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In this paper, we review and analyze four specific general-relativistic problems in which
gravitomagnetism plays an important role: the dragging of magnetic fields around rotat-
ing black holes, dragging inside a collapsing slowly rotating spherical shell of dust,
compared with the dragging by rotating gravitational waves. We demonstrate how the
quantum detection of inertial frame dragging can be accomplished by using the Unruh–
DeWitt detectors. Finally, we shall briefly show how “instantaneous Machian gauges”
can be useful in the cosmological perturbation theory.
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1. Introduction

The relativistic effect of the dragging of inertial frames is associated with the pro-
found criticism of the Newtonian concepts of absolute space and time by Mach.
It was this criticism which appears to be one of the most influential for Einstein
in the creation of general relativity. Ernst Mach (1838–1916) was born very close
to Brno (like Kurt Gödel), today Czech Republic, formerly Austria–Hungary. He
was professor at the Karl–Ferdinands Universität in Prague for 28 years and his
influence on Prague physics indirectly also led to the stay of Albert Einstein in
Prague.

Let us illustrate Mach’s ideas by just one thought from his most influential work:

[The] investigator ... must feel the need of ... knowledge of the immediate
connections, say, of the masses of the universe. There will hover before

∗Based on a plenary talk presented at the Sixteenth Marcel Grossmann Meeting on Recent Devel-
opments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field
Theories, online, July 2021.
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him as an ideal insight into the principles of the whole matter, from which
accelerated and inertial motions will result in the same way (Science of
mechanics).

Keeping the Mach tradition, on the 150th anniversary of the birth of Ernst Mach,
the international conference was organized in September 1988 at the Charles Uni-
versity in Prague. The conference papers are published in the book,1 including
several contributions by some leading scientists, philosophers and historians of sci-
ence. The meeting was inspiring for Julian Barbour and Herbert Pfister who, during
the meeting, decided to organize the meeting on just Mach’s principle. A compre-
hensive volume,2 based on the conference at Tübingen in July 1993, includes not
only many contributions by leading experts but also detailed texts recording many
discussions.

Prague and Brno historically became attractive places for a number of influ-
ential scientists. Here, we naturally recall the stay of Albert Einstein at the Karl-
Ferdinands Universität from April 1911 until July 1912. His invitation to Prague
was strongly supported by Mach’s Prague pupils. Einstein wrote several pioneering
papers showing the route to the final version of General Relativity, in particular
in his answer to Max Abraham how a future theory of gravity should look like.
In the best known paper from Prague, he forecasted the light bending (we refer,
e.g., to Ref. 3 for details). From the point of view of dragging, however, it is most
interesting that it was in Prague where this phenomenon was first discussed, albeit
based on Einstein’s Prague preliminary version of general relativity. In his work,4

he considers a shell of matter and its influence on a mass point placed in its center
as the shell starts to accelerate. In his words: This suggests that the entire inertia
of a mass point is an effect of the presence of all other masses, which is based on
a kind of interaction with the latter (this is exactly the same point of view that
E. Mach advanced in his astute investigations on this subject).

1.1. Experiments

A nice experiment to measure rotational dragging was suggested by Braginsky,
Polnarev and Thorne in 1984.5 The plane of a Foucault pendulum at the South
Pole will be fixed with respect to “fixed stars” around which on average will not
produce the dragging of the pendulum into the rotation. However, slowly rotating
“very close” Earth does produce the effect of ωdrag = 2J/R3, where J and R are
angular momentum and radius of the Earth — see Fig. 1 left.

Most sophisticated experiment to confirm the dragging of inertial frames by the
rotating Earth is, of course, Gravity Probe B.

The idea of placing a gyroscope on a free orbit around the Earth was conceived
independently by Schiff and Pugh at the beginning of 1960’s. In fact, the gyros
(the “most spherical balls” produced by man) were four. There was also a telescope
in the satellite with the gyros which was pointing towards the Guide Star — see
Fig. 1. The launch occurred on April 20, 2004, and lasted 16 months. The first
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Fig. 1. Left: Dragging of the pendulum plane observed at the pole seen as a Machian competition
between masses of distant stars and Earth. Right: A gyroscope on the polar orbit. Its axis changes
direction both due to the geodesic precision (≈ 6600 mas y−1) and due to frame dragging induced
by Earth rotation (≈ 39mas y−1). This change with respect to a distant “guide” star was measured
by the Gravity Probe B space experiment.

results appeared in April 2007 but the complete analysis was finished only in 2015
(see Ref. 6). The measured frame dragging effect, −37.2 ± 7.2 mas y−1, confirmed
the general-relativistic prediction −39.2 ± 0.2 mas y−1. The relatively large error
was caused primarily by random patches of electric charge on rotors (gyros) and
their housing.

A very nice experiment demonstrating the dragging effects on the nodal rates
of 3 laser-ranged satellites using the Earth gravity field model produced by space

Fig. 2. Field lines of the test magnetic field uniform at infinity and aligned with the hole rotation

axis. Two cases with a = 0.5M (left) and a = M (right) are shown.
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mission GRACE was performed by the group of Ciufolini (see his plenary talk at
this conference, contribution by Lucchesi in the Session PT5; see also the book on
Gravitomagnetism by Ciufolini and Wheeler7).

2. Magnetic Fields, Meissner Effect and Dragging

Consider first the magnetic test field B0 which is uniform at infinity and aligned
with the hole rotation axis. Solution of Maxwell’s equations on the background
geometry of a rotating (Kerr) black hole with boundary condition of uniformity
at infinity and finiteness at the horizon yields the field components; from these
the lines of force are defined as lines tangent to the Lorentz force experienced by
test magnetic/electric charges at rest with respect to locally nonrotating frames
(preferred by the Kerr background field). The field lines are plotted in Fig. 2 for
a = 0.5M and in the extreme case when a = M . Note that only weak expulsion
occurs in the former case. There is a simple analytic formula for the flux across the
hemisphere of the horizon, see Refs. 8–10,

Φ = B0πr
2
+

(
1 − a4

r4+

)
, (1)

where r+ = M + (M2 − a2)1/2. As a consequence of the coupling of magnetic field
to frame-dragging effects of the Kerr geometry, the electric field of a quadrupolar
nature arises. Its field lines are shown in Fig. 3. Again the field lines are expelled:
while even with a = 0.95M it is still not very distinct, the expulsion becomes
complete in the extreme case. One can demonstrate that total flux expansion takes
place for all axisymmetric stationary fields around a rotating black hole.9,10 In
Fig. 4, the field lines of a current loop in the equatorial plane are shown. The
Meissner-type effect arises also for charged (Reissner–Nordström) black holes, as
shown in Fig. 4 right.

Fig. 3. Field lines of the electric field induced by the “rotating geometry” of Kerr black hole in

asymptotically uniform test magnetic field; a = 0.95M (left), and a = M (right).
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Fig. 4. Left: Field lines of the test magnetic field of a current loop in the equatorial plane of the
Kerr spacetime with a = 0.995M . Right: Field lines of the test magnetic field of a magnetic dipole
placed near the extreme Reissner–Nordström black hole.

Although extremely charged black holes (e2 = M2) are probably not important
in astrophysics, they may be significant in fundamental physics (as, for example,
very special supersymmetric BPS states mass of which does not get any quantum
corrections). In the charged case, the electromagnetic perturbations are in general
coupled to gravitational perturbations, the resulting formalism is involved. Nev-
ertheless, one may construct explicit solutions, at least in stationary cases. From
these the magnetic field lines follow as in the Kerr case. The magnetic field lines of
a dipole located far away from the hole look like in a flat space, however, when the
dipole is close to the horizon, the expulsion in the extreme case is evident (Fig. 4
right). Due to the coupling of perturbations closed field lines appear without any
electric current inside; see Ref. 11 for details. There exist exact models (exact solu-
tions of the Einstein–Maxwell equations) representing in general rotating, charged
black holes immersed in an axisymmetric magnetic field. The expulsion takes place
also within this exact framework — see Refs. 12–14. Recently, the Meissner effect
was also demonstrated for extremal black-hole solutions in higher dimensions in
string theory and Kaluza–Klein theory. The question of the flux expulsion from the
horizons of extreme black holes in more general frameworks is not yet understood
properly. The authors of Ref. 15 “believe this to be a generic phenomenon for black
holes in theories with more complicated field content, although a precise specifi-
cation of the dynamical situations where this effect is present seems to be out of
reach.”

The flux expulsion does not occur when the configuration is not axially sym-
metric. The electromagnetic field occurring when a Kerr black hole is placed in an
originally uniform magnetic field without assuming the alignment of the direction
of the magnetic field and the axis of symmetry of the black hole was first given in
Ref. 16 (see also Refs. 17 and 9).
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The properties of these “oblique” fields and their possible astrophysical relevance
were already studied in the contribution12 to the 5th Marcel Grossmann Meeting
in Perth. They were then much developed in a number of important papers by
Karas and his group appearing until today. Here, we mention just few results and
refer to the paper by Karas given in the Session PT5 of this MG16 meeting. One
of the effects of the rotation on the fields which are asymptotically uniform and
perpendicular to the rotation axis is the dragging of field lines by rotation and, as
a consequence, the appearance of critical points where the field vanishes, as seen in
Fig. 5.

In the most recent work, Karas et al. realized that due to the presence of the
plasma in the accretion flows and differential rotation even weak electromagnetic
fields are crucial. Although magnetic fields within the accretion flow are turbulent in
almost empty funnels around the rotation axis they can be organized on large scales
and it is from here where they can accelerate the charged particles and produce
collimated jets. Most recently, Karas and Kopáček conclude that an inclined field
(its oblique component) leads to more efficient acceleration and larger final Lorentz
factors of escaping particles; see Ref. 19 and number of references therein. For a

Fig. 5. Field lines in the equatorial plane of the Kerr black hole with color indicating the intensity
of the field. Field lines which are asymptotically uniform and perpendicular to the rotation axis
are dragged by rotation in vacuum (no conductive medium around). The horizon is in the center
as a point. The critical point appears where the field vanishes (approximately at 11 h). The figure
is taken from Ref. 18.
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leading expert view on formation of jets and black-hole shadow in case of M87, see
the contribution of R. Blandford to the Session PT5 of this MG16 meeting.

3. Dragging by a Slowly Rotating, Collapsing Spherical Shell

A spherical shell in slow rotation and collapse (see Fig. 6) produces slightly per-
turbed Schwarzschild spacetime outside with the metric

ds2
.=

(
1 − 2M

r

)
dt2 −

(
1 − 2M

r

)−1

dr2 − r2dθ2 − r2(dφ − ωdt)2, (2)

where ω is the frame dragging potential given by ω = 2J/r3, J is fixed (small) total
angular momentum of the shell. At the shell’s surface r = rs is decreasing as the
shell collapses and ωs = 2J/r3s is increasing. Note (Fig. 6) that Ω = dφs/dt is the
angular velocity of the shell, r2sΩ

2 is neglected.
The spacetime inside the shell is flat in this approximation. Its metric ds2 =

dt2−dr2−r2 dθ2−r2 sin2 θ dφ̄2 can be joined across the shell to the metric outside.
Because dφ̄ = dφ − ωs dt, the local inertial frames (LIFs) inside (φ̄ = const.) all
rotate rigidly with the same angular velocity with respect to the observers at rest
relative to infinity (“static observers” with φ = const.). Thus, dφ̄/dt = 0 implies
the time-dependent angular velocity dφ/dt = ωs(t) of the rigid rotation.

As measured in LIF’s own proper time, the rate of rotation is
dφ

dt̄
= ω̄s = ωs

dt

dt̄

∣∣∣∣
s

. (3)

Static observers inside experience Euler acceleration (Coriolis ∼ ω2
s , centrifugal

∼ ω2
s ) and the congruence of their worldlines twists. Rate of rotation Ω̄τ of the

shell itself measured in its proper comoving time τ is

Ω̄τ =
3rs
4ms

ωs =
3J

2msr2s
. (4)

Many details about this system can be found in Refs. 20–22.

Fig. 6. Dragging of a gyroscope inside a slowly rotating, collapsing and rebouncing thin shell.
Angular velocities of the vectors indicating the shell rotation Ω and the central inertial frame
rotation ωs are shown in the middle panel. See Ref. 21 for details (stills from the animation

https://utf.mff.cuni.cz/∼ledvinka/psi/a1.mp4 by Barker).
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4. Quantum Detection of Inertial Frames Dragging

Recently, we studied quantum Unruh–DeWitt detectors23 and their suitability, at
least in principle, for the detection of the dragging of inertial frames24 and for the
detection of a conicity of space.25 We have shown, for the first time as far as we
know, that the dragging of inertial frames (as well as conicity) can be observed
by a quantum detector. We studied the response function of UdW detector placed
in a slowly rotating shell which has flat spacetime inside and slowly rotating Kerr
metric outside, as discussed in Sec. 3 (here we assume the shell to be stationary,
not collapsing).

The detector is a two-state system with energy gap Ω and the field-interaction
Hamiltonian Ĥ(τ) = λχ(τ)μ̂(τ) ⊗ Ψ̂(x(τ)), where χ(τ) is the switching function
of the detector (ensuring that the interaction duration is Δτ = π/k), x(τ) its
worldline, μ̂(τ) its monopole momentum operator and λ is the coupling constant.
We assume the detector-field system is in initial state |0〉D |0〉Φ. Then the transition
probability P to |1〉D is

P = λ2F +O(λ4). (5)

The response function F of the detector turns out to be

F =
∫ ∞

−∞

∫ ∞

−∞
χ(τ1)χ(τ2)e−iΩ(τ2−τ1)W (x(τ1), x(τ2)) dτ1 dτ2, (6)

where the Wightman function of the field is

W (x(τ1), x(τ2)) = Φ〈0| φ̂(x(τ2))φ̂(x(τ1)) |0〉Φ . (7)

Fig. 7. Comparison with the detector in a static shell. Detector response function inside a slowly
rotating shell is plotted for several values of the shell angular momentum J = Ma appearing in
the dimensionless parameter ak. The difference Frot −Fstat is plotted as a function of the energy
gap Ω of the detector. Shell mass M and radius R satisfy Mk = 1, Rk = 3, detector is placed at

rd = 0.5/k from the center.
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Fig. 8. Detected difference between rotating and static shell depends of the distance of the
detector from the center (left) and on the spherical latitudinal angular coordinate θ of the detector.
Remaining parameters are described in Fig. 7.

We show that the response function picks up the presence of rotation even
though the spacetime inside the shell is flat and the detector is locally inertial.
The detector can distinguish between the static situation when the shell is nonro-
tating and the stationary case when the shell rotates and the dragging of inertial
frames, i.e. gravitomagnetic effects, arise. Moreover, it can do so when the detector
is switched on for a finite time interval within which a light signal cannot travel to
the shell and back to convey the presence of rotation.

The summary of the results for quantum detection of the dragging of inertial
frames is taken from the publication24 (see also the contribution of W. Cong in the
Session PT5 at MG 16).

5. Dragging Effects of Gravitational Waves

Rotating gravitational waves can also become a source of the dragging. The situa-
tion when the central frame is surrounded by rotating gravitational waves was for
the first time modeled assuming the translational symmetry along z-axis in Refs. 26
and 27. Although this assumption implies unbounded energy of the gravitational
waves and the spacetime is not asymptotically flat, the problem can be treated ana-
lytically as the master equation for the single function describing the gravitational
wave has the form of a flat-space wave equation �ψ(t, ρ, ϕ) = 0. Given a particular
solution to this equation, other metric functions appearing in the line element

ds2 = e2γ−2ψ(dt2 − dρ2) −W 2e−2ψ(dϕ+ ω dt)2 − e2ψdz2 (8)

can be determined from the Einstein equations. In particular, averaging of their
t−ϕ component identifies 〈ψ,tψ,φ〉 as a source of the dragging of the inertial frames
on the axis and for ψ in the form of a cylindrical shell the central frame rotation
is then found in a closed form. The analogy with angular momentum transport in
spiral galaxies is discussed in Ref. 27.

A similar problem permitting asymptotic flatness was then studied in Refs. 28
and 21. The gravitational waves are assumed to form a spherical shell described
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again by a single scalar function ψ(t,x) satisfying flat-space wave equation �ψ = 0
which this time appears only as the first order approximation of the full Einstein
equations. The spacetime metric (in which we now use signature −+++)

gμν = ημν + h(1)
μν + h(2)

μν + · · · (9)

is decomposed into a flat Minkowski metric ημν = diag(−1, 1, r2, r2 sin2 θ) in spher-
ical coordinates t, r, θ, ϕ, and the first- and second-order perturbations h(1)

μν and
h

(2)
μν . Then the first-order metric perturbations due to linearized gravitational waves

appear as the source of the second-order perturbations

G(1)
μν [h(2)] = −G(2)

μν [h(1), h(1)], (10)

where G(2)
μν [h(1), h(1)] contains terms of the Einstein tensor Gμν quadratic in the

first-order perturbations.
Assuming the Regge–Wheeler gauge, the function ψ then directly determines

h
(1)
tθ , h

(1)
tϕ , h

(1)
rθ and h(1)

rϕ , with remaining first-order perturbations vanishing, and the
effects of the linearized gravitational waves are then determined by the analysis of
the second-order terms. To make space approximately flat for the central observer
and his inertial frame, h(1)

μν is assumed to vanish near the origin. Assuming a partic-
ular gauge, the quantity determining the central frame dragging can be determined
from a quantity satisfying an elliptic equation, in a way similar to other situations.
The central-frame rotation appears in the perturbation approach as a l = 1,m = 0
component in the expansion of h(2)

μν into mutually orthogonal spherical tensor har-
monics. Then a projection of Eq. (10) into the relevant m = 0 tensor harmonic
function resembles an averaging and yields

1
2

[
h

(2)
0

′′
− l(l+ 1)

r2
h

(2)
0 − ḣ

(2)
1

′− 2
r
ḣ

(2)
1

]
=

1
l(l + 1)

∫ 2π

0

∫ π

0

G
(2)
tϕ [h(1), h(1)]∂θYl0 dθ dϕ,

where h(2)
0 determines h(2)

tθ , h
(2)
tϕ , and h

(2)
1 determines h(2)

rθ , h
(2)
rϕ components of the

second-order metric perturbations. Dots and primes denote the time and radial
derivatives. The rotation of the central frame dϕ̃ = dϕ − ω0dt appears as h(2)

tϕ =

−ω0 r
2 sin2 θ, so it is determined by the behavior of h(2)

0 at r = 0. Using a global
change of coordinate ϕ→ ϕ+ δϕ(2)(t, r), we can set

h
(2)
1 = 0, i.e. h(2)

rϕ = 0. (11)

Near the center we then have the Minkowski metric in spherical coordinates with
the dominating perturbation corresponding to the slow rigid rotation of the central
frame with angular velocity ω0(t). Fixing the gauge condition (11), h(2)

1 l=1,m=0 = 0,
prohibits any radial dependence of an additional coordinate transformation ϕ →
ϕ+δϕ(2)(t, r) and the angle ϕ in the center and thus also the central frame rotation
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ω0 is determined unambiguously with respect to spatial infinity. We find

ω0 =
1
4π

∫∫∫
R

(2)
tϕ [h(1), h(1)]

sin θ
r
dr dθ dϕ. (12)

To investigate further a particular closed-form solution ψ of the wave equation,
it has been chosen in the form of a shell of null radiation converging toward the
origin, bouncing at the minimal radius r ≈ a, and then expanding back to infinity
(see Fig. 9). This allowed us to evaluate the integral (12) and find the explicit
(though lengthy) formula for ω0. Assuming l � 1 it simplifies to

ω0(t)
.=

ωmax
0(

1 +
t2

a2

)3/2
. (13)

In the same limit, we show in Ref. 21 that the frame dragging is determined by the
angular momentum of the gravitational wave Lz and that the long exact formula
can be approximated by ωmax

0
.= 2Lz/a3. The angular momentum of the linearized

gravitational waves is defined using the effective stress energy tensor

Lz = −
∫
T eff
tϕ d3x, T eff

tϕ =
1
8π
G

(2)
tϕ [h(1), h(1)]. (14)

l = 24, m = 24 l = 24, m = 16 l = 24, m = 4

Fig. 9. Snapshots of the function ψ in the equatorial plane θ = π/2 (top) and in the meridional
plane ϕ = 0, π (bottom) at three distinct times t = 0, 2a, 4a. The well-known behavior of spherical
harmonics Ylm ∼ sin|m| θ means that for higher m the first-order perturbations vanish not only
near the center, where we study the frame dragging but also along the z-axis. The top right
plot also shows the position of a null particle with r = aŷ + tx̂ at given times to illustrate the
localization of the wave at radii r ≈ √

a2 + t2 (we denote Cartesian unit vectors x̂, ŷ, red/blue

color indicates positive/negative ψ).
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Fig. 10. The dependence of the normalized angular velocity of the central inertial frame
ω0(l, 1; t)/ω0(l, 1; t = 0) on the parameter l = 2, 3, 10, 20, 30 (from inside to out). The depen-
dence (13) is shown as a dashed line.

x
yt

Fig. 11. (Color online) Left: The fundamental dependence of parallel transport on the chosen
path is usually demonstrated on a spherical surface naturally embedded in three-dimensional flat
Euclidean space. Here, we use neighborhoods of two meridians as an example of two approximately
flat patches which yield mismatch when vector from the south pole is extended into both patches.
Right: In our spacetime with rotating gravitational waves we also have two approximately flat
patches. The spacetime is asymptotically flat which in the figure is symbolized by the blue “ladder”
with arrows indicating “fixed” direction of a gyroscope. Because the gravitational waves do not
reach the center, there is also approximately flat region near the center. Its worldtube is depicted
as a gray cylinder. The gravitational waves are shown at the moment they are the strongest
(t = 0) as a blue torus encircling the central observer. The rotation of the central inertial frame
(and gyroscopes there) is illustrated by the twist of the red spacetime-coordinate “ladder” and
the gyroscope orientation. The mismatch of gyroscope directions at the top demonstrates the
meaning of Eq. (15) as the implication of a particular form of spacetime curvature accompanying
the rotating gravitational wave.
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We can see that (12) and (14) differ by a factor r3 inside the integral. This
explains why the approximate relation (13) holds: because for l � 1 function ψ is
localized around a thin shell with radius r(t) .=

√
a2 + t2 (see Fig. 9), factor r3 can

be put in front of the integral. The time dependence of ω0(t) on the parameter l is
shown in Fig. 10.

In an asymptotically flat spacetime, we have two special flat-space worldlines
categories — the one of the central observer and that of a cautious observer who
slowly retreats to r � a so that she never meets significant metric perturbations.
The discrepancy between the orientation of the gyroscopes following these world-
lines

Δϕ0 =
∫ ∞

−∞
ω0(t) dt (15)

can be seen as an illustration of the dependence of the parallel transport on the
chosen worldline. In Fig. 11, we illustrate Δϕ0 as an obvious implication of the
spacetime curvature due to the rotating gravitational waves. Thus, although the
immediate value of ω0 involves instantaneous effects, its integral (15) representing
the total rotation of the central gyroscope is a well-defined observable quantity.
In the approximation l � 1 we then obtain Δϕ0

.= 2aωmax
0

.= 4Lz/a2. Such a
simple relation is not available for dragging by a massive rotating shell, because its
dynamics is not as unambiguous as that of gravitational radiation.

6. On the Dragging of Inertial Frames and Mach’s Principle
in Cosmology

In our treatment of the dragging of inertial frames in a cosmological context, we shall
mostly confine ourselves to the linear (cosmological) perturbation theory, rather
than to exact models. Our inspiration will be Mach’s principle as generally formu-
lated by Hermann Bondi in his classical book:29 ...all motions, velocities, rotations
and accelerations are relative; local inertial frames are determined through distribu-
tions of energy and momentum in the Universe by some weighted averages of the
apparent motions.

We started to realize such a “Machian program” in Ref. 30. We first analyzed
frame-dragging effects due to slowly, rigidly rotating, but collapsing or expand-
ing spheres in the (inhomogeneous) Lemâıtre–Tolman–Bondi universes, and we
analyzed the dragging effects of the vector perturbations of the FLRW universes
described in a special gauge such that three (momentum) constraint equations
enabled us to determine instantaneously metric perturbations h0k (k = 1, 2, 3)
in terms of energy–momentum perturbations δT0k and show how such averages
are to be taken. In closed universes a linear combination of six Killing vectors
(three rotations plus three quasi-translations) may be added to the h0k. We also
obtain the solutions of the three constraint equations when angular momenta cor-
responding to the three rotations and quasi-momenta corresponding to the three
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quasi-translations of the sources (determined by δT0k) are given. No absolute rota-
tions exist in closed universe, only differences of rotation rates are determinable —
in accord with Mach’s ideas that “all motions are relative” (if the velocities of the
bodies, described by perturbations of perfect fluid, are given, the metric perturba-
tions are determined uniquely). The last result is related to the fundamental fact
that six globally conserved quantities, corresponding to the six Killing vectors in a
FLRW universe, must all vanish if considered for the whole closed universe.

It was, among others, an attempt to understand Mach’s principle in cosmo-
logical perturbation theory, which inspired us to formulate conservation laws even
for large perturbations with respect to curved backgrounds.31 The resulting “KBL
superpotential” (using the designation by Julia and Silva in their profound anal-
ysis32), was found, after applying certain natural criteria, to be unambiguous and
most satisfactory in spacetimes with or without a cosmological constant, in any
spacetime dimension. It also found applications in various studies of generation of
cosmological perturbations (see Ref. 33 for references). For the recent generalization
to the Horndeski theory, see Ref. 34.

In a more recent paper,33 we studied general linear perturbations of the FLRW
universes from a “Machian perspective”. This led us to investigate both rotations
and accelerations of local inertial frames in perturbed universes. We first intro-
duced congruences of cosmological observers worldlines, defined their acceleration,
rotation (twist, vorticity), shear and expansion in general, and then considered
perturbed FLRW models (gμν = gFLRW

μν + hμν). We found that un-accelerated and
nonrotating local inertial frames (LIFs) are determined by h00,l, h0l,m, h0l,0.

We developed all the perturbed Einstein equations in a general gauge “ab ini-
tio”, without assuming harmonic decompositions. Introducing the standard confor-
mal time in FLRW universes, putting tildes over all the perturbation quantities,
introducing the traceless part of hlk and notation

h̃lTk = h̃lk −
1
3
δlkh̃

n
n, Tk = ∇lh̃

l
Tk, K =

3
2
ȧh̃00 +

1
2
a

˙̃
h
n

n −∇lh̃
l
0, (16)

where ∇l is the covariant derivative associated with the spatial FLRW background
metric fkl, a is the expansion factor, dot the derivative with respect to standard
cosmological time t whereas the prime denotes the derivative with respect to con-
formal time η, adt = dη. Using ∇2 = fkl∇kl, k = 0,±1 for the curvature index and
H = aH , H being the standard Hubble parameter, we find Einsteins equations for
perturbations to obtain the form

a2κδT̃ 0
0 = a2δG̃0

0 =
1
3
∇2h̃nn + kh̃nn − 2HK− 1

2
∇kT k, (17)

a2κδT̃ 0
k = a2δG̃0

k =
1
2
∇2h̃k0 + kh̃k0 +

1
6
∇klh̃

l
0 +

2
3
∇kK − 1

2
(Tk)

′
, (18)

a2κ(δT̃ 0
0 − δT̃ nn ) = a2(δG̃0

0 − δG̃nn) = ∇2h̃00 + 3a
(

1
a
H

)′

h̃00 +
2
a
(aK)

′
, (19)
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and

a2κ

(
δT̃ lk −

1
3
δlkδT̃

n
n

)
= a2δG̃lTk = · · · . (20)

We do not write down fully the last equation since it describes waves and is not
important for the determination of LIFs.

To see how the LIFs can be determined by surrounding matter instantaneously
on certain time-slices, we use some specific gauges which we call the “Machian
gauges”. We give three examples of such gauges. For example, by putting Tk = 0
and K = 0, the first three equations become (hyper-) elliptic and the quantities
determining LIFs can be found instantaneously when the (perturbations of) matter
distribution are given. The gauge conditions Tk = 0, fixing spatial coordinates,
are associated with the “transverse-traceless” gauges in the linearized gravity and
minimal-shear condition in numerical relativity. We assume these conditions to be
valid in all three Machian gauges. In the first Machian gauge, we choose the time
slices to be so that K = 0. This implies the “constant mean curvature slices”, and
it coincides with Bardeens uniform-Hubble expansion gauge. In other two Machian
gauges, together with the same gauge condition on spatial coordinates, we require
“uniform-intrinsic scalar curvature condition” and the “minimal-shear hypersurface
condition” (called the Poisson gauge by E. Bertschinger in 1995). In Ref. 33, these
gauges are discussed in detail. In particular, it is shown that they admit much less
residual freedom than the synchronous gauge, frequently used in cosmology.

These Machian gauges have been considered in the group of D. Wiltshire, in par-
ticular, in Ref. 35, in the review36 and, most recently, by his students M. Williams37

and R. Gaur38 in the context of the Post-Newtonian Cosmology.
We believe that dragging effects and Machian ideas will remain the source of

inspiration.
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J. Bičák and T. Ledvinka

8. A. R. King, J. P. Lasota and W. Kundt, Phys. Rev. D 12 (1975) 3037.
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