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The regularized Maxwell theory is a recently discovered theory of nonlinear electrodynamics that admits
many important gravitating solutions within the Einstein theory. Namely, it was originally derived as the
unique nonlinear electrodynamics (that depends only on the field invariant FμνFμν) whose radiative
solutions can be found in the Robinson-Trautman class. At the same time, it is the only electrodynamics of
this type (apart from Maxwell) whose slowly rotating solutions are fully characterized by the electrostatic
potential. In this paper, after discussing the basic properties of the regularized Maxwell theory, we
concentrate on its spherical electric solutions. These not only provide “the simplest” regularization of point
electric field and its self-energy, but also feature complex thermodynamic behavior (in both canonical and
grand canonical ensembles) and admit an unprecedented phase diagram with multiple first-order, second-
order, and zeroth-order phase transitions. Among other notable solutions, we construct a novel C-metric
describing accelerated AdS black holes in the regularized Maxwell theory. We also present a generalization
of the regularized Maxwell Lagrangian applicable to magnetic solutions, and find the corresponding
spherical, slowly rotating, and weakly Newman-Unti-Tamburino charged solutions.
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I. INTRODUCTION

Models of nonlinear electrodynamics (NLE) have a long
history and reasons for considering them evolved throughout
the years. The original motivation came from the efforts to
remove divergences associated with point charges and their
infinite self-energy. This led to the discovery of the famous
Born-Infeld model [1], which imposes maximal value for the
field strength and yields finite self energy of point charges.
(See also [2] for a “more regular alternative” to the Born-
Infeld theory which yields a point charge with vanishing
electric field in the origin.) As discovered much later, apart
from having unique geometrical and physical properties [3],
Born-Infeld-type Lagrangians also arise at low energy
regime of string theory [4] and in D-brane physics [5].
Even more recently certain models of NLE were used to
source the so-called regular black holes [6], increasing the
interest of strong gravity community in NLEs.
To evaluate merits of different NLE models one can

employ various criteria—whether the weak field limit gives
rise to Maxwell’s theory, potential regularization of a point
charge field, conformality, electromagnetic duality, absence
of birefringence etc. From this point of view the Born-Infeld
Lagrangian and the recently derived ModMax theory [7,8]

stand out. However, when gravity is taken into account, yet
another criterion arises. Besides regularizing the black hole
geometry à la [6], one may demand that the model be
“consistent with” some important solutions that go beyond
spherical symmetry, such as accelerated black holes, black
holes with rotation, or Robinson-Trautman spacetimes. The
NLE model studied in this paper is exceptional regarding
this latter criterion.
The current model was first derived in [9]. It admits the

Maxwell limit and, as we shall see, provides in some sense
the simplest regularization of point charge field and its self-
energy. For this reason we call it a Regularized Maxwell
(RegMax) theory. However, the main distinguishing feature
of RegMax centers around the fact that it provides important
gravitating solutions. Namely, apart from Maxwell, it is a
unique model of NLE (that depends only on the field
invariant FμνFμν) that provides radiative solutions in the
Robinson-Trautman class [9] (generalizing previous non-
radiative results in [10]). Remarkably, and unlike their
Maxwell cousins, such solutions are in addition well
posed [9]. RegMax theory also provides slowly rotating
black holes that can be found in a form naturally general-
izing the corresponding Maxwell solution [11], and, as we
shall see shorty, one can also find a very natural generali-
zation of the C-metric—describing charged accelerated
black holes in the RegMax theory.
Our paper is organized as follows. In Sec. II we review

the basic framework for theories of nonlinear electrody-
namics. In Sec. III the RegMax theory is introduced and its
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basic properties are discussed. Section IV is devoted to
(electrically charged) spherical solutions and their thermo-
dynamic properties in both canonical and grand canonical
ensembles. It is shown that such thermodynamics is quite
rich, and in particular leads to an unprecedented grand
canonical phase diagram with multiple phase transitions of
various kinds. Other notable electric solutions, including the
novel AdS C-metric, are studied in Sec. V. Section VI is
devoted to a generalization of the RegMax theory that is
also applicable to purely magnetic solutions, allowing us to
construct magnetically charged black holes, and their slowly
rotating and weakly Newman-Unti-Tamburino (NUT)
charged cousins. We summarize our findings in Sec. VII.
Appendix contains formulas for the Maxwell charged and
the RegMax charged C-metrics written in the “standard”
C-metric x − y coordinates, drawing the parallel between the
two cases.

II. THEORIES OF NONLINEAR
ELECTRODYNAMICS

A theory of NLE that is minimally coupled to Einstein’s
gravity is derived from the following action:

I ¼ 1

16π

Z
M
d4x

ffiffiffiffiffiffi
−g

p ðRþ 4L − 2ΛÞ; ð1Þ

where we also included a possibility for the cosmological
constant Λ, which we parametrize as

Λ ¼ −
3

l2
; ð2Þ

in terms of the AdS radius l.1 Here, L is the electromag-
netic Lagrangian, which is taken to be a function of the two
electromagnetic invariants

S ¼ 1

2
FμνFμν; P ¼ 1

2
Fμνð�FÞμν; ð3Þ

where, as always, we have Fμν ¼ ∂μAν − ∂νAμ, in terms of
the vector potential Aμ. In order L is a true scalar, we have
to require that

L ¼ LðS;P2Þ: ð4Þ

Moreover, one might require that the theory of NLE should
approach that of Maxwell

LM ¼ −
1

2
S ð5Þ

in the weak field approximation, a condition known as the
principle of correspondence. This condition is satisfied

by the RegMax theory studied in this paper, cf. (17)
below.
Introducing the following notation:

LS ¼ ∂L
∂S

; LP ¼ ∂L
∂P

; ð6Þ

the generalized Maxwell equations read

d �D ¼ 0; dF ¼ 0; ð7Þ

where

Dμν ¼
∂L
∂Fμν ¼ 2ðLSFμν þ LP � FμνÞ ð8Þ

is sometimes referred to as the constitutive relation. We
also obtain the following Einstein equations:

Gμν þ Λgμν ¼ 8πTμν; ð9Þ

where the generalized electromagnetic energy-momentum
tensor reads

Tμν ¼ −
1

4π
ð2FμσFν

σLS þ PLPgμν − LgμνÞ: ð10Þ

Sometimes, a restricted class of NLE theories, obtained
by considering only the invariant S:

L ¼ LðSÞ; ð11Þ

is considered. This will be the case of the NLE theory
studied in this paper. The corresponding equations of
motion straightforwardly follow from the above.
A famous example of a privileged theory of NLE is the

Born-Infeld theory [1], defined by the following
Lagrangian:

LBI ¼ b2

0
B@1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ S

b2
−

P2

4b4

s 1
CA: ð12Þ

Another recently popular NLE is that of the ModMax
theory, discovered in [7,8]. This is the most general theory
that possesses both, the conformal invariance and the
electromagnetic duality. Its Lagrangian reads

LModMax ¼ −
1

2

�
S coshðγÞ þ sinh γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þ P2

p �
: ð13Þ

III. REGMAX THEORY: BASIC PROPERTIES

In what follows, we focus on yet another type of NLE,
defined by the following “RegMax” Lagrangian:

1While in this paper we predominantly concentrate on the
negative cosmological constant, the de Sitter case can formally be
obtained by Wick rotating l, and the asymptotically flat case by
setting l → ∞.
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L ¼ −2α4
�
1 − 3 lnð1 − sÞ þ s3 þ 3s2 − 4s − 2

2ð1 − sÞ
�
; ð14Þ

s ≡
�
−
S
α4

�1
4

∈ ð0; 1Þ: ð15Þ

The theory is characterized by a dimensionfull parameter
α > 0, ½α2� ¼ ðlengthÞ−1, and reduces to the Maxwell case
upon setting

α → ∞: ð16Þ

Namely, we have

L ¼ −
S
2
þ 4

5

ð−SÞ5=4
α

þ ð−SÞ3=2
α2

þOðα−3Þ: ð17Þ

On the other hand, the limit α → 0 yields the vacuum case.
Since the RegMax theory contains a dimensionful

parameter, it cannot be, similar to the Born-Infeld theory
(12), a conformal field theory. That this is indeed the case
can easily explicitly be shown by calculating the trace of
the energy momentum tensor (10), employing that

LS ¼ −
1

2ðs − 1Þ2 ; LSS ¼ 1

4s3ð1 − sÞ3α7=4 ; ð18Þ

and finding that the trace does not vanish, apart from the
Maxwell limiting case, α → ∞.
On the other hand, in contrast to the Born-Infeld case

[12], the new theory does not enjoy the electromagnetic
duality. Indeed, for this to happen, one would require that
the constitutive relation (8) remains invariant under the
following transformation [12]:

δDμν ¼ ð�FÞμν; δFμν ¼ ð�DÞμν: ð19Þ

By employing that 1
2
ð�FÞμνð�FÞμν ¼ −S, such a duality

can easily be shown for the Born-Infeld case or the
ModMax case, but it no longer holds for the case of the
Lagrangian (14). It would be interesting to probe, whether
it is possible to extend this theory, by appropriately
including the invariant P, so that the electromagnetic
duality could be restored.
Theories of NLE propagate two degrees of freedom.

However, these need not to propagate along the null cones
of the spacetime geometry, nor do they have to propagate
with the “same speed.” If the latter happens, we say that the
theory suffers from birefringence. This phenomenon is a
generic feature of NLE theories. There are only two
exceptions to this rule (see however [13]). The Maxwell
theory for which the two modes propagate with the speed of
light with respect to the gravitational background metric,
and the Born-Infeld theory, whose two modes follow the
null trajectories of the following effective metric [3,14]:

gμνeffBI ¼ ðb2 þ SÞgμν − FμαFν
α: ð20Þ

In either case, no birefringence occurs. The contravariant
metric (20) leads to causal propagation of light-rays for the
Born-Infeld theory.
It can be shown [14], that for restricted theories

L ¼ LðSÞ, one mode propagates with respect to the
spacetime metric gμν, while the second mode propagates
with respect to the following effective metric:

gμνeff ¼
1

2
gμνLS þ LSSFμαFν

α: ð21Þ

Since we want to check if our NLE theory satisfies
causality with respect to the propagation of disturbances
(or, equivalently, we consider the nature of characteristic
surfaces) we are only interested in the null cones of the
effective metric gμνeff . Thus we can switch to conformally
equivalent metric

ĝμνeff ¼ gμν þ 2
LSS

LS
FμαFν

α; ð22Þ

and determine the cone structure. Let us consider arbitrary
covector kμ which is null with respect to the spacetime
metric gμνkμkν ¼ 0. Due to antisymmetry of the Maxwell
tensor we have Fμνkμkν ¼ 0, which means that the vector
lν ¼ Fμνkμ is either spacelike or null (and proportional to
kν). The second case leads to identical null cones for both
the effective optical and spacetime metric. The first case
needs to be investigated further by computing the norm of
kμ with respect to (22), which reads

ĝμνeffkμkν ¼ 2
LSS

LS
lνlν: ð23Þ

For the RegMax Lagrangian LS < 0 and LSS > 0, while
lνlν > 0 by our assumption. Thus the expression (23) is
negative and therefore the null cone of the spacetime
metric is contained within the null cone of the optical
metric gμνeff . However this does not mean that we have
superluminal propagation since we need to investigate the
corresponding covariant form of the optical metrics which
determines the direction of null rays. As noted in [15] the
nesting of null cones switches when going from contra-
variant to covariant forms of respective metrics. This
results in causal propagation of the RegMax modes.
Let us now turn to the gravitating solutions of this theory.

As we shall see, these can be found in a form that is very
similar to what happens in the linear Maxwell case.
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IV. SPHERICAL SOLUTIONS

A. Test charge

Let us first study the field of a test pointlike charge in the
RegMax theory (14), neglecting the backreaction of the
electromagnetic field on the geometry. Writing the flat space
in spherical coordinates,

ds2 ¼ −dt2 þ dr2 þ r2dΩ2; ð24Þ
where dΩ2 ¼ dθ2 þ sin2θdφ2, the corresponding solution
of RegMax equations reads

A ¼ ψ0dt; ψ0 ¼ −
αQ

αrþ ffiffiffiffiffiffiffijQjp ; ð25Þ

and is characterized by the following invariants:

S ¼ α4Q2

ðαrþ ffiffiffiffi
Q

p Þ4 ; P ¼ 0; ð26Þ

where

Q ¼ 1

4π

Z
S2
�D ð27Þ

is the (asymptotic) electric charge.
The corresponding field strength

F ¼ dA ¼ Edr ∧ dt; E ¼ Qα2

ðαrþ ffiffiffiffiffiffiffijQjp Þ2 ; ð28Þ

approaches (similar to the Born-Infeld case) a finite value in
the origin, E0 ¼ Eðr ¼ 0Þ ¼ α2signðQÞ. The electric field
(28) arguably provides the “simplest regularization” of a
point charge since it gives finite value at the origin while
keeping inverse square law profile in the radial coordinate
(albeit shifted by a constant). Moreover, since E0 is finite,
the RegMax model leads to finite self-energy, similar to
what happens in the Born-Infeld case.
We display the behavior of E in Fig. 1, where it is also

compared to the field strength of the Maxwell and Born-
Infeld fields,

EM ¼ Q
r2
; EBI ¼

Qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þQ2=b2

p ; ð29Þ

respectively. In this plot we have set Q ¼ 1 and chosen the
value of α and b so that the RegMax and the Born-Infeld
field strengths approach the same finite value at the origin.2

As is the case for any restricted NLE, the static solution
determines the Lagrangian of the theory. In our case,
demanding the “simplest regularization” with the “shifted
linear profile” (25), uniquely leads to the Lagrangian (14).
While this is not how the theory was originally derived
in [9,11], where the consistency of NLE with radiative and
slowly rotating solutions was demanded and found to
uniquely lead to (14), we include here the corresponding
“derivation” for completeness. Namely, demanding the
regularized solution

A ¼ −
Q

rþ r0
dt; r0 ¼

ffiffiffiffiffiffiffijQjp
α

; ð30Þ

yields the following modified Maxwell equation:

ð∇ ·DÞt ¼
�

2QLSr2

ðrþ ffiffiffiffiffiffiffijQjp
=αÞ2

�
;r
¼ 0; ð31Þ

that is

LS ¼ 1þ 2
ffiffiffiffiffiffiffijQjp
α

þ jQj
α2r2

: ð32Þ

Moreover, by inverting (26), we get

r ¼
ffiffiffiffiffiffiffijQjp

ð−SÞ1=4 −
ffiffiffiffiffiffiffijQjp
α

; ð33Þ

which together with (32) leads to (18), and upon integration
to the Lagrangian (14).

B. RegMax AdS black holes

The above electrostatic field can easily be upgraded to
the full self-gravitating solution of (1). Such a solution is

EM
EBI
E

0 1 2
r

1

2

3

4

5
E

FIG. 1. Electric field strength. E of a point charge is displayed
for the RegMax theory with α ¼ 2 (red dash-dot curve) and
compared to the Maxwell (black solid) and Born-Infeld with
b ¼ 4 (dashed blue) cases, setting Q ¼ 1.

2Note that since the Born-Infeld parameter b has dimensions of
½b� ¼ ðlengthÞ−1, whereas the same is true for α2, it is quite
natural to compare the values where α2 ≈ b. Let us also remark
that perhaps more physical than comparing the cases with the
same finite value at the origin would be to compare the situations
with the same integral self-energy of the corresponding charge.

HALE, KUBIZŇÁK, SVÍTEK, and TAHAMTAN PHYS. REV. D 107, 124031 (2023)

124031-4



characterized by a single metric function f0 [16] and takes
the following standard form:

ds2 ¼ −f0dt2 þ
dr2

f0
þ r2dΩ2; ð34Þ

where

f0 ¼ 1 − 2α2jQj þ 4αjQj3=2 − 6m
3r

þ 4rα3
ffiffiffiffiffiffiffi
jQj

p

− 4α4r2 log

�
1þ

ffiffiffiffiffiffiffijQjp
rα

�
þ r2

l2
; ð35Þ

while the vector potential A remains “unchanged,” given
by (25), with the field strength given by (28) and field
invariants by (26).
The solution possesses a singularity at r ¼ 0, as can for

example be seen by the expansion of the Ricci scalar:

R ¼ −
4jQjα2
r2

þOð1=rÞ; ð36Þ

and the Kretschmann scalar:

K ¼ RαβγδRαβγδ

¼ 16ð2αjQj3=2 − 3mÞ2
3r6

þOð1=r5Þ: ð37Þ

Obviously, the singularity prevails irrespective of the
choice of the mass parameter m, but the divergence of
the Kretschmann scalar can be made “milder,” compared to
the Schwarzschild case with K ∼ 1

r6, by selecting specific
values of m and Q.
Depending on the choice of parameters, the solution

describes a black hole with one or two horizons, or a naked
singularity. More concretely, following the discussion for
the Born-Infeld case in [17], we expand the metric function
around the origin, to obtain

f ¼ 2ðMm −mÞ
r

þ 1− 2jQjα2 þ 4α3
ffiffiffiffiffiffiffi
jQj

p
rþOðr2Þ; ð38Þ

where

Mm ≡ 2αjQj3=2
3

ð39Þ

is the “marginal mass.” For m > Mm we have a
“Schwarzschild-like” (S-type) black hole characterized by
a single horizon. On the other hand, when m < Mm, the
behavior is more “Reissner-Nordstrom-like” (RN-type) and
we can have two, one extremal, or no horizons, see Fig. 2.
For the marginal case, m ¼ Mm, the metric function
approaches a finite value in the origin, f0ðr ¼ 0Þ ¼
1–2jQjα2. When this is positive, that is for

jQjα2 < jQjα2c ¼
1

2
; ð40Þ

the Reissner–Nordstrom-like solution is a naked singularity,
and only the Schwarzschild-like branch describes a black
hole, see Fig. 3. As we shall see, αc plays an important role
for the thermodynamic behavior of the solution.

1 2
r

–3

–2

–1

1

2

3

4
f0

FIG. 2. Two types of RegMax AdS black holes. Based on the
behavior of the metric function f0 near the origin, we distinguish
two types of RegMax black holes: the RN-type (blue) and the
S-type (red). The marginal casem ¼ Mm is highlighted by a thick
black line. In particular, for the RN-type (m < Mm) we have from
top to bottom: naked singularity (top two lines with the top one
corresponding to m → 0), extremal black hole with one horizon
(solid blue), and the case with two horizons (lower thin blue). The
figure is displayed for Q ¼ 1, l ¼ 1, and α ¼ 1.

1 2
r

–2

–1

1

2

3
f0

FIG. 3. Marginal case. The sequence of marginal metric
functions f0 is displayed for various values of α:

α ¼
ffiffi
3
2

q
; 1; 1ffiffi

2
p ; 1

2
, and α → 0 (from bottom to top) and fixed

Q ¼ 1 ¼ l. As α decreases, the marginal curve moves up,
shifting the RN-branch to more positive values. For α < αc ¼
1=

ffiffiffi
2

p
(blue curves) the RN-branch is necessarily always

positive and describes a naked singularity; in this case any
black hole solution is necessarily described by the S-branch.
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In the case when we have a black hole, its horizon is
located at the largest root rþ of f0ðrþÞ ¼ 0. It is a Killing
horizon generated by the following Killing field:

ξ ¼ ∂t: ð41Þ

Because of the presence of the logarithmic term in (35), the
position of rþ has to be determined numerically.

C. Thermodynamics

Let us next turn to the thermodynamic properties of the
obtained solution. The temperature and entropy are given
by the standard formulas and read

T ¼ f0ðrþÞ
4π

¼ αrþð6jQjα2 þ 1Þ − 2jQj3=2α2 þ ffiffiffiffiffiffiffijQjp ð1þ 12α4r2þÞ
4πrþðαrþ þ ffiffiffiffiffiffiffijQjp Þ

−
3rþα4

π
log

�
1þ

ffiffiffiffiffiffiffijQjp
rþα

�
þ 3rþ
4πl2

; ð42Þ

S ¼ Area
4

¼ πr2þ: ð43Þ

The asymptotic electric charge, (27), is given by Q, and the
electrostatic potential ϕ is identified with

ϕ ¼ −ξ · A
����
r¼rþ

¼ αQ

αrþ þ ffiffiffiffiffiffiffijQjp : ð44Þ

The thermodynamic mass can be, for example, calculated
by the conformal method [18], and reads

M ¼ m: ð45Þ

Finally, since the solution is asymptotically AdS, we can
consider the corresponding pressure-volume term [19,20],

P ¼ −
Λ
8π

¼ 3

8πl2
; V ¼

�
∂M
∂P

�
S;Q;α

¼ 4

3
πr3þ; ð46Þ

together with the “α-polarization potential” [17]

μα ¼
�
∂M
∂α

�
S;Q;P

¼ −
2

3

2jQj3=2αrþ −Q2 − 12α3r3þ
ffiffiffiffiffiffiffijQjp

− 6jQjα2r2þ
rþαþ ffiffiffiffiffiffiffijQjp

− 8α3r3þ log
�
1þ

ffiffiffiffiffiffiffijQjp
rþα

�
: ð47Þ

With these in hand, it is now easy to verify that the extended
first law:

δM ¼ TδSþ ϕδQþ VδPþ μαδα ð48Þ

is satisfied. This is accompanied by the Smarr relation,
which correspondingly includes the extra αμα and PV
terms:

M ¼ 2TSþ ϕQ − 2VP −
1

2
μαα; ð49Þ

reflecting the dimensionality of the corresponding thermo-
dynamic quantities, e.g. [19].

D. Canonical ensemble

It is well known that in the canonical (fixed Q)
ensemble charged-AdS black holes in the Maxwell theory
feature a first-order small black hole/large black hole
phase transition à la Van der Waals that terminates at a
critical point, characterized by the standard critical expo-
nents [21,22]. For the Born-Infeld case, the situation is
even more interesting [17] (see also [23]). Namely, while
the Van der Waals-like phase transition still exists for large
enough b, for sufficiently small b < b1 ¼ 1=ð ffiffiffi

8
p jQjÞ, the

Schwarzschild-like behavior prevails and there is no
criticality. At the same time there exists an interesting
intermediate region, b ∈ ðb1; b2Þ, where b2 ¼ 1=ð2jQjÞ,
for which the phase behavior features “multicomponent
behavior” and associated with it reentrant phase transi-
tions [17,24]. As we shall see in this section, such an
intermediate region is absent for the black holes in the
RegMax theory.
To uncover the thermodynamic behavior of the RegMax

solutions, we need to study the (canonical ensemble) free
energy

F ¼ M − TS ¼ FðT;Q; P; αÞ; ð50Þ

whose behavior crucially depends on the value of param-
eter α. In what follows we parametrically plot F − T
diagrams for fixed Q, and various α’s and P’s, using rþ
as a parameter.
For α > αc, we observe the “standard” behavior known

from the charged-AdS black holes in Maxwell’s theory, see
Fig. 4. Namely, for fixed Q and α, there exists a critical
pressure Pc below which the free energy demonstrates the
characteristic swallow tail behavior, connected with the
small black hole (SBH)/large black hole (LBH) first order
phase transition. At P ¼ Pc this swallow tail degenerates to
a single critical point, located at ðPc; Vc; TcÞ, at which the
first order phase transition terminates and becomes of the
second order. Above Pc, the free energy becomes smooth
and single valued, indicating the presence of a single phase.
The expression for ðPc; Vc; TcÞ can be calculated from the
standard relations
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∂P
∂V

¼ 0 ¼ ∂
2P
∂V2

; ð51Þ

where P ¼ PðV; T;Q; αÞ is obtained by rewriting (42) and
using (46). However, for a given α and Q (51) leads to a
fifth order polynomial, and is better solved numerically. We
display the resulting (numerically constructed) P − T phase
diagram in Fig. 5. It shows the coexistence line between
SBH and LBH phases that terminates at a critical point
denoted by C. We expect that, similar to the Maxwell

case [17,22], C is characterized by the standard mean field
theory critical exponents.
For α ¼ αc, the behavior of the free energy suddenly

changes, as displayed in Fig. 6. Namely, we observe point
p from where the free energy emerges at rþ ¼ 0. The
existence of this point “destroys” a possibility for a swallow
tail and we no longer have a first order phase transition
between small and large black holes. The position of p is
independent of pressure, and is easily determined by
expanding the corresponding (α ¼ αc) free energy and
temperature for small rþ:

T ¼ Tp þOðrþÞ; Tp ¼ 1ffiffiffi
2

p
πjQj ;

F ¼ Q
ffiffiffi
2

p

3
þOðr3þÞ: ð52Þ

As the black hole radius increases from rþ ¼ 0, the free
energy curve “heads left” until it meets a cusp, from where
it continues to lower free energies and higher temperatures
(lower branch). As displayed in the figure, as pressure
decreases, the cusp occurs at smaller and smaller temper-
ature, below which black holes no longer can exist—
indicating an onset of a forbidden “no black hole (NO BH)
region.”3 For α ¼ αc the systems thus has only one phase
of large black holes (LBH) (corresponding to the lower
branch of the free energy) and a no black hole region for
small enough temperatures, as displayed in Fig. 7. Note
also, that the line of separation between NO BH and LBH

0.06 0.072 0.085 0.098 0.11
T0.56

0.578

0.595

0.612

0.63
F

FIG. 4. F − T diagram: α ¼ 1 > αc. The diagram is displayed
for various pressures P and fixedQ ¼ 1. For P < Pc (blue curve)
we observe the swallowtail behavior characteristic of the first
order phase transition. At P ¼ Pc (solid black) the swallowtail
degenerates to a single critical point, giving rise to a second order
phase transition. Above Pc (red curve), the free energy is smooth
and single valued.

0. 0.025 0.05 0.075 0.1
T0.

0.005

0.01

0.015
P

C

SBH LBH

FIG. 5. P − T phase diagram: α > αc. For α > αc the system
admits a first order phase transition between small and large black
hole phases, reminiscent of the Van der Waals fluid. The
corresponding coexistence line is displayed by thick black curve,
which terminates at a critical point denoted by C. The phase to the
left describes small black holes (SBH), whereas to the right we
have the large black hole (LBH) phase. Above Pc one can no
longer distinguish the two phases. The figure is plotted forQ ¼ 1
and α ¼ 1.

0.2 0.2125 0.225 0.2375 0.25
T0.47136

0.471397

0.471433

0.47147
F

p

FIG. 6. F − T diagram: α ¼ αc, The diagram is displayed for
l ¼ 0.4 (red dashed), l ¼ 0.7 (black), and l ¼ 0.8 (blue dashed)
and Q ¼ 1. In this marginal case we observe a special point p at
finite T and F (independent of P) from where the curves of free
energy emerge. While the cusp remains present, the swallow tail
is disrupted by the existence of p. Consequently the phase
diagram features only one (large) black hole phase and a no black
hole region for small enough temperatures.

3Since we study canonical (fixed Q) ensemble, there is no
radiation phase with F ≈ 0 (we cannot have charged radiation)
and no Hawking–Page-like phase transition occurs.
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regions asymptotes to a finite temperature, given by the
temperature Tp, (52), of the endpoint p.
Finally, for α < αc, we observe F − T behavior shown in

Fig. 8. The pointp no longer exists and small black holes (in
the upper branch) have arbitrarily large temperature (and
positive free energy). We still have a cusp at finite temper-
ature from where the (lower) branch of large thermody-
namically favored black holes emerges. This results in a
phase diagram that is qualitatively very similar to that in
Fig. 7 (NO BH region exists for small enough temperatures
whereas LBHs are thermodynamically favored for large

temperatures). The only significant difference is that the
separation line between NO BH and LBH regions no longer
asymptotes to Tp but rather extends to arbitrarily large
temperatures.
Having described all cases, we see that the situation is

very different from the Born-Infeld case [17], as we no
longer observe an intermediate range for α, for which the
system would feature multicomponent behavior and re-
entrant phase transitions. Instead, when α > αc we observe
the Van der Waals-like behavior and when α < αc the
behavior is Schwarzschild-like, see Fig. 9 for the display of
the free energy at fixed Q and P. The absence of reentrant
phase transitions can mathematically be linked to the
absence of physical critical points below αc, whereas such
critical points do exist below b2 in the Born-Infeld case. It
remains an interesting open question which type of behav-
ior, whether the one with intermediate region of reentrant
phase transitions, or the one without it, is more generic for
black holes in nonlinear electrodynamics.

E. Grand canonical ensemble

The thermodynamic behavior of RegMax black holes is
also interesting in the grand canonical (fixed ϕ) ensemble.
In this case, we are interested in the grand canonical free
energy:

W ¼ M − TS − ϕQ ¼ WðT;ϕ; P; αÞ: ð53Þ

The key difference from the canonical ensemble is that we
can now have a new phase of (neutral and fixed ϕ) thermal
radiation, characterized by

W ≈ 0: ð54Þ

As we shall see, this will result in the occurrence of the
first-order phase transitions à la Hawking–Page [25], and
the zeroth-order phase transitions [17,24] between radia-
tion and black hole phases. Similar to what happens in the
canonical ensemble, we will also observe small to large
black hole phase transitions (see [26–30] for similar type
of grand canonical behavior previously observed in other
nonlinear settings). When all such phenomena are con-
sidered together, we arrive at a rather complicated looking
phase diagram 16, clearly demonstrating the complexity of
thermodynamics of RegMax black holes.
To start with, in order to express W and T in terms of ϕ

rather than Q, we need to invert the relation (44). For α
positive, this yields a single solution:

Q ¼ ϕ

2α2

�
2α2rþ þ jϕj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2 þ 4jϕjα2rþ

q �
: ð55Þ

In what follows we concentrate (without loss of generality)
on positive ϕ. Plugging this in formula for the temperature

0. 0.083 0.167 0.25 0.333
T0.

0.25

0.5

0.75
P

NO BH LBH

Tp

FIG. 7. P − T phase diagram: α ¼ αc. In this marginal case, the
only black hole phase is that of large black holes (LBH). We also
observe a forbidden no black hole region (NO BH). The
separation line between the two regions asymptotes to Tp,
indicated by thin gray line. For α < αc the phase diagram would
look qualitatively similar, but the separation line would extend to
arbitrarily high temperatures.

0. 0.075 0.15 0.225 0.3
T0.3

0.35

0.4

0.45

0.5
F

FIG. 8. F − T diagram: α < αc. The diagram is displayed for
α ¼ 1

2
, Q ¼ 1, and l ¼ 0.4 (red dashed), l ¼ 1 (black) and l ¼

2.2 (blue dashed). The point p no longer exists, and we observe
two branches of black holes separated by a cusp that gives rise to
a no black hole region. The lower branch corresponds to large
black holes and is thermodynamically preferred.
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T and expanding for small rþ, we find that there exists a
critical value for the potential ϕ:

ϕc ¼
1ffiffiffi
2

p ; ð56Þ

at which the temperature “snaps” from plus to minus
infinity. This is very similar to what happens for αc in
the canonical ensemble and, as we shall see, has significant
implications for the thermodynamic behavior. Let us first
study the corresponding P − T phase diagrams.
For ϕ > ϕc, fixed α and various pressures, we observe

Van der Waals-like behavior of the W − T diagram, see
Fig. 10. Namely, there exists a critical pressure Pc at which
the critical point develops, while we observe swallowtail
behavior for P < Pc, and smooth free energy above Pc.
Importantly, thermodynamically preferred black holes have
negative W and thence “shield” the radiation phase at
W ≈ 0, which is in this case thermodynamically unfavored.
The corresponding phase diagram, displayed in Fig. 11,
thus features a first order small to large black hole phase
transition, and it is very similar to what happens in the
canonical ensemble, c.f. Fig. 5. Let us stress, that the very
existence of such a phase transition in the grand canonical
ensemble is a direct consequence of nonlinearity of the
electromagnetic field and it is absent for black holes in the
Maxwell theory. It has, however, been observed for black
holes in other theories of nonlinear electrodynamics and in
higher curvature gravities, e.g., [26–30].
The W − T diagram for the marginal case ϕ ¼ ϕc is

displayed in Fig. 12. Similar to what happens at point p in
the canonical ensemble, we now observe the “endpoint” q
where all free energy curves terminate as rþ → 0. This
limit can be taken explicitly and results in

T ¼ Tq þOðrþÞ; Tq ¼
α2ffiffiffi
2

p
π
;

W ¼ −
1

6
ffiffiffi
2

p
α2

þOðr3þÞ: ð57Þ

Obviously, the position of q is independent of pressure and
only depends on the value of α. As with the point p, the
very existence of q “destroys” the swallowtail and only a
cusp, located at ðTcusp;WcuspÞ, remains present. However,
since we now also have the radiation phase, at W ≈ 0, the
situation is different from that of the canonical ensemble,

α < 1
2

α = 1
2

α > 1
2

α >> 1
2

0.09 0.122 0.154 0.186 0.218 0.25
T0.445

0.461

0.477

0.493

0.509

0.525
F

P

FIG. 9. F − T diagram: The effect of α. The F − T behavior is
displayed as a function of α for fixed Q ¼ 1 and fixed pressure
l ¼ 2. Contrary to the Born-Infeld case, there is no intermediate
region of α’s for which the multicomponent behavior exists.
Rather, a sharp transition between the Van der Waals-like
behavior and the Schwarzschild-like behavior occurs at α ¼ αc.

0.1 0.2 0.3
T

–0.2

–0.1

0.

0.1
W

FIG. 10. W − T diagram: ϕ > ϕc. The grand canonical free
energy W is plotted against the temperature T for constant ϕ ¼
0.71 > ϕc and α ¼ 1 at P ¼ 0.0008 (red dashed swallowtail),
P ¼ 0.005 (solid black swallowtail), and P ¼ 0.25 (a smooth
decreasing region displayed by blue dot-dashed curve). The
thermodynamically preferred black holes have negative W and
shield the radiation phase at W ≈ 0.

0. 0.1 0.2
0.

0.1

0.2

0.3

0.4

C

SBH LBH

FIG. 11. P − T diagram: ϕ > ϕc. This phase diagram (dis-
played for ϕ ¼ 0.71 and α ¼ 1) features a standard small to large
black hole phase transition à laVan der Waals. Its existence in the
grand canonical ensemble is a direct consequence of the non-
linearity of the electromagnetic field.
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and, depending on the position of this cusp, several cases
may happen.
Namely, when Wcusp < 0, which happens for a given α

and large enough pressure, P > P0ðαÞ, see blue dash-dot
curve in Fig. 12, there will be a zeroth-order phase
transition at T ¼ Tcusp between the radiation phase, present
for T < Tcusp and the large black hole phase (lower branch
of W) for T > Tcusp. As pressure decreases, the cusp
“moves up,” and at P ¼ P0 it is characterized by
Wcusp ¼ 0, see solid black curve in Fig. 12. At this point,
at T ¼ Tcusp, the zeroth-order phase transition between the
radiation and large black hole phases terminates and
becomes of the first order. As we lower the pressure even
further, Wcusp moves to positive values and we observe an
analogue of the Hawking–Page first order phase transition
at T ¼ THP at which the lower branch of the free energy
crosses W ¼ 0. That is, for T < THP we have a radiation
phase, which at T ¼ THP “condenses” to a thermodynami-
cally preferred large black hole phase present for T > THP.
The corresponding P − T phase diagram is summarized in
Fig. 13. Similar to what happens with point p, note that,
due to the existence of the endpoint q, the zeroth-order
phase transition coexistence line would eventually asymp-
tote to finite temperature Tq, (57), of the endpoint q (not
displayed in the figure).
Finally, for ϕ < ϕc, we observe the free energy displayed

in Fig. 14. Similar to the previous case, the thermodynamic

behavior depends on the position of the cusp, and results in
radiation/large black hole zeroth-order phase transition for
large enough pressures, and Hawking–Page-like phase
transition for small pressures. The corresponding phase

RAD

0.1 0.2 0.3
T

–0.3

–0.2

–0.1

0.

0.1
W

q

FIG. 12. Marginal W − T diagram: ϕ ¼ ϕc. The grand canoni-
cal free energy W is plotted against the temperature T for fixed
ϕ ¼ 1ffiffi

2
p and α ¼ 1, and P ¼ 0.0007 (red dashed), P ¼ 0.0016

(black solid) and P ¼ 0.153 (blue dash-dot). All these lines
terminate at the end point q as rþ → 0. The area between T ¼ 0
and each one of the vertical thin gray lines, as indicated by the
arrows, is characterized by a radiation phase with W ≈ 0.
Depending on the position of the cusp, there is either first-order,
or zeroth-order phase transition between the radiation phase and
the large black hole phase (lower branch). Namely, for P ⪅
0.0016 (red and black lines) there exists a first order phase
transition, while for larger P this becomes a zeroth order phase
transition (blue line).

0. 0.01 0.02 0.03 0.04
T0.

0.0025

0.005
P

RAD LBH

1st

0th

FIG. 13. P − T diagram: ϕ ¼ ϕc. For small enough pressures,
the phase diagram features a radiation/large black hole first-order
phase transition à la Hawking Page. The corresponding coex-
istence line terminates at a point for whichWcusp ¼ 0 from where
it “continues” as a coexistence line of the zeroth-order phase
transition between the radiation and large black hole phases. This
curve eventually asymptotes to the temperature of the endpoint q,
Tq (not displayed in the figure). For ϕ < ϕc the diagram would be
qualitatively similar, except the zeroth-order coexistence line
would no longer asymptote to Tq and rather it would evolve to
arbitrarily high temperatures.

RAD

0.35 0.7
T

–0.3

–0.2

–0.1

0.

0.1
W

FIG. 14. W − T diagram: ϕ < ϕc. Depending on the position of
the cusp of the grand canonical free energyW, there is either first-
order, or zeroth-order phase transition between the radiation
phase (characterized by W ¼ 0) and the large black hole phase
(lower branch). The figure is displayed for ϕ ¼ 0.5 and α ¼ 1,
and for P ¼ 0.02 (red dashed), P ¼ 0.12 (black solid), and P ¼
0.42 (blue dot-dashed). The area between T ¼ 0 and each of the
vertical thin gray lines, as indicated by the arrows, is charac-
terized by a radiation phase. We see that for P ⪅ 0.12 (red and
black lines) there exists a first order phase transition, while for
larger P this becomes a zeroth order phase transition (blue line).
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diagram is qualitatively similar to Fig. 13, with only only
difference that the zeroth-order coexistence line no longer
asymptotes to Tq but rather evolves to arbitrarily high
temperatures.
Let us finally turn to, perhaps even more interesting,

ϕ − T phase diagram, where we let ϕ to vary for fixed α
and P. The corresponding behavior of theW − T diagram is
for fixed P ¼ 0.01 and α ¼ 1 displayed in Fig. 15, while the
associated ϕ − T phase diagram is displayed in Fig. 16. We
clearly see the importance of the critical ϕc, which, when
crossed, results in a zeroth-order phase transition for small
enough temperatures between the radiation and small black
hole phases and between small black holes and large black
holes for intermediate temperatures. The phase diagram
Fig. 16 is rather complex, and as far as we know unprec-
edented in black hole thermodynamics. It clearly illustrates
the complex thermodynamic behavior of the RegMax
charged AdS black holes.4

V. OTHER NOTABLE SOLUTIONS

In this section, we shall go beyond spherical symmetry,
and present novel accelerating black holes in RegMax
theory. We also review slowly rotating black holes,

following [11], and construct weakly NUT charged Taub-
NUT solutions. It is a remarkable property of the RegMax
theory, that all these solutions can analytically be found and
take a simple form that is in many ways very similar to what
happens in the linear Maxwell case. We also refer the reader
to [9,31] for the discussion of radiative Robinson-Trautman
spacetimes in this theory, which are also remarkably
Maxwell-like.

A. Accelerated black holes

In general relativity accelerated black holes are described
by the so called C-metric and its generalizations [32–37].
This is a remarkable exact solution of the Einstein-Maxwell
theory, an exact radiative spacetime, which can be used to
describe rich physical phenomena, such as pair creation of
black holes, e.g., [38], or can serve as a test playground for
studying the properties of gravitational and electromagnetic
radiation, e.g., [39,40]. In the simplest case, the acceler-
ation of the black hole is caused by a conical deficit
(or surplus) on one side of the hole. In a more realistic
setting, the conical singularity pulling the black hole is
replaced by a finite width cosmic string core [41], or a
magnetic flux tube [38], relating the acceleration to the
interaction with a local cosmological medium. In its turn,

0.125 0.25
T

–0.6

–0.4

–0.2

0.

0.2
W

q

FIG. 15. W − T diagram: effect of ϕ. The grand canonical free
energyW is plotted against the temperature T for fixed P ¼ 0.01
and α ¼ 1, and ϕ ¼ 0.5 (red solid withWcusp > 0), ϕ ¼ 0.67 (red

dashed with Wcusp < 0), ϕ ¼ ϕc ¼ 1=
ffiffiffi
2

p
≈ 0.707 (thin black

curve with a termination point q), ϕ ¼ 0.725 (black dashed with a
swallowtail), ϕ ¼ 0.76 (black solid with a critical point) and ϕ ¼
0.85 (smooth solid blue). As clearly seen from the figure, as ϕ
varies, we observe qualitatively very different behavior that
results in various types of phase transitions, as displayed in
the following ϕ − T diagram.

0. 0.05 0.1
T0.

0.5

1.

RAD

LBH

SBH
C1

C2
C3

C4

FIG. 16. ϕ − T phase diagram. The diagram is displayed for
fixed α ¼ 1 and P ¼ 0.01. We observe first order phase transitions
between SBH and LBH phases (solid black curve from C1 to C2)
and between the radiation (RAD) and LBH phases (solid black
curve to the right of C4); here C1 is a standard critical point where
the phase transition becomes of the second-order. In addition we
observe zeroth-order phase transitions between all phases (denoted
by dashed red, black, and blue curves). The dashed red and black
0th-order transitions lie on the ϕ ¼ ϕc line—they separate SBH/
RAD and SBH/LBH phases, respectively. For small enough
pressures, the 0th-order transition between radiation and large
black hole phases (blue dashed curve between C3 and C4) would
vanish and be replaced with the extended first-order phase
transition going all the way to ϕ ¼ ϕc. The diagram is symmetric
with respect to the ϕ ¼ 0 axis and the solid black coexistence
curve is regular at ϕ ¼ 0.

4We remark that for small enough pressures, the behavior of
W − T slightly changes: we no longer have curves with
Wcusp < 0. Consequently, for such pressures, the blue dashed
0th-order separation line between radiation and LBH in Fig. 16 is
replaced by the extended first-order solid black curve, which now
extends all the way from ϕ ¼ 0 to ϕ ¼ ϕc.
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the acceleration produces gravitational and electromagnetic
radiation which escapes to regions behind the acceleration
horizon (if it exists). Because of the presence of conical
deficits and acceleration horizons, the physical charges of
the solution and its thermodynamics have only been
understood quite recently, see [42–48], and also [49,50].
The standard (nonrotating) C-metric can be written in the

following form, cf., [43,46] (see also Appendix for an
alternative coordinate system):

ds2 ¼ 1

Ω2

�
−fdt2 þ dr2

f
þ r2

�
dx2

h
þ h

dφ2

K2

	�
; ð58Þ

where f ¼ fðrÞ, h ¼ hðxÞ are two metric functions of one
variable only, Ω is the conformal factor, given by

Ω ¼ 1 −Arx; ð59Þ

A is the acceleration parameter, and K is a parameter
controlling the conical deficit (while φ is assumed to have
periodicity of 2π).
In the Einstein-Maxwell theory, the metric is accom-

panied by the following vector potential:

A ¼ −
Q
r
dt; ð60Þ

and the metric functions f and h take the following explicit
form [43,46]:

fM ¼ ð1 −A2r2ÞfM0 þ r2

l2
; ; ð61Þ

hM ¼ð1 − x2Þð1þ 2mAxþA2Q2x2Þ; ð62Þ

where Q is the charge, m is the mass parameter, and we
have defined

fM0 ¼ 1 −
2m
r

þQ2

r2
: ð63Þ

Obviously, the metric function hM is in a factorized form,
and has two fixed roots at x ¼ �1. Concentrating on the
region in between them,

x ∈ ð−1; 1Þ; ð64Þ

one can arrange that (for a certain proper choice of
parameters) hM is positive, and the metric (58) describes
spherical accelerating black holes; in this region one can
also set x ¼ cos θ.
The charged C-metric has been generalized to various

supergravities, e.g. [49–54]. However, a generalization to
theories of NLE seems quite challenging, e.g., [55]. In fact,
the only known C-metric solution in NLE is for the
ModMax theory [56], which, however, is in many aspects

very similar to what happens in the Maxwell case. Here, we
present highly nontrivial generalization of the standard
charged C-metric in RegMax theory, see also Appendix for
the presentation of this solution in a different coordinate
system.
The charged AdS C-metric in the RegMax theory takes

the form (58), (59), where the metric functions now read

f ¼ f0 −A2r2fM0 ; ð65Þ

h¼ 1þ 2x
A

ð2α3
ffiffiffiffiffiffiffi
jQj

p
þA2mÞþ ðA2Q2þ 2α2jQj− 1Þx2

þ 4αjQj3=2− 6m
3

Ax3þ 4α4

A2
log

�
1−

Ax
ffiffiffiffiffiffiffijQjp

α

�
: ð66Þ

Here, f0 is the static RegMax function (35), fM0 is given by
(63), and the metric is accompanied by the following vector
potential:

A ¼ −
αQ

αrþ ffiffiffiffiffiffiffijQjp dt; ð67Þ

which is formally identical to (25). With these, it can easily
be shown that the above Maxwell solution is recovered
upon α → ∞, while A → 0 limit yields the spherical
solution discussed in the previous section.
In order for our new metric to describe spherical

accelerated black holes in AdS, we need to restrict to a
region between two finite roots of h, where h is positive.
Contrary to the Maxwell case, this is no longer given by
(64), and is, due to the presence of the logarithmic term,
hard to determine analytically. In what follows, we assume
that such region exists, denoting the corresponding roots x∓,
respectively:

x ∈ ðx−; xþÞ: ð68Þ

These are no longer constant, but rather depend on the
chosen parameters characterizing the solution, as dis-
played for α ¼ 1 (deep RegMax regime) in Fig. 17.
Since thermodynamic charges depend on x∓, this fact
complicates the study of thermodynamics of these black
holes. Another complication stems from the existence of
various horizons, as determined from the roots of metric
function f, which now also contains a logarithm. It is
known that in the Maxwell AdS case, there exists a slowly
accelerating regime, where no acceleration horizon nor
radiation are present. For such black holes thermodynam-
ics can easily be formulated, see [43–46]. On the other
hand, when the acceleration horizon, and possibly other
horizons as well, are present, in the so called fast accel-
erating regime, the thermodynamics is not so straight-
forward, see however [47,48]. In Fig. 18, we display the
behavior of f for α ¼ 1 and two choices of the acceleration
parameter. This figure clearly illustrates that both (slowly
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accelerating and fast accelerating) regimes remain present
even in the deep RegMax regime. We plan to return to the
discussion of the admissible parameter space of this newly
found solution and the discussion of its thermodynamics in
future work [57].
To conclude this section, let us stress that it is a

remarkable feature of the RegMax theory, that the charged
AdS C-metric can be written in the standard form (58), with
the conformal prefactorΩ given by (59). While we were not
able to check this explicitly, it is reasonable to conjecture

that apart from the ModMax and Maxwell theories,
RegMax is the only restricted NLE for which the C-metric
can be written in this form.

B. Slowly rotating AdS black holes

Constructing a NLE generalization of the Kerr–Newman
solution remains a holy grail of NLE studies. So far, no such
(fully analytic) solutions are known. This is partly because,
as shown in [11], one cannot use the Newmann-Janis trick
to generate them. Such a trick works in the Maxwell case
and was used to generate the Kerr-Newmann solution
starting from the Reissner-Nordström one [58]. However,
as shown in the above paper, in the case of NLE the
Newmann-Janis trick already fails at the linear order in
rotation parameter a. For this reason, it is instructive to at
least construct slowly rotating black holes in NLE [11]. For
convenience, we briefly repeat here the corresponding
discussion.
Namely, starting from a spherical solution in any NLE,

one can find a slowly rotating one (valid to the linear order
in rotation parameter a) by employing the following ansatz
for the metric and for the vector potential:

ds2 ¼ −f0dt2 þ
dr2

f0
þ 2ar2sin2θhdtdφþ r2dΩ2; ð69Þ

A ¼ ψ0ðdt − aωsin2θdφÞ; ð70Þ

where f0 and ψ0 are the spherical metric function and
the electrostatic potential, respectively, and ω ¼ ωðrÞ, h ¼
hðrÞ are two new functions encoding the effect of rotation.
Unfortunately, for a generic NLE, the two new functions
obey complicated differential equations, see [11], and
cannot be solved for explicitly.
In this respect, RegMax has a privileged position.

Namely, as shown in [11], RegMax is the only NLE apart
fromMaxwell, that is fully characterized by invariant S and
whose slowly rotating solutions can be written in the above
form with

ω ¼ 1: ð71Þ

In other words, RegMax and Maxwell are the only
restricted NLE’s whose slowly rotating vector potential
is fully characterized by the electrostatic potential ψ0.
Interestingly, the proof of this statement is constructive—
this is how the Lagrangian (14) was derived in [11].
To write the slowly rotating solution explicitly, we

employ the functions f0 and ψ0 given by (35) and (25).
Moreover, the function h can be explicitly found [11]
and reads

–2 –1 1 2
x

–2

–1

1

2
h

FIG. 17. Metric function h. We display the metric function h as
a function of x for α ¼ 1, m ¼ 1, Q ¼ 1.35, l ¼ 4 and (i) slowly
accelerating black hole with A ¼ 0.1 denoted by dashed black
curve and (ii) fast accelerating black hole with A ¼ 0.35 denoted
by red solid line. Clearly the two roots x∓, outlining the region in
which h is positive, slightly vary with the choice of parameters. It
is this fact that complicates the calculation of thermodynamic
charges of this solution.
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r

–2

2

4

6
f

FIG. 18. Horizons of RegMax C-metric. We display the metric
function f as a function of r for slowly accelerating black holes
(dashed black) and fast accelerating black holes (solid red), for
the same choice of parameters as in Fig. 17. Obviously, the fast
accelerating case features the presence of an additional (accel-
eration) horizon.
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h ¼ f0 − 1

r2
−
2

ffiffiffiffiffiffiffijQjp
3αr3

; ð72Þ

completing thus the solution.
It would be very interesting to see, whether this approxi-

mate solution can be extended to a fully rotating black hole
in the RegMax theory—giving thus a first example of a
rotating solution in theories of NLE.

C. Taub-NUT solution

In principle one can also find a Taub-NUT solution,
using the procedure outlined in [11]. It takes the following
standard form:

ds2 ¼ −fðdtþ 2n cos θdφÞ2 þ dr2

f
þ ðr2 þ n2ÞdΩ2;

A ¼ ψðdtþ 2n cos θdφÞ; ð73Þ

where n denotes the NUT parameter. The RegMax equa-
tions together with the Einstein equations then yield
ordinary differential equations for fðrÞ and ψðrÞ.
Unfortunately, it turns out that for the RegMax theory
these are difficult to solve and we were unable to find the
full analytic solution.
For this reason, let us only present the “weakly NUT

charged” Taub-NUT spacetime, a solution valid to linear
order in n. This is simply given by the above ansatz (73)
(with n2 neglected in the metric), upon using the static
metric function f ¼ f0 (35), together with the static
potential ψ ¼ ψ0, (25). One can easily check that this
solves all equations to at least OðnÞ order.

VI. MAGNETICALLY CHARGED SOLUTIONS

In order to construct magnetically charged solutions in
the RegMax theory we need to generalize the Lagrangian
(14), to accommodate for the possibility of S > 0 while
keeping α positive. To this purpose, we start with the
Lagrangian LðsðSÞÞ, (14) and (15), which is valid only for
S < 0, and define new Lagrangian by:

L̃ðSÞ ¼ −sgnðSÞLð−sgnðSÞsð−sgnðSÞSÞÞ: ð74Þ

This has the following derivatives:

L̃S ¼ LS; L̃SS ¼ −sgnðSÞLSS; ð75Þ

which are well-defined when we assume the regularity of
derivatives of L (we have used LjS¼0 ¼ 0 and sjS¼0 ¼ 0 in
the derivation above). Furthermore, we see that the sign
of the first derivative does not flip when S changes sign but
for the second derivative it seemingly does. However,
considering the dependence on invariant S [as seen in (74)]
we observe that L̃S < 0 and L̃SS > 0 irrespective of the
sign of S. This means that the discussion of birefringence in

Sec. III (see mainly Eq. (23) and the text thereafter) is valid
for L̃ and the propagation of modes is causal as desired.

A. Spherical solutions

To simplify the matters discussed above, we can take
the Lagrangian (14), redefine s, and flip the overall sign,
to obtain

L̃ ¼ 2α4
�
1 − 3 lnð1 − sÞ þ s3 þ 3s2 − 4s − 2

2ð1 − sÞ
�
;

s ¼ −
�
S
α4

�1
4

; ð76Þ

and take again α > 0. This, as we shall see, leads to a well-
defined solution with correct Maxwell limit.5 Namely, we
assume the following local potential

A ¼ Qm cos θdφ; ð77Þ

with the corresponding field strength

F ¼ Qm sin θdφ ∧ dθ; ð78Þ

for which S ¼ 2Q2
m

r4 and P ¼ 0. The RegMax equations, (7),
are then automatically satisfied, and from the Einstein
equations (9), the metric ansatz (34) yields

f0 ¼ 1 − 2α2jQmj þ
4αjQmj3=2 − 6M

3r
þ r2

l2

þ 4
ffiffiffiffiffiffiffiffiffiffi
jQmj

p
α3r − 4α4r2 ln

�
1þ

ffiffiffiffiffiffiffiffiffiffijQmj
p
rα

�
; ð79Þ

where

Qm ¼ −
1

4π

Z
S2
F ð80Þ

is the (asymptotic) magnetic charge, and m is the mass
parameter (see below). This has the following large α
expansion:

f0 ¼ 1 −
2m
r

þQ2
m

r2
þ r2

l2
þO

�
1

α

�
; ð81Þ

and we recovered the magnetically charged AdS black hole
solution in Maxwell’s theory in the appropriate limit.
The constructed solution is characterized by the follow-

ing thermodynamic variables:

5Interestingly, in the strong field regime the magnetic RegMax
Lagrangian behaves like

ffiffiffiffi
S

p
, similar to the Born-Infeld case (for

magnetic solutions). Such “square root Lagrangian” was already
studied 50 years ago [59] and more recently in [60,61].
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M ¼ m; T ¼ f0ðrþÞ
4π

; S ¼ πr2þ;

ϕm ¼ αQm

αrþ þ ffiffiffiffiffiffiffiffiffiffijQmj
p ; P ¼ 3

8πl2
; V ¼ 4

3
πr3þ;

μα ¼
2

3

Q2
m − 2jQmj3=2αrþ þ 12α3r3þ

ffiffiffiffiffiffiffiffiffiffijQmj
p þ 6jQmjα2r2þ

rþαþ ffiffiffiffiffiffiffiffiffiffijQmj
p

− 8α3r3þ log

�
1þ

ffiffiffiffiffiffiffiffiffiffijQmj
p
rþα

�
; ð82Þ

which satisfy the corresponding extended first law and the
generalized Smarr relation:

δM ¼ TδSþ ϕmδQm þ VδPþ μαδα ð83Þ

M ¼ 2TSþ ϕmQm − 2VP −
1

2
μαα: ð84Þ

Here, the magnetic potential was obtained with the help of
the dual vector potential Ã, defined by dÃ ¼ �D. Namely,

ϕm ¼ −ξ · Ãjr¼rþ ; ð85Þ

where

Ã ¼ −
αQm

rαþ ffiffiffiffiffiffiffiffiffiffijQmj
p dt: ð86Þ

Obviously, at spherical level, the magnetic solutions are
characterized by the same metric function and possess the
same thermodynamic quantities as the electric ones, upon
replacing Q ↔ Qm. As we shall see now, however, this
symmetry is broken beyond the spherical case.

B. Slowly rotating solutions

As shown in [11], spherical magnetic solutions in NLE
may be upgraded to slowly rotating ones by employing the
following ansatz:

ds2 ¼ −f0dt2 þ
dr2

f0
þ 2ar2sin2θhdtdφþ r2dΩ2; ð87Þ

A ¼ Qm cos θ
�
dφ −

aω
r2

dt
�
; ð88Þ

where ωðrÞ and hðrÞ are new vector potential and metric
functions, respectively. Here we construct the slowly
rotating solution in the RegMax theory explicitly.
Namely, it can be shown that a consistent solution can be

found in the above form, where we set

ω ¼ 1þ 2
ffiffiffiffiffiffiffiffiffiffijQmj

p
3rα

; ð89Þ

h ¼ f0 − 1

r2
−
2

ffiffiffiffiffiffiffiffiffiffijQmj
p
3r3α

:

is given by (79), and

h ¼ f0 − 1

r2
−
2

ffiffiffiffiffiffiffiffiffiffijQmj
p
3r3α

: ð90Þ

As we see, and contrary to the slowly rotating electric case
discussed in the previous section, the vector potential now
picked up a correction at the order 1=α, and thence it is not
simply given only in terms of the magnetostatic potential.
To prevent confusion, we stress that the above is a slowly
rotating solution, which, however, is valid to any order
in 1=α.

C. Magnetic Taub-NUT

In order to construct a magnetically charged Taub-NUT
solution to linear order in the NUT parameter n, let us first
discuss the form of the ansatz, as inspired by what happens
in the Maxwell theory. For this, let us start from the full
magnetic Taub-NUT in linear Maxwell electrodynamics,
e.g., [62], which takes the form (73), where

f ¼ r2 − 2mr − n2 þ 4n2g2

r2 þ n2
−
3n4 − 6n2r2 − r4

l2ðr2 þ n2Þ ; ð91Þ

ψ ¼ −g
r2 − n2

r2 þ n2
; ð92Þ

and the magnetic charge is given by Qm ¼ −2ng.
The limit of the vanishing NUT charge is obtained by

setting n → 0 and g → ∞ so that the magnetic charge Qm
remains finite. For the metric function f this yields the
static solution. However, in order for this limit to make
sense also for the vector potential, one has to add a gauge
term, A → Aþ gdt, which yields

A ¼ −
nQm

r2 þ n2
dtþQm

r2 − n2

r2 þ n2
cos θdφ; ð93Þ

and, to the linear order in n, gives

A ¼ −nQmνdtþQm cos θdφ; ð94Þ

where

ν ¼ 1

r2
ð95Þ

for the Maxwell case.
Following the above discussion, we seek the magnetized

weakly NUT charged solution in the form (73) for the
metric, together with the vector potential ansatz (94). For
the RegMax theory this yields f ¼ f0, (79), together with:
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ν ¼ 1

r2
þ 2

ffiffiffiffiffiffiffiffiffiffijQmj
p
3αr3

; ð96Þ

which has the right Maxwell limit in the large α expansion.

VII. SUMMARY

In this paper we have studied the basic properties and
solutions of a particular model of nonlinear electrodynam-
ics, which we named the RegMax theory. Such a theory is
characterized by a dimensionful parameter α and is neither
conformal nor it possesses an electromagnetic duality.
However, while the RegMax Lagrangian (14) seems rather
complicated at first sight, it leads to arguably the most
straightforward regularization of the electric field of a point
charge (28). Even more importantly, the RegMax theory
becomes truly remarkable when the self-gravitating sol-
utions are considered. Namely, apart from the radiative
spacetimes of the Robinson–Trautmann class [9] and the
slowly rotating solutions [11], the RegMax model provides
further important gravitating solutions.
Perhaps the biggest discovery regarding the exact sol-

utions in this theory so far is the hereby presented C-metric
(although its existence could have been anticipated from
the results of [9]). Similar to other exact spacetimes in this
theory, the overall structure of this solution is remarkably
Maxwell-like and clearly generalizes the standard charged
C-metric of the Einstein-Maxwell theory. It is tempting to
conjecture that the RegMax theory is the only restricted
NLE for which the solution for accelerated AdS black holes
can be found in this form.
The original Lagrangian (14) is not directly applicable

to purely magnetic solutions. For this reason, we have
naturally extended the RegMax theory in Sec. VI to arrive
at (74), and in particular at (76), allowing us to derive the
magnetically charged black holes and their slowly rotating
cousins. However, contrary to the slowly rotating electric
solutions, the electromagnetic field of the latter is no longer
entirely governed by the static potential, but rather picks up
a 1=α correction, departing thus from the “Maxwellness” of
the theory. It remains to be seen whether another extension,
more aligned with the observed “Maxwell spirit” of the
electric theory, can be formulated.
We have also devoted a large body of our work to

analyzing the thermodynamic behavior of electrically
charged spherically symmetric AdS black hole solutions.
In the canonical (fixed charge) ensemble, this leads to the
standard Van der Waals like behavior for large α (Maxwell-
like regime) and to the Schwarzschild-like behavior for
small α. Interestingly, and contrary to what happens in the
Born-Infeld case [17], for RegMax there is no intermediate
range of α’s for which one would observe multicomponent
behavior of reentrant phase transitions. It remains to be
seen, which behavior, whether the one with the intermedi-
ate region (as in the Born-Infeld case) or the one without it
(RegMax theory) is more generic in theories of NLE.

Perhaps even more interesting is the thermodynamic
behavior in the grand canonical (fixed potential) ensemble,
for which the main results can be read off from a rather
complex phase diagram in Fig. 16. This figure illustrates
the presence of multiple first-order, second-order, and
zeroth-order phase transitions between radiation, small
black hole, and large black hole phases.
To summarize, we have shown that the RegMax theory

is a rather interesting NLE, especially at the level of self-
gravitating solutions. The newly obtained exact solutions
will provide a playground for studying strong electro-
magnetic fields in nontrivial (beyond spherical symmetry)
gravitating backgrounds. The key question remaining
is, whether the RegMax theory remains remarkable only
at the level of its gravitating solutions, or, whether it
features some more fundamental properties as well. For
example, can the Maxwellness of the electric solutions be
also carried over to the magnetic ones? Is it possible to
extend the Lagrangian (14) to include the invariant P, so
that the electromagnetic duality would be restored? Or
perhaps even more interestingly, can the (possibly gener-
alized) RegMax theory, similar to the Born-Infeld case, be
derived from some more fundamental (possibly higher-
dimensional) theory?
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APPENDIX: C-METRIC IN x − y COORDINATES

The C-metric is most easily written in the standard
“x − y coordinate system.” In this appendix, we present the
corresponding ansatz for the Maxwell theory and show that
it can also be applied in the RegMax case.
The standard charged C-metric ansatz in x − y coordi-

nates is given by

ds2 ¼ 1

H2ðx; yÞ
�
−FðyÞdt2 þ dy2

FðyÞ þ
dx2

GðxÞ þ GðxÞdφ2

�
;

ðA1Þ

where G ¼ GðxÞ and F ¼ FðyÞ are two metric functions
andH ¼ Hðx; yÞ is a conformal factor. With this ansatz, the
off-diagonal Einstein tensor reads

Gxy ¼ 2
H;xy

H
: ðA2Þ
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1. Electrically charged case

Let us first focus on the electrically charged case,
accompanying the metric with the following vector
potential:

A ¼ ψðyÞdt: ðA3Þ

It follows that the invariant S reads

S ¼ −H4ðψ ;yÞ2: ðA4Þ

By integrating once the modified Maxwell equation,
ð∇ ·DÞt ¼ 0, we obtain:

ψ ;y ¼
cðxÞ

LSðy; xÞ
; ðA5Þ

where cðxÞ is an integration “constant.” In case of the
Maxwell theory, the term LS is constant, and therefore
cðxÞ must be constant as well. For any other theory LS
should be (multiplicatively) separable in y and x. Together
with the fact that LS is a function of S, which takes the
above form (A4) (see also (A7) below), Eq. (A5) imposes
a very nontrivial restriction. Surprisingly, as we shall see
below, this condition is satisfied for the RegMax theory.
Before specifying to a concrete NLE model, let us

conclude with an important observation. It follows from
the form of the vector potential (A3), that all the off
diagonal components of the energy-momentum tensor have
to vanish. In particular,

Txy ¼ 0; ðA6Þ

which together with (A2) implies that H;xy ¼ 0. In other
words, H has to additively separate:

H ¼ HxðxÞ þHyðyÞ: ðA7Þ

To see what are the consequences of various choices for
conformal factors, let us first look at what happens in the
Maxwell theory.

2. Maxwell electrodynamics

In the Maxwell case we find the following three
interesting solutions, depending on the choice of the
conformal factor H ∈ f1; y; xþ yg. The first solution:

H ¼ 1;

F ¼ Q2y2 þ 3y2

l2
þ c1yþ c2;

G ¼ −Q2x2 þ 3x2

l2
þ c3xþ c4; ðA8Þ

is accompanied by the following vector potential

A ¼ ψdt; ψ ¼ −Qy: ðA9Þ

It is easy to show that in this case the standard curvature
invariants, as well as S are constant, and the spacetime
describes a maximally symmetric space with “uniform
electric field” that mimics the cosmological constant.
The second choice,

H ¼ y;

F ¼ y2
�
Q2y2 þ c1yþ c2 þ

1

l2y2

�
;

G ¼ −c2x2 þ c3xþ c4; ðA10Þ

accompanied by the “same A,” (A9), yields, upon the due
change of coordinates and choice of parameters the
standard spherical charged AdS black hole solution.
Finally, for A given by (A9) and choosing

H ¼ xþ y;

F ¼ Q2y4 þ 1

6
c1y3 −

1

2
c2y2 þ c3y − c4 þ

1

l2
;

G ¼ −Q2x4 þ 1

6
c1x3 þ

1

2
c2x2 þ c3xþ c4; ðA11Þ

we obtain the charged C-metric. In particular, upon
changing coordinates according to

y ¼ 1

r
; x → Ax; φ →

φ

K
; ðA12Þ

while introducing new metric functions:

Ω ¼ rH; f ¼ r2F; h ¼ G
A2

; ðA13Þ

and for the following choice of the parameters:

c1 ¼ −12m; c2 ¼ 2ðA2Q2 − 1Þ;
c3 ¼ 2A2m; c4 ¼ A2: ðA14Þ

we recover the Maxwell AdS C-metric (58)–(62) presented
in the main text, see also [63] for more details on the
C-metric.

3. RegMax theory

The calculations in the RegMax electrodynamics pro-
ceed in the same way. In particular, we also find three
interesting solutions upon choosing H ∈ f1; y; xþ yg.
First, for

H ¼ 1; A ¼ −Qydt; ðA15Þ

we find quadratic F and G, and recover the maximally
symmetric space.
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Second, when

H ¼ y;

F ¼ 4
ffiffiffiffiffiffiffi
jQj

p
α3y − 4α4 log

�
1þ

ffiffiffiffiffiffiffijQjp
y

α

�

þ c1y3 þ c2y2 þ
1

l2
;

G ¼ −ð2Qα2 þ c2Þx2 þ c3xþ c4; ðA16Þ

and for

A ¼ −
αQy

αþ ffiffiffiffiffiffiffijQjp
y
dt; ðA17Þ

we have the spherically symmetric solution. Namely, by
setting y ¼ 1=r, x ¼ cos θ, f0 ¼ r2F, and choosing

c1¼
4αjQj3=2−6m

3
; c2¼1−2α2jQj; c3¼0; c4¼1;

ðA18Þ

we recover the standard form of the spherical solution
presented in the main text, (35).
Third, setting

H ¼ xþ y;

F ¼ −4α4 log
�
1þ

ffiffiffiffiffiffiffijQjp
y

α

�
þ c1

6
y3 −

c2
2
y2

þ c3y − c4 þ
1

l2
;

G ¼ 4α4 log

�
1 −

ffiffiffiffiffiffiffijQjp
x

α

�
þ c1

6
x3 þ c2

2
x2 þ c3xþ c4;

ðA19Þ

together with (A17), we recover the RegMax AdS
C-metric. Note that when the cosmological constant van-
ishes, the functions FðyÞ and GðxÞ have the following
property: FðwÞ ¼ −Gð−wÞ. As discussed in the main text,
to maintain a Lorentzian signature of the metric (A1), it is
necessary that G > 0, which implies that the coordinate x
must be constrained to lie between appropriate (finite) roots
of function G.
To recover the form of the C-metric presented in the main

text, we use (A12) together with (A13), and make the
following choice of the integration constants:

c1 ¼ 8αjQj3=2 − 12m; c2 ¼ 2ðA2Q2 þ 2jQjα2 − 1Þ;
c3 ¼ 4α3

ffiffiffiffiffiffiffi
jQj

p
þ 2A2m; c4 ¼ A2: ðA20Þ

Finally, as we mentioned above, Eq. (A5) imposes a very
strong restriction on NLE Lagragians, which seems almost
impossible to satisfy. Surprisingly, for the RegMax theory
and its vector potential (A17), we find

LS ¼ −
ðαþ y

ffiffiffiffiffiffiffijQjp Þ2
ðα − x

ffiffiffiffiffiffiffijQjp Þ2 ; ðA21Þ

which indeed is in the multiplicative separated form.
Although we were not able to prove this rigorously, we
conjecture that RegMax is the only special NLE for which
this happens.

4. What about magnetically charged C-metric?

Let us finally briefly comment on the purely magnetic
C-metric. For the Maxwell theory, this is easily found in the
form (A1), where the conformal factor reads

H ¼ xþ y; ðA22Þ

F and G are quartic polynomials, and the metric is
accompanied by the following vector potential:

A ¼ ψðyÞxdφ; ðA23Þ

where ψ has to be a constant, given by the magnetic charge,

ψ ¼ Qm: ðA24Þ

Using the same ansatz (A1), (A22), and (A23) for any
NLE beyond Maxwell, Eq. (A2) yields Gxy ¼ 0, and
therefore Txy has to be zero as well, i.e.,

Txy ¼ −4
xðxþ yÞ2ψLS

G
ψ ;y ¼ 0; ðA25Þ

that is, (A24) has to remain true. However, the modified
Maxwell equation then requires

Qm
∂LS

∂x
¼ QmLSSS;x ¼ 0; ðA26Þ

and since S ¼ Q2
mH4, this is a contradiction with the

assumption. In other words, we just proved that, if purely
magnetic C-metric is to exist in any NLE, it has to take a
form which goes beyond our ansatz (A1), (A22), and (A23).
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