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We discuss some spacetimes, which are flat everywhere except for a thin shell of matter 
or a string of matter, in the framework of the Israel formalism. First we study spherically 
symmetric universes with a single sheet of matter. Then we show that the construction 
of a cosmic string as a limit of various thin shell distributions of matter leads to identical 
results. 
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1 Introduct ion 

First we discuss the physical properties of some closed universes tha t  are flat 
everywhere except for a spherical sheet of mat ter .  In the first section, we closely 
follow the works of Langer [1] and Lynden-Bell, Katz  and Redmount  [2], who in- 
vestigated the geometrical properties of a wider category of solutions. However, 
we discuss the physical properties of the dynamical  solutions with a more general 
equation of state. Next section then explores the possibility of modeling a cosmic 
string as an identification of two hyper-surfaces in the Minkowski spacetime in the 
limit where the bent par t  of these surfaces is infinitely narrow. For the description 
of thin shells of mat te r  the Israel formalism [3] is used. 

2 Spherical sheet  universes 

Let us take the Minkowski spacetime. Now imagine a world-tube generated by 
a sphere of changing radius r_ .  We assume tha t  r_  changes with t ime in such a 
way tha t  the resulting hypersurface is time-like everywhere. (We shall denote all 
quantities relating to this world-tube by index ' - ' . )  Next we construct an exact 
copy of our world-tube (quantities relating to this world-tube are denoted by index 
'+ ' ) .  We now identify the boundaries of these world-tubes in a smooth way. The 
resulting spacetime consists of the interiors of our two world-tubes in the Minkowski 
spacetime separated by a time-like hypersurface. If we take a constant- t ime slice 
of the spacetime, we obtain the interiors of two spheres separated by a spherical 
surface layer. 

We apply the Israel formalism now [3]. In both  world-tubes, we use spherical 
coordinates r±,  8j=, ~+ and the Minkowskian t ime t±. We introduce intrinsic co- 

*) E-mail: langer~mbox.troja.mff, cuni .cz 
**) E-mail: zofka~box, troj a.mff, cuni. cz 

Czechoslovak Journal of Physics, Vol. 52 (2002), No. 5 669 



J. Langer and M. Zofka 

ordinates O, ~5, t on the separating hypersurface itself. The embedding is defined 
by 

O_ = 0 = 0+, 

~ -  = ~ = ~+, 

t _  = t = g ( t + ) ,  

,'± = I + ( t ) .  

The junction conditions require that  f_  = f+  - f and t_ = t+ = t (g is identity). 
For the normal (n) and tangential vectors (e) we have 

t_ = t -- t+ =¢, e~± = (1; f ' ;  O; 0), 

r_  = f ( t )  = r+ ~ n~ = T ( f ' ;  1; 0; 0)/X/1 - f,2, 
(1) 

O_ = 0 = O+ ::~ e~± = (0;0; 1;0), 
qo_ = ~ = ~+ =, e~± = (0; 0; 0; 1). 

The  induced metric is ds 2 -- -d t2(1  - f ' ( t )  2) + f ( t ) 2 ( d 0 2 +  sin20 dq52). Finally, we 
compute the extrinsic curvatures on both sides of the hyper-surface and take their 
difference. This simply gives twice the original value. After a simple calculation we 
then find the induced energy-momentum tensor to be of the form 

l 
! 0 0 / 
I / , 2 _ 1 _ / / , ,  
o f o . 

21r 2 -(i--'-]'--'2~ f,2 f f,, 
0 0 f - 1 -  ( 1 - f ' 2 ) 2  sin 2 0  

There will be two conditions restricting the solution. The first one ensures the ex- 
istence of the square root appearing throughout  in the formulae and says that  the 
expansion rate of this sphere is not super-luminal If ' l  -< 1. The second (energy) 
condition ensures that  the induced pressures are non-negative fl2 _ f f ,  > 1. Sub- 
stituting from the first condition into the second one, we have f "  _< 0 (this is a 
necessary condition although not a sufficient one). Therefore, the solution cannot 
be a smooth periodic function (repeated contraction and expansion of the sphere) 
with some minimal f > 0. 

We would like to interpret this situation now as a sphere of particles moving 
freely and randomly in all directions on the sphere. First, let us consider a three- 
dimensional Minkowskian spacetime with Cartesian coordinates (T, X, Y). We can 
write the three-dimensional energy-momentum tensor of particles moving with clas- 
sical velocity v = (vx ,v~)  in the z = 0 plane [V i = ( d T / d r ,  dX/d~-,  d Y / d T )  = 
( d T / d r ) ( 1 , v c o s a ,  vsin(~)], where a is the inclination angle with respect to the 
x-axis) that  have a rest-mass rest-density P00 

(1 / T ij = PooUZU 3 =p0o ~T VCOSOI (1, VCOS(~, vs in~)  = 

v s i n a  ] 
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= Poo 

vcos vsin) 
d T ]  v c o s a  v 2cos 2 a  v 2 s i n a  c o s a  • 

v sin a v 2 sin a cos a v 2 sin 2 c~ 

Averag ing  over  all possible direct ions (7 ~ j  -- (1/27r)f:~r TO ( a ) d a )  we ob ta in  

(i ° T 0 = ~ / 2 p o  0 i v 2  

0 

0 

0 , 

½v 2 

with  7 = 1 /V  ri- - v 2 the  usual  Lorentz ian  factor.  
In t roduc ing  locally Car tes ian  coordina tes  on the  shell, we find 

(2) 

L j -  
i 0 0 1 if2 1 - f f "  

1 - 0 

2 7 r f ~  2(1 - -  f ,2)  f ,2 _ 1 -- f y "  

0 2(1 - f ,2)  

Compar i son  wi th  formula  (2) yields 

If  we set  v = 

(3) 

v 2 = f , 2 _ l _ f f ,  
1 - if2 ' (4) 

f f "  - 2 f  '2 + 2 
POO = 2~rf(1 - f,2)a/2" 

0, we ob ta in  par t ic les  on radial  pa ths  wi th  Moo - 4rf2poo = 
2 f / v / 1  _ f , 2 .  However,  for radial  pa ths ,  Moo is cons tan t  a s  f , 2  _ 1 - f f "  = O. 
In tegra t ing  once more,  we have 

Moo 2(t - to) (5) 
f ( t )  = ~ sin ----M--~ ' 

where  to is the  ins tant ,  when the  sphere  s ta r t s  expand ing  f rom the centra l  point .  
We see immedia te ly  t h a t  the  solut ion is valid for the  range  t - to E [0, 17rMoo] and 
thus  f E [0, ½Moo]. T h e  uppe r  limit is the  tu rn ing  point  of  the  expansion.  This  is 
in ag reement  wi th  b o t h  works  ci ted in In t roduc t ion  ([1], [2]). 

T h e  t race  of  tensor  (3) is equal  to  

1 2 f  ' 2 - f f u - 2  
2rrf  (1 - f,2)3/2 

Thus,  if we want  to  cons t ruc t  this sphere  of  photons ,  we need to  ensure  t h a t  the  
equa t ion  ffr~ _ 2ff2 + 2 = 0 is fulfilled. 
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Substituting f '  = p (where Ipl < 1) and using f as an independent coordinate 
instead of t, we have f "  = / ip  < 0 (ib = dp/d f )  and ibpf - 2p 2 + 2 = 0. From here 
we infer f = 2(1 - p2)/(_pp). We can separate the variables yielding 

d f  _ 1 -pdp  
f 2 1 _p2 

This we can integrate arriving at f = fm~, (1 -p2)1/4 .  We thus have f '  = 
±V/1 - (f/fma~) 4. As we can see there always is a turning point and the sphere 
cannot expand beyond f = fm~.  Achieving this point it will recollapse. We can 
write 

d f  = ± f dt. 

The solution to this equation can be written in an implicit form as 

fmaxF(f--~,I) -----"l-'(t--to), 
where F is the incomplete elliptic integral of the first kind (see [4], Chapter 17). 
The inverse formula reads 

f ( t ) = - I - f m a x S n ( t ~ m t O , I  ) , 

where sn is the Jacobi elliptic function, (see [4], Chapter 16). We can only accept 
the plus sign as we cannot go beyond f = 0. Therefore, the evolution of our system 
is described by the first half-period of this periodic function. 

In a general situation we need to specify certain equations of motion. We may, 
for example, fix the total number N of particles within the shell and the rest mass 
m0 of the individual particles. We then have 

4rf2S00 = M = Nmo7  = M07, M0 = const. 

We find 
2 f  

Mo - v / f  f "  - 2ff2 + 2.  

Multiplying the square of this equation by 2 f f  t, we obtain 

2 f f , M 2 =  8 f 3 f  ' (1-7 )2 ( f f "  - 2 f  2 + 2). 

This can be integrated immediately yielding 

f4 ---- __f14 
M~ f2 - 41 _ f,2 

672 
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We need to choose a negative integration constant here since a solution with a pos- 
itive one does not satisfy the condition v 2 _> 0 (equivalent to the positive pressure 
condition). 

Using formula (4) we find 

Therefore 

v 2 -- 
~Mof~ 2" 

lq- \ /~ 2 ] 

j32 = Mo N mo Nmfv. 
f v =  1j-f-: _v f v =  

We can thus interpret the conserved quantity ~2/N as the relativistic angular mo- 
mentum of each particle. However,/32 is not the total relativistic angular momentum 
of the sphere, which is identically zero due to the spherical symmetry. If/3 ~ 0, 
the particles only move in the radial direction as expected and we end up with the 
solution (5). If, on the other hand, we increase the (relativistic) angular momentum 
ad infinitum, the trajectories of particles become null and we obtain the photonic 
case. Let us express the expansion velocity from (6) as 

f,2 = M2 f 2 - 4f  4 + J 34 
M2 f 2 + Z 4 

The solution satisfies the energy conditions for 

[ M°41+V/I+(2~/M°)4 
o , y  2 

This situation describes a sphere expanding from the central point at time t = to, 

1 421-(1 y/1 + (2~/Mo)4), and then recol- reaching the maximal size of f = ~ 11//0 + 
lapsing into its initial state. The implicit form of the solution is 

t__to= f f( t)  ~ M~x2 +j 3a . 
Jo Mo 2 ~  ~ -4-~ ~ ]~ 4.Ox" 

As we can see the turning point is always located at fm~x _> Mo/2. It is interesting 
that  particles with purely radial trajectories start to recollapse after reaching a 
smaller distance from the point of origin as measured by their total mass Mo, than 
particles having tangential velocities in addition to their radial motion. This situa- 
tion is counterintuitive within the Newtonian concepts that,  however, are difficult 
to apply here as there is no Newtonian analogue to this situation. 

Interpreting this as a perfect fluid with ( 00 0) 
Tij-~- po 0 , 

0 Po 
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we conclude P00 = So0 and P0 = S n  = $22. To be able to find the equations of 
motion we would need to specify the equation of state p = p(p) for the fluid. For 
example, requiring that  p -- p/2 (gas of photons moving randomly in all directions 
within a 2-dimensional surface) we again have the above photonic case. 

Let us briefly review the static case. The basis vectors are 

t_ = T = t+ ~ e~.+ = (1; 0; 0; 0), 

r_  = R = r +  ~ n ~ = ( 0 ; ~ l ; 0 ; 0 ) ,  

8_ = 0 = 8 +  ~ e~+ = ( 0 ; 0 ; 1 ; 0 ) ,  

¢_ = # = ¢+ ~ eg+ = (0; 0; 0; 1). 

The induced metric is ds 2 = - d T  2 +R2(dO 2 +s in20  dq52). We now again introduce 
the locally Cartesian coordinates and after some manipulation we find the induced 
energy-momentum tensor (2) 

h-~o o 
Sij-= R/47r 0 -1  0 • 

0 0 -1  

The resulting mat ter  density is thus positive, however, the pressures in the main 
directions are negative. The induced matter  therefore behaves as an inflated soap 
bubble. The total induced mass is M - 47rR2STT = 2R. 

For a general, spherically symmetric metric ds 2 = -F(r)dt  2 + dr2/F(r) + 
r 2 (d82+  sin20 d¢2), we have another relevant nonzero Christoffel symbol Fit -- 
~F1 ,/F, where F' - dF(r)/drl r=n. For the induced energy-momentum tensor we 
find in the locally Cartesian coordinates 

R 
S~ = 

2F(R) 3/2 I R2 0 0 
1 2F(R) + R F ' ( R )  0 . 

0 2 x/-F--(R) 1 2F(R)  + RF'(R) 
0 0 2 X / - f ~  

Therefore, the total shell mass is M = 2RF(R) 3/2. In this situation, we might 
succeed in keeping all the tensor components positive. For example, in the de Sitter 

1 Ar 2 case (F(r) -- 1 - ~ /, it is sufficient to fulfill the condition 3 < AR 2 < 3. In this 
case, the collapse of the shell is obviously prevented by the repulsive effect of the 
positive cosmological constant. 

The thin shell model considered here can be interpreted as two maximal vacuoles 
in the "spherical" Robertson-Walker universe where all mater is located only on the 
singular surface separating the vacuoles. When constructing this model, we started 
with two world-tubes and we identified the external points of these tubes (Fig. la).  
However, we can also take just one world-tube and identify the external antipodal 
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/ \ 

a) b) 

Fig. 1. Identification of world-tubes. 

points on the sphere that  represents a space section of this tube (Fig. lb).  In this 
case an observer living in this universe finds himself surrounded by a thin spherical 
shell of mat ter  at any moment. After going through the shell he appears on the 
other side of his own flat universe. 

The latter case can be considered to be the maximal vacuole in an "elliptical" 
world. The equations of motion remain unchanged, only the total mass of the shell 
is one half of the total  mass in the former case. 

3 P r o d u c i n g  a c o s m i c  s t r i n g  

It is clear that  a cosmic string source can be achieved by taking an infinitely ex- 
tended physically acceptable source with cylindrical symmetry and then decreasing 
its radius to zero while ensuring that  the mass per unit length remains constant. 
Langer [5] used a hollow cylinder of mat ter  approaching a string with the same 
energy-momentum tensor as later derived by Linet [6] for a general string metric. 

We take a different path arriving at the same result, however. We identify two 
sheets in Minkowski spacetime (we use Cartesian coordinates). The sheets repre- 
sent the identification surfaces at a given Minkowskian time and do not bend in 
the z-direction (their defining equation does not involve z). Furthermore, for both 
surfaces, there exists a bounded area in the x - y  plane outside of which the defining 
equation is x - -  a y .  See Fig. 2. 

Identifying the surfaces, we then find the induced mat ter  to be located only 
within this area. The limiting procedure consists of decreasing this area while keep- 
ing the total  bending angle of the two sheets constant. Whatever initial sheets we 
use, we always find the same form of the limiting mat ter  distribution. 

Using Cartesian coordinates in Minkowski spacetime, we now identify hypersur- 
faces x± = f2,1(Y±)- We assume that  these are fiat outside a compact region (i.e., 
x ±  = a ± y ±  for y± ~ [Yl±, Y2±]). On the hypersurface, we define the inner coordi- 
nates (T, Y, Z) with (t±, x±,  y±, z±) _-- (T, f2,1 (Y± (Y)), Y± (Y), Z). For the induced 
metric tensor we have 

1 0  

12 gij = 0 y~ (1 ÷ f2 ,1 )  " 

0 0 
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1 
Fig. 2. Identification surfaces. 

Following the same lines as above, we find the induced energy-momentum tensor 
to be 

fl, f~' 
1 (1 q- f~2)3/2 + (1 + f~2)3/2 0 0 

S,j = ~ 0 0 : i '  0 f~' 

0 0 (1 + f~2)3/2 (1 + f62)3/2 

Using the definition of the curvature radius of a function, we can rewrite this as 

1(1  (i0;) 1 )  0 • 

/~2 0 1 

In the expression above, R1,2 are functions of position. However, if the two hyper- 
surfaces are cylinders, then R's are constant and we can compare this expression 
with a similar one derived in a situation where we identify two coaxial cylinders 
in Levi-Civita spacetime (for coaxial cylinders, there is a minus sign between the 
inverted radii). The  outer and inner cylindrical spacetimes are characterized by 
p+, m+, C±, respectively, where p refers to the radius of the cylinder, C stands for 
the conicity while rn is the Levi-Civita parameter related to the mass per unit length 
of the string. The inner Levi-Civita spacetime is flat and thus we have C_ -- 1 and 
m_ = 0. C+ is the outer spacetime's conicity. The outer LC parameter m+ is set 
to be zero (otherwise we obtain an infinite energy density per unit length in the 
cosmic-string limit of p_-~ 0). Here, using coordinates (T, 4~, Z), we find 

1 ( :1)(1oo 
s~j=~ oo o 

O0 - 1  
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Including an additional condition p_ = p+/C+ (owing to the requirement of equal 
circumferences of both cylinders) we can rewrite the expression standing in front 
of the matrix as 1/p_ - 1/p+. This is an exact analogue of the situation above. 

To obtain the induced mass per unit length along the z-direction, we integrate 
over Y: 

/ / 2  M1 - S T T ~ d Y  = STTY=I= + f~, ldY = 

1 [ ] 
= S---~ J y ,  [ 1-Tf--~ 2 l+:,'--W2 j dY. 

Let us now express the change of direction in f l  when crossing the non-fiat region 
A~I = arctanf~(y~.) - a rc tanf~(yl )  for the first region with Y2, Yl denoting the 
upper and the lower limit of the fiat region, respectively. We thus write 

/ y ~ 2 d a r c t a n f ~ ( Y - ) y  / y ; 2 f ~ ' Y ~ - d y  
Aqol = - ~  d = l---+f112 • 

This is exactly our formula for the induced unit-length mass. We conclude 

M1 = 1 A ~ o  

with Aqa = Aq02 - A~I .  This is exactly the correct formula obtained by Linet [6]. 
If we want to achieve a cosmic string, we need to keep A~ constant while lim- 
iting the non-flat region to zero size. This results in diverging derivatives of the 
fl,2 functions. Regardless of the particular form of the non-flat region, we always 
get the right form of mass per unit length for a cosmic string due to a missing angle. 
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