

(i) Initially, we classified all the candidate variables using just
the GLS periods derived in Section 3.2.
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18 T. Jayasinghe et al.

Table 4. Summary of the variability refinement criteria for each variable class.

Class Summarized refinement criteria

δ Scuti (HADS, DSCT) Skew < 0.15, LS Pow>0.25, log(LS FAP)<−7, A < 0.5 mag, T(φ|P) < 0.5, −1 < WJK < 3 mag

RR Lyrae (RRAB, RRC, RRD) RRAB and log(LS FAP)<−10, LS Pow>0.2, A > 0.08 mag, T(φ|P) < 0.6, Skew < 0.15, δ < −0.25
RRC/RRD and log(LS FAP)<−10, LS Pow>0.2, A > 0.08 mag, T(φ|P) < 0.6, Skew < 0, δ < −0.25

Cepheids (DCEP, DCEPS, CWA, Skew < 1, log(LS FAP)<−10, LS Pow>0.3, A < 2 mag, T(φ|P) < 0.6, δ < −0.25
CWB, RVA)

Rotational variables (ROT Period>0.6 d and log(LS FAP)<−5, LS Pow>0.2, A > 0.08 mag, T(φ|P) < 0.6, δ < 0
Period≤0.6 d and WJK > 2.5 mag, Prob > 0.9

Eclipsing binaries (EA, EB, EW) EA (GLS) and α < 100, T(φ|P) < 0.6, A > 0.08 mag
EB (GLS) and log(LS FAP)<−7, LS Pow>0.2, A > 0.08 mag, T(φ|P) < 0.6
EW (GLS) and log(LS FAP)<−7, LS Pow>0.2, A > 0.08 mag, T(φ|P) < 0.6, Skew > 0

EA (BLS) and α < 100, T(φ|P) < 0.45, Prob > 0.8

Semiregular and irregular variables (SR, L) α < 5, Vmean > 11 mag, A > 0.08 mag
Period>100 d and log(LS FAP)<−3, J − Ks > 1.1, A > 0.1 mag, T(t) < 0.7
10 ≤Period≤100 d and log(LS FAP)<−8, A > 0.08 mag

Mira variables (M, M:) log(LS FAP)<−3, LS Pow>0.5 , T(φ|P) < 0.5

YSO Period<100 d and α < 5, log(LS FAP)<−10, LS Pow>0.25, T(φ|P) < 0.6

Outbursting Be stars (GCAS, GCAS:) α < 5, Vmean > 11 mag, J − Ks < 1.1, 0.25 < A < 1 mag, T(t) < 0.5

Generic variables (VAR) α < 5, 0.1 < A < 2 mag, WJK > −4 mag, Vmean > 11 mag, T(φ|P) < 0.5 OR T(t) < 0.5

Table 5. Variables by type.

VSX Type Description Known New

CWA W Virginis type variables with P > 8 d 205 51
CWB W Virginis type variables with P < 8 d 225 45
DCEP Fundamental mode Classical Cepheids 645 16
DCEPS First overtone Cepheids 171 9
DSCT δ Scuti variables 744 1354
EA Detached Algol-type binaries 11413 9948
EB β Lyrae-type binaries 8574 4115
EW W Ursae Majoris type binaries 27926 8887
HADS High-amplitude δ Scuti variables 1338 849
M Mira variables 3472 38
ROT Rotational variables 7200 10236
RRAB RR Lyrae variables (Type ab) 12936 294
RRC First overtone RR Lyrae variables 2655 1015
RRD Double-mode RR Lyrae variables 233 12
RVA RV Tauri variables (Subtype A) 32 0
SR Semiregular variables 44198 45556

L Irregular variables 4979 2528
GCAS γ Cassiopeiae variables 20 8
YSO Young stellar objects 1949 980

GCAS: Uncertain γ Cassiopeiae variables 20 6
VAR Generic variables 2789 2343

(ii) Following this, we derive periods for a limited set of sources
(see below) using the astrobase implementation (Bhatti et al.
2018) of the Box Least Squares (BLS, Kovács, Zucker & Mazeh
2002) periodogram to improve the completeness for eclipsing
binaries whose periodicity cannot be easily identified with GLS.

We also run the variability classifier twice, once using the best
period (GLS or BLS) and once using twice the best period. The
final classification is the one which yields the greatest classification
probability. This step greatly improves the separation of EW type

eclipsing binaries from RRC variables, and also improves upon the
efficiency of the automated period doubling algorithm that was used
for eclipsing binaries in Paper II.

To identify possible eclipsing binaries, we selected ∼576 000
candidate variables with AHL > 2 (Table 1) from our original list.
AHL is the ratio of magnitudes brighter or fainter than the average
magnitude (Kim & Bailer-Jones 2016). Since eclipses usually only
span limited phase ranges, AHL tends to be higher for the light
curves of eclipsing binaries compared to other variable types. We
searched for periods over the range 0.05 ≤ P ≤ 1000 d and the BLS
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ASAS-SN catalogue of variable stars – V 19

Figure 4. The Wesenheit WRP versus GBP − GRP CMD for the variables with Prob > 0.9, that have already been discovered (left), and the new discoveries
(right).

Figure 5. The Wesenheit WRP versus GBP − GRP CMD for the newly discovered variables with Prob < 0.9 (left), and Prob > 0.9 (right).
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20 T. Jayasinghe et al.

Figure 6. The Wesenheit WRP versus GBP − GRP CMD for the periodic variables with Prob > 0.9, that have already been discovered (left), and the new
discoveries (right). The points are coloured by the period.

Figure 7. The Wesenheit WJK PLR diagram for the periodic variables with Prob > 0.9, that have already been discovered (left), and the new discoveries
(right).

periodogram was initialized with 200 phase bins and a minimum
(maximum) transit duration of 0.1 (0.3) in phase. BLS periods were
only selected if the BLS power was <0.3. We identified ∼3500
eclipsing binaries through this process.

3.4 Blending corrections

Blending towards crowded regions (e.g. the Galactic disc) is
problematic owing to the large pixel scale (8.0 arcsec) and the
FWHM (∼16.0 arcsec) of the ASAS-SN images. The APASS data
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ASAS-SN catalogue of variable stars – V 21

Figure 8. Period–amplitude plot for the for the periodic variables with Prob > 0.9, that have already been discovered (left), and the new discoveries (right).
Reference amplitudes of 1 and 2 mag are shown in red and blue, respectively.

Figure 9. The period versus W1 − W2 colour diagram for the variables with Prob > 0.9, that have already been discovered (left), and the new discoveries
(right).
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22 T. Jayasinghe et al.

Figure 10. The Gaia DR2 BP/RP variability ratio β against 1/phot rp mean flux over error.

have a significantly smaller pixel scale (2.6 arcsec), so we can
have multiple APASS sources inside a single ASAS-SN resolution
element. To minimize the number of false positives in our catalogue
of variables due to blending, we identify and correct blended
variable groups in our catalogue. However, we have not attempted to
correct for the contaminating light in the photometry of the blended
sources.

We find that ∼1.1M of the ∼3.6M candidate variables had at
least one neighbour within 30.0 arcsec from their positions. For
these sources, we compute the flux variability amplitudes using
a non-parametric RF regression model (Jayasinghe et al. 2019a).
We then identify groups of blended variables based on the cross-
matching. For each blended variable group, we select the source
with the largest flux variability as the ‘true’ variable, and discard
the remaining overlapping sources in the blended group from the
final list. After removing these overlapping, blended sources from
the list of candidate variables, we were left with ∼3M sources.

3.5 Quality checks

At this stage, visual review of a random set of light curves
suggested that quality checks must be implemented to distinguish
true variability signals from variability due to bad photometry, and
other survey specific issues (e.g. shutter failures, etc.). In Paper III,
given the significantly shorter list of candidate variables, this was
accomplished through simple visual review of the light curves. In
this work, given the shear number of sources, visual review is not
a feasible option. Thus, we choose to implement various criteria
in lieu of visual review, to distinguish the true variables from the
‘noise’.

We first restrict the list to sources with Vmean > 10 mag, A > 0.05
mag, and T (t) < 0.9. We implemented the cut in the ASAS-SN

V-band magnitude to minimize noise due to saturation artefacts.
We also calculate the ratio between the amplitude estimated by RF
regression (A) to the interquartile range IQR (Table 1) of the light
curve,

α = A/IQR , (5)

and the absolute, reddening-free Wesenheit magnitudes (Madore
1982; Lebzelter et al. 2018)

WRP = MGRP − 1.3(GBP − GRP) , (6)

and

WJK = MKs − 0.686(J − Ks) , (7)

for each source, where the GBP and GRP magnitudes are from Gaia
DR2 (Gaia Collaboration et al. 2018a) and the J and Ks magnitudes
are from 2MASS (Skrutskie et al. 2006). The Wesenheit magnitudes
are used in the pipeline from Paper II to refine variable type
classifications. The quantity α can be used to identify light curves
with significant outliers as we expect α ≈ 2 for most sources.

The criteria used in lieu of visual review are summarized in
Table 4. We note that these criteria are applied in addition to the
refinement criteria in Paper II. These are not replacements but
additional quality checks intended to improve the purity of our
catalogue. We derived these criteria through visual inspection in
order to minimize false positives in the different variable groups. In
addition to the criteria summarized in Table 4, we further scrutinize
sources with periods that are close to aliases of a sidereal day
(e.g. P ≈ 1, 2, 30 d, etc.). This is accomplished by tightening
the criteria on T(φ|P), log(LS FAP), LS Pow, and δ. This process
slightly reduces the completeness of our catalogue at these periods,
but greatly reduces the number of false positives. In addition, we
removed QSO contaminants in this list by cross-matching our list of
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ASAS-SN catalogue of variable stars – V 23

Figure 11. Phased light curves for examples of the newly discovered periodic variables. The light curves are scaled by their minimum and maximum V-band
magnitudes. Different coloured points correspond to data from the different ASAS-SN cameras. The different variability types are defined in Table 5.

variables to the Liao et al. (2019) catalogue of known QSOs using
a matching radius of 5.0 arcsec. We identified 336 cross-matches,
out of which 325 were classified as young stellar objects (YSO)
variables in our pipeline. At this point, we had ∼247 200 sources
nominally classified as variable stars.

We inspected 5000 randomly selected sources classified as non-
variable and the same number classified as variable. This was partly
just a sanity check but also driven by the concern that the large size of
our initial list (∼10 per cent of the sources) suggested that our false
positive rates had to be higher than suggested by Table 2. Among
the non-variable sources, we identified only 3 (∼ 0.06 per cent)
that might be low level variables, which suggests that we are
missing few variables that can be detected in this data. For the
variable stars, we found significant numbers of false positives in the
following variable classes: GCAS (∼50 per cent), L (∼25 per cent),
VAR (∼45 per cent), and YSO (∼13 per cent). The implied false
positive rate for the variable sources was ∼5.9 per cent at this
point.

Light curves that are contaminated by systematics tend to be
classified as irregular or generic variables as they are inherently
aperiodic in nature. Thus, we decided to review all ∼32 800 sources

that were classified as L, VAR, GCAS, or YSO to improve the purity
of our catalogue. Initial results suggested that L variables with T(t) >

0.65 were dominated by noise, so we rejected ∼14 300 such sources
without further visual review. We visually reviewed the remaining
∼18 500 sources, and rejected ∼12 600 sources (∼68 per cent)
and only retained ∼5900 of these sources in the final catalogue.
When we carried out a new inspection of 5000 randomly selected
variables, the false positive rates were now EA (∼1.4 per cent),
L (∼0.6 per cent), SR (∼2.6 per cent), and VAR (∼0.9 per cent).
This implies an overall false positive rate for the final catalogue of
variable sources of ∼ 1.3 per cent.

After these criteria are applied, we end up with a list of ∼220 000
variables. This means that our initial candidate list had a false
positive rate of ∼93 per cent. The larger than expected false positive
rate is partly due to a biased training set in the source classifier.
The training set of constant sources was derived from a region
of the sky away from the Galactic plane. The increased crowding
and blending towards the Galactic plane will systematically affect
constant stars at low latitudes and introduce spurious variability
signals into their light curves. Our classifier will identify these
constant sources as candidate variables. In addition to this, sources
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24 T. Jayasinghe et al.

Figure 12. Light curves for examples of the newly discovered irregular variables. The format is the same as for Fig. 11.

in the vicinity of bright, saturated stars in our data are likely to have
spurious variability signals in their image subtraction light curves
due to the corrections made for bleed trails (see Kochanek et al.
2017). This effect is again exacerbated towards the Galactic plane.

4 R ESULTS

The complete catalogue of ∼220 000 variables and their light curves
are available at the ASAS-SN Variable Stars Database (https://asas-
sn.osu.edu/variables) along with the V-band light curves for each
source. Most of the known variables identified in this work were
already added to the variable stars data base in Paper II. We
have overhauled the web interface for the ASAS-SN Variable
Stars Database to include interactive light-curve plotting and pho-
tometry from Gaia DR2, APASS DR9, 2MASS, and ALLWISE.
Table 5 lists the number of sources of each variability type in the
catalogue.

In order to identify known variable stars, we matched our list
of variables to the VSX (Watson et al. 2006) catalogue, with a
matching radius of 16.0 arcsec. The variables discovered by the
ASAS (Pojmanski 2002) and the CRTS (Drake et al. 2014) have
already been incorporated into the VSX data base. Numerous other

studies (e.g. Mateu et al. 2012; Fernández-Trincado et al. 2015,
and references therein) have also searched for variable stars on a
smaller scale (e.g. globular clusters). While some of these results
have been included in the VSX catalogue, we note that the inclusion
of these studies in the VSX catalogue is likely to be incomplete.
We also match our variables to the catalogue of variable stars
discovered by ASAS-SN (Jayasinghe et al. 2018a), the catalogues
of variable stars in the Magellanic clouds and the Galactic bulge
from the OGLE (Udalski 2003; Pawlak et al. 2016; Soszyński et al.
2016; Udalski et al. 2018, and references therein), the catalogue of
variables from the ATLAS (Tonry et al. 2018a; Heinze et al. 2018),
the Gaia DR2 catalogue of variables (Gaia Collaboration et al.
2018a,b; Holl et al. 2018), the catalogue of variables identified
by KELT (Oelkers et al. 2018), the catalogue of WISE variables
(Chen et al. 2018), and the variables from MACHO (Alcock et al.
1997). Of the ∼220 000 variables identified in this work, ∼131 900
were previously discovered by other surveys, and ∼88 300 are new
discoveries, as also listed in Table 5.

It is evident that previous surveys, including our discoveries from
Paper I, successfully discovered sources that have large amplitudes
or are strongly periodic. Most (∼54 per cent) of our new discoveries
are red, pulsating variables. We also discover a large number of
binaries and rotational variables, amounting to ∼26 per cent and
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Figure 13. Spatial distribution of the ∼ 88 300 newly discovered variables in equatorial coordinates. Sources in the gap centred at the Southern Ecliptic Pole
(α = 6 h, δ = −66.55◦) were analysed in Jayasinghe et al. (2019b). The other gaps are in the APASS catalogue.

∼12 per cent of the newly discovered variable sources, respectively.
It is also noteworthy that we discover many more δ Scuti sources
than previously known. These variables are particularly interesting
as they pulsate at high frequencies (P < 0.3 d) and are located
towards the lower end of the instability strip (Breger 1979). δ Scuti
variables are also known to follow a PLR (Lopez de Coca et al.
1990).

The Wesenheit WRP versus GBP − GRP colour–magnitude di-
agram (CMD) for all the variables with excellent variable type
classification probabilities (Prob > 0.9) is shown in Fig. 4. Generic
and uncertain variable types are not shown. We have sorted the
variables into groups to highlight the different classes of variable
sources. A similar Wesenheit WRP versus GBP − GRP CMD for all

the newly discovered variables, separated by probability, is shown in
Fig. 5. The sharp cut-offs seen in the sample of semiregular variables
with Prob < 0.9 are inherited from the variable type refinements
from Paper II. Most variables with Prob < 0.9 are located in similar
areas of the CMD as the variables with Prob > 0.9. However, we
note two interesting clusters of these low-probability variables at
(GBP − GRP, WRP) ∼ (2.5, −4.5) and (0.75, 1.8) corresponding to
semiregular and rotational variables respectively. We plan to further
investigate these clusters after the variable sources in the Northern
hemisphere have been incorporated into our catalogue.

The Wesenheit WRP versus GBP − GRP CMD for all the variables
with Prob > 0.9 and the points coloured according to the period is
shown in Fig. 6. This essentially highlights the large dynamic range
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26 T. Jayasinghe et al.

Figure 14. Spatial distribution of the ∼ 131 900 known variables in equatorial coordinates. Sources in the gap centred at the Southern Ecliptic Pole (α = 6 h,
δ = −66.55◦) were analysed in Jayasinghe et al. (2019b). The other gaps are in the APASS catalogue.

in period probed by the ASAS-SN light curves. Owing to the ASAS-
SN survey cadence and our long time baseline, we are able to probe
both short-period variability (P < 0.1 d) and long-period variability
(P > 1000 d). The ASAS-SN survey continues to monitor the sky
in the g-band, which lends itself well to the analysis of long-term
trends and unusual variability. As a testament to this, Jayasinghe
et al. (2019c) noted a sudden dimming episode (flux reduction
of ∼70 per cent in the g band) in an APASS source (ASASSN-V
J213939.3 − 702817.4) that was non-variable for ∼1800 d. This
source was classified as a constant source in this work.

The combined Wesenheit WJK PLR diagram for the periodic
variables with Prob > 0.9 is shown in Fig. 7. The PLR sequences for
the Cepheids are well defined (Soszynski et al. 2005). Sharp PLR

sequences can also be seen for Delta Scuti variables and contact
binaries. The Mira variables also form a distinct PLR sequence
beyond P > 100 d. The slight deficits of variables at the aliases of a
sidereal day (e.g. P ≈ 1, 2, 30 d, etc.) are due to the quality checks
implemented in Section 3.5.

The period–amplitude plot for the periodic variables with Prob >

0.9 is shown in Fig. 8. The high prior completeness of the Mira, RR
Lyrae, and Cepheid variables is evident. We do not discover many
of these variables in this work. The large majority (∼98.7 per cent)
of the new discoveries are of different variable types with smaller
variability amplitudes and/or weak periodicity.

We also examine the period–colour relationship of the variables
in the ALLWISE (Cutri et al. 2013; Wright et al. 2010) W1 − W2
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colour space in Fig. 9. Most variables have W1 − W2 ∼0, but the
NIR excess increases with increasing period for the long-period
variables. This is even more dramatic for the Mira variables. Dust
formation is commonly traced through IR excesses. Our findings
agree with McDonald et al. (2018), for example, that strong mass
loss and increased dust formation first occurs for pulsation periods
of P � 60 d for Galactic stars.

As an external check of our classifications, we used data from
our cross-match to Gaia DR2 (Gaia Collaboration et al. 2018a) to
produce Fig. 10. We define a ‘variability’ colour β,

β = phot bp mean flux error/phot rp mean flux error , (8)

which is a measure of the difference in variability between the bluer
and redder Gaia bands and compare it to the inverse of the quantity
‘phot rp mean flux over error’which is a measure of the
mean S/N. The different groups of variables fall in distinct regions,
with red pulsating variables having smaller values of β compared
to bluer variables. Comparing the known variables and the new
discoveries, we find that the new discoveries mostly fall in the
same regions as the known variables. This provides an independent
confirmation of the purity of the newly discovered variables and
validates our quality assurance methodology in Section 3.5.

Examples of the newly identified periodic variables are shown in
Fig. 11 and examples of the newly discovered irregular variables are
shown in Fig. 12. The light curves for the red giant pulsators, includ-
ing the irregular variables, are complex, and often multiperiodic,
which requires further Fourier analysis. In order to better understand
these pulsating red giants, Percy & Fenaux (2019) recommended
a more detailed analysis, combining visual inspection of the light
curves and a more advanced period analysis, in lieu of the automated
classification used by ASAS-SN.

We illustrate the sky distribution of the newly discovered vari-
ables in Fig. 13. Most of these discoveries are clustered towards the
Galactic disc, as is expected. We note the scarcity of high-amplitude
Mira variables, RR Lyrae, and Cepheid variables and the abundance
of lower amplitude semiregular/irregular variables among the newly
discovered variables. Variables with large amplitudes and strong
periodicity are relatively easily discovered and characterized by
wide-field photometric surveys, so the existing completeness of
these variable types is very high. The gaps in coverage will be
rectified in the next paper in this series. We also show the sky
distribution of the known variables identified in this work in Fig. 14.
Here, we note the abundance of Mira variables, eclipsing binaries,
and Cepheid variables that have been discovered by previous
surveys.

5 C O N C L U S I O N S

We systematically searched for variable sources with V < 17 mag in
the Southern hemisphere (δ < 0 deg), excluding the ∼1.3M sources
near the Southern Ecliptic Pole which were analysed in Paper III.
Through our search, we identified ∼220 000 variable sources, of
which ∼88 300 are new discoveries. The sample of new variables
includes ∼48 000 red pulsating variables, ∼23 000 eclipsing bina-
ries, ∼2200 δ-Scuti variables, and ∼10 200 rotational variables.

The V-band light curves of all the ∼30.1M sources studied in this
work are available online at the ASAS-SN Photometry Database
(https://asas-sn.osu.edu/photometry). We have also updated the
ASAS-SN variable stars data base (https://asas-sn.osu.edu/variab
les) with the light curves of these new variables. Most of these
sources will also fall into the TESS footprint, thus short baseline

TESS light curves that possess better photometric precision can also
be obtained to complement the long baseline ASAS-SN light curves.

This work greatly improves the completeness of bright variables
in the Southern hemisphere and provides long baseline V-band
light curves. In particular, we have significantly improved the
completeness of lower amplitude variables. As part of our ongoing
effort to systematically analyse all the ∼50 million V < 17 mag
APASS sources for variability, we will next update this database
with the light curves for the sources across the Northern hemisphere
and include the light curves for sources missing from the APASS
DR9 catalogue.
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