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Migrating Carrollian particles on magnetized black hole horizons
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By considering a misaligned (asymptotically uniform) magnetic field in the background of a rotating
black hole, we uncover a possibility for a highly nontrivial motion of Carrollian particles on the black hole
horizon that is characterized by a time-dependent velocity field and reminds us (because of its latitudinal

oscillations) of a “monarch butterfly migration.”
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I. INTRODUCTION

Carrollian particles are massless particles that live on a
null surface equipped with a Carroll structure, a horizon
of a black hole, for example. Contrary to Carroll fluids
that are known to feature nontrivial dynamics, e.g., [1-4],
it was believed that a single Carroll particle cannot
move [1,5,6]. However, as recently shown this is no
longer true in (2 4+ 1)-dimensional Carrollian settings in
the presence of magnetic fields [7,8]. Namely, considering
a double central extension of the Carroll group, the
massless Carroll particle with anyonic spin can move
under the influence of a magnetic field B, according to the
following equation:

dx oy g
— 0xB, 1
dv Kmage B (1)

where v is the (preferred on the horizon) Carrollian time.
Parametrizing the 2-dimensional particle’s trajectory
x4 =xA(v), A =1, 2, u is the magnetic moment of the
particle, y its anyonic spin, Ky, is a central extension
parameter which allows for the particle to couple to
electromagnetism, and e*® is the 2-dimensional Levi-
Civita tensor of the 2-dimensional metric on the horizon
(including its determinant).

For its remarkable similarity with the following (effec-
tively 2-dimensional) 3D equation:

dxi
dv

= —¢(E x O, (2)
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of the spin Hall effect, e.g., [9,10] (where e is the electric
charge of the spinning particle, O its Berry curvature, and E
the external electric field), the motion described by Eq. (1)
was dubbed the anyonic spin Hall effect [7,8].

Up to now, the anyonic spin Hall effect was studied for
the magnetized horizons of the Kerr—Newman solution
(endowed possibly with a magnetic monopole) [7,8,11],
or for the Kerr black hole immersed in an aligned test
uniform magnetic field [11]. However, in all these cases,
the induced motion of Carrollian particles is sort of
“trivial’—the particles orbit the black hole horizon on
“circular trajectories” around the axis of rotation of the
black hole.

The goal of the present paper is to show that a much
more interesting motion of Carrollian particles is possible.
To this purpose, we employ a remarkable test field in the
vicinity of a rotating (Kerr) black hole, that represents
an (asymptotically uniform) magnetic field whose asymp-
totic axis of symmetry is tilted with respect to the
rotational axis of the hole [12,13]. Since a stationary
black hole must be either static or axisymmetric [14], a
Kerr hole immersed in a nonaxisymmetric perturbing field
evolves in time—either it loses its angular momentum or
its axis becomes aligned with respect to the perturbing
field. For the first analysis of this effect, using scalar field
but indicating also the effect for gravitational perturbing
field, see [15]. The case of the external nonaligned
magnetic field is quite comprehensibly analyzed in [16].
There is a number of other works, related also to the so-
called Bardeen-Petterson effect, with qualitatively similar
results: the component of the hole’s angular momentum
orthogonal to the external field decays exponentially with
the e-folding time extremely large. For the case of the
magnetic field, [16] determine the e-folding time to be
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10'9 years(10*Gauss/B)?(108M,/M). In astrophysical
situations, such a field is produced by the magnetized
plasma accreting onto the black hole, with an accretion
disc misaligned with the rotation axis [17]. In [16] the
astrophysical applications of black hole electrodynamics
are summarized in Chapter IV. For more recent references
see, for example, [18-20]. As we shall see, the tilted
magnetic field induces a rather curious motion of
Carrollian particles. This motion is characterized by a
time-dependent velocity vector field and, due to its
dependence on the latitudinal coordinate, it is analogous
to the “monarch butterfly migration,” e.g., [21].

The remaining part of the paper is organized as follows.
In Sec. I we review the misaligned magnetic field.
Section III describes the corresponding Carrollian structure
induced in the horizon. In Sec. IV we analyze the motion of
Carrollian particles on the horizon in the presence of the
tilted magnetic field. The conclusions of our work can be
found in Sec. V.

II. ROTATING BLACK HOLE IMMERSED
IN A MISALIGNED MAGNETIC FIELD

A rotating black hole is described by the Kerr metric,
which in the standard Boyer-Lindquist coordinates reads

A in> 0
ds? = =5 (di - asin® 0dp)? + "= (adr = (1 + a)dgp?
P 2
+3dr + TP, (3)
where
|
B.aM ByaM
A = 1@ sin@cosO(rcosy — asiny) + !

A, = —B(r—M)cos8sinfsiny,

A =r?=2Mr+ a?, T =r?+a’cos?0. (4
In these expressions, M stands for the mass of the hole and
J = Ma is its angular momentum around the axis of
symmetry—the “z-axis.”

The (outer) black hole horizon is located at the largest
root of A(r,) =0, at

ro =M+ VM -d. (5)

The horizon is dragged due to the rotation of the hole, and
rotates with the angular velocity:

a
:—7
r2 +a?

(6)

Q.

equal to the angular velocity of zero angular momentum
observers (ZAMOs) at the outer horizon.

When a — M, the black hole is called extremal. It
possesses a degenerate horizon and its Hawking temper-
ature vanishes. In this limit, the aligned magnetic field is
expelled from the horizon, which is known as the black
hole Meissner effect [12,13,22-24]. However, this is no
longer true for the tilted magnetic field which remains
to penetrate the horizon even in the extremal case [13].
(See also [25] for the case of a magnetic flux tube of a
cosmic string painted on the extremal Kerr horizon, which
features a penetration/expulsion phase transition depend-
ing on the ratio of the thickness of the string and the
horizon radius.)

The tilted test magnetic field is described by the
following vector potential [12,13]:

(1 + cos?8) — Bya,

Ay = —Ba(rsin’0 + Mcos?0) cosy — B, (r*cos?d + (a* — Mr) cos 20) siny,

r+a®  a*Mr
2 >

Ay = Bosin20< (1+ 00529)>

Here, B; denotes the field component perpendicular to the
rotation axis, while By, is the component aligned with the
axis, and y is the azimuthal coordinate in the Kerr ingoing
coordinates:

dy = dp + % dr. (8)

We refer the reader to [12,13,16,26] for an analysis of the
physical properties of this field and for an illustration of its
dragging around the black hole.

B sin20

(r2 + az)M

A
( cosy + 3

(rcosy — asin y/)). (7)

III. CARROLLIAN STRUCTURE AND
MAGNETIZED HORIZON

In what follows, we will describe the Carrollian structure
in the horizon of the black hole. To this purpose, we first
transfer to the ingoing coordinates (v,r,6,¢) which
corotate with the horizon, by

dp = dg + Q. dv — %dr,

2+ a?

dt = dv —
TTA

dr. 9)
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These differ from the standard Kerr ingoing coordinates
(v,r,0,y) by the additional Q, dv term in the first
expression, cf., (8), which “eliminates” the rotation of
the horizon. Upon this coordinate transformation, the
metric takes the following explicit form':

., A[ %,
ds __E<ri—|—a2
sin? @
>

z o, 2
+ 3R+ zde?, (10)

y 2
dv — Zdr — asin® Hdgo)

(Q.(r} = r)dv = (r* + a®)dp)?

where we have introduced
X, =r% +a’cos? b, (11)
while the new components of the vector field are now

Ay =Q Ay +A,

a a’ +r?
A; - Ar - KAd) - TAI,
Ay=Ay A=A, (12)

Note that, in these coordinates y = ¢ + €, v + const.,
where const. denotes an integration constant that will be
set to zero for the remainder of our analysis, so that we have

v=0+Q v (13)

It is precisely this y which introduces the time dependence
into our problem. It originates from the fact that the
preferred Carrollian time v» is defined in the corotating
with the horizon coordinate frame.

To see this, let us define the 2-dimensional metric on the
horizon and the associated Carrollian structure. The hori-
zon is generated by a null Killing vector field, which in the
new coordinates simply reads

£=0,. (14)

The corresponding v-coordinate is the (preferred)
Carrollian time on the horizon.”> We can also obtain a null
normal to the horizon, n,,, which is orthogonal to 9, and 9,,
such that n,&* = 1. It reads

'Note that in contrast to [7], we use ingoing rather than
outgoing coordinates. Consequently, in our case the Carrollian
particles move on the black hole horizon rather than the white
hole horizon, as is the case in [7].

Had we chosen the standard Kerr ingoing coordinates, as
opposed to the above corotating ones, we would not obtain the
preferred Carrollian time, as in that case we would have
¢=0,+Q,0,, and the horizon metric (17) would appear as
“rotating in the azimuthal direction.”

a(ri +a?)

+

n=dv-— sin® Odep. (15)

Using £ and n one can define the projector into the
horizon as

qﬂv = 55 - gﬂnu - nﬂgw (16)

With both indices down, this represents a degenerate
metric on a (2 + 1)-dimensional horizon surface:

(rX + a*)?sin? 0

q = quapdx’dx® =X do* + S
+

de?,  (17)

with x* = {0, ¢}. The horizon H can thus be endowed
with a Carrollian structure [27,28]. This structure is given
by a fiber bundle p: ‘H — S, where S has the topology
of $? and is just any constant v slice, S = H|,—,,- The
projection is the usual projector constructed from the
metric, and the surface S is a Riemannian manifold,
equipped with the metric (17). The fiber bundle has a
vertical vector field given by d,, which generates the
vertical space—the “time” evolution along the Carrollian
time v.

To obtain the magnetic field B, relevant for the motion of
Carrollian particles, (1), we define [11]

1 “
B == ABF‘AB’ (18)
2
where €48 is the Levi-Civita tensor associated with the

metric g (17), €% =1/\/detqaz = 1/[(r2 + a?) sind)],
and ', is the projection of the bulk electromagnetic field
strength

FAB =q"49"s u+ (19)

In particular, for the tilted test field (7) we (upon using the
corotating with horizon coordinates) obtain

B, sind
B = % (2r, (a*cos? @ — r) cosy
+a[(rh — a*)a® cos? @ + % (3r3 + a?)] siny)
By(a* — %) cos @
=

(20)

As a quick check let us consider various limits of this
expression. First, for B; = 0, we obtain the result for the
aligned magnetic field

By(a* — %) cos @
=

Balign = > (2 1 )

studied in [11]. Second, in the extremal limit ¢ — M, the
contribution from B vanishes, and we recover
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By sinf . .
By = m (2siny —sin*@cosy),  (22)

where y = ¢ + v/(2a). Finally, in the Schwarzschild limit,
a — 0, we recover

Bges, = —B(cos 0 — B, sin @ cos ¢. (23)

This is nothing but the uniform magnetic field around
(spherically symmetric) Schwarzschild, written now in
tilted coordinates.

IV. CARROLLIAN MOTION IN TILTED
MAGNETIC FIELD

In this section we analyze the Carrollian motion induced
by the tilted magnetic field, and compare our results with
the motion when the magnetic field is parallel to the axis of
rotation of the black hole.

Let us start by analyzing the velocity field

induced by the magnetic field (20) via Eq. (1). This is
displayed for » = 0 and various ratios of B, vs B; for the
rotating nonextremal Kerr black hole in Fig. 1. The two
limiting cases of the extremal black hole and a nonrotating
black hole are for fixed ratio of By and B, displayed in
Fig. 2.3 Here, the red vectors denote the region where the
norm of the velocity field is small, while yellow vectors
denote large velocities. We notice that there are two vortices
(centers of red whirlwinds) on opposite sides of the black
hole where the velocity field vanishes and around which the
Carrollian particles revolve.

In the case where only By, is present, the magnetic field is
parallel to the axis of rotation and the Carrollian particles
revolve around this axis, as previously analyzed in [11].
When B, is nonzero, the axis around which the Carrollian
particles rotate shifts and gets positioned in an intermediary
axis between the directions of B, and B;. Also notice that
the motion of the particles in this case is not a perfect circle
around the axis. When B, = 0, we find that the coordinates
of the points at which the velocity field vanishes at v =0
are located at @ = /2 and tan¢p = —a(a® + 3r%)/(2r),
which yields two solutions for ¢, which differ by z. That is,
the two points are antipodal, and define the axis around
which the Carrollian particles orbit.

The figures are meant for illustrative purposes only. The
horizon is displayed as “spherical” and the (6, ¢) coordinates are
identified with spherical angles. In particular, we ignore the fact
that close to the polar regions, the horizon of a rotating black hole
cannot be embedded in R3, e.g., [29].

FIG. 1. Velocity fields: field alignment. We display velocity
fields at » =0 for different values of By, and B; for the
nonextremal rotating Kerr black hole characterized by r, =M
anda = ‘SlM . The large green arrow denotes the axes of rotation of
the black hole, and the 6 and ¢ coordinate lines are depicted in
green and blue, respectively. The arrows for the vector indicate its
magnitude: red stands for smaller vectors and yellow for larger
ones.

Interestingly, the displayed velocity fields resemble the
“eddy currents” around rotating black holes studied in the
membrane paradigm in [16]. It would be interesting to
probe if there is any deeper reason for this similarity.

So far we have only analyzed the velocity field at v = 0.
As v varies, both the magnetic field and the velocity fields
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By=1M,B = 3M

=

FIG. 2. Velocity fields: effect of rotation. We display the
velocity field at v =0 for a fixed ratio of By =2M and
B, :%M for (i) the extremal black hole (up) with r, =a =M
and (ii) nonrotating black hole with r, = 2M and a = 0.

precess around the axis of rotation of the black hole with
angular velocity Q_, as ¢ — ¢ + Q_ v. This precession is
caused by the dragging of the hole. Namely, while the
profile of the magnetic field outside the horizon remains
static with respect to observers located at infinity, the
horizon itself rotates with respect to these observers with
angular velocity €., and the field seen as constant at
infinity will be seen as rotating by a particle at the horizon,
as is the case of the Carrollian particles discussed here.*

A consequence of this precession is that the motion
of Carrollian particles does not simply correspond to the
integral lines of the vector fields seen in Fig 1, and the
nontrivial dependence on v allows for more interesting
trajectories. To illustrate this explicitly, we solve the equation
of motion (1) numerically for different values of initial
conditions

9(0) = @0, 0(0) =6, (25)

“Let us remark, however, that while the profile of the field
remains stationary outside the hole ergosphere, it is only uniform
at infinity, and becomes more and more dragged along the
rotation of the hole as we approach the horizon, see [26] for
illustrations of this fact.

By=0,B, =M

By=0,B,=M

FIG. 3. Carrollian migration on the horizon. We display the
Carrollian motion reminiscent of the monarch butterfly migration
for the choice of 6y =n/2 =¢, for By =M,B; =0, and
r, = %M,a = %M. The two figures show the same motion of
one particle; the only difference is the number of revolutions
displayed.

In Fig. 3 we display the migrating motion, where Carrollian
particles move from regions located around the equator to
regions around the poles. The observed motion of Carrollian
particles seems integrable and very similar to the motion of
particles on a sphere rotating around a rotating axis, which is
also not chaotic.

Finally, notice that although the curves in Fig. 3 overlap,
it is not possible for Carrollian particles to collide with each
other. This can be seen from the theorem of uniqueness and
existence of solutions to ODEs and by noticing that the
equations of motion of the Carrollian particle are of first
order: A collision of two Carrollian particles would imply
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that two solutions would be possible starting from the
event where the collision happens, which would contradict
uniqueness. As far as we can conclude, Carrollian particles
on a black hole horizon in an external magnetic field follow
a very organized flow that approximately rotates around a
precessing axis.

V. SUMMARY

In this paper we have demonstrated that Carrollian
particles can feature a rather nontrivial motion on the
horizon of a black hole. To this purpose we have considered
the Kerr black hole that is magnetized by a test asymp-
totically uniform magnetic field whose asymptotic axis of
symmetry is tilted with respect to the rotational axis of the
hole. As the horizon is equipped with a preferred Carrollian
time, this gives rise to a “time dependent” magnetic field on
the horizon and in consequence results in a (nonchaotic)
“migratory” motion of Carrollian particles, which is char-
acterized by two vortices that precess around the black hole
due to the inertial frame dragging on the horizon.

It remains to be seen whether such motion of Carrollian
particles (if realized in nature) would lead to some

observable features, or whether the very existence of the
Carrollian particles remains only an interesting theoretical
possibility.
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