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A relativistic theory of gravity like general relativity produces phenomena differing fundamentally from
Newton’s theory. An example, analogous to electromagnetic induction, is gravitomagnetism, or the
dragging of inertial frames by mass-energy currents. These effects have recently been confirmed by
classical observations. Here we show, for the first time, that they can be observed by a quantum detector.
We study the response function of Unruh De-Witt detectors placed in a slowly rotating shell. We show that
the response function picks up the presence of rotation even though the spacetime inside the shell is flat and
the detector is locally inertial. The detector can distinguish between the static situation when the shell is
nonrotating and the stationary case when the shell rotates and the dragging of inertial frames, i.e.,
gravitomagnetic effects, arise. Moreover, it can do so when the detector is switched on for a finite time
interval within which a light signal cannot travel to the shell and back to convey the presence of rotation.
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I. INTRODUCTION

Frame-dragging, also known as the Lense–Thirring
effect [1,2], is a general-relativistic effect that arises due
to moving, in particular rotating, matter [3] and “rotating”
gravitational waves [4,5]. If a gyroscope is located in the
vicinity of a rotating body, it will keep its direction with
respect to the axes of a local inertial frame at the same place
but both the inertial axes and the gyroscope will be rotating
with respect to static distant observers (“fixed stars” at
asymptotically flat infinity). Its profound explicit manifes-
tation can be seen for a rotating black hole, which drags
particles into corotation, the dragging becoming so strong
inside the ergosphere that no particle there can remain
at rest with respect to fixed stars [6]. Frame-dragging is
also behind various astrophysical phenomena such as
relativistic jets and the Bardeen-Petterson effect [7], which
aligns accretion disks perpendicular to the axis of a rotating
black hole.
In addition, frame-dragging inside a rotating shell was

taken by Einstein to be in support of Mach’s principle. For a
nice discussion on Mach’s principle, dragging effects and
their impact on astrophysics and cosmology, see [8] (also
[3,9]). Consider a slowly rotating material shell [10,11].
Observers inside the shell who are at rest with respect to
distant fixed stars will find that a particle moving inside the

shell experiences a Coriolis acceleration (the centrifugal
acceleration is of the second order in the shell’s angular
velocity). These observers are not inertial, therefore ficti-
tious forces arise.
For inertial observers, without looking at or outside the

rotating shell, there is no way of determining, by employing
classical physics, whether they are surrounded by a rotating
shell. They can in principle determine its rotation by, for
example, sending out a spherical pulse which, upon
reflection, will experience a differential Doppler effect,
with different shell latitudes Doppler shifting differently.
Meanwhile, frame-dragging outside a rotating body, the
Earth, has taken the Gravity Probe B satellite mission
[12,13] almost a half-century since its inception to detect.
In this paper, we show for the first time that frame-

dragging inside a slowly rotating shell can be observed by
an inertial quantum Unruh-DeWitt (UDW) detector [14].
Specifically, it can do so in a time shorter than the light
crossing time, ts, of the shell, and hence more efficiently
than a classical detector. We consider this to be a quantum
detection of inertial frame dragging [15–18].
We note that the ability of such detectors to obtain

nonlocal information about spacetime structure has been
demonstrated in other contexts [19–23]. In particular, it was
shown in [19,20] that UDW detectors can distinguish
between global flat Minkowkian spacetimes and local flat
spacetimes inside massive shells. Our paper is an important
step forward from these results, much like the transition
from electrotatics to electromagnetism, or the transition
from Schwarzchild to Kerr; it demonstrates for the first time
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that a fundamentally relativistic (non-Newtonian) effect of
dragging of inertial frames, namely the existence of grav-
itomagnetism, can in principle be observed by a quantum
detector in settings that are not classically possible.

II. SLOWLY ROTATING SHELLS

Let us begin by describing the spacetime metric of a
slowly rotating shell. The metric the shell can be written as

ds2þ ¼ −fðrÞdt2 þ r2sin2θ

�
dϕ −

2Ma
r3

dt

�
2

þ fðrÞ−1dr2 þ r2dθ2; ð1Þ

where fðrÞ ¼ 1–2M=r, M is the mass of the shell and
a ¼ J=M is the angular momentum per unit mass. The
r-coordinate ranges from ½R;∞Þ, R being the radius of
the shell. To first order in a, the above metric agrees with
the Kerr metric and satisfies the vacuum Einstein’s equa-
tions. Inertial frame-dragging is characterized by the func-
tion ϖðrÞ ¼ gϕt=gϕϕ ¼ 2J=r3, where J ¼ Ma is the fixed
total angular momentum as measured at infinity. The
gradients of ϖðrÞ determine the precession of gyroscopes
relative to the orthonormal frame of locally nonrotating
observers [6]. On the shell itself, r ¼ R, and ϖs ¼ 2J=R3.
For an inertial observer inside the shell (who rotates

as seen from infinity) spacelike geodesics (for example,
ϕ ¼ 0, θ ¼ π=2, r ¼ constant, t ∈ R) connected to fixed
points at infinity rotate backwards; the shell is rotating
forward (the dragging of the inertial frame becomes
complete i.e., inertial observers rotate at the same angular
velocity as the shell, only if the shell is at its Schwarzschild
radius); the fixed stars are rotating backwards. In [18] these
effects are expressed quantitatively.1

The metric (1) must be joined at r ¼ R to the metric

ds2− ¼ −fðRÞdt2 þ r2 sin2 θ

�
dϕ −

2Ma
R3

dt

�
2

þ dr2 þ r2dθ2 ð2Þ

inside the shell, which can be seen to be flat using the
coordinate transformation,

φ ¼ ϕ −
2Ma
R3

t; ð3Þ

which transforms the metric (2) to the flat metric in
standard coordinates. The stress energy tensor of the shell
giving rise to the above spacetime can be found using the
Israel junction condition [24] and has been well studied in
the literature [25].

The coordinates used in (1) are (spherical) Lorentzian at
infinity and are naturally associated with stationary observ-
ers at infinity. All observers at fixed ðr; θ;φÞ inside the shell
rotate rigidly at the rate dϕ=dt ¼ 2Ma=R3 with respect to
observers at rest at infinity (ϕ ¼ constant). This effect is
called the dragging of inertial frames, first discovered in
1918 by Thirring and Lense [1,2] and discussed in the
Introduction.

III. NORMALIZED MODE SOLUTIONS

In order to compute the response of the UDW detector
we need to obtain the normalized mode solutions to
the scalar wave equation. For the scalar field Ψ the wave
equation is

∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΨÞ ¼ 0; ð4Þ

where g is the determinant of the metric. Upon substituting
in the metric (1) and (2), this equation can be solved by
separation of variables. To leading order in a, one can
employ the usual mode expansion Ψωlmðt; r; θ;ϕÞ ¼

1ffiffiffiffiffiffi
4πω

p e−iωtYmlðθ;ϕÞψðrÞ in spherical harmonics Yml.

This yields a separated radial equation:

α

βr2
d
dr

�
α

β
r2
dψ
dr

�
−
�
α2lðlþ 1Þ

r2
þ γ þ ω2

�
ψ ¼ 0: ð5Þ

The functions α, β and γ are

αðrÞ ¼
( ffiffiffiffiffiffiffiffiffiffi

fðRÞp
; r ≤ Rffiffiffiffiffiffiffiffiffi

fðrÞp
; r > R;

βðrÞ ¼
�
1; r ≤ R

1=
ffiffiffiffiffiffiffiffiffi
fðrÞp

; r > R;

γðrÞ ¼
8<
:

4Mamω
R3 −

�
2Mam
R3

�
2
; r ≤ R

4Mamω
r3 −

�
2Mam
r3

�
2
; r > R.

ð6Þ

For r ≤ R, the radial equation reduces to the spherical
Bessel equation, with the solution being

jlð
ffiffiffiffiffiffiffiffiffiffi
bðωÞ

p
rÞ; bðωÞ ¼ ω2

fðRÞ
�
1 −

2Mam
R3ω

�
2

: ð7Þ

However, the solution outside the shell has to be deter-
mined numerically and matched to the solution on the
shell. Specifically, we impose continuity of the solution
at the shell, ψðRÞ ¼ jlð

ffiffiffiffiffiffiffiffiffiffi
bðωÞp

RÞ. To find the value of
dψ=drjRþ , we integrate Eq. (5) across the shell, obtaining
the condition

1In [18] the shell is in general considered to be collapsing but
the results can be immediately specialized if it is just rotating.
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�
αðrÞ
βðrÞ

d
dr

ψ

	
¼

�∂ψ
∂xμ e

μ
r

	
¼ 0; ð8Þ

where eμr is the radial element of the tetrad and the square
brackets represent the difference in the value of the term
across the shell. Noting from (6) the discontinuity in βðrÞ,
this yields the required initial conditions ψðRþÞ and ψ 0ðRþÞ
for numerically solving the radial equation outside
the shell.
Finally, to normalize the solution, we will follow the

scheme presented in [19]. Defining r⋆ such that d=dr⋆ ¼
α
β d=dr and ρ ¼ rψ , the radial equation (5) reads

d2

dr⋆2 ρþ ðω2 − VðrÞÞρ ¼ 0; ð9Þ

for r > R, where

VðrÞ ¼ α2lðlþ 1Þ
r2

þ γ þ 1

r
α

β

d
dr

�
α

β

�
: ð10Þ

Asymptotically, VðrÞ → 0 as r → ∞ and hence ψ ∼
sinðωr⋆Þ=r⋆. Let the normalized radial solution be denoted
as ψ̃ωlmðr⋆Þ ¼ Aωlmψðr⋆Þ. Given any two wave functions
Ψ1, Ψ2, their Klein-Gordon inner product is

ðΨ1;Ψ2Þ ¼ i
Z
Σ
dσnμðΨ⋆

1∇μΨ2 −Ψ2∇μΨ⋆
1Þ; ð11Þ

where Σ is a Cauchy surface with normal nμ. A solution
will be normalized with respect to the Klein-Gordon inner
product if we choose the normalization constant Aωlm such
that Aωlmψðr�Þ → 2 sinðωr⋆Þ=r⋆ as r⋆ → ∞ [19].
Now that the normalized mode solutions are obtained,

we are ready to compute the response of UDW detectors.

IV. UDW DETECTOR RESPONSE

A UDW detector [14,26] is a 2-level quantum mechani-
cal system that interacts locally with a scalar quantum
field as it moves along some trajectory xðτÞ in spacetime.
Letting Ω denote the energy gap of the detector and
μ̂ðτÞ ¼ e−iΩτσ̂þ þ eiΩτσ̂− its monopole moment (in the
interaction picture), the Hamiltonian governing the detec-
tor/field interaction is

ĤðτÞ ¼ λχðτÞμ̂ðτÞ ⊗ Ψ̂ðxðτÞÞ; ð12Þ

where σ̂� are the ladder operators, τ is the proper time of
the detector, and λ is the dimensionless coupling constant.
The duration of interaction is controlled by the switching
function χðτÞ, which we will choose to be

χðτÞ ¼
�
cos4ðkτÞ; − π

2k ≤ τ ≤ π
2k

0; otherwise;
ð13Þ

which has a shape similar to the Gaussian switching
function χG [20] used in the static case [19], but ensures
for some k > 0 that the interaction takes place only
between τ ∈ ð− π

2k ;
π
2kÞ We will denote the total duration

of the interaction by Δτ ¼ π=k.
If the detector starts off in the ground state and interacts

with the quantum vacuum via the above Hamiltonian, there
may be a nonzero probability of finding the detector in
its excited state after the interaction. The probability of
excitation of the detector can be calculated using perturba-
tion theory and is well-known in the literature. It is given
by [26,27]

P ¼ λ2
Z

∞

−∞
dτ1

Z
∞

−∞
dτ2χðτ1Þχðτ2Þe−iΩðτ2−τ1Þ

×Wðxðτ1Þ; xðτ2ÞÞ ð14Þ

to second order in λ, where Wðxðτ1Þ; xðτ2ÞÞ is the
Wightman function of the field evaluated along the detector
trajectory.
The field operator can be expanded in terms of the

normalized field modes Ψωlm of the previous section as

ψ̂ðxðτÞÞ¼
X
l;m

Z
∞

0

dωâωlmΨωlmðxðτÞÞþ â†ωlmΨ
†
ωlmðxðτÞÞ;

ð15Þ

with âωlm denoting the mode annihilation operators.
Let j0i denote the field vacuum such that âωlmj0i ¼ 0.
This corresponds to the vacuum with respect to an
observer located at infinity, who is in a nonrotating
frame. The Wightman function with respect to this
vacuum Wðxðτ1Þ; xðτ2ÞÞ ≔ h0jψ̂ðxðτ2ÞÞψ̂ðxðτ1ÞÞj0i is
given by

Wðxðτ1Þ; xðτ2ÞÞ ¼
X
l;m

Z
∞

0

dωΨ†
ωlmðxðτ1ÞÞΨωlmðxðτ2ÞÞ:

ð16Þ

From the previous section, we have seen that the
normalized mode solutions are given by Ψωlm ¼

1ffiffiffiffiffiffi
4πω

p e−iωtYlmðθ;ϕÞψ̃ωlmðrÞ. Recall that we are interested

in studying how the response of the detector differs when
placed respectively in a rotating shell and a stationary shell.
A simple choice for the trajectory xðτÞ of the detector is
r ¼ rd, θ ¼ π=2, φ ¼ 0 i.e., ϕ ¼ 2Ma

R3 t. Noting that

t ¼ τ=h, where h ¼ ffiffiffiffiffiffiffiffiffiffi
fðRÞp

, we find the response function
F ¼ P=λ2 of the field in the form
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F ¼
Z

∞

−∞
dτ1

Z
∞

−∞
dτ2χðτ1Þχðτ2Þe−iΩðτ2−τ1Þ

X
lm

Z
∞

0

dωΨ†
ωlmðxðτ1ÞÞΨωlmðxðτ2ÞÞ

¼
X
lm

Z
∞

0

dω
4πω

Z
∞

−∞
dτ1

Z
∞

−∞
dτ2χðτ1Þχðτ2Þe−iðΩþ

ω
h−

2Mam
R3h

Þðτ2−τ1Þ




Ylm

�
π

2
; 0

�




2

jAωlmj2jjlð
ffiffiffiffiffiffiffiffiffiffi
bðωÞ

p
rdÞj2;

¼
X
lm

Z
∞

0

dω
2ω





χ̂
�
Ωþ ω

h
−
2Mam
R3h

�




2

jAωlmj2




Ylm

�
π

2
; 0

�




2

jjlð
ffiffiffiffiffiffiffiffiffiffi
bðωÞ

p
rdÞj2; ð17Þ

where we switched the order of integration since the
integrand is smooth and integrated over the τ1 and τ2
variables, which amounts to performing Fourier transforms

χ̂ðyÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dτχðτÞe−iyτ ð18Þ

on the switching functions, noting that χ̂ð−yÞ ¼ χ̂ðyÞ for a
real switching function.
We pause to comment that we have computed (17) from

the modes Ψωlm assuming (5) is exact. However the metric
(1) is a valid solution of the Einstein equations only to order
a while the leading corrections to the Wightman function
(16) [and thus detector response (17)] are of order a2. For
sufficiently small Ma=R2, terms of higher order in a will
not significantly affect our quantitative results, and so we
shall plot (17) in what follows.

V. RESULTS

We are now ready to look at how rotation of the shell
affects the response of UDW detectors. We do this by
computing the expression (17) numerically, terminating the

sum over l at sufficiently large l, chosen to give resultant
errors not larger than 1%.
Figure 1 shows a plot of F rot−F stat≡F rot−F rotða¼0Þ

against Ω for various (dimensionless) rotation parameters
ak. The difference between the response of a detector
placed in a slowly rotating shell F rot and that placed in
a static shell F stat, though small, is clearly nonzero. The
difference is more pronounced when the energy gap
Ω=k < 0, which physically means that the detector starts
off in the excited state. The rotation parameter a enters the
response function F in three positions in Eq. (17): in the
Fourier transform of the switching function, in the nor-
malization constant Aωlm, and in the bðωÞ of the spherical

FIG. 1. Detector response againstΩ=k. Shown here is the plot of
the difference F rot − F stat against Ω for different (dimensionless)
rotation parameters akwithMk ¼ 1,Rk ¼ 3, rdk ¼ 0.5. The inset
shows a zoom-in of the plot aroundΩ=k ¼ 0. The differenceF rot −
F stat is small but nonzero, and is more sensitive to the rotation for
negative Ω.

FIG. 2. Plot of F against rd=R. These plots are obtained for
Mk ¼ 1, and Rk ¼ 3. Above: plot of detector response against
rd=R for static and rotating (ak ¼ 0.9) shells, Ω=k ¼ 0.5. Below:
F rot − F stat plots for different ak settings with Ω=k ¼ 0.5.
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Bessel function. The net effect of these is an expected
increase in jF rot − F statj with a.
We emphasize that the interaction duration Δτk ¼ π

between the field and detector is less than tsk ¼ 2ðR − rdÞ
k ¼ 5, the time needed for a light signal to travel from the
detector to the shell and back. This is in striking contrast to
the classical case, where the fastest way a detector inside
the shell (with all possible classical fields in their vacuum
states) can detect the presence of rotation is by sending and
waiting for a light signal to come back from the shell.
In the top figure of Fig. 2, we plot both F rotðak ¼ 0.9Þ

and F stat against the detector location rd=R. The responses
peak at some intermediate rd, in agreement with the results
of Ref. [20]. From the bottom figure, we see that the
detector response increases by more than an order of
magnitude as compared to Fig. 1 as rd=R → 1. We find
that the shape of the curves in Fig 1 remains qualitatively
the same as rd=R increases, though the interaction duration
is eventually no longer less than the light crossing time.
A detector placed at the origin rd ¼ 0 cannot distinguish
between a rotating and a static shell. We can understand this
explicitly by noting that the rotation parameter a appears in
the radial equation (5) through the term γ, where it is
multiplied with the azimuthal numberm. Hence, it has only
nontrivial effects when m ≠ 0. However since θ ¼ 0 along
the axis of rotation and Ylmð0; 0Þ is non-zero only when
m ¼ 0, the mode solutions and hence the response function
are insensitive to effects of rotation along this axis. As
another illustration of this, we plot in Fig. 3 F rot − F stat
against θ, the angle measured from the rotation axis.

From this, we see that the sensitivity to rotation of detectors
placed at the same rd increases monotonically as θ
increases from 0 to π=2.

VI. CONCLUSIONS

Classically, the physical effect of a slowly rotating shell
is the dragging of inertial frames. We have shown that this
effect can be discerned from local measurements of a
quantum particle detector inside the shell, on timescales
much shorter than the light travel time from the detector to
the edge of the shell and back.
We note that the gravitational effects inside a rotating

material shell are analogous to the electromagnetic effects
inside a rotating charged shell; but there are also funda-
mental differences. For a rotating charged shell, a dipolar
magnetic field will be formed inside. Such a field can be
observed without the need of quantum detectors, for
example as the Larmor precession of charged particles.
By solving the scalar field equation numerically, we

have obtained the response function of the detector and
seen how it depends on the rotation parameter a.
Corrections to the metric (1) to higher orders in a will
quantitatively modify (17) but will not qualitatively affect
our results. Alternatively, we can regard (1) as a “kinematic
spacetime” that could be employed in analogue gravity
laboratory simulations, in which case our results would
hold exactly. Whether or not such effects can be directly
detected remains a challenge for future experiments.
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