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Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Praha 8 180 00,
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ABSTRACT

After the companion dynamically plunges through the primary’s envelope, the two cores remain surrounded by a common envelope
and the decrease of the orbital period Porb stalls. The subsequent evolution has never been systematically explored with multidimen-
sional simulations. For this study, we performed 3D hydrodynamical simulations of an envelope evolving under the influence of a
central binary star using an adaptively refined spherical grid. We followed the evolution over hundreds of orbits of the central binary
to characterize the transport of angular momentum by advection, gravitational torques, turbulence, and viscosity. We find that local
advective torques from the mean flow and Reynolds stresses associated with the turbulent flow dominate the angular momentum
transport, which occurs outward in a disk-like structure about the orbital plane and inward along the polar axis. Turbulent transport
is less efficient, but can locally significantly damp or enhance the net angular momentum radial transport and may even reverse its
direction. Short-term variability in the envelope is remarkably similar to circumbinary disks, including the formation and destruction
of lump-like overdensities, which enhance mass accretion and contribute to the outward transport of eccentricity generated in the
vicinity of the binary. If the accretion onto the binary is allowed, the orbital decay timescale settles to a nearly constant value τb ∼ 103

to 104 Porb, while preventing accretion leads to a slowly increasing τb ∼ 105 Porb at the end of our simulations. Our results suggest
that the post-dynamical orbital contraction and envelope ejection will slowly continue while the binary is surrounded by gas and that
τb is often much shorter than the thermal timescale of the envelope.
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1. Introduction

Common envelope evolution (CEE) of a binary star system
occurs when one of the stars engulfs its companion, which
then rapidly spirals in through the envelope (Paczynski et al.
1976). The drag experienced by the companion moving in the
noncorotating envelope leads to energy and angular momen-
tum deposition in the surrounding gas. One possible outcome of
CEE is that the companion star is dissolved inside the primary
and the two stars merge into one. Alternatively, the dynamical
inspiral slows down and a quasi-steady spiral-in phase ensues.
The reasons for the stalling of the inspiral are not completely
understood, but the reduction of the drag does occur when the
density decreases either due to envelope expansion or heat-
ing, or when the gas starts to locally corotate with the com-
panion (Roepke & De Marco 2023). Simulations show that this
stalled inspiral phase lasts for at least hundreds of orbits and
that the two cores remain surrounded by a shared envelope (e.g.,
Ricker & Taam 2012; Passy et al. 2012; Ohlmann et al. 2016;
Ivanova & Nandez 2016). It is believed that a self-regulating
feedback loop of the weak local drag and its associated energy
dissipation slowly brings the central binary together and eventu-
ally ejects the envelope on its thermal timescale leaving behind a
post-CEE binary (e.g., Ivanova et al. 2013a; Clayton et al. 2017;
Glanz & Perets 2018).

Common envelope evolution is responsible for a wide variety
of binary systems such as cataclysmic variables (Paczynski et al.

1976), X-ray binaries (e.g., Kalogera & Webbink 1998;
Taam & Ricker 2010; Chen et al. 2020), progenitors of Type Ia
supernovae (e.g., Iben & Tutukov 1984; Belczynski et al. 2005;
Ablimit et al. 2016), or planetary nebulae nuclei (e.g., De Marco
2009; Jones & Boffin 2017). CEE might be responsible for
a substantial fraction of gravitational wave progenitors (e.g.,
Dominik et al. 2012; Klencki et al. 2021; Marchant et al. 2021),
but CEE is also expected to emit gravitational waves on its
own that are likely to be detected by space-based gravitational-
wave detectors such as LISA (Thorpe et al. 2019) or TianQin
(Huang et al. 2020) during the post-dynamical in-spiral CEE
stage (Renzo et al. 2021). Binaries that do not survive CEE
and merge can be observed as luminous red novae (e.g.,
Soker & Tylenda 2006; Ivanova et al. 2013b; Kochanek et al.
2014; Pejcha et al. 2016a; Blagorodnova et al. 2021).

Despite its importance, CEE is far from being fully under-
stood. Great efforts have been made to confront numerical sim-
ulations’ outcomes to observational constraints over the last
few decades. Three-dimensional hydrodynamical simulations
have provided insight into the physical processes important in
the dynamical inspiral (e.g., Passy et al. 2012; Ohlmann et al.
2016; MacLeod et al. 2018; Chamandy et al. 2020; Sand et al.
2020), the CEE ejecta dynamics and thermodynamics (e.g.,
Glanz & Perets 2018; Iaconi et al. 2019, 2020), or radiation
hydrodynamics of the ejecta and the associated transients
(e.g., Pejcha et al. 2016a,b, 2017; Metzger & Pejcha 2017;
MacLeod et al. 2017a; Matsumoto & Metzger 2022). However,
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many ab initio simulations fail to eject the common envelope
during dynamical plunge-in when only orbital energy injec-
tion by the secondary star is considered, and the obtained post-
dynamical inspiral orbital separations are often larger than that
observed in post-CE systems (e.g., Nebot Gómez-Morán et al.
2011; Iaconi & De Marco 2019; Politano 2021; Passy et al.
2012; Kruckow et al. 2021). A more realistic equation of state
that takes ionization states into account seems to facilitate
mass ejection, but might not affect the final separation (e.g.,
Nandez et al. 2015; Reichardt et al. 2020; Lau et al. 2022a,b).
Because of the wide range of temporal and spatial scales that
need to be resolved and the associated high numerical cost, 3D
hydrodynamical simulations are often stopped soon after the
end of the dynamical inspiral phase. The consecutive slow con-
traction of the orbit on a thermal timescale necessitates revert-
ing to 1D models that cannot capture the multidimensional
features (Taam et al. 1978; Meyer & Meyer-Hofmeister 1979;
Fragos et al. 2019).

To facilitate rapid prediction of outcomes, the binary con-
figurations preceding and following CEE are often linked
using energy conservation with one free parameter, αCEE (e.g.,
Webbink 1984; Livio & Soker 1988). The value of αCEE can be
estimated from simulations or from various observed binary pop-
ulations. Yet, it is not clear whether the αCEE formalism can
truly encompass the complicated physics of CEE. In particu-
lar, if thermal timescale processes such as predynamical noncon-
servative mass transfer or post-dynamical self-regulated inspiral
are important, then adiabatic energy conservation is violated. Of
course, it is often possible to select a value of αCEE to explain
an observed population even if some assumptions of the formal-
ism are not satisfied. This displeasing situation has motivated the
development of alternative formalisms based on the conservation
of angular momentum (Nelemans et al. 2000; Di Stefano et al.
2023) or a two-step prescription combining energy and angular
momentum (Hirai & Mandel 2022).

The post-dynamical self-regulating inspiral plays an impor-
tant role in many of the unsolved aspects of CEE. Due to
numerical difficulties in studying late stages of CEE when the
envelope has expanded and the central binary has tightened,
very little is known about this phase, especially the duration,
mechanism of orbital contraction and angular momentum trans-
fer, and whether the thermal-timescale self-regulation is actu-
ally established. Clearly, even if the central binary orbits in
a locally corotating gas and the gravitational drag, which is
the prevailing source of orbital tightening during dynamical in-
spiral, becomes very weak (e.g., Ostriker 1999; Ricker & Taam
2012; MacLeod & Ramirez-Ruiz 2015; MacLeod et al. 2017b;
Reichardt et al. 2019; Chamandy et al. 2019b; De et al. 2020),
the corotation cannot be maintained over arbitrary distances. As
a result, the complex interaction between the binary and the
gravitationally perturbed shared envelope can take over and drive
the orbital separation evolution on a shorter timescale than the
thermal one. An additional issue is the possibility that mass and
angular momentum can reaccrete onto the binary.

The configuration of the post-dynamical inspiral resembles a
very thick circumbinary disk (CBD), where a binary is embed-
ded in a low density cavity surrounded by a disk with which
it interacts by gravitational, advective, and viscous torques,
mass accretion onto the central binary, and by binary eccen-
tricity evolution (Sandquist et al. 1998). In the case of thin
CBDs, such intricate interactions can lead to either orbital expan-
sion or contraction and to excitation of the binary eccentricity
(e.g., Artymowicz & Lubow 1994; MacFadyen & Milosavljević
2008; Shi et al. 2012; Tang et al. 2017; Miranda et al. 2017;

Muñoz et al. 2019; Muñoz & Lithwick 2020; Duffell et al. 2020;
D’Orazio & Duffell 2021; Dittmann & Ryan 2021; Penzlin et al.
2022). These results suggest an exciting possibility that the CEE
post-dynamical evolution does not have to proceed as a sim-
ple monotonic contraction of a circular orbit, but there can be
phases of orbital expansion or an eventual formation of an eccen-
tric post-CEE binary. Our connection between post-dynamical
CEE and CBDs is different from previous explorations of fall-
back CBDs around post-CEE binaries (De Marco et al. 2011;
Kashi & Soker 2011).

There are also important differences between CBDs and
the post-dynamical phase of CEE. CEE might not result in
the formation of a cavity around the central binary, instead,
the central binary could virialize the gas in its vicinity, which
would provide pressure support of the envelope and prevent
accretion. Therefore, we can identify two extreme regimes of
zero or maximum accretion onto the binary. Which of the two
regimes of accretion occurs depends on the absence or pres-
ence of a “pressure valve” inside the orbit, which allows the
material to accrete onto the binary (Chamandy et al. 2018).
An example of such a pressure valve could be jets (e.g.,
Soker & Livio 1994; Moreno Méndez et al. 2017; Shiber et al.
2019; López-Cámara et al. 2019, 2022). A realistic situation
probably lies between these two extreme regimes of accretion.

In this paper, we aim to clarify the nature and dynamics of
the post-dynamical inspiral of CEE by performing the first ded-
icated series of 3D hydrodynamical numerical simulations. To
establish a well-controlled numerical experiment, we mimic the
outcome of the dynamical inspiral phase by artificially injecting
angular momentum in the primary envelope following the proce-
dure of Morris & Podsiadlowski (2006). To follow the evolution
of the system over long timescales, we excise an inner sphere
containing the binary, but study the gravitational influence of
the orbiting binary on the surrounding envelope by prescribing
time-changing gravitational potential. The inner boundary con-
dition at the excised sphere allows us to control the accretion on
the central binary. To analyze our results, we employ techniques
and diagnostics inspired by those commonly used in the context
of CBDs (e.g., Shi et al. 2012; Miranda et al. 2017; Muñoz et al.
2019; Penzlin et al. 2022).

This work follows the following structure: in Sect. 2, we
introduce our physical model and describe the numerical setup
used in our common envelope simulations. In Sect. 3, we present
the results of our simulations. In particular, we measure the
timescale of binary separation evolution resulting from the var-
ious torques acting on the system, when accretion is turned on
or off. We measure the typical frequencies associated with the
short-term variability of mass accretion onto the binary, and we
compare them with that from CBDs. We then study the forma-
tion of overdensities, the excitation of eccentricity, and the con-
vective stability of the envelope. Finally, we analyze the angular
momentum transport within the envelope. In Sect. 4, we discuss
implications of our findings for CBDs and CEE. In Sect. 5, we
summarize our results.

2. Physical model and numerical setup

We construct our post-dynamical inspiral model in the iner-
tial frame at rest with the center of mass of the binary. We
do not follow the previous evolution of the inspiraling binary,
instead, we mimic its outcome following a procedure similar
to Morris & Podsiadlowski (2006, 2007, 2009) and Hirai et al.
(2021), where the envelope is spun-up until a satisfactory
amount of total angular momentum is injected. This mimics
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Table 1. Setup comparison to several ab initio simulations of CEE.

Reference M1 Menv M2 q R ab/R

Passy et al. (2012; SPH3) 0.392 0.488 0.3 0.77 83 0.14
Ohlmann et al. (2016) 0.38 1.6 0.99 2.6 49 0.09
Sand et al. (2020) 0.545 0.425 0.485 0.89 173 0.2−0.24
Lau et al. (2022a) 3.84 8.16 3 0.78 619 0.05−0.07
This work . . . 2(M1 + M2) . . . 1 0.16

Notes. M1, Menv, and M2 are expressed in M�, R is expressed in R�. The primary star is a red giant in Passy et al. (2012) and Ohlmann et al. (2016),
an AGB star in Sand et al. (2020), and a red supergiant in Lau et al. (2022a).

angular momentum transfer from the secondary’s orbit into the
envelope during the dynamical plunge-in (see Sect. 2.4). We
set the gravitational constant G, the total binary mass M =
M1 + M2, the primary’s initial radius R, and thus the angu-
lar velocity

√
GM/R3 to unity. The orbital velocity is fixed to

Ωorb =

√
GM/a3

b, where ab = r1 + r2 is the fixed binary separa-
tion, M1 is the mass of the primary’s core located at {r1, θ1, ϕ1},
and M2 is the mass of the secondary object (either a main-
sequence star or a compact object) located at {r2, θ2, ϕ2}. Orbital
period is Porb = 2π/Ωorb. The two objects are not resolved
and are considered as constant point masses. To simplify our
model, we consider an equal mass binary (q ≡ M2/M1 = 1)
on a fixed circular orbit. The mass of the envelope is Menv = 2
in our units. Because we are most concerned with the angular
momentum transport within the common envelope in the two
extreme regimes of mass and angular momentum accretion onto
the binary rather than the specific details of the individual cores,
we excise a central region encompassing the binary, which has a
radius rin = 0.625 ab = R/10. This excised region represents the
gas bubble virialized by the orbiting binary and the enforced con-
ditions at its boundary determine whether the binary is accreting
or not.

We compare our setup to several ab initio simulations of CEE
in Table 1. The key quantity is the ratio of final separation to
the initial radius of the primary, which we set in our model to
ab/R = 0.16. This comparison suggests that our choice of initial
parameters to the binary and envelope broadly represents results
of ab initio simulations across for a range of progenitor types.

In the rest of this Section, we describe the equations used for
solving the problem (Sect. 2.1), boundary conditions (Sect. 2.2),
initial conditions (Sect. 2.3), and initial deposition of angular
momentum (Sect. 2.4). We then present our numerical setup
for the averaging of the polar zones (Sect. 2.5), mesh refine-
ment (Sect. 2.6), and equatorial symmetry of the simulations
(Sect. 2.7).

2.1. Equations of hydrodynamics

We use Athena++ (Stone et al. 2020) to solve the equations of
hydrodynamics

∂ρ

∂t
+ ∇ · ρu = 0, (1)

∂ρu
∂t

+ ∇ · (ρuu + PI + T) = −ρ∇Φ, (2)

∂E
∂t

+ ∇ · [(E + PI)u + T · u] = −ρ∇Φ · u, (3)

where E = e+ρu2/2, e is the internal energy density, P = (Γ−1)e,
Γ = 5/3 is the adiabatic index, Φ(r) is the gravitational potential

of the binary,

Φ(r) = −

2∑
i=1

GMi

|r − ri|
, (4)

and Ti j is the symmetric viscous stress tensor,

Ti j = −ρν

(
∂iu j + ∂ jui −

2
3

(∇ · u)δi j

)
, (5)

which is nonzero when we prescribe a kinematic viscosity ν.
For runs with nonzero viscosity, we prescribe an isotropic

effective kinematic viscosity of turbulent nature, ν(r, θ, ϕ) =
1
3 vl, where v is the velocity of the turbulent eddies, and l is
their vertical mean free path or the mixing length. We further
assume that the mixing length is proportional to the local pres-
sure scale height, l = α1HP (e.g., Vitense 1953; Zahn 1989),
and that the characteristic eddy velocity is a fraction of the
local sound speed, v = α2cs. Following Shakura & Sunyaev
(1973), we obtain ν(r, θ, ϕ) = ανcsHP, where αν = α1α2/3 is
a free parameter. Assuming a typical effective kinematic vis-
cosity of O(1015 cm2 s−1), we take αν = 10−3 in this work.
The nature of such effective viscosity is unknown and has
been debated lively in the context of astrophysical accretion
flows. We further impose zero kinematic viscosity radial gradi-
ent in ghost cells at both boundaries. In our viscous simulation,
we use the Runge-Kutta-Legendre super-time-stepping algo-
rithm in Athena++ (Meyer et al. 2014; Stone et al. 2020), which
integrates diffusive terms forward with hyperbolic timesteps.
Although this algorithm dramatically reduces the timestep con-
straints, we still could not evolve our viscous runs for as long as
we could when αν = 0.

2.2. Boundary conditions

2.2.1. At the inner edge of the domain

During the initial spin-up of the star (see Sect. 2.4), we assume
that the inner boundary supports the weight of the primary’s
envelope and we forbid the fluid to flow through it. To achieve
that, we assume that ρ is constant in ghost cells, which we ini-
tialize with the value of the density in the first interior cell i and
which we assume to be in equilibrium with ghost cells. Con-
sidering a simple first-order finite volume integration algorithm
with a number of ghost cells Ng = 2, the pressure and density
boundary conditions in the inner ghost cell of index j read

ρi− j = ρi, (6)

Pi− j = Pi− j+1 + ∆rρ̂
(

d〈Φ〉θ
dr

−
û2
ϕ

r

)∣∣∣∣∣∣∣
r=r̂

, (7)
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where f̂ is the cell-face value of the variable f evaluated at
r̂ = rin − ( j − 1)∆r, ∆r = r j − r j+1, and 〈Φ〉θ is the time and lati-
tude average of the binary gravitational potential (see Sect. 2.3).
We deal with the horizontal velocity by applying zero radial gra-
dient in the adjacent ghost cells and we impose reflecting radial
velocity to enforce that ur = 0 at the inner boundary,

ur,i− j = −ur,i+ j−1, (8)
uθ,i− j = uθ,i+ j−1, (9)
uϕ,i− j = uϕ,i+ j−1. (10)

We note that in some cases Eq. (7) gives negative P in ghost
zones. When that is the case, equilibrium cannot be enforced at
the boundary, and we impose a zero pressure gradient instead.

Once the spin-up phase is terminated, we either allow or for-
bid accretion onto the central binary. When accretion is allowed,
we open the inner boundary to angular momentum and mass
flow by imposing zero radial gradient of ρ, P, uθ, and angular
momentum in ghost cells, and a diode-type radial infall only con-
dition, ur,i− j = min (ur,i,−ur,i+ j−1). When accretion is forbidden,
we impose purely reflecting boundary conditions.

2.2.2. At the outer edge of the domain

We use diode-type boundary conditions at the outer edge of the
domain and we impose zero density and pressure gradient in the
outer ghost zones. However, this condition implies that the ambi-
ent medium of our initial model is out of equilibrium and there
is an inflow near the outer boundary during the initial spin-up
phase. In this region, ρ and P are initially very low (see Sect. 2.3)
and thus there is negligible influx of mass.

2.3. Initial conditions and outer low-density medium

We assume that the gas in the envelope is initially in hydrostatic
equilibrium and that it can be described by a polytropic equa-
tion of state, as is often done in stellar physics (e.g., Maeder
2009; Jones et al. 2009; Gagnier & Rieutord 2020). Ignoring the
gas self-gravity and considering purely radial initial profiles, the
equations governing the envelope initial structure read

dP
dr

= −ρ
dΦ

dr
and P = KρΓ, (11)

where K is a constant related to the thermal conditions at
the inner boundary. The Green’s function for Eq. (4) satisfies
(Jackson 1975)

G(r, ri) =
1

|r − ri|
= 4π

∞∑
`=0

∑̀
m=−`

1
2` + 1

r`i
r`+1 (Ym

` (θi, φi))∗Ym
` (θ, φ),

(12)

for r ≥ rin ≥ max(r1, r2), where Ym
` are the usual normalized

scalar spherical harmonic functions of degree ` and order m. The
parity properties of the spherical harmonic function and of the
time and latitude average of the binary potential, that is 〈Φ(r)〉θ =
〈Φ(−r)〉θ, imply that

〈Φ〉θ = −4π
2∑

i=1

∞∑
k=0

2k∑
m=−2k

GMi

4k + 1
r2k

i

r2k+1 〈(Y
m
2k(θi, φi))∗Ym

2k(θ, φ)〉θ,

(13)

where 〈·〉θ indicates a time and latitude average. The ` ≤ 2 lati-
tude and time averaged binary potential finally reads

〈Φ〉θ = −
GM

r

1 − a2
bq

8(1 + q)2r2

 · (14)

We use this latitude- and time-averaged potential in the momen-
tum equation during spin-up. We replace the averaged potential
by its time-dependent expression (Eq. (4)) after the spin-up. Our
choice of the initial potential facilitates the transition from the
initial spin-up by preventing a large injection or removal of grav-
itational energy, which could lead to a sudden envelope ejection
or collapse. By combining Eqs. (11) and (14) and by specifying
the ratio between ρ at the stellar surface and at the inner bound-
ary surface, κn = ρ(R)/ρ(rin), we obtain the initial density and
pressure profiles

ρ(r)
ρ(rin)

=

1 + C
B

3

 1
r3 −

1
r3

in

 − A
(

1
r
−

1
rin

)n

, (15)

P(r) = KρΓ, (16)

where n = 1/(Γ − 1) is the polytropic index and

A = GM, B =
3Aa2q

8(1 + q)2 ,

A′ = A
(

1
R
−

1
rin

)
, B′ =

B
3

 1
R3 −

1
r3

in

 , (17)

C =
κ − 1

B′ − A′
, and K =

(1 − Γ)(B′ − A′)
Γ(κ − 1)ρ(rin)1/n ·

Density at the inner boundary ρ(rin) can be calculated from the
prescribed total mass of the envelope.

The primary star is initially embedded in a low-density
medium to which we apply our outer boundary conditions and
in which the envelope will expand later on. To model this
low-density medium, we consider an atmosphere in hydrostatic
equilibrium with constant ambient sound speed cs,amb (see also
MacLeod et al. 2018) and we obtain analytical ρ and P profiles
assuming P = ρc2

s,amb/Γ, which yields

ρext = C1 exp

 Γ

c2
s,amb

(A
r
−

B
3r3

) · (18)

We note that it is not possible to transition from the envelope
to the ambient region without a discontinuity, either in ρ, P, or
both. To accommodate this discontinuity, we derive the constant
C1 such that the stellar surface is in hydrostatic equilibrium with
the low-density atmosphere, which gives

C1 =
P− − 0.5∆r(R)ρ−d〈Φ〉θ/dr

0.5∆r(R)d〈Φ〉θ/dr + c2
s,amb/Γ

exp
(
−

AC′

r+
+

BC′

3r+3

)
· (19)

Here, P− and ρ− are the pressure and density in the last radial cell
of the envelope from Eq. (15), r+ is the radius of the first cell of
the ambient medium, ∆r(R) is the difference between r+ and the
radius of the last radial cell of the envelope, and C′ = Γ/c2

s,amb.
We illustrate our initial conditions in Fig. 1.

In order to minimize the effects of the nonexact numerical
hydrostatic equilibrium resulting from the finite grid resolution,
we use Gauss-Legendre quadrature to map the initial profiles
onto the mesh as volume averaged variables at the volume aver-
aged center of each cell, which is different from geometric cen-
ter in polar-spherical coordinates, especially near the polar axis
because of the converging grid geometry.
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Fig. 1. Initial density, pressure, and sound speed profiles used in all our
simulation runs.

2.4. Initial spin-up

We aim to construct a model with an initial total angular momen-
tum that is consistent with what is available in the system,

Jz =
GM2(M1 + Menv)(1 + β)

M + Menv

√
G(M + Menv)ai − Jz,b, (20)

where ai is the initial binary separation1, ab is the enforced sep-
aration at the end of the dynamical plunge-in, Menv = 2 is
the total mass of the envelope, and β is the ratio between the
primary’s envelope angular momentum and the orbital angular
momentum before the plunge-in. Jz,b = µ

√
GMab is the orbital

angular momentum of the binary at the end of the dynamical
plunge-in, which coincides with the beginning of our simula-
tions, and µ = M1M2/(M1 + M2) is the reduced mass. We
require β ≤ 1/3 to ensure Darwin stability (e.g., Hut 1980). To
impart angular momentum to the envelope, we use the procedure
of Morris & Podsiadlowski (2006, 2007, 2009) and we apply a
fixed spin-up rate to all cells in which the angular velocity is
sub-Keplerian, u2

ϕ < |〈Φ〉θ|. Simultaneously, the structure of the
envelope slowly restructures.

We stop the spin-up once a satisfactory amount of total angu-
lar momentum is injected in the envelope. After a short adjust-
ment phase, we replace the latitude and time averaged potential
〈Φ〉θ with its real expression (Eq. (4)). As a result, there is a small
bump of internal energy that is exclusively due to the increase of
the gravitational energy density in the inner envelope. Though it
has no physical origin beyond the sudden anisotropy of the grav-
itational potential and despite the fact that its amplitude cannot
be easily constrained, it has the benefit of mimicking a small
gravitational energy deposition by the spiral-in of the secondary
star. We discuss this more in Sect. 3.1.

2.5. Polar averaging

It is well known that the use of spherical coordinates leads to
strong time-step constraints resulting from the converging grid

1 We ignore potential mass and angular momentum loss from the outer
Lagrange point (L2) preceding common envelope (e.g., Shu et al. 1979;
Pejcha 2014; Pejcha et al. 2016b; Hubová & Pejcha 2019). Such addi-
tional angular momentum loss can be mimicked by lowering the value
of β.

geometry and the Courant-Friedrichs-Lewy (CFL) condition. To
mitigate this issue, we use a polar averaging technique based
on the Ring Average technique of Zhang et al. (2019), which is
conservative and computationally inexpensive. This technique
consists of a post-processing treatment of the variables in cell
“chunks” adjacent to the polar axis, which is applied after the
cells have been updated by the Riemann solver. Hence, this tech-
nique does not involve the modification of the grid nor of the
solver. For nonuniformly spaced spherical coordinates, we com-
pute the appropriate number of chunks Nc = 2k per latitudinal
ring of index m in each mesh block, where

k =

[
log2

(
rm∆θ∆ϕblock

∆r

)]
. (21)

Here, square brackets indicate rounding to the nearest integer
and ∆ϕblock is the azimuthal extent of the mesh block. Then, we
average conserved variables in the azimuthal direction within
each chunk of each ring and in each mesh block. We sub-
sequently apply second-order spatial reconstruction procedure
to the averaged values and we correct the minimum time-step
within a mesh block to account for the coarsened effective mesh.

2.6. Mesh refinement

Our initial models are statically refined to properly resolve
regions with strong initial gradients. These are regions close to
the central binary and to the initial surface of the star. Specif-
ically, our initial mesh is refined two levels above the base in
the regions rin ≤ r ≤ 0.25 and 0.95 ≤ r ≤ 1.05. After the first
timestep of the initial spin-up of the envelope, we switch from
static to adaptive mesh refinement. We adopt a criterion based
on the second derivative error norm of a function σ of a vari-
able (Lohner et al. 1987). This criterion measures the smooth-
ness of the solution for a given refinement variable. Similarly to
the PLUTO code (Mignone et al. 2012), a mesh block is tagged
for refinement whenever

χ2 =

∑
d |∆d,+1/2σ − ∆d,−1/2σ|

2∑
d
(
|∆d,+1/2σ| + |∆d,−1/2| + εσd,ref

)2 ≥ χ
2
r . (22)

Here, ∆r,±1/2 = ±(σi±1−σi) and σr,ref = |σi+1|+2|σi|+ |σi−1|. The
value of the threshold χr is problem dependent and also depends
on the chosen refinement variable σ. Finally, ε acts as a filter
preventing refinement in regions of small ripples. We find that
for our simulations, σ = ρ|u| tends to capture the flow contrasts
the best with χ2

r = 0.2 and ε = 0.01. We note that the criterion
in Eq. (22) does not include cross derivatives, unlike the original
work of Lohner et al. (1987). We find little difference when those
terms are included and we opt not to include them.

2.7. Equatorial symmetry

Since the orbiting cores are aligned in the equatorial plane at all
times, our setup should be exactly symmetric about the equator.
In practice, such symmetry can be difficult to enforce despite
Athena++’s integration method being well-suited to preserving
it Stone et al. (2020). For instance a mesh symmetric about the
double precision rounding accuracy of π/2 in the θ-direction
yields asymmetric volume averaged cell colatitudes (Mignone
2014). For example,

x2,v =

∫
cell θdV∫
cell dV

=
d(sin θ − θ cos θ)

d(− cos θ)
, (23)
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Table 2. Run parameters and simulations outcome.

Run αν β Accretion ΛI
140–250 ΛII

140–250 ΛIII
140–250

A 0 0.3 Yes 0.608 1.501 3.880
A′ 0 0.3 No
B 0 0.1 Yes 0.602 1.893 5.507
C 0 −0.3 Yes 0.877 3.000 5.331
D 10−3 0.3 Yes

Notes. ΛI,II,III are the normalized autocorrelations of the azimuthally
averaged turbulent latitudinal velocity on the orbital plane integrated
over an arbitrary radial domain, expressed in units ab, and interpreted as
the associated typical convective eddy scale. The superscript 140−250
indicates a time average on the interval 140 ≤ t/Porb ≤ 250. More
details are provided in Sect. 3.6.4.

is asymmetric because of the asymmetry of the trigonometric
functions about the rounded value of π/2. This introduces asym-
metry in the theoretically symmetric source terms in our prob-
lem. Volume-averaged colatitudes are thus computed about the
double precision rounding of π/2, hereafter noted π̃/2. We obtain

x2,v = π̃/2 +

∫
cell φ̃dV∫
cell dV

= π̃/2 −
d(− cos φ̃ − φ̃ sin φ̃)

d(− sin φ̃)
,

where φ̃ is the latitude measured from π̃/2. Although this change
considerably improves symmetry, face-centered cell colatitudes
are, in practice, not symmetric in the last place precision. Such
tiny asymmetry of dθ leads to the asymmetry of the physical
and geometric sources terms and to a residual asymmetric flow
that may amplify when it is linearly unstable. Furthermore, addi-
tional sources of asymmetries may amplify the problem, such as
compiler value-unsafe optimizations of floating-point operations
or the nonassociativity of floating-point arithmetic. In order to
control such inevitable perturbations, we impose ad hoc initial
random weak seed perturbation to the initial density profile with
maximum amplitude 10−6 ρ(r, θ, ϕ), which is orders of magni-
tude larger than the amplitude of perturbations resulting from
grid asymmetries.

3. Results

We used a total of 4.6 million CPU hours on the Karolina clus-
ter at IT4Innovations to perform our simulation runs. In Table 2,
we summarize the parameters of the runs. In Fig. 2, we present
zoomed-in snapshots of density cross section in the xy and xz
planes at different times and for three inviscid simulation runs.
The inviscid runs A, B, and C only differ by the initial size of
the envelope’s angular momentum reservoir. Run A is computed
with β = 0.3, that is close to the limit of Darwin instability,
run B is computed with β = 0.1, and run C with β = −0.3.
Negative value of β implies that the total z component of angu-
lar momentum is smaller than the initial orbital angular momen-
tum of the binary orbit. Although our setup only approximates
the process of angular momentum transfer from the orbit to the
primary’s envelope during the dynamical plunge-in, the density
structure and flow morphology early in our simulations have
striking resemblance with late-time snapshots from ab initio
simulations of dynamical plunge-in (e.g., Ohlmann et al. 2016;
Chamandy et al. 2020).

Our simulations show that overall the envelope is destabi-
lized by the central binary gravitationally torquing the inner
envelope, exciting spiral density waves, and shearing the fluid

flow. Energy from such flow is transferred to large-scale tur-
bulence, and angular momentum is then transported by mean
and turbulent flows. In the rest of this section, we investigate
these processes in detail. We address the initial jump in energy
(Sect. 3.1), binary evolution and mass accretion (Sect. 3.2),
short timescale dependence of accretion (Sect. 3.3), presence
and origin of the lump (Sect. 3.4), eccentricity of the enve-
lope (Sect. 3.5), and convective stability and angular momentum
transport (Sect. 3.6).

3.1. Energy injection

In Fig. 3, we show the kinetic, internal, gravitational, and total
binding energy evolution for model A. We first discuss the bump
in energy, which occurs at the end of the initial spin-up when we
replace the latitude and time averaged binary potential with its
real expression.

To asses the importance of the bump, we estimate the CEE
efficiency parameter αCEE corresponding to injection of internal
energy ∆E,

αCEE =
2∆E

GM2

(
M1
ab
−

M1+Menv
ai

) ' 0.46, (24)

where ai is the initial binary orbital separation before plunge-
in that we assume to be equal to 10 ab (e.g., Passy et al. 2012;
Ohlmann et al. 2016; Chamandy et al. 2020). That is, the ampli-
tude of the internal energy bump corresponds to a gravita-
tional energy deposition during plunge-in of 46% of the dif-
ference between initial and final total orbital energy. Further-
more, because the difference between averaged and real gravi-
tational potentials is only significant in the vicinity of the cen-
tral binary, the energy is almost exclusively injected in the inner
part of the envelope, which agrees with numerical simulations of
Chamandy et al. (2019a). Because both amplitude and location
of the energy injection are consistent with orbital energy deposi-
tion during CEE, we do not add more.

3.2. Binary evolution and mass accretion

Here, we address the evolution of the orbit of the central binary.
So far, CEE theory has assumed that the binary separation
decreases almost monotonically in time. However, recent studies
of CBDs (e.g., Muñoz et al. 2019; Penzlin et al. 2022) suggest
that for equal mass binaries there is a wide range of viscosity
and disk thickness that leads to the expansion of the orbit. There-
fore, finding out what actually happens to the binary separation
in post-dynamical CEE inspiral is of fundamental importance. In
our setup, we keep the orbital parameters fixed, but we can mea-
sure how much angular momentum was exchanged between the
binary and the envelope and therefore assess what would happen
to the binary if it was self-consistently coupled to the envelope.
The advantage of our setup is that by excising the inner region,
we can run the simulations for more orbits of the central binary.

3.2.1. Torques and angular momentum conservation

In order to predict the secular evolution of the binary separation,
it is necessary to evaluate the torques in the common envelope.
Such torques originate from the quadrupolar component of the
gravitational potential as well as the advective (and perhaps vis-
cous) angular momentum fluxes through the domain boundaries.
The angular momentum conservation equation reads

J̇z = J̇z,adv + J̇z,grav + J̇z,visc, (25)
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Fig. 2. Zoomed-in snapshots of density cross section in the xy and xz planes at different times and for our three inviscid simulations runs A (left),
B (middle) and C (right). The snapshots on the first line are taken shortly after the end of the initial spin-up phase.

where J̇z,adv is the advective torque associated with the loss of
angular momentum through the boundaries,

J̇z,adv = −

∫
∂R
ρsuϕu · n⊥dS , (26)

J̇z,grav is the gravitational torque exerted by the binary,

J̇z,grav = −

∫
ρ
∂Φ

∂ϕ
dV, (27)

and J̇z,visc is the viscous torque,

J̇z,visc = −

∫
∂R

[
(r × T) · ez

]
· n⊥dS . (28)

Here, n⊥ is the outward-pointing unit vector at the boundaries’
surface and s = r sin θ is the radial cylindrical coordinate. We
give more details in Appendix A.

In Fig. 4a, we show the evolution of these torques for runs A
and A′. We also perform consistency check for angular momen-
tum conservation by comparing the time evolution of the indi-
vidual torques with the evolution of the total angular momen-
tum budget for all of our models after the initial spin-up, and we
show the result for model A in Fig. 4b. We find that the angu-
lar momentum is conserved to within about 0.1−1% margin for
all of our models. We also see that for all our models the total
angular momentum evolution is dominated by the outflow at the
outer boundary, which results from the expansion of the enve-
lope and the finite radial extent of our numerical domain. When
the inner boundary is open to angular momentum and mass flow
toward the binary, angular momentum accretion dominates over

the gravitational torque, which only weakly contributes to the
injection of the angular momentum in the envelope. Because we
choose zero radial gradient of angular momentum and viscosity
at the inner boundary, the contribution of viscous torque remains
weak even for eccentric flows in the binary close vicinity or for
larger values of αν. After 140 orbital periods, we consider the
various torques to be sufficiently time-steady so that we can qual-
itatively assume that all initial transients have decayed and that
the flow properties have reached a quasi-steady state.

3.2.2. Binary orbital evolution

In this work, we set the orbital eccentricity eb to zero and impose
the binary mass ratio q = 1. We thus assume that mass and angu-
lar momentum accretion through the inner boundary distribute
equally between the two cores, q̇ = 0. Furthermore, we assume
that accretion does not excite orbital eccentricity, as suggested
by CBD simulations, and we therefore fix ėb = 0 (Muñoz et al.
2019; Heath & Nixon 2020; Penzlin et al. 2022). The validity of
this assumption will be discussed in Sect. 3.5. The time deriva-
tive of the binary’s angular momentum can be written as the
orbital separation evolution equation

ȧb

ab
=

Ṁ
M

(
2

MJ̇z,b

ṀJz,b
− 3

)
· (29)

If the central binary does not accrete from the shared envelope,
Eq. (29) simplifies to

ȧb

ab
= −2

J̇z,grav

Jz,b
, (30)
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Fig. 3. Kinetic, internal, gravitational, and total binding energy evo-
lution in units GM2/R for model A. The vertical black dashed line
indicates the replacement of the averaged binary potential with its full
expression (Eq. (4)), and the bump in energy is indicated with the dou-
ble arrow.

and the binary orbit contracts (ȧ/a < 0) if J̇z,grav > 0, that is
if the gravitational torque transfers angular momentum from the
binary orbit to the envelope. If the inner boundary is open to
mass and angular momentum flow onto the binary, it is useful to
consider the specific angular momentum transfer rate

j ≡
J̇z,b

√
GMabṀ

, (31)

which yields a critical value jcrit = 3/8 for q = 1
(e.g., Miranda et al. 2017; Moody et al. 2019; Dittmann & Ryan
2021; Penzlin et al. 2022). Above this value, the binary orbit
expands (ȧ/a > 0) and below it contracts (ȧ/a < 0). In Eq. (31),
Ṁ is the measured mass accretion through the inner boundary

Ṁ = −

∫
∂Rin

ρurdS , (32)

and J̇z,b = − J̇z,adv
∣∣∣
r=rin
− J̇z,grav − J̇z,visc

∣∣∣
r=rin

.
Contrary to 3D simulations of CBDs where mass and angu-

lar momentum accretion only occur within a limited angle about
the orbital plane dictated by the geometrical thickness of the
disk, mass accretion could span the whole solid angle in our
simulations. Hence, we may observe accretion along the polar
axis with very small j, which could favor the contraction of the
orbit according to Eq. (31). To diagnose this issue, we show in
Fig. 5 the time average over 10 Porb of the angular distribution of
mass and angular momentum accretion fluxes through the inner
boundary for model B. We see that mass and angular momentum
accretion mostly occur within an annular ring centered on the
orbital plane. Above and below such annular ring, mass accre-
tion is accompanied with weak angular momentum accretion.
Hence, the geometry of the CEE problem favors contraction of
the binary orbit unlike what is the case for CBDs.

In the top panel of Fig. 6, we show the evolution of the mov-
ing average of the specific angular momentum transfer rate over
one orbital period

〈 j〉P =
1

Porb

∫ t+Porb

t
j(t′)dt′. (33)
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Fig. 4. Angular momentum evolution and conservation in our simula-
tions. Panel a: time evolution of the advective, viscous, and gravitational
torques for runs A and, A′ (dotted lines). Panel b: relative difference
between the sum of the torques and the measured time derivative of the
total angular momentum showing the angular momentum conservation
for run A.

We see that the combined effects of gravitational torque and
mass and angular momentum accretion lead to the contraction of
the orbit for all the considered values of β and for both viscous
and inviscid fluids. In the second panel of Fig. 6, we show the
evolution of the moving average of the gravitational torque for
all our models. We see that J̇z,grav rapidly settles to a value that
closely oscillates around zero and thus does not contribute to the
orbital evolution when the inner boundary is open to mass and
angular momentum flow toward the binary. Conversely, when
accretion is prevented by reflecting boundary conditions J̇z,grav
decreases much slower, remains positive, and thus drives orbital
contraction. This crucial difference comes from the stabilizing
effect of higher density in the vicinity of the binary when reflect-
ing boundary conditions are enforced. This is discussed in more
depth in Appendix B. In the bottom panel of Fig. 6, we show
the orbital separation evolution timescale τab = |ab/ȧb|. We find
that τab reaches a statistically steady value of O(103 Porb) for all
models allowing mass and angular momentum accretion onto the
binary. Conversely, when accretion is forbidden (simulation run
A′), the gravitational torque is exclusively responsible for the
orbital contraction and the slow decrease of J̇z,grav implies a slow
increase of τab . The orbital separation evolution timescale even-
tually reaches a value of O(105 Porb) at the end of simulations
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(a)

(b)

Fig. 5. Time average of the angular distribution of mass (panel a) and
angular momentum (panel b) accretion fluxes through the inner bound-
ary for ten orbital periods of model A at 148 ≤ t/Porb ≤ 158.

run A′ at t ≈ 450 Porb. It is possible that τab would continue
increasing if we were able to run our model for more orbits.

Finally, we address the influence of envelope viscosity on
binary evolution. Unfortunately, we could not run simulation
run D for as long as the inviscid ones. Still, we can see that
αν = 10−3 does not significantly affect τab . Because of the very
variable nature of mass and angular momentum accretion rates, it
is not clear whether the limited impact of viscosity would even-
tually lead to a slower or faster contraction of the orbit. Similarly,
higher values of αν should be investigated as well.

3.3. Time variability of mass and angular momentum
accretion

Now that we have investigated the secular binary separation evo-
lution, we more thoroughly analyze the gas dynamics in the
vicinity of the central binary, in particular, the time variability
of mass and angular momentum accretion in the simulations that
permit accretion. In Figs. 7 and 8, we show the latitudinal space-
time diagram of the mass and angular momentum fluxes onto
the binary, normalized by their maximum value in the consid-
ered time interval, for runs A and B. In the top panel of Figs. 9
and 10, we show a more detailed view of a shorter time inter-
val. To construct these plots, we increased the simulation output

(a)

(b)

(c)

(d)

(e)

Fig. 6. Evolution of key quantities relevant for the binary orbit after
the initial envelope spin-up and adjustment. Panel a: moving average
of the specific angular momentum transfer 〈 j〉P (Eq. (32)) for models
A, B, C, and D. The black dashed line indicates the critical specific
angular momentum transfer jcrit = 3/8. Panel b: moving average of the
gravitational torque 〈J̇z,grav〉P for simulation runs A and A′. The black
dashed line indicates 〈J̇z,grav〉P = 0. Panel c: moving average of the mass
accretion rate through the inner boundary 〈Ṁ〉P. Panel d: envelope mass
in our numerical domain Menv(r ≤ 10). Panel e: moving average of the
orbital separation evolution timescale 〈τab 〉P = 〈|ab/ȧb|〉P.

rate to 80/Porb. We see that mass and angular momentum fluxes
exhibit periodic variability at all colatitudes. This variability is
manifold: we observe a high frequency variability that is modu-
lated by a lower frequency, at least near the orbital plane.

To identify the modes associated with mass and angular
momentum accretion variability, we use Fourier transform to
compute the power spectral density of the mass accretion rate
Ṁ and mass flux ṁ(θ). We distinguish four colatitude ranges:
0 ≤ θ ≤ π, 0 ≤ θ ≤ π/3, 2π/3 ≤ θ ≤ π, and π/3 ≤ θ ≤ 2π/3 for
the mass flux. We show our results in Figs. 9c and 10c for sim-
ulation runs A and B. In both simulations we identify two main
peaks and their harmonics: one located at ωb ' 2 Ωorb and the
other one at ωρ ' Ωorb/5. Here, ωb corresponds to the forcing
angular frequency of the quadrupolar moment contribution to the
binary potential for a binary mass ratio q = 1, which is the fre-
quency at which material is pulled toward the central binary. The
frequency ωρ is also often seen in CBDs, where it corresponds to
an overdensity in the envelope orbiting at the angular frequency
ωρ. This overdensity is often called “lump” and typically forms
when some of the accreting material is strongly torqued in the
vicinity of the inner boundary, which flings it back into the enve-
lope where it locally accumulates. The interaction of the binary
forcing frequency and the orbital angular frequency of the over-
density materializes as a modulation with beat angular frequency
ωbeat = ωb − ωρ.
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Fig. 7. Space-time diagram of the mass (a) and angular momentum (b)
fluxes onto the binary during 21 orbital periods for model A.

1

2

3

(a)

150 155 160 165 170
time [Porb]

1

2

3

(b)
1.0

0.8

0.6

0.4

0.2

0.0

m
(

,t
)/m

ax
{ m

(
,t

):
,t

}

1.0

0.8

0.6

0.4

0.2

0.0

(
,t

)/m
ax

{
(

,t
):

,t
}

Fig. 8. Same as Fig. 7 but for model B during 26 orbital periods.

We note a dramatic change in the latitudinal distribution from
t ' 156 Porb in simulation run B (Fig. 8). For t . 156 Porb,
we find that mass accretion shows inclined and periodic stripes
spanning all latitudes. We interpret this as an indication of the
presence of a tilted lump, successively feeding the individual
binary components through accretion streams. We give more
details in Appendix C. In the context of CBDs, accretion onto
the binary results exclusively from analogous accretion streams
propagating in a low-density cavity encompassing the central
binary. For t & 156 Porb, the mass and angular momentum accre-
tion becomes more isotropic, suggesting the absence of such
well-structured latitudinally extended and tilted lump. Simulta-
neously, the complexity of the variability increases.

Interestingly, we see that while the ωb mode appears in all
three latitudinal regions in both runs and in both regimes of
run B, such peak is not present in the power spectral density
of the total mass accretion rate in the first regime of simula-
tion run B. We can explain this by the asynchronocity of mass
accretion between colatitudes, which results from the migrating
accretion stream and which suggests that local latitudinal anal-

1

2

3

(a)

150 155 160 165 170
time [Porb]

1.5

2.0

2.5

3.0

3.5

M
[1

0
3
]

(b)

1.00 0.75 0.50 0.25 0.00
m( , t)/max{m( , t) : , t}

0.18 0.28 0.5 1.0 1.5 1.805 1.985
[ orb]

0

2

4

6

8

10

Po
w

e
r 

sp
e
ct

ra
l 
d
e
n
si

ty (c)

Fig. 9. Detailed view on the variability of mass flux for model A.
Panel a: space-time diagram of the local mass flux through the inner
boundary. Panel b: time evolution of the mass accretion rate onto the
binary. Panel c: power spectral density of the total mass accretion rate
onto the binary (black line) and of the mass flux at each colatitude
(colored lines). Green lines correspond to the range 0 ≤ θ ≤ π/3,
blue lines to the range 2π/3 ≤ θ ≤ π, and orange lines to the range
π/3 ≤ θ ≤ 2π/3.

ysis is necessary when studying short-term evolution of accre-
tion in CEE. The presence of a power spectral density peak at
ωρ in the three latitudinal regions in the first phase of simula-
tion run B suggests that there is a large latitudinal extent of an
overdense region amplifying the accretion. However, this peak
frequency is not present for the total mass accretion rate in sim-
ulation run A in the same time interval. This difference is likely
due to the eccentric structure of overdensities above and below
the orbital plane (see Sect. 3.5), which splits ωρ and its harmon-
ics about their original value. Similar phenomenon was identi-
fied in CBD simulations (e.g., Shi et al. 2012; Noble et al. 2012;
D’Orazio et al. 2013). In simulation run A, we can identify two
peaks at around 0.18 Ωorb and 0.28 Ωorb, which correspond to the
splitting of ∆ω ' 0.05 about an unsplit lump angular frequency
ωρ ' 0.23. For the second phase of simulation run B, additional
peaks appear for 2π/3 ≤ θ ≤ π and π/3 ≤ θ ≤ 2π/3 at around
0.13 Ωorb and 0.255 Ωorb, which correspond to an angular fre-
quency splitting of ∆ω ' 0.0625 about an unsplit lump angular
frequency ωρ ' 0.1925.

3.4. The lump

Although we saw signatures of the lump in the power spectra,
the density snapshots in Fig. 2 do not make the existence of a
lump glaring. To better visualize the lump and to assess its poten-
tial effects on the inner envelope dynamics and accretion onto
the central binary, in Fig. 11 we examine the space-time evolu-
tion of quantity A1(r, t) (e.g., Roedig et al. 2011, 2012; Shi et al.
2012; Noble et al. 2012; Lopez Armengol et al. 2021), which is
the θ-integrated m = 1 mode of the Fourier transform of the
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Fig. 10. Detailed view on the variability of mass flux for model B and its two different accretion regimes (left and right panels). Meaning of
symbols and lines in each panel is the same as in Fig. 9.

density with respect to the azimuth ϕ,

A1(r, t) =

∫
ρeiϕrdθdϕ. (34)

First, we see a high-frequency variation of A1 in the inner enve-
lope (r . 0.8), which is caused by the forcing angular fre-
quency, ωb. A small fraction of such overdensities contribute to
the increase of mass and angular momentum accretion shown
in Figs. 7 and 8 while the rest of the material is strongly gravita-
tionaly torqued by the binary and is flung back into the envelope.
These outflowing streams collide and accumulate in a large range
of colatitudes starting from r ' 0.8. The resulting overdense
region dilutes and propagates radially far into the envelope, as
we can see from the outward propagating overdensity in Fig. 11.
The inner part of this overdense lump feeds the inner envelope,
but eventually the lump propagates far enough into the envelope
that it no longer interacts with the inner region and a new lump
begins to form again. We illustrate this process in Fig. 12, where
we show the surface density averaged in the z direction for a thin
region of opening angles ±π/8 about the orbital plane,

Σ =

∫ 9π/16

7π/16
ρr sin θdθ. (35)

While overdensities we see in our simulations are in many
aspects remarkably similar to the lump present in CBDs sim-
ulations, they exhibit fundamental differences. In CBD simu-
lations, ωρ is the orbiting frequency of a single lump that is
fed by accreting material flung back into the envelope and that
typically remains near the cavity edge. In contrast, in our CEE
simulations, ωρ characterizes the formation frequency of nonax-
isymmetric overdensities that propagate far into the envelope.

3.5. Eccentricity growth and evolution

Throughout this work, we assume that the binary orbit remains
circular and fixed. As a result, we can only speculate about impli-

cations of our findings for binary eccentricity (see Sect. 4.2), but
we can directly study the related eccentricity of the envelope.
We would expect that the initially noneccentric envelope encom-
passing an equal-mass binary on a circular orbit will not become
eccentric. However, the frequency splitting of ωρ observed in
Figs. 9 and 10 suggests that envelope eccentricity develops in
our simulations. To illustrate this more thoroughly, in Fig. 13 we
show the space-time diagram of shell-averaged envelope eccen-
tricity

e(r, t) =

∣∣∣∫ ρureiϕdS
∣∣∣∫

ρuϕdS
· (36)

Similarly to A1, e is subject to a high frequency variation in the
inner envelope (r . 1) according to the forcing frequency ωb.
The dynamics of accretion and of the lump is tightly linked to
the generation and propagation of eccentricity in the envelope.
Eccentricity is excited by the amplification of small asymmetries
in the interaction between accretion flows and the central binary
either by stream impact on the inner boundary (e.g., Shi et al.
2012) or by resonant Lindblad excitation (e.g., Lubow 1991a,b;
Papaloizou et al. 2001; Muñoz & Lithwick 2020). We see that
while a fraction of the newly generated eccentricity is contained
in the colliding outflowing streams forming lumps, the rest is
trapped in between successively created lumps, where e grows
over time. Consequently, as the lumps propagate outward, the
eccentricity follows.

In Fig. 14, we show the evolution of the mean envelope eccen-
tricity within our simulation domain, eenv, which is defined as

eenv =

∣∣∣∫ ρureiϕdV
∣∣∣∫

ρuϕdV
· (37)

We find that similarly to CBDs (e.g., Shi et al. 2012), the eenv
initially increases very rapidly in response to the quadrupole
perturbation associated with the replacement of the time- and
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(a)

(b)

Fig. 11. Space-time diagram of the m = 1 mode of the Fourier transform
of the θ-integrated density with respect to the azimuth ϕ for model A.
Panel b is obtained with a much larger time resolution than panel a,
such that high frequency fluctuations are well resolved. On panel b, we
see the overdensity generated at early time (t ' 147 Porb) propagating
outward and expanding radially, and a new lump building up from t '
152 Porb.

latitude-averaged binary potential with the true expression. For
25 . t/Porb . 50, eccentricity grows exponentially with
a growth rate λenv ' 0.022 Ωorb. The growth rate does not
depend on the initial angular momentum of the envelope nor
on the presence or absence of viscosity. Interestingly, the value
of λenv is of the same order as the eccentricity saturation
growth rate of ∼0.018 Ωorb obtained by Shi et al. (2012) in
the context of CBDs, which could suggest a common phys-
ical origin. After t ' 50 Porb, the exponential growth satu-
rates and eenv reaches a statistically stationary state with a mean
value eenv, f ' 0.12, which is independent of β and of the
presence or absence of viscosity. Such eccentricity saturation
likely results from nonlinear effects, which suggests that eccen-
tricity excitation and damping reach a quasi-equilibrium that
may be maintained throughout the entire post-dynamical spiral-
in phase (e.g., Shi et al. 2012; Teyssandier & Ogilvie 2016;
Miranda et al. 2017; Muñoz & Lithwick 2020).

Fig. 12. Surface density about the orbital plane (35) for model A (top)
and A′ (bottom) at t = 158 Porb. We see the outward propagation of a
lump and the formation of a new one for model A, and the absence of
a structured lump in model A′ resulting from the absence of accretion
streams. Black dots indicate the position of the two cores.

3.6. Convective stability and angular momentum transport in
the envelope

During the post-dynamical CEE, the central binary interacts
with the surrounding gas and a complex interplay between the
torques and internal stresses continuously injects, removes, and
redistributes angular momentum within the envelope. In this
section, we investigate the stability of the envelope and analyse
its dynamics by characterizing the various angular momentum
transport processes.

3.6.1. Solberg–Høiland criterion for convective stability

In the absence of viscosity, thermal diffusion, and radiation pres-
sure, Solberg (1936) and Høiland (1941) proposed the follow-
ing necessary but not sufficient condition for convective stability,
which for a stratified and rotating fluid with Ω = Ωez reads

N2
Ω + N2 > 0, (38)
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Fig. 13. Space-time diagram of shell-averaged envelope eccentricity.
The meaning of symbols is the same as in Fig. 11.

where

N2
Ω =

1
s3

∂`2
z

∂s
and N2 = −

1
cp
g · ∇S , (39)

`z = s2Ω is the specific angular momentum, S is the specific
entropy, and cp is the heat capacity at constant pressure. In
Fig. 15, we show the Solberg–Høiland criterion for convective
stability in the xy and xz planes soon after replacing the aver-
aged binary potential with its full expression and at late-time.
We see that as soon as they are present, gravitational perturba-
tions from the central binary destabilize the flow according to
the Solberg–Høiland criterion. In practice, this translates into
small scale turbulent mixing between spiral arms (see Fig. 2,
first row), which is initially not strong enough to destroy the
spiral structure. As the envelope expands and the stabilizing
effect of density stratification is reduced, the vertical size of the
turbulent eddies increases and the spiral structure is partially
destroyed. We observe behavior resembling the ab initio simula-
tion of dynamical plunge-in from Ohlmann et al. (2016), where
the theoretically stable and unstable layers alternate in a geomet-
rically thick disk-like structure about the orbital plane. The radial
spatial frequency decreases outward as the stabilizing effect of
stratification becomes weaker.
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Fig. 14. Evolution of the mean envelope eccentricity within the numer-
ical domain. The black dashed line shows a linear fit yielding a growth
rate λenv ' 0.022 Ωorb.
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Fig. 15. First Solberg–Høiland criterion for convective stability for run
B at t = 20 Porb (top row), and t = 250 Porb (bottom row). Negative
values indicate convective instability according to Eq. (38).

3.6.2. Local torque balance

While the various volume-integrated torques presented in
Sect. 3.2.1 trace the evolution of the total angular momentum
reservoir of the common envelope in our numerical domain, it is
also important to examine the spatial variation of such torques.
As we show in detail in Appendix A, the local angular momen-
tum transfer rate across the common envelope reads

J̇z(r, t) = J̇z,adv(r, t) + J̇z,grav(r, t) + J̇z,visc(r, t), (40)

where

J̇z,adv(r, t) = −

∫
∂r
ρsuϕurdS , (41)

J̇z,grav(r, t) =

∫ Rdomain

r

(∫
∂r
ρ
∂Φ

∂ϕ
dS

)
dr, (42)

J̇z,visc(r, t) = −

∫
∂r

[
(r × T) · ez

]
· n⊥dS . (43)
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Fig. 16. Advective and gravitational contributions to the local angu-
lar momentum transfer rate for models A (full lines), model A′ (dash-
dotted lines), model B (dashed lines), and model C (dotted lines). The
quantities are averaged in time interval 250 ≤ t/Porb ≤ 275.

In Fig. 16, we show the contributions to J̇z as a function of
r for simulation runs A, A′, B, and C. We see that for accreting
models A, B, and C, gravitational torque only plays a minor role
in the redistribution of angular momentum in the inner envelope
and essentially no role far from the central binary. This occurs
because the density is globally a decreasing function of r and
because limr→∞ ∂Φ/∂ϕ = 0. Instead, it is the advective torque
that transports angular momentum. Up to r ' 1.5, the angular
momentum is transported inwards J̇z,adv > 0, but for larger r the
angular momentum flows outward. However, when accretion is
prevented by reflecting boundary conditions (simulation run A′),
gravitational torque dominates advective torque up to r ' 0.2,
which results in inward angular momentum transport. At larger
r, the advective torque transports angular momentum outward.
The main differences in the advective torque profiles between
the four models result from different contributions of turbulence
and different mean-flow angular structure.

3.6.3. Turbulent transport of angular momentum in the
envelope

We can use hydrodynamic mean-field theory to asses the turbu-
lent fluxes of angular momentum (e.g., Käpylä 2019; Rüdiger
2022). Taking the azimuthal average of the angular momentum
equation in the z-direction, using Reynolds decomposition to
define velocity fluctuations about their averages as ui′ = ui − ui,
and ignoring density fluctuations from its mean value, we obtain
the conservation law
∂(ρsuϕ)
∂t

' − ∇ ·

[
s
(
ρu⊥uϕ + ρu′u′ϕ − 2

(
ρνS + ρνS′

)
· eϕ

)]
− ρ

∂Φ

∂ϕ
, (44)

where u⊥ = (ur, uθ) is the meridional mean velocity, overlined
quantities indicate azimuthal average, and S and S′ are the rate-
of-strain tensors of the mean flow and of the fluctuating flow
defined as

S i j =
1
2

(
∂iu j + ∂ jui −

2
3

(∇ · u)δi j

)
, (45)

S ′i j =
1
2

(
∂iu′j + ∂ ju′i −

2
3

(∇ · u′)δi j

)
. (46)

The first term on the right-hand side of Eq. (44) corresponds to
the advective transport by large scale meridional flow, the second
represents the turbulent meridional flux, and the third term is the
viscous transport. Turbulent angular momentum fluxes are often
described using Reynolds stress,

Qi j = u′iu
′
j. (47)

This stress tensor is often separated into nondiffusive (“Λ-
effect”) and diffusive contributions described by turbulent vis-
cosity,

Qi j = QΛ
i j +Ni jkl

∂uk

∂xl
, (48)

where QΛ
i j is the nondiffusive part and Ni jkl is the (tur-

bulent) viscosity tensor (e.g., Kitchatinov et al. 1994;
Kitchatinov & Ruediger 1995; Käpylä et al. 2011; Rüdiger
2022). Even in the case where we do not prescribe subgrid
viscosity, an effective (convective) turbulent viscosity still
exists and can be derived from the expression of the turbulent
viscosity tensor Ni jkl. Conversely, when we prescribe ν > 0
(simulation run D), an additional effective viscosity associated
with the simulation’s intrinsic turbulence still exists. In this
case, the total effective viscosity is given by the sum of the
two contributions. The disentangling of the two contributions
to the Reynolds stress and the measurement of the associated
simulation’s intrinsic effective turbulent viscosity is however
beyond the scope of this work. Instead, we focus on the total
stress.

We assume that the turbulent velocity u′, which is the devi-
ation from the mean velocity, is the nonaxisymmetric compo-
nent of the fluid flow velocity. However, because the large scale
flow resulting from the gravitational torque exerted by the binary
orbit is itself nonaxisymmetric, the contribution of turbulence
to angular momentum transport is likely overestimated, espe-
cially in the close vicinity of the binary. Unfortunately, there is
no straightforward way to establish what the mean flow is in
our simulations. This is an issue also in the context of accre-
tion and CBDs, where Hawley (2000), Hawley & Krolik (2001),
Shi et al. (2012), and Lopez Armengol et al. (2021) use depar-
ture from density weighted shell average to compute velocity
perturbations. Still, one could extract the actual turbulent flow
with reasonable accuracy by filtering out the large scale flow
using Fourier and inverse transforms (e.g., Käpylä et al. 2011).
This is however beyond the scope of this work and we refer to
the nonaxisymmetric perturbation u′ as the turbulent fluid flow
velocity, though one has to keep in mind that this may be inac-
curate in the binary close vicinity.

In Fig. 17, we show the meridional components of the
azimuthally averaged advective fluxes of the total angular
momentum Fadv = sρu⊥uϕ = sρ(u⊥ uϕ + u′u′ϕ). In Figs. 18
and 19, we show the mean and turbulent flow contributions,
sρu⊥ uϕ and sρu′u′ϕ. We see that for accreting models, the
mean axisymmetric flow results in outward angular momentum
advective flux in a equatorial disk-like structure with an open-
ing angle that is smaller for higher initial angular momentum.
Outside of the disk-like structure, the angular momentum advec-
tive flux points inward. The morphology of the radial turbulent
transport of angular momentum is more complicated, because it
changes sign in both cylindrical directions s and z. Such disk-like
structure is not present in our nonaccreting model A′. Indeed,
the inward flow is deflected by the inner boundary and any
polar mass flux asymmetry between northern and southern hemi-
spheres, however small, is amplified and can even lead to a polar
outflow in one of the hemispheres.
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Fig. 17. Azimuthally averaged advective radial and latitudinal fluxes of angular momentum, Fr,adv = sρ uruϕ and Fθ,adv = sρ uθuϕ averaged over
time interval 250 ≤ t/Porb ≤ 275 for models A (panel a), A′ (panel b), B (panel c), and C (panel d).

Fig. 18. Mean flow contribution to the azimuthally averaged advective angular momentum radial and latitudinal fluxes averaged over time interval
250 ≤ t/Porb ≤ 275 for models A (panel a), A′ (panel b), B (panel c), and C (panel d).
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Fig. 19. Turbulent flow contribution to the azimuthally averaged advective angular momentum radial and latitudinal fluxes averaged over time
interval 250 ≤ t/Porb ≤ 275 for models A (panel a), A′ (panel b), B (panel c), and C (panel d).

In Fig. 20, we show the radial profile of the mean-flow
and turbulent contributions to the angular momentum transfer
in terms of Reynolds stress,

J̇z,mean = −

∫
∂r
ρsuruϕdS , (49)

J̇z,turb = −

∫
∂r
ρsQrϕdS . (50)

We find that for our three inviscid and accreting runs, the net
radial angular momentum transport is essentially dominated by
the contribution from the mean flow, which is directed inward
for r . 1.5 and outward for r & 1.5.

The mean axisymmetric flow also leads to angular momen-
tum advective transport in the θ direction. Specifically, such
mean flow advects angular momentum toward the orbital plane
in the inner part of the envelope and away from it further out.
Conversely, turbulent flow advects angular momentum away
from the midplane in the close vicinity of the binary and toward
it in the rest of the envelope. Overall, the structure of the total
angular momentum flux follows the mean flow contribution,
where the angular momentum is advected toward the orbital
plane in the inner envelope and away from the orbital plane far
from the binary.

3.6.4. Vertical eddy scales

Since we are interested in the ability of turbulent structures to
transport angular momentum radially in the envelope, we aim to
estimate the typical vertical scale of turbulent convective eddies
exchanging angular momentum with one another. To make sure
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Fig. 20. Mean and turbulent components of the advective contribution
to local angular momentum transfer rate for models A (full lines), A′
(dash-dotted lines), B (dashed lines), and C (dotted lines). The quanti-
ties are averaged over a time interval 250 ≤ t/Porb ≤ 275. Neglecting
density perturbations, J̇z,adv = J̇z,mean + J̇z,turb.

that we properly isolate turbulent flow, we focus on its latitu-
dinal component in the orbital plane. This is because the non-
axisymmetric contribution of the large-scale mean-flow, which
pollutes the inferred turbulent velocity, results from the envelope’s
response to the gravitational perturbations exerted by the binary
and is zero in the θ-direction in the orbital plane. Let us first
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Fig. 21. Time evolution of the integral radial scales Λ (Eq. (52)) in three
regions I (r ≤ Rdomain/10), II (Rdomain/10 < r ≤ Rdomain/2), and III
(r > Rdomain/2) for simulation runs A (full lines), B (dashed lines), and
C (dotted lines). The discontinuity of ΛIII for run A is a result of u′θ not
changing sign on the same radial scales for all ϕ, that is Rθθ(r′, t) does
not cross zero during a few orbital periods.

introduce the normalized auto-correlation of the turbulent latitu-
dinal velocity on the orbital plane, which we azimuthally average
and we integrate over an arbitrary radial domain [rmin, rmax],

Rθθ(r′, t) =

∫ rmax−r′

rmin
u′θ(r, π/2, ϕ)u′θ(r + r′, π/2, ϕ)dr∫ rmax−r′

rmin
u′θ(r, π/2, ϕ)u′θ(r, π/2, ϕ)dr

· (51)

We also introduce the integral radial scale (e.g., Townsend 1976;
O’neill et al. 2004; Mora & Obligado 2020),

Λ(t) =

∫ ∞

0
Rθθ(r′, t)dr′. (52)

Because the low amplitude tail of Eq. (51) may contain infor-
mation extraneous to turbulent motion, we integrate Eq. (52) up
to the first zero-crossing of Rθθ(r′, t), as is commonly done in
experimental and numerical fluid dynamics (O’neill et al. 2004).
In homogeneous turbulence, Λ can be interpreted as the typical
radial scale of the energy-containing turbulent eddies. Because
the mean density stratification becomes weaker as the distance
from the central binary increases, turbulence is not homoge-
neous in our simulations, and the interpretation of Λ is more
ambiguous. Here, Λ represents the weighted average of all tur-
bulent radial scales in the flow with a dominant contribution
from eddies containing higher energy. In an effort to mitigate this
ambiguity, we integrate the auto-correlation of the azimuthally
averaged turbulent latitudinal velocity on the orbital plane in
three arbitrary regions of strong, moderate, and weak stratifica-
tion labeled I (r ≤ Rdomain/10), II (Rdomain/10 < r ≤ Rdomain/2),
and III (r > Rdomain/2). We interpret the resulting integral scale
as the typical eddy scale in each region.

In Fig. 21, we show the time evolution of Λ in the three
regions for our three inviscid simulation runs. In Table 2, we
provide the time-averaged values, Λtmin−tmax , where tmin and tmax
denote the time interval of averaging in the units of Porb. We
see that in all three models the vertical extent of turbulent
eddies decreases outward as the stabilizing effect of density
stratification decreases. However, depending on the amount of
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Fig. 22. Mean, turbulent, gravitational, and viscous contributions to
local angular momentum transfer rate across the common envelope for
model D, averaged in time from t = 140 Porb to t = 150 Porb.

angular momentum present in the envelope at the onset of the
post-dynamical inspiral phase (parameter β), the radial depen-
dence of turbulent eddy vertical scales varies substantially. The
more angular momentum the secondary star injects into the
shared envelope during dynamical inspiral, the more the enve-
lope gets deformed by centrifugal forces. Hence, the injected
angular momentum modifies density stratification by expand-
ing the envelope anisotropically and affects envelope stability
through the sign of angular momentum gradient (Eq. (38)). As
a result, we find that envelopes with lower angular momentum
content at the onset of the post-dynamical phase end up being
less effectively stratified, which leads to a reduction of their abil-
ity to limit the vertical extent of turbulent eddies. However, it is
important to note that in region I, Λ140−250

I ' 0.6 ab for both sim-
ulation runs A and B while Λ140−250

I ' 0.877 ab for run C. The
fact that we observe similar eddy scales for runs A and B with
different initial total angular momentum in this inner region is
due to our initial spin-up setup where the innermost layers are
spun-up to critical rotation, while they remain subcritical during
spin-up for run C. Additionally, we further note that far away
from the binary in region III, simulation runs B and C yield
similar vertical eddy scale. This roughly constant value likely
constitutes a limit at very low stratification that may depend on
the numerical size of the domain (see also Garaud et al. 2017).
This limit formally implies that the assumption of a vertical eddy
scale that is proportional to the local pressure scale height (e.g.,
Vitense 1953; Zahn 1989) may fail in the limit of low stratifica-
tion as the effective viscosity would locally tend to infinity.

3.6.5. The role of viscosity

In simulation run D, we prescribed an isotropic viscosity whose
effects on the envelope dynamics add to those from the effec-
tive viscosity associated with Reynolds stresses. In Fig. 22, we
show the mean, turbulent, and viscous contributions to local
angular momentum transfer rate across the common envelope
for model D and in Fig. 23 we show the mean flow, Reynolds
stress, and viscous contributions to the azimuthally averaged
advective radial and latitudinal angular momentum fluxes. We
see that for our value of αν, the azimuthally averaged total angu-
lar momentum viscous flux is essentially directed outward, and
only plays a minor role in the radial and latitudinal transport of
angular momentum in the shared envelope. Hence, simulation
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Fig. 23. Mean flow (a), turbulent flow (b), and viscous (c) contri-
butions to the azimuthally averaged advective radial and latitudinal
angular momentum fluxes for the viscous model D. We averaged the
quantities over ten orbital periods for 140 ≤ t/Porb ≤ 150.

run D retains the same angular momentum transport features as
our inviscid runs. This result reflects the efficiency of the trans-
port by the mean flow and by the Reynolds stress transport and
suggests that the effective viscosity associated with the latter is
likely several orders of magnitude larger than ν. Still, despite
being small, the prescribed viscosity has a stabilizing effect on
the shear flow in the inner envelope, and the ratio between turbu-
lent and mean components of the advective angular momentum
transfer rate is, at a given time, smaller in simulation run D. Such
stabilizing effect of viscosity also locally delay the onset of tur-
bulence.

4. Discussions

4.1. Comparison with CBDs

In this work, we draw many analogies between simula-
tions of CBDs and post-dynamical stages of CEE and it is
thus instructive to briefly discuss differences and similarities
between these situations. First, there are significant differences
in the origin of the gas surrounding the binary. CBDs can
often occur as remnants of star formation out of molecu-
lar clouds or they are thought to accompany orbiting super-
massive black holes (Begelman et al. 1980; Bate & Bonnell
1997; Milosavljević & Phinney 2005; Matsumoto et al. 2019).
In this situation, the density distribution and angular momen-
tum content of the disk depends not only on the properties
of the binary, but perhaps more significantly on the accretion
for larger distances. Conversely, CEE can often be regarded
as an isolated object, where the formation process inextrica-
bly links together the distribution of density, energy, and angu-
lar momentum in the envelope with the properties of the cen-
tral binary. Second, CBDs are often observed and simulated as
relatively optically and geometrically thin, 2D objects. Instead,
the post-dynamical shared envelope in CEE contains large
amount of mass, which prevents cooling and keeps the geom-
etry strictly three-dimensional. Ultimately, the shared enve-
lope disperses and whatever gas remains should cool to a thin
disks, as is observed in post-AGB binaries (e.g., Dermine et al.
2013; Kluska et al. 2022). The transition between these two
regimes of post-dynamical CEE should be a subject of future
study. Finally, thermal convection is weak or even absent
in CBDs, where it is the magnetorotational instability (MRI,
Balbus & Hawley 1991) that is instead often recognized as the
main source of turbulence (e.g., Cabot 1996; Stone & Balbus
1996; Balbus & Hawley 1998) modeled with a turbulent effec-
tive viscosity using the α ansatz (Shakura & Sunyaev 1973).
Conversely, common envelopes are expected to be vigorously
convective, making thermal convection inevitable (e.g., Soker
1993; Ohlmann et al. 2016; Sabach et al. 2017; Grichener et al.
2018; Wilson & Nordhaus 2019).

Despite these fundamental differences, we have shown that
there are similarities and even commonalities between these two
systems. We found that mass and angular momentum accretion
onto the central binary (when allowed) has the same tempo-
ral variability with two characteristic frequencies. The first fre-
quency is associated with the quadrupolar moment contribution
to the binary potential, while the second one with the forma-
tion and propagation of overdensities, which share many com-
mon characteristics with the lump located near the cavity edge
in CBD simulations. Because of the complicated geometry of
common envelopes, we have shown that a local analysis of the
accretion flux is necessary to understand its short-term variabil-
ity. The behavior of the orbital separation evolution is dictated by
the same condition for the two problems, specifically, j < 3/8
gives orbital contraction when q = 1 and eb = ėb = 0. This
condition suggests predominant orbital contraction in CEE sim-
ulations, while orbital expansion is possible for a wide orbital
parameter range in CBD simulations (e.g., Miranda et al. 2017;
Muñoz et al. 2019). Finally, we found that the shared envelope
develops eccentricity, which grows with an exponential growth
rate that is of the same order as that obtained by Shi et al. (2012)
in the context of CBDs and which saturates to reach a sta-
tistically stationary value as is also seen in CBD simulations
(e.g., Miranda et al. 2017; Muñoz & Lithwick 2020). To sum-
marize, the abundant literature and ongoing work in the field of
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Fig. 24. Ratio of thermal timescale tKH to the orbital period of the
binary Porb inside the shared envelope in the Hertzprung–Russel dia-
gram constructed for four solar-metallicity nonrotating evolutionary
tracks from the MIST database (Dotter 2016; Choi et al. 2016). Here,
tKH = G(M1 + Menv)2/(2RL), where L is the luminosity of the star.

accretion and CBDs can be of precious help to better understand
the post-dynamical inspiral phase of CEE.

4.2. Implications for CEE

Our findings have a number of implications for CEE. We find
that the orbital evolution of the central binary does not stall
even when the gas in the immediate vicinity of the binary coro-
tates. Instead of the commonly assumed drag, the binary trans-
fers angular momentum to the envelope by generating spiral
waves and turbulence. We find that the associated timescale of
orbital contraction is τb = |ab/ȧb| ∼ 103 to 104 orbital peri-
ods of the binary when accretion is allowed or slowly decreases
to τb ∼ 105 Porb at t ' 450 Porb when accretion is prevented.
These timescales are similar to what is typically found in CBDs
(e.g. Artymowicz et al. 1991). We emphasize that this timescale
refers to the inner binary orbit, which is much smaller than the
outer extent of the envelope. Our results suggest that while there
is gas in the shared envelope, the binary should continue to spi-
ral in due to nonlocal interactions with the nearby gas, albeit
much slower than in the preceding dynamical plunge-in phase.
Many ab initio works on CEE find that the central binary orbits
continue to slowly shrink at the end of the simulations. Based on
our results, we suggest that the orbital contraction rate should not
gradually approach zero but always remains at a rather small but
finite value. We also suggest that achieving complete envelope
ejection and final orbital separations compatible with expecta-
tions could be possible simply by following the evolution for
much longer time than what is currently done.

No thermal energy transfer through the envelope is required
to reduce the orbital separation. However, at some point in
time, the energy diffusion timescale through the envelope should
become comparable to τb. When that happens, it is possible that
thermal coupling between the binary and the envelope is estab-
lished, which might affect the orbital decay. For example, effi-
cient removal of energy deposited in the vicinity of the binary
could increase the envelope density around the binary, which
would lead to higher torques and smaller τb. In order for a ther-
mal “self-regulating” process to have a chance to accelerate the
orbital decay, the thermal timescale of the envelope of the pri-
mary star, tKH, has to be shorter, or of the order of τb.

In order to evaluate tKH/τb for different stars, we need to
make three approximations. First, we make use of the fact that
τb/Porb ∼ 103 to 105 and we study instead quantity tKH/Porb.
Second, Porb is evaluated assuming that parameters of our sim-
ulation described in Sect. 2, ab/R = 0.16 and M1/M = 0.2,
are applied uniformly to all progenitor primary stars. Third, stel-
lar quantities R, M, and L represent the values of the stellar
model before the binary interaction. In Fig. 24, we show the
ratio tKH/Porb evaluated along evolutionary tracks of four sin-
gle stars with masses 1, 5, 12, and 20 M�. We see that for low-
mass red giants without fully developed convective envelopes,
R . 100 R�, the ratio is tKH/Porb & 105, which implies that
the envelope would not have enough time to thermally couple
to the inspiralled binary before its orbit significantly decays. For
these stars, the time window for any additional processes act-
ing to remove the envelope on long timescales might be severely
restricted, because the lifetime of the envelope is set by the fast
orbital decay timescale rather than the thermal timescale. An
example of such possible long-lasting processes are strong pul-
sations or dust-driven wind (Clayton et al. 2017; Glanz & Perets
2018). For AGB and high-mass stars, the thermal coupling
between the inspiralled binary and the envelope seems more
likely. However, unless tKH/Porb . 103, which occurs only near
the maximum expansion of the stars, the orbital decay could still
remain unaffected by the thermal processes if the binary is able
to efficiently accrete from the envelope due to a “pressure valve”
such as launching of jets (Soker & Livio 1994; Chamandy et al.
2018; Shiber et al. 2019).

Naturally, our simple estimates in Fig. 24 have a num-
ber of caveats. For example, the binary might dynamically
plunge-in to much lower values of ab/R, as was seen in sev-
eral recent simulations (Ohlmann et al. 2016; Lau et al. 2022a),
or the binary might relatively quickly shrink its orbit early in
the post-dynamical phase, as Fig. 6 suggests. Furthermore, CEE
is often preceded by strong thermal-timescale mass transfer,
which leads to a significant decrease of primary’s luminosity due
to thermal restructuring of the envelope. The luminosity could
decrease by a up to a factor of 10, which would enlarge tKH
(e.g., Blagorodnova et al. 2021). All of these effects would tend
to increase tKH/Porb and make thermal timescale influences less
likely. Conversely, as the envelope expands, tKH and the diffusion
timescale decrease. Since there are number of effects working in
opposite directions, the overall importance of thermal effects on
the inspiral is not immediately obvious. This long-term evolu-
tion cannot be easily studied by direct multidimensional simu-
lations, but some insight can be obtained with 1D models with
prescriptions calibrated to include physical processes studied in
this work. In the future, we aim to enlarge our grid of parameters
to make such parameterization possible.

In the light of our results, it is also interesting to discuss
the energy-conserving αCEE formalism that is commonly used
to predict CEE outcomes. Our results suggest that much of the
orbital decay during the post-dynamical phase might be over
before thermal effects become important, which lends support to
the energy-conserving formalism. At the same time, the orbital
decay is clearly separated into two regimes: a fast dynami-
cal plunge-in and much slower post-dynamical inspiral. Even
if energy is conserved in both of them, the value of the αCEE
parameter might be different, because both types of orbital decay
depend differently on binary properties and envelope structure.
Furthermore, the post-dynamical inspiral depends on the effi-
ciency of accretion, which could be influenced, among other
effects, by jets. All of this could lead to different effective val-
ues of αCEE for different populations of binary stars, which is
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not surprising, but perhaps also to a spread of αCEE among a
single population. In any case, our results generally motivate
the development of two-step or multistep CEE formalisms (e.g.,
Hirai & Mandel 2022).

Although one of our original motivations for this work was
to see whether the binary could reaccrete some of its angular
momentum and expand its orbit, our results suggest that this is
unlikely. The shared envelope is very thick and accretion near
the polar regions brings in gas with very low specific angular
momentum. The situation could change at later phases when the
remaining envelope is able to cool to a thinner disk. Investigating
this transition should be a subject of future study.

Finally, in our work we have made the assumption that
the binary orbital motion has completely circularized after the
dynamical plunge-in. This is in agreement with 3D hydrodynam-
ical simulations, which typically find quasi-circular orbits at the
end of this phase provided that the initial eccentricity is low,
(e.g., Ricker & Taam 2012; Passy et al. 2012; Ohlmann et al.
2016; Glanz & Perets 2021). However, this does not necessar-
ily imply that the orbit remains circular throughout the post-
dynamical inspiral phase. A variety of physical processes can
lead to the growth or decrease of binary eccentricity, such as
accretion streams impact on binary components or the gravita-
tional interaction between the central binary and its nonaxisym-
metric eccentric envelope such as the one we find in Sect. 3.5.
While such phenomena can potentially lead to the binary eccen-
tricity growth, binary eccentricity may generate new resonances
that can in turn damp eccentricity (e.g., Lubow 1991a,b). Orbital
eccentricity may therefore be nonzero during the post-dynamical
spiral-in phase, and stabilize or oscillate about a fixed value,
similarly to what is seen in CBDs (e.g., Roedig et al. 2011;
Zrake et al. 2021), and could help to explain nonzero eccen-
tricities seen in some post-AGB and post-CEE binaries (e.g.,
Dermine et al. 2013; Kruckow et al. 2021).

5. Conclusions

In this work, we performed a series of 3D hydrodynamic numer-
ical simulations of the post-dynamical inspiral phase of CEE.
We used the procedure of Morris & Podsiadlowski (2006, 2007,
2009) to mimic the outcome of the preceding dynamical plunge-
in and to establish controlled initial conditions for our simula-
tions (Fig. 2). Our first aim was to determine the timescale of
binary separation evolution in response to the various torques
acting on the system when accretion is turned on or off. We have
computed the various torques acting on the binary and we found
that they always result in the contraction of the orbit, regardless
of whether accretion is allowed or not (Fig. 6, Sect. 3.2). When
accretion is allowed, mass and angular momentum accretion
drive the orbital contraction and the orbital contraction timescale
rapidly reaches a quasi-steady value of O(103−104 Porb). With-
out accretion, orbital contraction is solely driven by the gravita-
tional torque. Because of the envelope expansion, the amplitude
of the gravitational torque slowly decreases, leading to a slow
increase of the orbital contraction timescale. After 450 Porb, this
timescale reaches a value of O(105 Porb).

Our results imply that while the binary is embedded in gas,
the orbit contracts even if the gas immediately surrounding the
binary is corotating. The orbital decay timescale is much slower
than what is seen during the dynamical plunge-in. This sug-
gests a significant reduction of orbital separation and more effi-
cient envelope ejection is possible even after the dynamical
plunge-in and that current simulations have not been carried out
over a sufficiently long period to observe this effect. Since the

orbital separation is very small compared to the outer extent
of the envelope, the post-dynamical inspiral timescale is much
shorter than the thermal timescale for primary stars with radius
.100 R�. Even for larger stars, the post-dynamical decay does
not have to be significantly influenced by the thermal response
of the envelope and thermal “self-regulation” does not seem
to be unavoidable, but this is contingent on the dynamics very
close to the binary such as the presence or absence of accretion
or jets. The short inspiral timescales lend support to adiabatic
treatment of CEE, but motivate viewing CEE as an (at least)
two-step process.

Our second aim was to find the typical frequencies associ-
ated with the short-term variability of mass accretion onto the
binary and to compare the results to CBDs. We found that the
main features of mass accretion variability in the context of post-
dynamical CEE are similar to that of CBDs. Specifically, the
variability is connected to the forcing angular frequency of the
quadrupolar moment contribution to the binary potential ωb =
2 Ωorb and to the frequency associated with the formation of
nonaxisymmetric overdensities in the inner part of the envelope
ωρ = Ωorb/5. Such overdensities result from accreting material
being flung back into the envelope, and accumulating at a dis-
tance of roughly six binary separations from the binary center of
mass (Figs. 7–11, Sect. 3.3). We found that the resulting over-
dense and eccentric “lump” then propagates far into the enve-
lope, contrary to the case of CBDs, and feeds and enhances mass
accretion (Fig. 12 and Sect. 3.4). Because of the spherical shape
of the CEE problem contrasting with flat CBDs, such frequen-
cies do not necessarily characterize the global mass accretion
rate. Instead, the presence or absence of latitudinally migrating
accretion streams leads to the synchronicity or asynchronocity of
the mass flux at all colatitudes. When asynchronous, time vari-
ability of the latitudinal integrated mass flux may be smoothed
out. A local analysis of the accretion flux is therefore necessary
to understand its short-term variability. Finally, we found that
envelope eccentricity is excited in the vicinity of the binary and
propagates outward within and in-between successive lumps.
During this process, the eccentricity amplifies and builds up in
the envelope, which leads to the splitting of the accretion fre-
quencies (Fig. 11 and Sect. 3.5). The envelope mean eccentricity
grows exponentially with a growth rate λe ' 0.022 Ωorb until it
reaches a statistically stationary value of eenv, f ' 0.12 indepen-
dent of the initial angular momentum of the envelope and of the
presence or absence of viscosity (Fig. 14). Growth of eccentric-
ity in the envelope could in turn excite eccentricity in the inner
binary.

Our third aim was to understand how angular momentum
is transported within the envelope (Sect. 3.6). We showed that,
similarly to previous dynamical plunge-in simulations, grav-
itational perturbations from the orbiting binary during post-
dynamical in-spiral phase trigger the destabilization of the enve-
lope. This destabilization results in turbulent convection con-
tributing to the transport of energy and angular momentum
throughout the shared envelope (Fig. 15 and Sect. 3.6.1). How-
ever, we showed that this contribution is rather small. Instead,
the angular momentum flux is dominated by large scale axisym-
metric fluid flows, which consist of an outward transport in a
geometrically thick disk-like structure about the orbital plane,
except in the close vicinity of the central binary where the
flux points inward. However, because the net (latitudinally inte-
grated) radial angular momentum transport by the mean flow at
a given radius is rather weak, turbulent transport measured by
Reynolds stresses in fact is also important and can have an effect
of the same order as that of the mean flow on the global transport
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of angular momentum. In particular, we showed that Reynolds
stresses can locally strongly damp or enhance the outward trans-
port of angular momentum by the mean flow (Figs. 16–20).

Our final aim was to characterize the role of viscosity orig-
inating both from turbulent motions and from unspecified pro-
cesses acting on subgrid scales. We showed that because the
stabilizing effect of density stratification decreases outward, ver-
tical convective eddy scales increase with radial distance from
the central binary. We showed that envelopes with higher ini-
tial angular momentum content are more strongly stratified and
thus contain smaller convective cells, however, their typical size
is limited to a fraction of the domain radius in the limit of low
stratification, suggesting that α-type viscosity models would fail
in outer layers (Figs. 21–23). We further found that prescribing a
background kinematic viscosity with αν = 10−3 does not signifi-
cantly affect the binary separation evolution, nor the transport of
angular momentum within the shared envelope (Sect. 3.6.5).

Our new way of studying late stages of CEE has its limita-
tions. For example, it is important to keep in mind that we have
excised a central region encompassing the binary and that we
only considered two extreme regimes of accretion (maximum
or none). We have further considered fixed binary orbit, assum-
ing that the contraction or expansion timescale is much longer
than the duration of our simulation. Our estimates of the orbital
contraction timescale suggest that such assumption might not be
completely valid when accretion is allowed. This limitation can-
not be easily lifted: if we allowed the orbit to shrink or expand
we would have to change the position of the inner boundary with
time in order to not discard the flow dynamics in the vicinity of
the binary or to prevent the binary from entering the numerical
domain. This would affect the conservations of mass and angular
momentum and the numerical cost of our simulations. Another
solution would be to use Cartesian grid, but in such a case we
would lose the advantages of spherical geometry. We have fur-
ther assumed that binary eccentricity remains zero throughout
our simulations. However, a variety of physical processes may
lead to the binary eccentricity growth or decrease, although they
may balance each other out. Finally, we do not include gas self
gravity which could affect the binary-envelope interaction.

More sophisticated initial parameters could complicate the
our results and need to be explored in future works. We plan to
investigate eccentric binary orbits, binaries with mass ratios dif-
ferent from unity, more sophisticated inner boundary conditions,
or the effect of magnetic fields. Changing these parameter could
dramatically impact the binary-envelope interaction, resulting in
very different variability, amplitude, and angular distribution of
mass and angular momentum accretion onto the binary, binary
separation evolution, and angular momentum transport within
the envelope.

Acknowledgements. We thank the anonymous referee for comments that
improved this paper. We thank Kengo Tomida for discussions about Athena++.
The research of D.G. and O.P. has been supported by Horizon 2020 ERC Start-
ing Grant ‘Cat-In-hAT’ (grant agreement no. 803158). This work was supported
by the Ministry of Education, Youth and Sports of the Czech Republic through
the e-INFRA CZ (ID:90140). O.P. thanks the KITP program “Bridging the Gap:
Accretion and Orbital Evolution in Stellar and Black Hole Binaries” for hospi-
tality and inspiration: this research was supported in part by the National Science
Foundation under Grant No. NSF PHY-1748958.

References
Ablimit, I., Maeda, K., & Li, X.-D. 2016, ApJ, 826, 53
Artymowicz, P., & Lubow, S. H. 1994, ApJ, 421, 651
Artymowicz, P., Clarke, C. J., Lubow, S. H., & Pringle, J. E. 1991, ApJ, 370, L35
Balbus, S. A., & Hawley, J. F. 1991, ApJ, 376, 214

Balbus, S. A., & Hawley, J. F. 1998, Rev. Mod. Phys., 70, 1
Bate, M. R., & Bonnell, I. A. 1997, MNRAS, 285, 33
Begelman, M. C., Blandford, R. D., & Rees, M. J. 1980, Nature, 287, 307
Belczynski, K., Bulik, T., & Ruiter, A. J. 2005, ApJ, 629, 915
Blagorodnova, N., Klencki, J., Pejcha, O., et al. 2021, A&A, 653, A134
Cabot, W. 1996, ApJ, 465, 874
Chamandy, L., Frank, A., Blackman, E. G., et al. 2018, MNRAS, 480, 1898
Chamandy, L., Tu, Y., Blackman, E. G., et al. 2019a, MNRAS, 486, 1070
Chamandy, L., Blackman, E. G., Frank, A., et al. 2019b, MNRAS, 490, 3727
Chamandy, L., Blackman, E. G., Frank, A., Carroll-Nellenback, J., & Tu, Y.

2020, MNRAS, 495, 4028
Chen, W.-C., Liu, D.-D., & Wang, B. 2020, ApJ, 900, L8
Choi, J., Dotter, A., Conroy, C., et al. 2016, ApJ, 823, 102
Clayton, M., Podsiadlowski, P., Ivanova, N., & Justham, S. 2017, MNRAS, 470,

1788
De, S., MacLeod, M., Everson, R. W., et al. 2020, ApJ, 897, 130
De Marco, O. 2009, PASP, 121, 316
De Marco, O., Passy, J.-C., Moe, M., et al. 2011, MNRAS, 411, 2277
Dermine, T., Izzard, R. G., Jorissen, A., & Van Winckel, H. 2013, A&A, 551,

A50
Di Stefano, R., Kruckow, M. U., Gao, Y., Neunteufel, P. G., & Kobayashi, C.

2023, ApJ, 944, 87
Dittmann, A. J., & Ryan, G. 2021, ApJ, 921, 71
Dominik, M., Belczynski, K., Fryer, C., et al. 2012, ApJ, 759, 52
D’Orazio, D. J., & Duffell, P. C. 2021, ApJ, 914, L21
D’Orazio, D. J., Haiman, Z., & MacFadyen, A. 2013, MNRAS, 436, 2997
Dotter, A. 2016, ApJS, 222, 8
Duffell, P. C., D’Orazio, D., Derdzinski, A., et al. 2020, ApJ, 901, 25
Fragos, T., Andrews, J. J., Ramirez-Ruiz, E., et al. 2019, ApJ, 883, L45
Gagnier, D., & Rieutord, M. 2020, J. Fluid Mech., 904, A35
Garaud, P., Gagnier, D., & Verhoeven, J. 2017, ApJ, 837, 133
Glanz, H., & Perets, H. B. 2018, MNRAS, 478, L12
Glanz, H., & Perets, H. B. 2021, MNRAS, 507, 2659
Grichener, A., Sabach, E., & Soker, N. 2018, MNRAS, 478, 1818
Hawley, J. F. 2000, ApJ, 528, 462
Hawley, J. F., & Krolik, J. H. 2001, ApJ, 548, 348
Heath, R. M., & Nixon, C. J. 2020, A&A, 641, A64
Hirai, R., & Mandel, I. 2022, ApJ, 937, L42
Hirai, R., Podsiadlowski, P., Owocki, S. P., Schneider, F. R. N., & Smith, N.

2021, MNRAS, 503, 4276
Høiland, E. 1941, Avhandliger Norske Videnskaps-Akademi i Oslo, i. math

naturv. Klasse, 1
Huang, S.-J., Hu, Y.-M., Korol, V., et al. 2020, Phys. Rev. D, 102, 063021
Hubová, D., & Pejcha, O. 2019, MNRAS, 489, 891
Hut, P. 1980, A&A, 92, 167
Iaconi, R., & De Marco, O. 2019, MNRAS, 490, 2550
Iaconi, R., Maeda, K., De Marco, O., Nozawa, T., & Reichardt, T. 2019,

MNRAS, 489, 3334
Iaconi, R., Maeda, K., Nozawa, T., De Marco, O., & Reichardt, T. 2020,

MNRAS, 497, 3166
Iben, I., Jr., & Tutukov, A. V. 1984, ApJS, 54, 335
Ivanova, N., & Nandez, J. L. A. 2016, MNRAS, 462, 362
Ivanova, N., Justham, S., Chen, X., et al. 2013a, A&ARv, 21, 59
Ivanova, N., Justham, S., Avendano Nandez, J. L., & Lombardi, J. C. 2013b,

Science, 339, 433
Jackson, J. D. 1975, Classical Electrodynamics (New York: Wiley)
Jones, D., & Boffin, H. M. J. 2017, Nat. Astron., 1, 0117
Jones, C. A., Kuzanyan, K. M., & Mitchell, R. H. 2009, J. Fluid Mech., 634, 291
Kalogera, V., & Webbink, R. F. 1998, ApJ, 493, 351
Käpylä, P. J. 2019, A&A, 622, A195
Käpylä, P. J., Mantere, M. J., Guerrero, G., Brandenburg, A., & Chatterjee, P.

2011, A&A, 531, A162
Kashi, A., & Soker, N. 2011, MNRAS, 417, 1466
Kitchatinov, L. L., & Ruediger, G. 1995, A&A, 299, 446
Kitchatinov, L. L., Pipin, V. V., & Ruediger, G. 1994, Astron. Nachr., 315, 157
Klencki, J., Nelemans, G., Istrate, A. G., & Chruslinska, M. 2021, A&A, 645,

A54
Kluska, J., Van Winckel, H., Coppée, Q., et al. 2022, A&A, 658, A36
Kochanek, C. S., Adams, S. M., & Belczynski, K. 2014, MNRAS, 443, 1319
Kruckow, M. U., Neunteufel, P. G., Di Stefano, R., Gao, Y., & Kobayashi, C.

2021, ApJ, 920, 86
Lau, M. Y. M., Hirai, R., González-Bolívar, M., et al. 2022a, MNRAS, 512,

5462
Lau, M. Y. M., Hirai, R., Price, D. J., & Mandel, I. 2022b, MNRAS, 516, 4669
Livio, M., & Soker, N. 1988, ApJ, 329, 764
Lohner, R., Morgan, K., Peraire, J., & Vahdati, M. 1987, Int. J. Numer. Meth.

Fluids, 7, 1093
Lopez Armengol, F. G., Combi, L., Campanelli, M., et al. 2021, ApJ, 913, 16

A121, page 21 of 26

http://linker.aanda.org/10.1051/0004-6361/202346057/1
http://linker.aanda.org/10.1051/0004-6361/202346057/2
http://linker.aanda.org/10.1051/0004-6361/202346057/3
http://linker.aanda.org/10.1051/0004-6361/202346057/4
http://linker.aanda.org/10.1051/0004-6361/202346057/5
http://linker.aanda.org/10.1051/0004-6361/202346057/6
http://linker.aanda.org/10.1051/0004-6361/202346057/7
http://linker.aanda.org/10.1051/0004-6361/202346057/8
http://linker.aanda.org/10.1051/0004-6361/202346057/9
http://linker.aanda.org/10.1051/0004-6361/202346057/10
http://linker.aanda.org/10.1051/0004-6361/202346057/11
http://linker.aanda.org/10.1051/0004-6361/202346057/12
http://linker.aanda.org/10.1051/0004-6361/202346057/13
http://linker.aanda.org/10.1051/0004-6361/202346057/14
http://linker.aanda.org/10.1051/0004-6361/202346057/15
http://linker.aanda.org/10.1051/0004-6361/202346057/16
http://linker.aanda.org/10.1051/0004-6361/202346057/17
http://linker.aanda.org/10.1051/0004-6361/202346057/17
http://linker.aanda.org/10.1051/0004-6361/202346057/18
http://linker.aanda.org/10.1051/0004-6361/202346057/19
http://linker.aanda.org/10.1051/0004-6361/202346057/20
http://linker.aanda.org/10.1051/0004-6361/202346057/21
http://linker.aanda.org/10.1051/0004-6361/202346057/21
http://linker.aanda.org/10.1051/0004-6361/202346057/22
http://linker.aanda.org/10.1051/0004-6361/202346057/23
http://linker.aanda.org/10.1051/0004-6361/202346057/24
http://linker.aanda.org/10.1051/0004-6361/202346057/25
http://linker.aanda.org/10.1051/0004-6361/202346057/26
http://linker.aanda.org/10.1051/0004-6361/202346057/27
http://linker.aanda.org/10.1051/0004-6361/202346057/28
http://linker.aanda.org/10.1051/0004-6361/202346057/29
http://linker.aanda.org/10.1051/0004-6361/202346057/30
http://linker.aanda.org/10.1051/0004-6361/202346057/31
http://linker.aanda.org/10.1051/0004-6361/202346057/32
http://linker.aanda.org/10.1051/0004-6361/202346057/33
http://linker.aanda.org/10.1051/0004-6361/202346057/34
http://linker.aanda.org/10.1051/0004-6361/202346057/35
http://linker.aanda.org/10.1051/0004-6361/202346057/36
http://linker.aanda.org/10.1051/0004-6361/202346057/37
http://linker.aanda.org/10.1051/0004-6361/202346057/38
http://linker.aanda.org/10.1051/0004-6361/202346057/39
http://linker.aanda.org/10.1051/0004-6361/202346057/40
http://linker.aanda.org/10.1051/0004-6361/202346057/40
http://linker.aanda.org/10.1051/0004-6361/202346057/41
http://linker.aanda.org/10.1051/0004-6361/202346057/42
http://linker.aanda.org/10.1051/0004-6361/202346057/43
http://linker.aanda.org/10.1051/0004-6361/202346057/44
http://linker.aanda.org/10.1051/0004-6361/202346057/45
http://linker.aanda.org/10.1051/0004-6361/202346057/46
http://linker.aanda.org/10.1051/0004-6361/202346057/47
http://linker.aanda.org/10.1051/0004-6361/202346057/48
http://linker.aanda.org/10.1051/0004-6361/202346057/49
http://linker.aanda.org/10.1051/0004-6361/202346057/50
http://linker.aanda.org/10.1051/0004-6361/202346057/51
http://linker.aanda.org/10.1051/0004-6361/202346057/52
http://linker.aanda.org/10.1051/0004-6361/202346057/53
http://linker.aanda.org/10.1051/0004-6361/202346057/54
http://linker.aanda.org/10.1051/0004-6361/202346057/55
http://linker.aanda.org/10.1051/0004-6361/202346057/56
http://linker.aanda.org/10.1051/0004-6361/202346057/57
http://linker.aanda.org/10.1051/0004-6361/202346057/58
http://linker.aanda.org/10.1051/0004-6361/202346057/59
http://linker.aanda.org/10.1051/0004-6361/202346057/60
http://linker.aanda.org/10.1051/0004-6361/202346057/60
http://linker.aanda.org/10.1051/0004-6361/202346057/61
http://linker.aanda.org/10.1051/0004-6361/202346057/62
http://linker.aanda.org/10.1051/0004-6361/202346057/63
http://linker.aanda.org/10.1051/0004-6361/202346057/64
http://linker.aanda.org/10.1051/0004-6361/202346057/64
http://linker.aanda.org/10.1051/0004-6361/202346057/65
http://linker.aanda.org/10.1051/0004-6361/202346057/66
http://linker.aanda.org/10.1051/0004-6361/202346057/67
http://linker.aanda.org/10.1051/0004-6361/202346057/67
http://linker.aanda.org/10.1051/0004-6361/202346057/68


Gagnier, D., and Pejcha, O.: A&A 674, A121 (2023)

López-Cámara, D., De Colle, F., & Moreno Méndez, E. 2019, MNRAS, 482,
3646

López-Cámara, D., De Colle, F., Moreno Méndez, E., Shiber, S., & Iaconi, R.
2022, MNRAS, 513, 3634

Lubow, S. H. 1991a, ApJ, 381, 259
Lubow, S. H. 1991b, ApJ, 381, 268
MacFadyen, A. I., & Milosavljević, M. 2008, ApJ, 672, 83
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Appendix A: Angular momentum conservation

We take the cross product of r with the momentum Eq. (1), multiply by ez and integrate it over the domain’s volume,∫
∂ρsuϕ
∂t

dV +

∫
∇ · (ρsuϕu)dV = −

∫
ρ
∂Φ

∂ϕ
dV −

∫
ez · (r × ∇ · T) dV. (A.1)

Using the fact the viscous stress tensor T is symmetric, and writing r = x je j,

r × ∇ · T = eiεi jk x j∂lTkl = eiεi jk∂l

(
x jTkl

)
− eiεi jkδl jTkl = ∇ · (r × T) , (A.2)

where εi jk is the Levi-Civita tensor of rank three, and

ez · ∇ · (r × T) = ez · div (r × T)T = ∇ ·
[
(r × T) · ez

]
− Tr

[
(r × T)∇ez

]
= ∇ ·

[
(r × T) · ez

]
, (A.3)

Eq. (A.1) can be rewritten as∫
∂ρsuϕ
∂t

dV +

∫
∇ · (ρsuϕu)dV = −

∫
ρ
∂Φ

∂ϕ
dV −

∫
∂R
∇ ·

[
(r × T) · ez

]
dV. (A.4)

Finally, using Gauss divergence theorem, Eq. (A.4) can be rewritten as

J̇z = −

∫
∂R
ρsuϕu · n⊥dS −

∫
ρ
∂Φ

∂ϕ
dV −

∫
∂R

[
(r × T) · ez

]
· n⊥dS = J̇z,adv + J̇z,grav + J̇z,visc, (A.5)

where n⊥ is is the outward-pointing unit vector at the boundaries’ surface, J̇z is the time derivative of the z−component of the gas
angular momentum, and J̇z,adv, Tz,grav, and J̇z,visc are the advective, gravitational, and viscous torques on the system, respectively.
Replacing the viscous stress tensor by its expression finally yields,

J̇z,visc = −

∫
∂Rout

rout sin θTrϕdS +

∫
∂Rin

rin sin θTrϕdS , (A.6)

where

Trϕ = Tϕr = −ρν

(
1
s
∂ur

∂ϕ
+ r

∂

∂r
uϕ
r

)
. (A.7)

Similarly, local torques are obtained by taking the cross product of r with the momentum Eq. (1), multiplying it by ez, taking
the radial derivative, integrating the result over the volume comprised between r and rout, and using the fact that the gravitational
torque vanishes at the outer boundary, that is ∂Φ/∂ϕ tends to zero far from the central binary (see e.g., Miranda et al. 2017).

Appendix B: Effect of boundary conditions on the gravitational torque

Fig. 6(b) shows that the amplitude of the gravitational torque largely depends on the enforced inner boundary conditions. In partic-
ular, while J̇z,grav rapidly settles to statistically (almost) zero when the inner boundary is open to mass and angular momentum flow
toward the binary, J̇z,grav decreases much slower and thus drives the orbital contraction of the binary when accretion is turned off. To
understand this fundamental difference, let us first investigate the conditions for J̇z,grav = 0. For the gravitational torque to be zero,
mass distribution must satisfy the symmetry property of |∂Φ/∂ϕ| with regard to the plane P defined as

es · (r1 − r2) = 0, (B.1)

that is the plane orthogonal to the orbital plane and intersecting the binary semi-major axis. In our simulations, the gravitational
torque arises from the quadrupolar moment of the binary potential generating a two-armed spiral density wave and breaking the
mass distribution symmetry with respect to the plane P (see Fig. B.1, left). We decompose the amplitude of the gravitational torque
as

|J̇z,grav| = ερeff

∫ ∣∣∣∣∣∂Φ

∂ϕ

∣∣∣∣∣ dV, (B.2)

where
∫
|∂Φ/∂ϕ|dV is constant in our simulations,

ε =
|
∫
ρ ∂Φ
∂ϕ

dV |∫
ρ| ∂Φ

∂ϕ
|dV

, and ρeff =

∫
ρ| ∂Φ

∂ϕ
|dV∫

| ∂Φ
∂ϕ
|dV

. (B.3)

Here, 0 ≤ ε ≤ 1 quantifies the asymmetry of the mass distribution with respect to P, and ρeff is the weighted-averaged density with
a dominating contribution from the gas subject to larger |∂Φ/∂ϕ|.
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Fig. B.1. Specific gravitational torque for simulation run A at t ' 25 Porb (left) and t ' 250 Porb (middle), and for run A’ at t ' 250 Porb (right).
Black crosses indicate the location of the two cores, and the dashed black line indicates the intersection of P with the orbital plane.
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Fig. B.2. (a)〈ε〉P =
∫ t+Porb

t
εdt′ quantifying the asymmetry of the mass distribution with respect to the plane P as a function of time. (b) Weighted-

averaged density with a dominating contribution from the gas subject to larger |∂Φ/∂ϕ|, 〈ρeff〉P =
∫ t+Porb

t
ρeffdt′, as a function of time.

Fig. B.2 shows the time evolution of 〈ε〉P and 〈ρeff〉P for models A and A′, where 〈·〉P indicates a temporal smoothing over one
orbital period. We see that closing the inner boundary to mass and angular momentum flow toward the binary typically leads to
larger ε and ρeff . Turbulence-induced alteration of the asymmetric spiral density wave structure likely explains the difference in ε
between the two models, simulation run A being more turbulent in the vicinity of the binary (see Fig. B.1). Reflecting boundary
conditions indeed lead to the accumulation of material at the inner boundary leading to both larger ρeff and increased stabilizing
density stratification. However, because the energy transferred from the binary orbit to the envelope as kinetic and internal energy
is higher for higher ρeff , the envelope expands more rapidly in simulations run A’. This leads to a more rapid decrease of ρeff

which in turn leads to the reduction of the stabilizing effect of density stratification and thus to a slow decrease of ε. Inevitably, the
gravitational torque in simulation run A’ eventually also reaches statistically (almost) zero (see Fig. 6(b)). Because the gravitational
torque is exclusively responsible for the orbital contraction when the binary does not accrete, |a/ȧ| does not reach a steady value in
simulation run A’, and keeps increasing.

Appendix C: Migrating accretion streams

In Sect. 3.3 and Fig. 8, we discuss that for t . 156 Porb, mass accretion onto the binary exhibits inclined and periodic stripes spanning
a wide range of latitudes. To understand the cause of this latitudinally migrating accretion, we show a space-time diagram of the
mass flux onto the individual components of the binary for model A during this time period in Fig. C.1 (A). We see that the mass
flux peaks at a maximum latitude successively on core 1 (at t = t1) and core 2 (at t = t2), with a period of Porb/2 = t2 − t1, that is,
when the two cores switch position. This suggests that the source of the high-latitude accretion orbits much slower than the binary,
that is Ω � Ωorb. We show the mass flux toward and away from the individual cores, azimuthally averaged within a π/6 opening
angle about the position of the cores at t = t1 and t = t2, respectively in Figs. C.1 (B) and (C). We see that high-latitude accretion
through the inner boundary results from accretion streams originating from low-latitude regions. Such streams initially propagate
radially, then toward the orbital plane when approaching the binary. Accretion streams approaching the orbital plane carry a certain
amount of momentum. Their inertia allows them to travel a certain distance above the orbital plane before the material is pulled
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back toward it by the gravitational pull of the core. In addition, in the vicinity of the binary, the enhanced accretion streams deflect
the outflow associated with spiral density waves to the north.

We show the surface density about the orbital plane (35) averaged over t1 ≤ t ≤ t2 in Fig. C.1 (D). We see that the overdensity
located around r ' 0.7 is characterized by an angular frequency Ωlump � Ωorb and is therefore a candidate for the source of
high-latitude accretion. Finally, we show the density cross section in the θϕ plane at r = 0.7 averaged over t1 ≤ t ≤ t2 in Fig. C.1
(E). We find that this overdensity is spatially extended over a wide range of θ. Its presence and its shape explains the migrating
accretion streams shown in Fig. 8 as follows. As individual orbiting cores pass in front of the overdensity, they first pull its material
from high colatitudes, enhancing accretion streams (Figs. B(a) and C(b)). Due to their high inertia, such accretion streams reach
the inner boundary in the northern hemisphere. The material impacting the inner boundary is partially accreted by the binary, the
rest is pulled back toward the orbital plane. As the core now faces the part of the overdensity that is located close to the orbital
plane, mass accretion becomes symmetric about the orbital plane. Finally, the core eventually approaches the northern hemisphere
end of the overdensity, analogously the accretion streams pulled from this part of the lump reach the inner boundary in the southern
hemisphere. As one core orbits away from the lump and becomes subject to symmetric mass accretion (Figs. B(b) and C(a)), the
companion approaches it, and the phenomenon is repeated.
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Fig. C.1. A: Space-time diagram of the mass flux onto the individual components of the binary for model A, azimuthally averaged in the range
ϕ1 − π/12 ≤ ϕ1 ≤ ϕ1 + π/12 (a) and in the range ϕ2 − π/12 ≤ ϕ2 ≤ ϕ2 + π/12 (b). The horizontal dashed lines indicate the orbital plane θ = π/2.
The two vertical dashed lines are separated by Porb/2 and indicate two successive times, t1 and t2, when the mass flux is maximum at the highest
latitude. B: Mass flux toward and away from the individual cores, azimuthally averaged in the range ϕ1 − π/12 ≤ ϕ1 ≤ ϕ1 + π/12 (a) and in the
range ϕ2 −π/12 ≤ ϕ2 ≤ ϕ2 +π/12 (b) as a function of colatitude and radius at t = t1. C: same as B but at t = t2. D: Surface density about the orbital
plane (35) averaged over t1 ≤ t ≤ t2. The dashed circle indicates the approximate radial location of the overdensity responsible for the migrating
accretion streams (r = 0.7). E: Density cross section in the θϕ plane at r = 0.7 averaged over t1 ≤ t ≤ t2.
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