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ABSTRACT
Motivated by recent theoretical work on tidal disruption events and other peculiar transients, we present moving-mesh radiation-
hydrodynamic simulations of radiative luminosity emitted by a central source being reprocessed by a wind-like outflow. We couple
the moving-mesh hydrodynamic code JET with our newly developed radiation module based on mixed-frame grey flux-limited
diffusion with implicit timestep update. This allows us to study the self-consistent multidimensional radiation-hydrodynamic
evolution over more than 10 orders of magnitude in both space and time in a single run. We simulate an optically thick spherical
wind with constant or evolving mass-loss rate, which is irradiated by a central isotropic or angularly dependent radiation source.
Our spherically symmetric simulations confirm previous analytic results by identifying different stages of radiation reprocessing:
radiation trapped in the wind, diffusing out through the wind, and reaching constant maximum attenuation. We find that confining
the central radiation source in a cone with moderate opening angles decrease up to one order of magnitude the early flux along
sightlines oriented away from the direction of radiation injection but that the reprocessed radiation becomes isotropic roughly
after one lateral diffusion time through the ejecta. We discuss further applications and guidelines for the use of our novel
radiation-hydrodynamics tool in the context of transient modelling.
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1 IN T RO D U C T I O N

There is mounting evidence that new sources of internal power or
non-spherical geometry are required to explain certain astronomical
transients. For example, a fraction of the observed core-collapse
supernovae can only be explained as a spherical explosion colliding
with an non-spherical distribution of circumstellar medium (CSM;
e.g. Chugai & Danziger 1994; Leonard et al. 2000; Smith et al.
2015; Bilinski et al. 2018). In some of these situations, the ensuing
radiative shocks can be engulfed by the nearly spherical ejecta and
act as an internal power source (e.g. Mauerhan et al. 2013; Smith
2013; Andrews & Smith 2018). These observations have motivated
theoretical investigations of supernova explosions colliding with
oblate and prolate CSM distributions such as discs, bow shocks,
colliding-wind shocks, or bipolar nebulae (Blondin, Lundqvist &
Chevalier 1996; van Marle et al. 2010; Suzuki, Maeda & Shigeyama
2016; Vlasis, Dessart & Audit 2016; McDowell, Duffell & Kasen
2018; Kurfürst & Krtička 2019; Suzuki, Moriya & Takiwaki 2019;
Kurfürst, Pejcha & Krtička 2020)

In the case of classical novae, high-resolution radio imaging of
an expanding shell in V959 Mon has shown distinct equatorial and
polar components separated by a shock interaction region (Chomiuk
et al. 2014). Furthermore, the recently found correlations between
optical and GeV γ -ray variability suggest that non-spherical shock
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interaction might be actually powering the optical light curves (e.g.
Metzger et al. 2014; Li et al. 2017; Aydi et al. 2020).

The discovery of new transient classes has also led to the
development of detailed theoretical models typically involving the
presence radiative shocks, interaction with CSM, deviations from
spherical symmetry, and/or radiation-reprocessing outflows. For
instance, stellar mergers and common envelope events have been
associated with luminous red novae and intermediate luminosity
optical transients (Soker & Tylenda 2003; Tylenda & Soker 2006;
Ivanova et al. 2013). These events could be powered by a radiative
shock embedded in a hydrogen-rich ejecta, where the different ejecta
and CSM components reflect the runaway increase of mass-loss from
the binary star approaching the dynamical phase of the binary-star
interaction (Pejcha 2014; Metzger & Pejcha 2017; Pejcha et al. 2017;
Blagorodnova et al. 2021)

Among other enigmatic transients, observations of AT2018cow
from the recently identified class of fast-rising blue optical transients
revealed an X-ray source, likely a compact object or an embedded
radiative shock, reprocessed by a non-spherical CSM (Margutti et al.
2019; Fang et al. 2020; Uno & Maeda 2020a). On a similar note, tidal
disruption events inherently require multidimensional modelling as
different signatures might be observed depending on the line-of-sight
orientation. Some of the salient features of tidal disruption events
could be jets as well as radiation reprocessing in an outflow with
polar-angle dependent velocity (see Dai, Lodato & Cheng 2021, for
a review). The radiation reprocessing by an outflow is necessary to
explain the observed peak in optical or UV frequencies rather than
the expected EUV or soft X-ray. This fact led to the development
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of models for the general problem of how radiation is reprocessed
in optically thick winds (e.g. Shen, Nakar & Piran 2016; Piro & Lu
2020; Uno & Maeda 2020a). Such models have been used to explain
the observed light curves of tidal disruption events by constraining the
mass-loss rate of the winds as well as the spatial scale from where it is
being launched (e.g. Metzger & Stone 2016; Uno & Maeda 2020b).
Interestingly, radiation reprocessing by optically thick winds is also
relevant for classical novae (see Chomiuk, Metzger & Shen 2020, for
a review). So far, these theoretical models have not been verified with
numerical time-dependent simulations, which we aim to address in
this paper.

Numerical radiation hydrodynamics is challenging and computa-
tionally expensive, especially in multidimensional models. Among
the numerical tools specialised for transient phenomena, one-
dimensional Lagrangian approach is popular for quick simulations
of light diffusion in expanding matter and for computing light
curves. A few examples of such codes are STELLA, which follows
a multigroup radiative transfer approach (Blinnikov et al. 1998),
SNEC (Morozova et al. 2015), which treats radiation under the grey
flux-limited diffusion (hereafter FLD) approach (Alme & Wilson
1973), and others of similar nature (Bersten, Benvenuto & Hamuy
2011; Pumo & Zampieri 2011). There are also codes for computing
spectra from (radiation-)hydrodynamic simulations, e.g. SEDONA,
which follows a Monte Carlo approach for solving the multifre-
quency three-dimensional time-dependent radiative transfer problem
(Kasen, Thomas & Nugent 2006), CMFGEN, which can synthesise
light-curves and spectra for systems not necessarily in local-thermal
equilibrium (e.g. Dessart & Hillier 2005), TARDIS, which performs
fast calculations of spectra for one-dimensional transient models (e.g.
Kerzendorf & Sim 2014), and others. These spectral codes differ by
the level of coupling radiation and hydrodynamics ranging from
operating on a pre-determined background to full coupling to one- or
multi-dimensional hydrodynamic codes (e.g. Roth & Kasen 2015).

There are also multidimensional finite-volume hydrodynamic
codes with modules for treating and coupling radiation with hy-
drodynamics, for example RAGE, which uses a radiation diffusion
algorithm under the grey approximation (Gittings et al. 2008),
CASTRO, which includes a module for multigroup FLD (Zhang et al.
2011, 2013), HERACLES, which treats radiation through M1 closure
(González, Audit & Huynh 2007; Dessart & Audit 2019), FLASH,
which makes use of grey FLD for including radiation (Chatzopoulos
& Weide 2019), and more recently also grey FLD in AMRVAC (Moens
et al. ). Although these codes can achieve high spatial resolution
thanks to their adaptive-mesh refinement modules, the finite-volume
approach limits their domain size. Despite these achievements, to
our knowledge, there is no tool that combines the wide temporal and
spatial dynamical range of one-dimensional Lagrangian codes with
the ability to study transients lacking spherical symmetry. This lack of
capability limits comparison of theoretical models with observational
data in a quick and straightforward manner.

In this work, we perform two-dimensional moving-mesh radiation-
hydrodynamic simulations of the radiation of a central source being
reprocessed by an optically thick spherical wind. To do so, we
have developed a new radiation module based on the mixed-frame
formulation under the grey FLD approximation for the moving-
mesh hydrodynamic code JET (Duffell & MacFadyen 2013). JET

was derived from the code TESS (Duffell & MacFadyen 2011),
which uses a numerical mesh built through Voronoi tessellation of
the computational domain. However, as JET is intended to be used
for modelling problems with rapid radial outflows, it instead uses
spherical coordinates to construct a grid that is only allowed to move
radially. Thus, the code effectively acts as a set of one-dimensional
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Figure 1. Schematic representation of a wind-reprocessed transient. The
problem considers a central source launching a spherically symmetric wind
at a radius rin with a constant speed vw. After an arbitrary time t the outer
radius of the wind is rw = rin + vwt. Simultaneously, there is a central
source of luminosity L∗ that irradiates into the inner boundary rin. The wind
is assumed to be dense enough so that radiation is mainly advected up to a
radius rtr. At larger radii, radiation can diffuse outwards.

Lagrangian codes that are coupled laterally by transverse fluxes.
The moving-mesh nature of the code helps to resolve contact
discontinuities along the radial direction to high precision and, at
the same time, aids to loose the constraints on the timestep. Such
properties make JET with our new radiation module an ideal tool
for simulating astronomical transients, even for problems lacking of
spherical symmetry.

This work is organised as follows. In Section 2, we briefly sum-
marise the analytical formalism for characterizing wind-reprocessed
transients. In Section 3, we describe our numerical method including
the approach used for the radiation treatment. A more thorough
description of the algorithm, method of solution, and consistency
tests is presented in Appendices A, B, and C, respectively. The
results of our simulations are presented and described in Section 4.
Finally, we present the conclusion of this work and future outlook in
Section 5.

2 A NA LY TI CAL FORMALI SM

Piro & Lu (2020) developed an analytical approach for estimating
the amount of radiation reprocessed by an optically thick spherically
symmetric wind as a function of time. Fig. 1 presents a schematic
representation of the problem. In this section, we give a brief
summary of their calculations and assumptions. Our goal for the
rest of the paper is to verify the theory of Piro & Lu (2020).

Let us consider a wind with constant mass-loss rate Ṁ and constant
speed vw that is ejected at an inner radius rin. Then, its outer radius
extension as a function of time is

rw(t) = rin + vwt . (1)

The density of such a wind is assumed to be

ρ(r) = 1

4π

Ṁ

vwr2
. (2)

If we consider constant opacity dominated by electron scattering,
ks = 0.34 cm2 g−1, then the optical depth between an arbitrary radius
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and the outer radius of the wind can be estimated by

τ (r) =
∫ rw(t)

r
ksρdr = ksṀ

4πvw

(
1

r
− 1

rw(t)

)
. (3)

Here, the theory assumes that the wind is dense enough so that
radiation is initially trapped in it. As a result, radiation is mainly
advected with the wind instead of diffusing (see Fig. 1). In order to
quantify the degree of radiation trapping, Piro & Lu (2020) introduce
the dimensionless parameter A

A = ksṀ

4πrinc
, (4)

where c is the speed of light. It is important to remark that radiation
is trapped in the wind only if the wind properties, mass-loss rate, and
opacity are such that A � 1.

We can estimate the characteristic time-scales involved in the
problem. The photon diffusion time-scale tdif is defined as the time
it takes for light at a given radius to travel up to the outer extension
of the wind

tdif = τ (r)

c

(rw(t) − r)r

rw(t)
. (5)

The dynamical time-scale tdyn corresponds to the time necessary for
a layer of wind at the inner radius to travel up to an arbitrary distance
r

tdyn = r − rin

vw
. (6)

Once these expressions are equal, tdif = tdyn, we can estimate the
so-called photon trapping radius rtr. Beyond this radius, the radiation
is not trapped anymore and can easily diffuse outwards (see Fig. 1).

Based on these analytical considerations, the ratio of the observed
luminosity Lobs to injected luminosity L∗ is

Lobs

L∗
=

(
rtr

rin

)−2/3 (
1 − 1

vw

drtr

dt

)
. (7)

In this expression, (rtr/rin)−2/3 represents the radiation degradation
from the inner boundary up to the trapping radius due to adiabatic
expansion caused by the advection. The trapping radius as a function
of time rtr(t) can be estimated by equating equations (5) and (6). Then,
by combining it with equation (7) together with its time derivative, it
is possible to calculate the exact value of this expression as a function
of time. In addition, Piro & Lu (2020) calculated the scaling relations
for the different stages of the transient development that agree with
the exact solution

Lobs

L∗
∝

⎧⎨
⎩

t−1/2, vwt/rin < 1
t−1/6, vwt/rin � 1
A−2/3, vwt/rin � A.

(8)

In the initial phase (vwt/rin < 1), the trapping radius is similar to
the wind outermost radius so that advection is basically the only
transport mechanism of radiation. Then, this does not hold anymore
as the wind extension becomes larger than the trapping radius but
keeps increasing albeit at a slower pace. Therefore, radiation is
advected only up to the trapping radius and then diffuses the rest
of its way up to the edge of the wind. This explains the shallower
power law. Finally, the system evolves to a time-steady configuration
of maximum attenuation.

So far this description only applies to a wind with constant A, i.e.
constant mass-loss rate and opacity. However, Piro & Lu (2020) also
explored the case for a time-dependent wind. Let us consider the
same problem but now allowing the wind to evolve as a function of

time

A(t) = Amax(1 + t/t ′)−β, (9)

where Amax is a constant, t
′

a characteristic time-scale for the wind
evolution, and β the power law of the evolution of the wind properties.
Including this term into the analytical formalism, the modified scaling
relations of the ratio of the observed to injected luminosity are

Lobs

L∗
∝

⎧⎪⎪⎨
⎪⎪⎩

t−1/2, t � rin/vw

t−1/6, rin/vw � t � t ′

A(t)−2/3, t ′ � t � t ′A1/β
max

1, t � A1/β
max.

(10)

In this case, the first two stages of the evolution are identical to the
constant wind case as long as the characteristic time-scale is long
enough to allow both phases. At t > t

′
, the wind starts to become

transparent either due to a decrease in its mass-loss rate or opacity.
As a result, the trapping radius decreases causing radiation to be less
affected by the wind. Then, more radiation manages to go through
the wind, which increases the observed luminosity. This stops only
once the wind becomes fully transparent and radiation is no longer
reprocessed but rather it propagates freely.

3 NUMERI CAL SI MULATI ONS

3.1 Equations and method

We solve the radiation-hydrodynamic equations derived in the mixed-
frame formulation following Krumholz et al. (2007), where we
keep terms up to O(u/c). As a closure relation, we use the FLD
approximation (Alme & Wilson 1973). Within this approach, the
radiative flux is written as a function of the radiative energy gradient
following Fick’s law. For further details of the equations and their
derivation, we refer the reader to the Appendix A.

The set of equations is solved making use of the operator-splitting
technique. First, we use the Godunov method with second-order time
evolution already included in JET. Secondly, we evolve explicitly the
sink/source terms due to the radiation coupling, such as radiation
pressure and work exerted by radiation. Finally, there is an implicit
integration step to evolve the thermal energy and the radiation
energy to simulate the radiation absorption, emission, and diffusion
processes. The method for performing this step is derived and detailed
in the Appendices A and B.

3.2 Wind ejection and irradiation

In order to simulate a steady wind as well as the irradiation of a
central source, we included extra prescriptions into the code. First,
the wind was modelled as a spherically symmetric source term of
mass, momentum, and energy according to the free-wind analytical
solution. The parameters to specify the wind properties are the mass-
loss rate Ṁ , terminal velocity vw (assumed to be constant), the
pressure p0 (or temperature T0) of the wind at an arbitrary radius
r0. The injection of mass, momentum, total energy, and radiation
energy (assumed to be negligible so set to the floor value) is done by
explicit source terms at the innermost radial boundary.

Secondly, the irradiation is included as an inner boundary condi-
tion, which is considered in the implicit diffusion step. The source
is specified by its luminosity L∗, and the opening angle θop, which
it illuminates. If the wind considered is optically thick (as is typical
in our case), it is necessary to consider an extra decay factor in the
irradiation boundary condition due to adiabatic energy degradation
in order to compensate for the the mesh displacement. If the trapping
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radius is larger than the inner radius of the domain, we multiply the
irradiation radiative flux by a factor (rin, mesh/rin)−2/3. On the contrary,
if the trapping radius is smaller than the inner radius of the domain,
we use a factor (rtr/rin)−2/3.

3.3 Setup and parameters

We consider a two-dimensional domain in spherical coordinates (r,
θ ), i.e. we assume azimuthal symmetry. The initial domain lengths
are rin ≤ r ≤ 10rin and 0 ≤ θ ≤ 90◦ in the radial and polar directions,
respectively. The setup is such that the radial dimension spans up
to two orders of magnitude at any given time. The initial grid is
made out of 512 logarithmically spaced cells in the radial direction,
and 256 linearly spaced cells in the polar direction. It is important
to remark that the number of radial cells may change through the
simulation as the inner and outer boundaries can move at different
speeds, though most of the simulation time the number of radial
cells is ∼1000. The outer boundary conditions were set to outflow
or zero-gradient conditions for all variables except for radiation
energy density, which was set to free-stream condition so that the
radiation can escape freely. We use an HLL Riemann solver for
the hydrodynamics hyperbolic step. The radiation implicit step was
solved with a Stabilised Bi-Congujate Gradient linear solver (van der
Vorst 1992) together with the BoomerAMG preconditioner (Yang &
Henson 2002) from the hypre library (Falgout et al. 2006). We use
them with their default parameters except for the relative convergence
tolerance, which was set to 10−10. These choices guaranteed rapid
convergence (in less than 10 iterations) as well as stability in the
iterative solver according to our empirical tests. The domain was
initialized at rest u = 0 with density ρ = (rin/r) × 10−12 g cm−3,
gas temperature T = (rin/r) × 103 K, and radiation temperature
Tr = 10 K. These initial conditions allow that the wind and radiation
can propagate freely even at later times when the outer edge of
the domain becomes significantly larger. All models consider vw =
108 cm s−1, rin = 1010 cm, and Ṁ = 1.75A × 10−4 M
 yr−1. The
central luminosity is constant and set to L∗ = 7.125 × 1036 erg s−1,
which is the value corresponding to a spherical source of radius rin

and Teff = 105 K. Notice that with these choices, the ratio of the
injected radiation to wind momenta is L∗/(Ṁvwc) < 2.14 × 10−6.
Thus, the radiation has no impact on the wind dynamics. Here, we
focus only on models within this regime. We assume that the opacity
is dominated by electron scattering, i.e. ks = 0.34 cm2 g−1, which
is reasonable for the range in density and temperature considered.
Finally, we set kP = 0 as the opacity is scattering dominated, and
also so that we can make direct comparisons with previous analytical
estimates.

Our models can be divided into three categories: isotropic irra-
diation with constant mass-loss rate, anisotropic irradiation with
constant mass-loss rate, and isotropic irradiation with evolving
mass-loss rate. The first group considers three models specified
by the dimensionless parameter A = 102, 102.5, and 103. The
second includes two models that use A = 102 but are specified
by the irradiation opening angle used θop = 15◦ and 45◦. All the
aforementioned models were simulated up to a time of vwt/rin = 105.5.
Finally, we ran a set of simulations for the case of a wind evolving
according to equation (9). Motivated by the observed features in
tidal-disruption events, we fixed Amax = 104, β = 5/3, and explored
four values for the characteristic time-scale vwt

′
/rin = 10−2, 1, 102,

and 104. In order to observe all the regimes of the expected evolution,
we simulated these models up to a time of vwt/rin = 109. Table 1
summarises all or models and their parameters.

Table 1. Simulated models and their parameters.

Name log (A) θop (vwt
′
/rin, β) vwtf/rin Nr × Nθ

A20 2.0 90◦ – 105.5 512 × 256
A25 2.5 90◦ – 105.5 512 × 256
A30 3.0 90◦ – 105.5 512 × 256
A20-op15 2.0 15◦ – 105.5 512 × 256
A20-op45 2.0 45◦ – 105.5 512 × 256
A40-t01 4.0 90◦ (10−2, 5/3) 104 512 × 256
A40-t1 4.0 90◦ (1, 5/3) 106 512 × 256
A40-t2 4.0 90◦ (102, 5/3) 109 512 × 256
A40-t4 4.0 90◦ (104, 5/3) 109 512 × 256

Column 1: the name of the model. Column 2: value of the dimensionless
parameter A (see Eq. [4]). Column 3: irradiation opening angle. Column 4:
characteristic time-scale and power law for the wind evolution (see Eq. [9]).
Column 5: simulation final time. Column 6: initial resolution in the radial Nr

and polar Nθ directions.

4 R ESULTS

4.1 Isotropic irradiation with constant wind

Fig. 2 shows radial profiles of the evolution of the isotropic irradiation
case with a constant wind. The top, middle, and bottom rows
display density, radiation energy density, and average luminosity,
respectively. In addition, the left-hand, central, and right-hand
columns show equal simulation times: vwt/rin = 10−0.91, 100.7, 102.7,
respectively. Each panel presents models with A = 102 (solid blue
line), 102.5 (dashed orange line), and 103 (dotted green line). We
have marked the outermost extension of the wind with a solid black
vertical line. As a reference, we included short dashed black lines
with the slopes expected from analytical estimations.

In the density radial profiles (top row), we see the wind expansion
shapes the expected free-wind profile ∝r−2. Through the entire
evolution, it is possible to observe a big jump in density (about a
factor 108) at the outermost extension of the wind due to the presence
of a shock connecting the ejected wind with low-density medium.
At later times (top central and right-hand panels), it can be seen how
the low-density material is compressed ahead of the wind though its
density is much smaller than the wind’s.

The radiation energy density radial profiles (middle row) show
an analogous time evolution compared to the density profiles but
following a ∝r−8/3 decay instead. This is the result of the adiabatic
expansion experienced by the radiation as it is advected together
with the wind. Reaching the outer extension of the wind, there
is a steep transition due to the drastic change from an optically
thick to an optically thin medium. Once the radiation reaches this
point, it can escape freely. The panels of the bottom row show the
averaged luminosity as a function of radial distance. This luminosity
is calculated as the averaged radiative flux multiplied by the surface
area of a sphere with radius r, i.e. 4πr2Fr(r). This quantity has
been rescaled by the luminosity of the central source L∗. Here, it is
important to bear in mind that in this case there are two mechanisms
for radiation transport: advection and diffusion. Thus, the radiative
flux can be expressed as the sum of both of its components. In these
panels, the thicker lines represent the total radiative flux while the
thinner ones stand solely for the diffusion component. Initially, the
diffusion is not an efficient mechanism for radiative transport. This
can be seen as, in general, it contributes a small fraction of the total
luminosity (thick lines) but its importance increases closer to the
edge of the wind. Nevertheless, at later times (bottom central and
right-hand panels) diffusion becomes progressively more relevant
within the wind. Notice that in the case model A = 102, the diffusion
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Figure 2. Radial profiles of density (top row), radiation energy density (middle row), and spherically averaged luminosity (bottom row) for models of isotropic
irradiation at times vwt/rin = 10−0.91 (left-hand column), 100.7 (middle column), and 102.7 (right-hand column). Each panel shows models with A = 102 (solid
blue line), 102.5 (dashed orange line), and 103 (dotted green line). All variables are scaled to their values at the injection radius rin. The average luminosity
radial profiles (bottom row) include thinner lines, which represent solely the diffusive component of the luminosity. The solid black vertical line represents the
outermost extension of the wind rw. The short dashed black lines are the expected analytical scaling relation for each variable.

component is as important as the advection component close to
the edge of the wind. This is occurs as the wind becomes more
dilluted the radiation starts to decouple from the wind, so that it can
diffuse through the medium. The profiles are also reproduced very
well by the analytical scalings. The total luminosity decays with
the expected ∝r−2/3 slope while the diffusion component increases
radially following the power law r1/3 as a result of applying the FLD
approximation on the radiation energy density profile.

Now, we proceed to calculate the numerical light curves based
on our simulations. This was done by identifying the location of
the photosphere, i.e. the position along radial rays where optical
depth is τ = 2/3. During the initial evolution, the location of the
photosphere is within the shell of compressed material slightly ahead
of the outermost extension of the wind. However, at later times the
photosphere migrates inside the wind as the density decreases. We
measured the radiative flux at such locations through all snapshots
of all models. Then, we computed the observed averaged luminosity
Lobs = 4πr2Fr|τ = 2/3 as a function of dimensionless time. The results
are shown in Fig. 3 for all three models: A = 102 (blue), 102.5 (orange),
and 103 (green). The dots and lines represent the numerical results
and the analytical estimates, respectively. Each dot corresponds to a
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Figure 3. Analytical (solid lines) and simulated (connected dots) light curves
of isotropically irradiated wind-reprocessed transients with A = 102 (blue),
102.5 (orange), and 103 (green). Lobs was rescaled by the injected luminosity
L∗ at the inner radius rin.
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Simulations of wind-reprocessed transients 1097

single snapshot of each of the simulation. The latter were calculated
by using equation (7). Also, we show the expected power laws in the
different regimes as dashed lines for guiding the eye. These results
show that overall the numerical simulations reproduce the trends
predicted by the analytical analysis. Nevertheless, there are some
differences in certain phases of the evolution. At early times (vwt/rin

< 1), the numerical simulations show higher observed luminosity
compared to the theoretical prediction. A discrepancy at this stage
is not unexpected as Piro & Lu (2020) warned that some features
might differ as the wind needs a time-scale ∼vw/rin to develop as
well as for the density profile to be well sampled. In addition, this
phase shows a much steeper decay (∝t−1) compared to the analytical
prediction (∝t−1/2), which seems to be clearer for models with larger
A. We investigated this behaviour further by increasing the resolution
of the simulation, or by launching the wind for some time in advance
before injecting the radiation. However, the same decay feature was
observed. A potential explanation for this behaviour could be the
assumption of the analytical model of neglecting diffusion within
the wind during this phase. Notice that this might not be appropriate
at such early times as its contribution could be of about 10 per cent
of the total luminosity close to the edge of the wind (see bottom
left-hand panel of Fig. 2). In the next phase (vwt/rin � 1), the
maximum extension of the wind rw starts to differ from the trapping
radius rtr. As a result, the luminosity decay follows a shallower
time power-law than in the previous phase. At this point, the light
curves match relatively well the analytical profiles. Although there
are deviations from the theoretical predictions, they are very small
(� 0.2 dex). Notice that these differences are more significant in
models with smaller A, i.e. less dense winds. This feature could
also be caused by the contribution of diffusion to the radiation
transport. In the bottom central panel of Fig. 2, the model A =
102 shows that diffusion is much more relevant compared to the
other models, and it increases towards the outermost edge of the
wind. Thus, this could cause extra attenuation that the analytical
model ignores as it assumes that the radiation escapes as soon as it
gets to the trapping radius. Following the evolution, as rtr reaches
its asymptotic constant value, the radiation reaches its maximum
attenuation. The change of slope observed in the simulated light
curves is caused by the fact that rtr becomes smaller than the radius at
which radiation is injected, which occurs because our inner boundary
is continuously expanding with the rest of the mesh. Besides the
initial phase that shows a steeper power-law decay, the spherically
symmetric wind-reprocessed transient simulations agree relatively
well with the analytical predictions.

4.2 Isotropic irradiation with evolving wind

Fig. 4 shows the simulated light curves for the case of an evolving
wind according to equation (9) using the parameters Amax = 104

and β = 5/3. We present four simulations, each one with a different
characteristic time-scale vwt

′
/rin = 10−2, 1, 102, and 104. These

are represented as red, purple, brown, and pink connected dots,
respectively. Each dot corresponds to a single snapshot of each
of the simulation. As a reference, we show the analytical scaling
relations from equation (10) as dashed black lines. Notice that these
simulations cover up to 11 orders of magnitudes temporarily.

In the initial phase of the evolution (vwt/rin < 1), we again see a
steeper decay (∝t−1) compared to the analytical prediction (∝t−1/2).
As we discussed in Section 4.1, this could be due to the diffusion not
been taken into account close to the edge of the wind in the analytical
model. Later on, as in the non-evolving wind case, the luminosity
continues to decay with time but now following a shallower power
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t−1

t−1/6
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Figure 4. Simulated light curves for isotropically irradiated wind-
reprocessed transient with an evolving mass-loss rate with Amax = 104, β

= 5/3, and characteristic timescales vwt
′
/rin = 10−2, 1, 102, and 104 shown

as connected points in red, purple, brown, and pink, respectively. Notice that
the x-axis spans over ∼11 orders of magnitudes.

law t−1/6 caused by the growing importance of diffusion. Notice
that the model with the shortest characteristic time-scale vwt

′
/rin =

10−2 (connected red dots) does not manage to get into this phase,
instead it skips directly into the next one. At t > t

′
, the wind quickly

evolves towards becoming optically thin. This is shown as a rise
following ∝ t10/9 due to our choice of β = 5/3. Once the wind becomes
completely optically thin, the luminosity is no longer attenuated so it
increases up to its maximum level Lobs/L∗ ≈ 1 and remains constant.
At the beginning of this stage, we observe some wiggles and slight
overestimation of the reprocessed luminosity, which are due to the
small fluctuations appearing in transitions between optically thick to
optically thin media. Overall, the evolution agrees very well with the
analytical scaling relations.

4.3 Anisotropic irradiation with constant wind

We now consider a wind with constant A but with an anisotropic
irradiation source characterised by an opening angle along the polar
coordinate θop, which is measured from a polar axis. As a result,
the radiation is injected in a cone. In a real astrophysical object,
this geometry could arise, for example, when a thick disc blocks
radiation from propagating near the equatorial plane. In Fig. 5, we
present radiation energy density maps at four different times for a
model with A = 102 and θop = 15◦. Notice that the spatial as well as
the radiation energy density scales change with time due to the grid
radial motion. In the top left-hand panel, it is possible to observe how
radiation is injected solely at small polar angles. The top right-hand
panel shows how radiation starts to diffuse within the wind to larger
polar angles. However, at such short time-scales radiation has not had
enough time to diffuse far. As the system evolves, the radiation map
looks more evenly distributed as we see in the bottom left-hand panel.
However, at small scales, it is still possible to observe the signatures
of radiation injection only within the polar cone. Energy density in
the bottom right-hand panel looks like a completely isotropic source,
because the wind became more transparent in its outer regions and
the radiation diffused easily in the polar direction.

Fig. 6 shows the simulated light curves for models with A = 102:
θop = 15◦ (left-hand panel) and θop = 45◦ (right-hand panel), along
four different lines of sight: θobs = 0◦ (blue dots), 30◦ (orange dots),
60◦ (green dots), and 90◦ (red dots). In these cases, Lobs was calculated
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1098 D. Calderón, O. Pejcha and P. C. Duffell

Figure 5. Radiation energy density maps for model with A = 102 and θop = 15◦, i.e. the irradiation only is injected for θ ≤ θop. Panels show snapshots at times
vwt/rin = 10−0.9, 100.7, 102.3, and 103.9 (from top left-hand to bottom right-hand). Notice the changes in the physical scale and dynamic range due to the radial
motion of the grid.
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Figure 6. Simulated light curves for anisotropically irradiated wind-reprocessed transient with a constant wind whose A = 102 with irradiation opening angle
of θop = 15◦ (left-hand panel), and θop = 45◦ (right-hand panel). Light curves are shown for different lines of sight for every model: θobs = 0◦ (blue dots), 30◦
(orange dots), 60◦ (green dots), and 90◦ (red dots). The simulated light curve of the isotropic irradiation case with A = 102 is shown as a solid black line. The
vertical dashed lines represent the circular diffusion time-scale for a given line of sight. Notice that it is has been scaled by the injected luminosity at the inner
radius rin.

as the isotropic equivalent bolometric luminosity. To obtain it, we had
to remap our simulations into three-dimensional space by assuming
azimuthal symmetry and reflective symmetry in the polar direction.
Then, we integrated the total radiated power at the photosphere using
the line-of-sight projection of the radiative flux. In Fig. 6, we also
included the simulated light curve of with isotropic radiation and

A = 102 (solid black line) as a reference. At early times (vwt/rin

� 1), the light curves of both models display behave analogously
but scaled according to the projection effect of the rays from the
illuminated region into the different lines of sight. Notice that if the
line of sight is along or close to the irradiated area, an observer
would tend to overestimate the luminosity due to the assumption of
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Simulations of wind-reprocessed transients 1099

an isotropic source. The smaller the confinement angle θop, the larger
the overestimation. In addition, the case with a smaller θop shows
a wider spread of scaling between the light curves compared to the
case with larger θop. This is simply as the projection effect is starker
if the radiation is confined into a smaller angle cone when comparing
the light curves along the most extreme lines of sight. Further in the
evolution, light curves in both models have a shallower power-law
decay similar to the isotropic irradiation case. During this phase,
the radiation from the directly illuminated region starts to diffuse
to larger polar angles. As a result, these light curves start to differ
from the isotropic irradiation case. In the case with a smaller θop, the
differences are much more noticeable, especially at high inclination
lines of sight. In the other case, although differences are mild, it is
also possible to observe a slightly increasing trend after reaching
the minimum value in the light curves at high inclination. Although
behaviours in both cases are different, the underlying cause is the
same. Radiation needs enough time for being able to reach to higher
polar angles, and of course the higher the line of sight, the longer it
takes for radiation to travel.

In order to quantify the time-scale for light curves along different
lines of sight for reaching this phase, we estimated the diffuse time-
scale in the polar angle direction

tdif,θ ∼ (r	θ )τ

c
= ρks(r	θ )2

c
= Ṁks	θ2

4πcvw
, (11)

where 	θ = |θop − θobs| corresponds to the polar angle difference
between a given line of sight and the irradiation opening angle θop.
This quantity is shown as vertical dashed lines in Fig. 6, where the
colours represent also the line-of-sight angle use to compute tdif, θ .
Approximately, after such time-scales, radiation has had enough
time to diffuse to higher inclinations so that light curves resemble
qualitatively the isotropic irradiation case. Finally, we observe that
at late times all light curves converge as at t � tdif, θ the source must
behave as an isotropic source coinciding with the isotropic irradiation
model.

In summary, the anisotropic irradiation of the wind can change
significantly the simple sequence of analytic power-law scalings if
the system is observed along extreme lines of sight compared to
the irradiation cone angular size. We expect additional complica-
tions when considering that both the irradiation and the wind are
anisotropic, which is likely to occur in tidal disruption events and
similar extreme situations.

5 C O N C L U S I O N S

We have developed a new module for radiation treatment and cou-
pling with hydrodynamics for the moving-mesh hydrodynamic code
JET. Our code solves the equations of radiative hydrodynamics in the
mixed-frame formulation using the FLD approximation as a closure
relation. We verified its capability of performing multidimensional
simulations over many orders of magnitude in both space and time,
which makes it an ideal tool for modelling astrophysical transients.
As a first application, we have performed two-dimensional moving-
mesh radiation hydrodynamic simulations of an optically thick wind
reprocessing irradiation from a central source. When both the wind
and the irradiating source are spherically symmetric, the simulated
light curves are overall in agreement with the scaling relations derived
analytically by Piro & Lu (2020) for both the constant and time-
dependent winds. We found differences at the earliest stage of the
evolution as neglecting completely the diffusion close to the edge of
the wind might not be completely justified.

As a new result made possible by the multidimensional capability
of our code, we also studied the case of anisotropic irradiation
with a constant wind. Here, our results suggest that the evolution
is qualitatively similar to the isotropic source as long as we observe
either from the direction of the radiation injection or if the opening
angle of the irradiation is large enough (θop � 45◦). Differences
become important when we observe outside of this region as radiation
needs enough time to diffuse through the wind to larger polar angles
before it can escape from the wind. Depending on the opening angle
of the irradiation, the differences in the inferred luminosity could
be up to one order of magnitude. Although definitive results require
more sophisticated method of calculating the light curves, our results
suggest that diffusion in the polar direction can modify the sequence
of power laws seen in the fiducial isotropic irradiation scenario.

In this work, we have restricted our analysis to an ideal scenario
in order to make a direct comparison with analytical predictions.
Nevertheless, our numerical tool is certainly capable of dealing with
much more complex and realistic problems. A next step would be
the use of more realistic opacity prescriptions so that it is possible
to reproduce observational data. In the case of tidal disruption
events, we plan to investigate models with much more complex
geometries for the entire duration of the observed transient so that
we can synthesise their light curves (Guillochon & Ramirez-Ruiz
2015; Metzger & Stone 2016; Bonnerot, Lu & Hopkins 2021). In
the case of type IIn supernovae, despite recent work (e.g. Suzuki
et al. 2016, 2019), further modelling is needed for understanding
observational signatures of different geometries of CSM, e.g. slabs
resulting from the wind–wind collisions of their precursors (Kurfürst
et al. 2020). Also, it is necessary to simulate observational signatures
of the final stage of stellar mergers in order to test their relation with
light curves of luminous red novae. Additional physical processes
might need to be considered in order to capture the full picture
of such phenomena. The further addition of dust formation (e.g.
Zhu et al. 2014) or even chemical networks may be crucial for
modelling properly the evolution of some transients with low inferred
temperatures (< 1000 K). The Lagrangian nature of our code makes
it ideal for implementing similar physical effects.
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APPENDI X A : FLUX-LI MI TED D I FFUSI ON IN
JET

Our new module for radiation treatment in JET considers the radiation
hydrodynamics equations in the mixed-frame formulation so that we
can ensure the energy conservation to high precision (Krumholz et al.
2007). We work with frequency-integrated quantities and assume
local thermodynamic equilibrium. Then, the equations keeping terms
up to order O(u/c) (Zhang et al. 2011) are given by

∂ρ

∂t
+ ∇ · (ρu) = 0, (A1)

∂(ρu)

∂t
+ ∇ · (ρuu) + ∇p = χF

c
F(0)

r − κP

(u
c

) (
arT

4 − E(0)
r

)
,

(A2)

∂(ρE)

∂t
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+ ∇ · Pr = −χF

c
F(0)
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) (
arT

4 − E(0)
r

)
,

(A3)

where (ρ, u, p) correspond to the primitive hydrodynamic variables:
mass density, fluid velocity, and thermal pressure, respectively. In
addition, E and T are the total energy of matter per unit mass
(internal plus kinetic) and temperature of the fluid. The radiation
variables (Er, Fr, Pr) are the radiation energy density, radiation flux,
and radiation pressure tensor, respectively. The constants c and ar

represent the speed of light and the radiation constant. The quantities
κP and χF are the Planck mean and flux mean interaction coefficients,
which have units of inverse length. They are related to the Planck
mean opacity kP and flux mean opacity kF through κP = ρkP and
χF = ρkF, respectively. Thus, opacities have units of square length
divided by mass (e.g. cm2 g−1). Variables with the superscript (0)
are measured in the co-moving frame while variables without it are
measured in the lab frame.

Notice that we have six variables but a set of only five equations. In
order to solve the system, it is necessary to make an extra assumption
in order to close the system. In this case, we consider the flux-limited
diffusion (herefter FLD) approximation (Alme & Wilson 1973) so
that the co-moving radiation flux can be written as a function of
the co-moving radiation energy density following the Fick’s law as
follows

F(0)
r = − cλ

χR
∇E(0)

r , (A4)

where χR is the Rosseland mean of the sum of absorption and
scattering coefficients. This value is related to the Rosseland mean
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opacity kR through χR = ρkR. Also, λ represents the flux limiter,
which is given by Levermore & Pomraning (1981),

λ = 2 + R

6 + 3R + R2
, (A5)

where

R = |∇E(0)
r |

χRE
(0)
r

. (A6)

The flux limiter allows radiation to diffuse in the optically thick
regime so λ → 1/3, while in the optically thin limit λ → 1/R so
that radiation propagates with the speed of light. Within the FLD
approximation, the radiation pressure is P(0)

r = f (0)E(0)
r , where f is

the Eddington factor, and is given by f = λ + λ2R2.
We make the assumption that χF ≡ χR, which is valid in the

optically thick regime (Mihalas & Mihalas 1999). Furthermore, we
consider that the flux limiter depends on radiation energy density
measured in the lab frame (Chatzopoulos & Weide 2019). Then,
we arrive to the radiation hydrodynamics equations in the FLD
approximation up to order O(u/c)

∂ρ

∂t
+ ∇ · (ρu) = 0, (A7)

∂(ρu)

∂t
+ ∇ · (ρuu) + ∇p + λ∇Er = 0, (A8)

∂(ρE)

∂t
+ ∇ · (ρEu + pu) + λu · ∇Er

= −cκP

(
arT

4 − E(0)
r

)
, (A9)

∂Er

∂t
+ ∇ ·

(
3 − f

2
Eru

)
− λu · ∇Er = cκP

(
arT

4 − E(0)
r

)
+ ∇ ·

(
cλ

χR
∇Er

)
, (A10)

where we have dropped terms that are not significant at leading order
in the streaming, static diffusion, or dynamic diffusion regimes (see
Section 2.2 in Krumholz et al. 2007, for a discussion). The co-moving
and lab frame radiation quantities are related through the expressions
derived by Zhang et al. (2011)

E(0)
r = Er − 2

c2
u · F(0)

r + O(u2/c2) = Er

+ 2
λ

χR

u
c

· ∇Er + O(u2/c2). (A11)

In order to solve the system of equations, we start focusing on the
hyperbolic subsystem of equations

∂ρ

∂t
+ ∇ · (ρu) = 0, (A12)

∂(ρu)

∂t
+ ∇ · (ρuu) + ∇p + λ∇Er = 0, (A13)

∂(ρE)

∂t
+ ∇ · (ρEu + pu) + λu · ∇Er = 0, (A14)

∂Er

∂t
+ ∇ ·

(
3 − f

2
Eru

)
− λu · ∇Er = 0. (A15)

Following Zhang et al. (2011), we solve this system making use of
the Godunov method through a characteristic-based Riemann solver.
The eigenvalues of the problem are u − cs, u, u + cs, where cs is the
radiation-modified sound speed given by

cs =
√

γ
p

ρ
+ (λ + 1)

λEr

ρ
. (A16)

Here, γ is the adiabatic index and we have assumed that (3 − f)/2 =
λ + 1. Rearranging the system of equations, we obtain an equation
for the total energy (matter plus radiation) conservation, i.e.

∂ρ

∂t
+ ∇ · (ρu) = 0, (A17)

∂(ρu)

∂t
+ ∇ · (ρuu) + ∇p = 0, (A18)

∂(ρE + Er)

∂t
+ ∇ ·

(
ρEu + pu + 3 − f

2
Eru

)
= 0, (A19)

∂Er

∂t
+ ∇ ·

(
3 − f

2
Eru

)
= 0. (A20)

Once we solve the hyperbolic portion of the system of equations,
we need to deal with the radiation terms left out, i.e.

∂(ρu)

∂t
= λ∇Er, (A21)

∂Er

∂t
=

(
1 − κP

χR

)
λu · ∇Er, (A22)

where we have included an extra term in the radiation energy density
due its transformation into a lab frame quantity (see equation A11).
These terms are treated as source terms on the right-hand side and
are evolved through a simple explicit integration scheme.

Now, the only terms left are the ones related to radiation diffusion,
absorption, and emission. These processes are governed by the
equations

∂e

∂t
= −cκP

(
arT

4 − Er

)
, (A23)

∂Er

∂t
= cκP

(
arT

4 − Er

) + ∇ ·
(

cλ

χR
∇Er

)
, (A24)

where e is the internal energy density. These equations show that al-
though the total energy remains constant, the absorption and emission
processes cause the exchange between radiation and thermal energy.
The second term on the right-hand side of the second equation is
responsible for radiation diffusion. To solve this system of equations,
we follow an implicit scheme in order not to constrain the timestep
too much as radiation processes are dictated by the speed of light
and by the size of the grid cells. The discretisation and solution of
the system are developed in the next section.

APPENDI X B: IMPLI CI T RADI ATI ON SO LVER

We follow the method developed by Commerçon et al. (2011) for
implementing FLD in RAMSES (Teyssier 2002) as well as used in
other codes such as PLUTO (Mignone et al. 2007) by Kolb et al. (2013)
and AZEUS (Ramsey, Clarke & Men’shchikov 2012) by Ramsey &
Dullemond (2015). We start discretising equations (A23) and (A24),
applying e = ρCVT, where CV is the specific heat capacity at constant
volume. We also assume ρ to be constant within the implicit step.

ρCV
T n+1 − T n

	t
= −cκn

P

[
ar(T

n+1)4 − En+1
r

]
, (B1)

En+1
r − En

r

	t
= cκn

P

[
ar(T

n+1)4 − En+1
r

]
+ ∇ ·

(
cλn

χn
R

∇En+1
r

)
. (B2)
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We linearised the system assuming temperature changes are small
within each timestep, i.e.

(T n+1)4 = (T n)4

(
1 + T n+1 − T n

T n

)4

≈ 4(T n)3T n+1 − 3(T n)4. (B3)

Applying this approximation to our system of equations, it is possible
to find the following equation for the temperature

T n+1 = 3arκ
n
P c	t(T n)4 + ρCVT n + κn

P c	tEn+1
r

ρCV + 4arκ
n
P c	t(T n)3

. (B4)

The radiation energy density equation is given by

En+1
r − En

r − c	t∇ ·
(

λn

χn
R

∇En+1
r

)
= c	tκn

P

[
4ar(T

n)3T n+1 − 3ar(T
n)4 − En+1

r

]
. (B5)

Combining these two expressions, it is possible to build a single
linear equation where the unknowns are the radiation energy density
in the next timestep, i.e. at n + 1,

F (En+1
r ) = c	tκn

P (4ar

(
T n)3

[
3arκ

n
P c	t(T n)4 + ρCVT n

ρCV + 4arκ
n
P c	t(T n)3

]

− 3ar(T
n)4

)
+ En

r . (B6)

Here, F = F (En+1
r ) includes all the terms with dependence of En+1

r

from equation (B5), i.e. the left-hand side plus an extra term gnEn+1
r

that appears from the substitution of equation (B4), where gn is
known and given by

gn = ρCVκn
P c	t

ρCV + 4arκ
n
P c	t(T n)3

. (B7)

As all terms on the right-hand side of equation (B6) are known we
collectively label them as bn.

Now we proceed to discretise the spatial derivatives. Let us
consider an arbitrary cell of a three-dimensional grid with indices
(i, j, k). We integrate across the volume of such a cell Vi, j, k.•

Vi,j,k

F (En+1
r )dV =

•
Vi,j,k

bndV , (B8)
•

Vi,j,k

(1 + gn)En+1
r − c	t∇ ·

(
λn

χn
R

∇En+1
r

)
dV

= bnVi,j,k, (B9)

(1 + gn)En+1
ri,j ,k

− c	t

Vi,j,k

—
A(Vi,j,k )

λn

χn
R

∇En+1
r · dA = bn, (B10)

(1 + gn)En+1
ri,j ,k

− c	t

Vi,j,k

faces∑
l

λn
l

χn
Rl

∇En+1
rl

· Al = bn, (B11)

where the index l runs for each face of the cell (i, j, k), therefore
quantities with the subscript l are evaluated at the interface between
neighbouring cells. In a uniform Cartesian grid, the number of faces
is six but in this case the situation is not as simple. First, the code
JET solves the hydrodynamics equations in spherical coordinates
and, more importantly, its moving-mesh nature allows the motion
of cells in the radial direction. The latter feature causes that any
given cell, despite having two radial neighbouring cells, to have an
arbitrary number of angular neighbouring cells, in both the polar and
azimuthal directions. Thus, the index l runs for an arbitrary number
of faces, and the face area must be carefully calculated in order to
account for grid misalignment of neighbouring cells.

Once we have evaluated equation (B11) for every single cell in the
domain, we construct a set of linear equations defined by an N × N
matrix, where N is the number of cells in the grid at a given iteration.1

In order to solve the system, we make use of the Portable, Extensible
Toolkit for Scientific Computation (PETSc; Balay et al. 2020). Unlike
other implementations in grid-based codes (e.g. PLUTO, AZEUS,
RAMSES), the matrix associated with the linear system is (in general)
non-symmetric. Thus, we cannot relay on using simple solvers such
as the Conjugate Gradient (CG) method , the Generalised Minimal
Residual (GMRES). In fact they neither show good convergence
nor performance. Instead, our tests showed that the Stabilised Bi-
Conjugate Gradient Stable linear solver (BCGS; van der Vorst 1992)
together with a Block Jacobi (BJACOBI) preconditioner converges
to the same solution as using a direct solver such as LU factorisation.
The use of relative and absolute convergence tolerance of 10−8

and 10−50, respectively, shows very good results in all our test
cases (see Appendix C). Nevertheless, it is important to remark that
the choice of the appropriate combination of iterative linear solver
and preconditioner seems to be problem dependent. For instance,
in the case of more complicated cases like the wind-reprocessed
transient problem, these choices do not even converge. Instead, a
combination of BCGS together with an algebraic multigrid method
(AMG) converges in a couple of iterations. Specifically, we noticed
that the use of the preconditioner boomerAMG (Yang & Henson
2002) from the library hypre (Falgout et al. 2006), although more
expensive computationally, manages to preserve stability and aids
convergence.

A P P E N D I X C : R A D I AT I O N H Y D RO DY NA M I C S
VA LIDATION TESTS

In order to validate the implementation of radiation into the hydro-
dynamics code JET, we performed simple tests problems with known
and sometimes analytic solutions. Inspired by previous works with
similar implementations (e.g. Commerçon et al. 2011; Zhang et al.
2011; Kolb et al. 2013; Ramsey & Dullemond 2015; Chatzopoulos
& Weide 2019), we present three tests in order to check different
radiative process regimes.

C1 Linear diffusion

This test is based on the linear diffusion test by Commerçon et al.
(2011). Originally, this simulation recovers the analytical solution
of a simple one-dimensional diffusion problem. It starts with a delta
function profile for the radiation energy density and evolves it. The
hydrodynamic module of the code was disabled as this test aims to
check the implementation of the radiation diffusion module alone. In
our case, we make use of a two-dimensional spherical grid, but we
did not start with a δ function profile. Instead, the initial condition
uses the analytical solution of the diffusion problem but short time
after its initialisation as a δ function. By doing so, we can avoid
possible problems in the singularity of the spherical domain. The
profile of the radiation energy density is given by

Er(r, t) = Er,0√
cπt

exp

(
−3r2

4ct

)
, (C1)

where Er, 0 corresponds to the total radiation energy (i.e. the radiation
energy density integrated over the domain). We use a constant flux-
limiter λ = 1/3, set Er,0 = 105 erg cm−3, χR = 1 cm−1, and κP = 0.

1In JET, the number of radial cells can change during the simulation
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Figure C1. Results of the radiation linear diffusion tests with the initial profile centred at the origin r = 0 (left-hand side column), and at r = 0.5 cm
(right-hand side column). Upper panels show radiation density maps of the entire simulation domain at t = 10−12 s. Lower panels show radial profiles of the
radiation energy density centred at r = 0 and 0.5 cm. The numerical solution (orange dots) is compared with the analytical solution (solid blue line). The
residuals are shown with black dots connected with solid black lines. Differences are at most of ∼ 10 per cent, meaning the code models radiation diffusion
correctly.

The domain in the radial and polar coordinates span 0 ≤ r ≤ 1 cm
and 0 ≤ θ ≤ 90◦ with 128 × 128 cells. The density, pressure, and
velocity were initialized to ρ = 1 g cm−3, p = 1 dyn cm−2, and u =
0, respectively. In Fig. C1, specifically on the left-hand side column,
we show the result of this simulation. The top panel is a radiation
energy density map of the entire domain at t = 10−12 s. The lower
panel shows a comparison between the analytical (solid blue line) and
the numerical (orange dots) radiation energy density radial profiles
at the same simulation time. The residuals (connected black dots) are
also included, showing that differences are kept � 10 per cent. This
result implies that the code models radiation diffusion in the radial
direction very well.

C2 Off-center linear diffusion

For testing further the radiation diffusion module of the code, we
repeated the test of linear diffusion. We use the same specifications
and initial conditions. However, in this case, the radiation energy
density initial profile was not centred at the origin but at r = 0.5 cm
and θ = 0 instead. The result and comparison with the analytical
solution are shown in the right-hand column of Fig. C1. Notice
that the numerical solution matches the theoretical solution very
well. The residual are also of � 10 per cent. This means that
the radiation module handles diffusion correctly in the lateral
direction too.
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Figure C2. Results of the matter-radiation coupling test. The initial internal
energy density of the models was set to e0 = 102 erg cm−3 (blue dots),
106 erg cm−3 (orange squares), and 1010 erg cm−3 (green diamonds). The
analytical solution is also showed as a solid black line. The agreement between
the analytical and numerical solution is excellent.

C3 Matter-radiation coupling

Turner & Stone (2001) proposed this test to check the coupling
between matter and radiation. The simulation considers a fluid at
rest that it is not in thermal equilibrium. Initially, most of the
energy is in the form of radiation, being constant across the domain.
Neglecting the importance of hydrodynamics, it is possible to model
the evolution of the internal energy density of the system as follows

de

dt
= cκPEr − cκPar

(
γ − 1

ρ

μmH

kB

)4

e4. (C2)

Although this equation does not have an analytical solution, it is
straightforward to solve it numerically. The terms on the right-hand
side represent the absorption and emission processes. Both terms are
equal in thermal equilibrium, which gives de

dt
= 0. Finally, both the

radiation and matter temperature should reach the same value, where
the radiation temperature is defined by Tr = (Er/ar)1/4.

In this test, we only made use of the radiation module of the code
by deactivating the hydrodynamic module of the code. The setup
fills the entire domain with constant radiation energy density Er =
1012 erg cm−3, density ρ = 10−7 g cm−3, Planck mean coefficient
κP = 4 × 108 cm−1, mean molecular weight μ = 0.6, and adiabatic
index γ = 5/3. We consider a domain with 0 ≤ r ≤ 1 cm and 0 ≤
θ ≤ 90◦ with 32 × 32 cells. We run three simulations, each of them
with a different initial internal energy density: e0 = 102, 106, and
1010 erg cm−3. The simulations start from t = 0 and evolve up to
10−4 s, making sure the time sampling is sufficient for capturing the
entire evolution. As in Kolb et al. (2013), we run three simulations
with different values for the initial internal energy. Fig. C2 shows the
results of these tests along with the analytic solutions.

The agreement between the analytical (solid black lines) and nu-
merical (blue circles, orange squares, and green diamonds) solutions
is excellent. Thus, the radiation module of the code can simulate the
matter-radiation coupling very well.

C4 Radiative Blast Wave

This test simulates the evolution of a large amount of energy placed
in a small region, which causes a spherical blast wave. It is analogous
to the purely hydrodynamic case of a Sedov–Taylor blast wave, but
it considers a high amount of radiation energy placed in the domain
instead of thermal energy. Despite not having an analytical solutions,
this problem has been modelled by many codes as well as in different
radiation-matter coupling regimes. We follow the specifications by
Zhang et al. (2011) to set up the problem. The domain spans 0 ≤
r ≤ 1014 cm and 0 ≤ θ ≤ 90◦. The zones are linearly spaced. The
medium is initialized with a constant density ρ = 5 × 10−6 g cm−3,
at rest u = 0, and with both radiation and matter temperature set
to T = 103 K. However, in the central region of the domain, r <

2 × 1012 cm, the radiation temperature is set to a higher value of
Tr = 107 K. The adiabatic index is set to γ = 5/3, and the mean
molecular weight to μ = 1. We tested two cases for different matter-
radiation coupling regimes. In the decoupled case, the Rosseland
and Planck coefficients were set to κP = 2 × 10−16 cm−1 and χR =
2 × 10−10 cm−1, respectively. Meanwhile in the coupled case, both
coefficients were set to κP = χR = 2 × 10−10 cm−1.
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Figure C3. Results of the radiative blast wave test for decoupled (upper panel) and coupled (lower panel) cases. Radiation (solid blue line) and matter (dashed
orange line) temperature radial profiles at t = 106 s. Notice that if radiation is not strongly coupled to matter it can diffuse forward, while gas temperature shows
a peak due to the presence of a shock.
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Fig. C3 shows radial profiles for radiation (solid blue line) and
matter (dashed orange line) temperatures at the end of the simulation
at t = 106 s for the decoupled (upper panel) and coupled (lower
panel) cases. In the weak coupling case, we observe the presence
of a sharp peak in the matter temperature as expected due to the
presence of the shock. The radiation can diffuse forward as it is
not strongly coupled to the matter. In the strong coupling case, both

matter and radiation temperatures are identical. Radiation is coupled
to matter so it cannot diffuse ahead unlike in the previous case. Both
tests are in agreement with analogous tests by Zhang et al. (2011)
and Chatzopoulos & Weide (2019).

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 507, 1092–1105 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/1/1092/6335485 by M
FF C

U
N

I user on 27 August 2021


