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1 Introduction

One of the main advantages of holographic duality is that puzzling features of black holes
can be studied in the dual field theory, and vice versa. The best understood example of
such a duality is the AdS/CFT correspondence [1–3], where Anti-de Sitter (AdS) black
holes have been argued to be equivalent to thermal states in the dual conformal field
theory (CFT). This correspondence can be used as an argument for the unitarity of the
evaporation of a black hole, since the dual CFT is a standard unitary gauge theory, albeit
with a large number of color degrees of freedom N . The holographic dictionary states that
the thermodynamics of AdS black holes is completely equivalent to the thermodynamics of
the dual CFT. For instance, the entropy and temperature of a black hole match with the
thermal entropy and temperature of the dual CFT, respectively. Moreover, the Hawking-
Page first-order phase transition [4] between a large black hole and thermal AdS spacetime
corresponds to the confinement/deconfinement phase transition of a quark gluon plasma [5].
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In recent years, the thermodynamics of AdS black holes has been shown to feature a rich
range of phenomena, including Van der Waals type phase transitions for charged AdS black
holes [6–9], polymer transitions [10], reentrant phase transitions [11, 12], triple points [13,
14], superfluid transitions [15], and most recently multicriticality [16, 17]. These phenomena
have been discovered in the context of extended phase space thermodynamics where the
(negative) cosmological constant Λ is treated as a dynamical variable, and identified with
a (positive) thermodynamic pressure according to [18–22]

P = − Λ
8πGN

, Λ = −(d − 1)(d − 2)
2L2 , (1.1)

where L stands for the AdS curvature radius, GN is the (fixed) Newton’s constant, and d

denotes the number of bulk spacetime dimensions. This identification gives rise to a new
pair of conjugate variables in the first law of bulk thermodynamics — a pressure-volume
term, +V δP , arises. The corresponding theory has come to be called extended black hole
thermodynamics, or black hole chemistry (see [23] for a review). In particular, for a charged
and multiply-spinning AdS black hole the first law and the generalised Smarr relation take
the following form, respectively:

δM = THδS + ΦδQ +
∑

i

ΩiδJi + V δP , (1.2)

M = d − 2
d − 3

(
TS +

∑
i

ΩiJi

)
+ ΦQ − 2

d − 3PV . (1.3)

Here, M stands for the mass of the black hole, TH for the Hawking temperature, S for
the Bekenstein-Hawking entropy, Q the electric charge and Φ the conjugate electrostatic
potential. The angular momenta of the black hole are denoted by Ji, and their respective
conjugate quantities are the relative angular velocities between horizon and infinity Ωi [24],
and V is the black hole thermodynamic volume — a quantity conjugate to the pressure P .

Very recently [25], a precise match has been found between the laws of extended
black hole themodynamics and the laws governing the dual CFT. The key idea for this
identification is to respect the conformal symmetry of the dual CFT, treating the AdS
boundary conformal factor ω as a new thermodynamic parameter, so that the CFT volume
V and the CFT central charge C can be varied independently, without needing to introduce
a variable Newton’s constant, as done in [26–31]. Namely, in this framework the conformal
completion of the bulk AdS spacetime reads as

ds2 = ω2
(
−dt2 + L2dΩ2

d−2

)
, (1.4)

where ω is an ‘arbitrary’ dimensionless conformal factor that is free to vary, reflecting the
conformal symmetry of the boundary theory. Focusing on the spherical case, dΩ2

d−2 is the
metric on a unit (d−2)-dimensional sphere, with the corresponding volume Ωd−2. We take
ω to be independent of the boundary coordinates, in which case the CFT volume reads

V = Ωd−2Rd−2 , (1.5)
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where R = ωL is the variable curvature radius of the manifold where the CFT lives. The
variation of the CFT volume V is then obviously independent of the variation of the central
charge C, which for Einstein gravity is dual to

C = Ωd−2Ld−2

16πGN
, (1.6)

even when Newton’s constant GN is held fixed. Employing the following AdS/CFT dictio-
nary:

E = M

ω
, T = TH

ω
, Ω̃ = Ω

ω
, Φ̃ = Φ

√
GN

ωL
, Q̃ = QL√

GN
, (1.7)

it is easy to show that the bulk first law (1.2) is dual to [25, 27]:

E = TδS + Ω̃δJ + Φ̃δQ̃ + µδC − pδV , (1.8)

accompanied by the following two relations for the chemical potential µ associated to the
central charge and for the pressure p, respectively,

µ = 1
C

(E − TS − Ω̃J − Φ̃Q̃) , (1.9)

p = E

(d − 2)V , (1.10)

known as the Euler relation and the equation of state for CFTs, respectively. This Euler
equation holds for any large-N gauge theory, and differs from the standard one in thermo-
dynamics in that it does not contain a pV term. In the high-temperature or large-volume
regime, i.e. RT ≫ 1, the µC term becomes equal to −pV, and (1.9) becomes the stan-
dard thermodynamic Euler relation [27]. In ref. [32] we provided an extensive study of the
extended thermodynamics of CFT states dual to charged, nonrotating AdS black holes.

It is the purpose of this paper to explore the implications of this proposal for rotating
thermal CFT states that are dual to uncharged, singly-spinning AdS black holes in the
bulk. In particular, we shall focus on the following three ensembles that feature interesting
phase behavior:

fixed (J,V, C) : F ≡ E − TS ,

fixed (Ω̃,V, C) : W ≡ E − TS − Ω̃J ,

fixed (J,V, µ) : G ≡ E − TS − µC ,

(1.11)

where F , W , and G are the corresponding free energies of the respective ensembles. These
ensembles are analogous to the three ensembles studied in [32] for thermal CFT states dual
to charged, nonrotating AdS black holes, for which we found interesting phase behaviour.
For the present rotating case, in the first (‘canonical’) ensemble, we shall show that there
is a Van der Waals-like criticality for d = 4, 5, and reentrant phase transitions for d ≥ 6.
In the ‘grand canonical ensemble’, at fixed angular velocity and central charge, there is
a first-order (de)confinement phase transition in all dimensions d ≥ 3, following closely
what happens in the bulk (see appendix A). Finally, the behavior of the free energy in the
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last ensemble, characterized by fixed angular momentum and chemical potential, is rather
complex and unprecedented. It seems to indicate the presence of a plethora of zero-order
phase transitions and unstable phases in both d = 4 and d = 6. However, one should be a
bit cautious about the precise interpretation of these results, as this ensemble is novel and
may come with presently unknown phases and instabilities that our analysis did not take
into account.

Let us finally stress that the current analysis has a certain overlap with recent in-
vestigations [29, 30, 32–36]. In particular, the first two ensembles have been studied in
d = 4 [33], in the context of the so-called restricted phase space (RPS) formalism. While
similar in many technical aspects to our approach, the physical interpretation of RPS is
very different from ours. Namely, in RPS the cosmological constant Λ is fixed in the bulk,
while the gravitational constant GN is varied.1 Moreover, since on the CFT side in RPS
one fixes ω = 1, it implies that the CFT volume has to be held fixed and only the central
charge remains a thermodynamic variable. Contrary to this, in our case, we hold Newton’s
constant fixed in the bulk and only vary Λ. However, by introducing general ω on the CFT
side, both the CFT volume and the central charge are independently varied, subject to the
two restrictions (1.9) and (1.10).

Our plan for the remainder of the paper is as follows. In section 2 we review singly-
spinning AdS black holes in all dimensions and discuss their respective bulk and boundary
thermodynamic quantities. Section 3 contains our main results regarding the phase be-
havior of the three thermodynamic ensembles. Section 4 is devoted to discussion of our
results and conclusions. Appendix A reviews the grand canonical ensemble behavior of the
singly-spinning black holes in the bulk, which is also compared to the (markedly different)
fixed electrostatic potential ensemble for charged nonrotating AdS black holes. Additional
technical details regarding the study of the (J,V, µ) ensemble are gathered in appendix B.

2 Holographic thermodynamics of Kerr-AdS black holes

In this section we relate the extended thermodynamics of rotating black holes in AdS to
the extended thermodynamics of the dual CFT. We keep the number of (bulk) spacetime
dimensions d arbitrary in this section, while the detailed analysis of the CFT phase behavior
in the next section will be carried out in d = 4 and d = 6, i.e. AdS4/CFT3 and AdS6/CFT5.

2.1 Extended bulk thermodynamics

We consider neutral singly-spinning black holes in asymptotically AdS spacetime, also
known as Kerr-AdS black holes. These form a two parameter family of solutions to the
vacuum Einstein equations with a negative cosmological constant, which were constructed

1Let us note here that a number of papers have considered the possibility of adding Newton’s constant GN

to the extended thermodynamic phase space, e.g. [26–28, 37–39]. Since the inclusion of quantum corrections
seems to indicate that GN varies along the renormalization group flow, its variation in thermodynamics is
perhaps plausible. However, such a treatment seems a bit problematic, in part since GN is a constant of
nature and varying GN does not correspond to the original black hole chemistry. For this reason we try to
avoid it in this paper.
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in four dimensions by Carter [40] and later generalized to higher dimensions in [41–43]. In
Boyer-Lindquist coordinates, the Kerr-AdS line element in d spacetime dimensions reads

ds2 =−∆
ρ2 (dt− a

Ξ sin2 θdϕ)2+ ρ2

∆ dr2+ ρ2

Σ dθ2+ Σsin2 θ

ρ2

(
adt− r2+a2

Ξ dϕ

)2

+r2 cos2 θdΩ2
d−4 ,

(2.1)
where dΩ2

d−4 is the metric on the round unit d−4 sphere, and the various metric functions
are given by

∆ = (r2 + a2)
(

1 + r2

L2

)
− 2m

rd−5 , Σ = 1 − a2

L2 cos2 θ, Ξ = 1 − a2

L2 , ρ2 = r2 + a2 cos2 θ.

(2.2)
Here L is the AdS curvature radius given in (1.1), m is the mass parameter and a the rota-
tion parameter. The mass parameter m can be expressed in terms of the other parameters
and the outer horizon radius rh (the largest positive real root of ∆ = 0) as

m = rd−5
h

2 (r2
h + a2)

(
1 + r2

h

L2

)
. (2.3)

The expressions for the thermodynamic variables of the Kerr-AdS black hole in terms
of the variables (rh, a, L) are well known in the literature (see e.g. [42]). Here we provide a
quick summary. The mass and angular momentum of Kerr-AdS black holes are given by

M = Ωd−2
4πGN

m

Ξ2

(
1 + (d − 4)Ξ

2

)
, J = Ωd−2

4πGN

ma

Ξ2 . (2.4)

The angular velocity of the black hole horizon relative to spatial infinity is

Ω = a

L2
r2

h + L2

r2
h + a2 . (2.5)

The Hawking temperature is proportional to the surface gravity κ according to

TH = κ

2π
= 1

2π

[
rh

(
1 + r2

h

L2

)(
1

a2 + r2
h

+ d − 3
2r2

h

)
− 1

rh

]
, (2.6)

and
S = A

4GN
= Ωd−2

4G

rd−4
h (a2 + r2

h)
Ξ (2.7)

is the Bekenstein-Hawking entropy, proportional to the area A of the outer event horizon.
The thermodynamic volume can either be calculated from the extended first law (1.2),

or from the Smarr relation (1.3). In either case we recover [19, 21]

V = rhA

d − 1

[
1 + a2

Ξ
1 + r2

h/L2

(d − 2)r2
h

]
. (2.8)

Alternatively, this expression can also be computed by using a geometric approach. Indeed,
it can be defined either in terms of surface integrals of the Killing potential [18] (see [21] for
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an explicit calculation using the proper gauge fixing of the Killing potential, as opposed to
the background subtraction procedure proposed in [18]), or as the (background subtracted)
Killing volume [44]

V =
∫

Σbh
|ξ|dV −

∫
ΣAdS

|ξ|dV , (2.9)

where |ξ| =
√
−ξ · ξ is the norm of the horizon generating Killing vector ξ = ∂t + Ω∂ϕ.

Let us now relate these bulk thermodynamic quantities to the boundary thermodynamic
quantities of the dual CFT.

2.2 Extended boundary thermodynamics

In the AdS/CFT correspondence the dual CFT lives on the conformal boundary of the
asymptotically AdS spacetime. According to [2, 3], the CFT metric is identified with
the boundary metric of the dual asymptotically AdS spacetime up to a Weyl rescaling,
gCFT = limρ→∞λ2(x)gAdS, where ρ is a radial coordinate and λ(x) is a Weyl scale factor.
Following [24, 45], we take the boundary metric to be that of the Einstein static Universe
(up to a constant Weyl factor ω), i.e. the standard product metric on R× Sd−2:

ds2 = ω2
(
−dt2 + L2dΩ2

d−2

)
. (2.10)

To see how this arises from an asymptotic limit of the Kerr-AdS metric, we perform the
following coordinate transformation [46]

φ = ϕ − a

L2 t , ρ cos Θ = r cos θ , ρ2 = 1
Ξ(r2Σ + a2 sin2θ) , (2.11)

where we focus for simplicity on d = 4 dimensions. This brings the m = 0 metric (2.1) to
the following form:

ds2 = −
(
1 + ρ2

L2

)
dt2 + dρ2

1 + ρ2

L2

+ ρ2(dΘ2 + sin2Θdφ2) . (2.12)

By taking the limit ρ → ∞ and multiplying with the Weyl factor λ = ωL/ρ, we arrive
at the CFT metric (2.10). Although the corresponding boundary metric is static, this is
misleading as the regularity of the Euclidean section of the Kerr-AdS black hole requires
the identification

(t, ρ, Θ, φ) ∼ (t + iβ, ρ, Θ, φ + iβΩ) , (2.13)

which gives rise to a rotating state on the boundary with linear velocity v ≡ ΩL. Obviously,
for

Ω > 1/L (2.14)

the Einstein Universe on the boundary rotates faster than the speed of light, and the
corresponding CFT seems ill defined.2 In the bulk, this corresponds to the classical su-
perradiant instability of the corresponding small black hole solutions, which have horizon

2It was shown in [47], that a weakly coupled CFT does not admit a well-defined partition function when
ΩL > 1. While a good indication that ‘something’ may go wrong for Ω > 1/L, our CFT is strongly coupled
and the previous argument does not necessarily apply.
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radius rh <
√

aL. As argued in [46], the endpoint of such an instability corresponds to a
‘hairy black hole’ with ΩL = 1.

The existence of the bound (2.14) therefore imposes a restriction on the validity of
the thermodynamic phase diagrams constructed below. One possibility is to disregard
the superradiant/faster than speed of light branches from the free energy diagrams com-
pletely (see black curves therein). As such states often minimize the free energy, doing so
would completely modify the thermodynamic behavior of the system and would imply novel
phase diagrams (often characterized by additional zeroth-order phase transitions). How-
ever, physically it makes much more sense to assume that the superradiant/faster than
speed of light branches will be replaced by the corresponding branches of stable ‘hairy’
black holes/novel phases of CFT that are in some sense thermodynamically “close to” the
original ΩL > 1 branches. For this reason in what follows we ‘preserve’ (apart from the
grand canonical ensemble) the ΩL > 1 branches in the free energy diagrams and construct
the corresponding phase diagrams as if these branches remained present. We expect that
this gives a qualitatively better picture than disregarding these branches completely.

The AdS formulae (2.4)–(2.7), together with the holographic dictionary (1.6) and (1.7),
provide information about the (extended) thermodynamics of the dual large-N , strongly
coupled CFT. In the next section, we will look at the implied thermodynamic phase be-
haviour of the CFT. For this purpose, it turns out to be convenient to introduce two
dimensionless parameters,

x ≡ rh

L
, z ≡ a

L
, (2.15)

with which we have

Σ = 1 − z2 cos2 θ, Ξ = 1 − z2, mL3−d = xd−5

2 (x2 + z2)
(
1 + x2

)
. (2.16)

In terms of x and z, the CFT thermodynamic quantities are given by

• entropy:

S = 4πCxd−4 x2 + z2

1 − z2 , (2.17)

• energy:

E = 1
R

4C
xd−5(x2 + z2)

(
1 + x2)

2(1 − z2)2

(
1 + (d − 4)(1 − z2)

2

)
, (2.18)

• angular momentum:

J = 4C
z

(1 − z2)2
xd−5

2 (x2 + z2)
(
1 + x2

)
, (2.19)

• temperature:
T = 1

2πR

[
x
(
1 + x2

)( 1
x2 + z2 + d − 3

2x2

)
− 1

x

]
, (2.20)

• angular velocity:

Ω̃ = z

R

x2 + 1
x2 + z2 , (2.21)
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• chemical potential:

µ = xd−5 (x2 − 1
) (

x2 + z2)
R (z2 − 1) . (2.22)

Note that the 1/R dependence in the formulas above is fixed by the scale invariance of the
CFT, and the proportionality with C in equations (2.17)–(2.19) is due to the large-C limit
of the CFT. In what follows we shall make use of these variables to analyze the different
phases in the various thermodynamic ensembles in the dual CFT.

3 Thermodynamic ensembles in the dual CFT

In this section we study the phase behaviour of different “(grand) canonical” thermody-
namic ensembles in the CFT, for thermal states that are dual to Kerr-AdS black holes.
There are in principle eight grand canonical ensembles in the CFT, since at fixed tempera-
ture there are three pairs of conjugate thermodynamic variables, namely (Ω̃, J), (p,V) and
(µ, C). In this paper we concentrate on the following three ensembles that feature interest-
ing phase behavior. We denote the associated free energies of the ensembles respectively
as F , W and G:

“canonical” (J,V, C) : F ≡ E − TS = Ω̃J + µC ,

“grand canonical” (Ω̃,V, C) : W ≡ E − TS − Ω̃J = µC ,

“novel” (J,V, µ) : G ≡ E − TS − µC = Ω̃J ,

(3.1)

where, to obtain the second equalities, we have used the Euler equation (1.9). In each case
we shall also study the associated heat capacity, which gives a measure of thermodynamic
stability of the system. We shall denote these as

Cχ ≡ T

(
∂S

∂T

)
χ

, χ ∈ {(J,V, C), (Ω̃,V, C), (J,V, µ)} . (3.2)

Explicit expressions for the heat capacity in the latter two ensembles can be found below,
while we omit the expression for Cχ in the first ensemble because it is too lengthy. The
characteristic features of Cχ for the three ensembles are displayed below.

Before moving on, we would like to point out one recent related study in the literature.
In [33], the authors studied the bulk thermodynamics of the rotating AdS black holes in
d = 4 in the slowly rotating limit while keeping δL = 0 (referred to as “restricted phase
space”). This is essentially equivalent to our fixed V ensembles (with ω = 1). However,
we are here interpreting the results from the point of view of the boundary CFT instead
of the bulk gravity theory, and without going to the slowly rotating limit. The interested
reader is thus invited to visit [33] to see how some of our results can be interpreted from
the bulk perspective.

In what follows, the values for the dimensionful quantities {F, W, G, T, Ω̃, µ} (including
in all figures) will always be understood to be given in units 1/ℓ, where ℓ is an arbitrary
constant length scale. Similarly, the values of V will be give in units of ℓd−2. Furthermore,
we note from the expressions (2.17)–(2.22) that the scale R, and hence V, does not affect the
qualitative thermodynamic behaviour of the system. Hence we set V = 1 in all illustrative
figures.

– 8 –
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3.1 Canonical ensemble: F (T, J, V, C)

The canonical (fixed T, J, P ) ensemble has been well studied in the framework of black hole
chemistry in the bulk [11, 48]. In those studies it was found that the smallest dimension
that displays interesting phase behaviour is d = 4, where a Van der Waals like phase
transition takes place between small and large rotating black holes. While the behaviour
in d = 5 is qualitatively similar to d = 4, black holes in dimensions d ≥ 6 can undergo
reentrant phase transitions, which are absent in the lower dimensions. In this section we
study the analogous ensemble in the CFT in d = 4 and d = 6, which is given by not only
fixing the angular momentum, but also holding fixed the volume and central charge.

The relevant free energy in the fixed (J,V, C) canonical ensemble is

F = Cxd−5

R (z2 − 1)2

(
x4
(
3z2 − 1

)
+ x2

(
z2 + 1

)2
− z4 + 3z2

)
. (3.3)

We note that z in the above should be viewed as a function of C and J (and x), which can
be obtained by inverting the expression (2.19) for J . While the actual solution is too long
to be included here, we note from (2.19) that z is a function of x and of the ratio

κ ≡ J/C . (3.4)

Together with the expressions (2.20) and (3.3) for T and F respectively, this implies that
T and F/C are functions of (x,V, κ). We shall see the implications of this below.

3.1.1 d = 4: swallowtail criticality

Let us begin by considering the F − T diagram in d = 4 dimensions (see figure 1). On the
left, the value of J is kept fixed at J = 1, and the different curves correspond to varying 1/C;
the roles of J and 1/C are swapped on the right. These diagrams are reminiscent of the
analogous diagrams for Van der Waals (VdW) fluids — the blue and yellow curves of these
figures resemble the shape of a swallowtail. However these exist only below some critical
value, κ < κ4,crit, where we derive the numerical value for κ4,crit below in equation (3.10).

Each swallowtail consists of three piecewise smooth branches. Since the entropy (2.17)
is an increasing function of x, we shall call the gently sloping branch starting from T = 0
the low entropy (LE) branch, as the value of x is the smallest on this branch. The steep,
negatively sloped branch extending to F → −∞ is called the high entropy (HE) branch as
x is largest on this branch. The intermediate branch joining these two has intermediate
x values, and is called the intermediate entropy (IE) branch. For any swallowtail curve,
starting at high T , the branch that minimizes the free energy and is thus thermodynamically
favoured, is initially given by the HE branch. However at the self-intersection temperature,
the F−minimizing branch changes to the LE branch. Standard thermodynamic arguments
imply that the system, which in our case is a thermal CFT, undergoes a first-order phase
transition at this temperature between the HE and LE phases. We note that these two
phases have positive heat capacity CJ,V,C and hence are thermodynamically stable, while
the IE branch has CJ,V,C < 0, as can be seen in figure 5. This phase transition becomes
second order at the critical point where the values of (J, C, T ) are such that J/C = κ4,crit

– 9 –
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Figure 1. F − T diagram of fixed (J,V, C) ensemble for d = 4, V = 1. The free energy against
temperature diagram is plotted here at J = 1 and various fixed C on the left, and C = 1 at various
fixed J on the right. Left: J = 1, C = 14 (blue), C = 11.5 (yellow), C ≈ 10.45 (green, critical).
Right: C = 1, J = 1/14 (blue), J = 2/23 (yellow), J ≈ 0.0957 (green, critical). The plot is
swallowtail-shaped below a critical J/C ratio (see main text). Note that each curve in the left
diagram is simply “stretched” along the F axis as compared to its counterpart on the right. The
black portions of the curves denote the solutions with ΩL > 1, where superradiant instabilities are
present in the bulk. The insets show zoom-ins of the yellow swallowtail.

and T = Tcrit. The F − T curve (green) displays a kink at this critical point. Above
the critical value for J/C the free energy curves will be smooth and single valued. This
behaviour is typical swallowtail criticality, which is also present for charged AdS black
holes [6].

A notable distinction from the standard first-order transitions seen for AdS black
holes is that the smaller black hole branch has superradiant instabilities. In other words,
as temperature decreases the first-order transition is from a large black hole to a small one
with ΩL > 1. This branch is presumably replaced with a branch of stable small black holes
with some kind of scalar hair [46, 49]. We shall not pursue this issue further.

The co-existence phase diagrams for these transitions are plotted in figure 2. Each
curve on these diagrams is a line of first-order phase transitions that terminates at a
critical point denoted by open circles. The HE phase lies to the right of the curves while
the LE phase lies to the left of the curves. The two phases become indistinguishable above
the critical points. Notice that the left and right diagrams in figure 2 are identical. This is
due to the above mentioned dependence of T and F/C on only the ratio J/C instead of on
J and C independently. As a result, varying 1/C at fixed J has the same “thermodynamic
effect” as varying J at fixed 1/C. In particular, looking at figure 1, we see that each curve
in the left diagram is only stretched along the F axis as compared to the corresponding
curve on the right, but the phase transition temperatures are identical. This explains the
identical diagrams in figure 2.
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Figure 2. Co-existence diagram in d = 4. Each of the curves displayed here is a line of first-order
phase transitions for different parameter values. Left: J = 1/2 (blue), J = 1 (yellow), J = 2
(green) for V = 1. Right: 1/C = 1/2 (blue), 1/C = 1 (yellow), 1/C = 2 (green) for V = 1. For
each of these parameter values, the line of first-order phase transition separates the low-entropy
(LE) phase, lying to the left of the curve, and the high-entropy (HE) phase, lying to the right. Each
line ends at a critical point, denoted by an open circle, where the phase transition becomes second
order.

We also note that the T -intercepts of the co-existence lines all occur at the same value
of T . This temperature is given by the Hawking-Page transition temperature THP at J = 0
which can be obtained by solving for x in (3.3) i.e., F (x, z = 0) = 0, for which one gets
the solution x = 1 (or rh = L). Substituting this and z = 0 into the expression for the
temperature T then gives the value

THP = 1
πR

. (3.5)

The thermodynamic behaviour in d = 5 is qualitatively similar to that in d = 4, displaying
in particular the same swallowtail criticality. We shall not consider this case further.

3.1.2 d = 6: reentrant phase transition

The F − T diagram for d = 6 is displayed in figure 3. For κ < κ6,crit, each curve consists
of four branches, allowing for more elaborate phase behaviour. In each case, one branch
corresponds to a high-entropy state with positive heat capacity, and there is a low-entropy
branch with negative heat capacity. The other two intermediate entropy branches have
either negative or positive heat capacity, as can be seen on the right diagram of figure 5.
Compared to the d = 4 case, the low-entropy branch with negative heat capacity is novel.

In the right diagram of figure 3, for sufficiently small J (the blue J = 1/30 curve)
there is a cusp in the free energy diagram accompanied by an inverted swallowtail at
higher temperatures, and so this case has only one phase. However for larger J the situation
changes: the J = 1/26 (yellow) case implies a reentrant phase transition, where the inverted
swallowtail now intersects the steep HE curve. Here the F -minimizing branch changes
from the HE branch at (slightly) higher T to the LE branch before jumping back to the
HE branch at some lower T . This last phase shall still be called the HE phase, though it
has lower entropy than the original HE segment. This second transition is accompanied by
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Figure 3. F − T diagram of fixed (J,V, C) ensemble for d = 6, V = 1. Left: J = 1, C = 30
(blue), C = 26 (yellow), C = 15 (green), C = 11 (red), C ≈ 9.03 (purple, critical). Right: same
values as left, with J ↔ 1/C. As in the d = 4 case, the left diagram is simply a stretch of the
right diagram along the F axis. The black portions of the curves denote the solutions with ΩL > 1,
where superradiant instabilities are present in the bulk. Note that for the yellow and green curves
there are HE to LE first-order transitions as the temperature decreases; however the LE branches
are (partly) superradiant.

a jump in the free energy value and is hence a zeroth-order phase transition (ZOT). The
line of ZOTs is depicted by the red line in the J − T phase diagram of figure 4. As in the
d = 4 case, the 1/C − T phase diagram is qualitatively similar to figure 4 and is omitted.

For larger J (or smaller C) the situation changes further. The J = 1/15 (green) case is
an almost-star-shaped curve. As in the d = 4 case, the steep negatively sloping branch has
the largest x values. At high T , this HE branch initially minimises F but as T decreases
there will be a first-order phase transition when this branch intersects the LE branch.
These two branches have positive heat capacities, whereas the other two branches have
negative heat capacities, as shown in figure 5.

For larger J we then have the familiar swallowtail corresponding to a first-order tran-
sition between the HE and LE states, up to the critical value (purple), with J = 0.11. This
behaviour is also visible in the phase diagram in figure 4, where we continue to see a line of
first-order phase transitions, ending at a critical point depicted by an open circle. However,
from the F −T diagram, we see that the curves now do not intersect the T = 0 axis unlike
the d = 4 case. This gives rise to an additional region in the phase diagram, lying to the left
of the black line, where no solution exists. The black line intersects the T−axis at T =

√
15

2πR .
This is the temperature at J = 0 below which there is no solution (NS). From the F − T

diagram, we can observe that this happens at the minimum of T (x), i.e. ∂T/∂x|z=0 = 0,
which occurs at x =

√
d − 3/

√
d − 1. The same qualitative phase behaviour was found in

d = 7 and we did not find any new behaviours for higher dimensions.
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Figure 4. Phase diagram in fixed (J,V, C) ensemble, for d = 6 and C = V = 1, showing a (blue)
line of first-order phase transitions between high-entropy (HE) and low-entropy (LE) phases. The
inset shows a close up around the (red) line of zeroth-order phase transitions between the LE and
HE phases. The system can in fact undergo a HE-LE-HE reentrant phase transition as we lower J

at a fixed temperature admitting zeroth-order phase transition. The region lying to the left of the
black lines is a region where no solutions (NS) are possible.

3.1.3 Critical points

We now derive the numerical values of the critical point. In any d, the critical point is
characterised by:

∂C

∂µ

∣∣∣
T,J,V

= 0 = ∂2C

∂µ2

∣∣∣
T,J,V

. (3.6)

To this end, we first solve (2.20) for z(T, R, x), and substitute this solution into (2.19)
and (2.22) to obtain C(J, x, z(T, R, x)) and µ(R, x, z(T, R, x)). This gives:

C =
Jx1−d

(
−dx2 − d + 4πRTx + x2 + 5

)2√−x2(dx2+d−4πRT x−x2−3)
dx2+d−4πRT x−3x2−5

4 (dx2 + d − 4πRTx − x2 − 3) , (3.7)

µ = 2
(
x2 − 1

)
xd−3

(d − 1)x2 + d − 4πRTx − 5 . (3.8)

From this we then solve numerically (3.6) for the critical point as the root of some poly-
nomial equation whose degree depends on d. In d = 4 the critical point, which is C- and
J-independent, is

TcritR ≈ 0.26987 , xcrit ≈ 0.45882 , (3.9)

corresponding to
κ4,crit ≈ 0.095732 . (3.10)

It is interesting to compare this to the result in [33], which found that κ4,crit ≈ 0.096424
in the slowly rotating limit.

In d = 6 the critical point is,

TcR ≈ 0.612275 , xc ≈ 0.679425 , (3.11)
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Figure 5. Heat Capacity CJ,V,C against x. The parameters used here are the same as those in
figures 1 and 3, respectively. Left: d = 4, J = 1 and C = 14 (blue), C = 11.5 (yellow), C ≈ 10.45
(green, critical). The first two curves obey κ < κ4,crit and consist of three piecewise continuous
segments, corresponding to the three branches of the F − T diagram: the LE, IE and HE phases.
The LE phase corresponds to the segment with smallest x, having CJ,V,C > 0; the IE phase has
intermediate x and CJ,V,C < 0; the HE phase has largest x and CJ,V,C > 0. Right: d = 6, J = 1,
C = 30 (blue), C = 15 (green), C ≈ 9.03 (purple, critical). Here each curve with κ < κ6,crit consists
of four piecewise continuous segments, in correspondence with the four branches in the F − T

diagram. Phase transitions take place between the two segments with CJ,V,C > 0, corresponding
to what was referred to as the LE (segment with relatively smaller x) and HE phases in the main
text. Black lines correspond to superradiant phases in the bulk.

corresponding to
κ6,crit ≈ 0.1107 . (3.12)

3.2 Grand canonical ensemble: W (T, Ω̃, V, C)

Next we study the fixed (Ω̃,V, C) ensemble, usually referred to as the “grand canonical
ensemble”. The free energy in this ensemble can be expressed as

W = Cxd−5 (x2 − 1
) (

x2 + z2)
R (z2 − 1) =

C
(
Ω̃R

(
z2 + 1

)
− 2z

)(√
z−Ω̃Rz2√
Ω̃R−z

)d−1

Rz(Ω̃Rz − 1)2 , (3.13)

where we have used

x =
√

z − Ω̃Rz2√
Ω̃R − z

(3.14)

to obtain the second equality. Note that the condition x > 0 restricts the physical parame-
ter values to 0 < z < Ω̃R, if 0 < Ω̃R ≤ 1, and to 0 < z < 1/(Ω̃R), if Ω̃R > 1. In particular,
as we shall see shortly, the point (Ω̃R, z) = (1, 1) corresponds to a ‘transition point’.
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Figure 6. W −T diagram of fixed (Ω̃,V, C) ensemble for V = 1 = C, d = 4 (left), and d = 6 (right).
The curves correspond to Ω̃R = 1/20 (blue), Ω̃R = 5/6 (yellow), Ω̃R = 1 (green) and Ω̃R = 3/2
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part has z > 1. The black lines correspond to superradiant black holes in the bulk.

Further, we can obtain the expression for the temperature in terms of the variables
(Ω̃, R, z) in the same way, which yields

T =
Ω̃R

(
d − 3 − 2Ω̃Rz − (d − 3)z2

)
+ 2z

4πR
√

z(Ω̃R − z)(1 − Ω̃Rz)
. (3.15)

This allows one to plot the W − T diagram parametrically. We refer the reader to ap-
pendix A for the discussion of bulk thermodynamics in the grand canonical ensemble, for
comparison.

3.2.1 (De)confinement phase transition

Let us first study the W − T diagram, which is plotted in figure 6 for d = 4 (left) and
d = 6 (right). For values of Ω̃R < 1, the free energy vs. temperature diagram suggests that
a first-order (Hawking-Page like) phase transition occurs at the point where the curve cuts
the T−axis at

z = 1 −
√

1 − R2Ω̃2

RΩ̃
, T = d − 3 +

√
1 − R2Ω̃2

2πR
. (3.16)

This gives a line of first-order phase transitions on the Ω̃−T co-existence diagram, plotted
in figure 7 for Ω̃R ≥ 0. For Ω̃ = 0 this agrees with the standard Hawking-Page phase
transition at temperature THP = d−2

2πR , but for nonzero angular velocity we have an entire
line of phase transitions. We labeled the phase at low temperature as the confined phase,
which is dual to thermal radiation in AdS, and the phase at higher temperature as the
deconfined phase, which is dual to a large black hole. The deconfined phase dominates the
ensemble if W < 0 solutions on any given W − T curve for Ω̃R < 1, while the confined
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phase dominates if the curve satisifes W > 0. The confined phase has W = 0, since we
defined W in the bulk as the free energy of the black hole system minus that of thermal
AdS.

Furthermore, for Ω̃R > 1 the free energy W is greater than zero and the curves no
longer intersect the T−axis. As a result, in this regime the W−minimizing phase is always
given by the confined phase (see also [47]). When Ω̃R = 1, the expressions for W and T

reduce to

Ω̃R = 1 : W = z(d−3)/2

R
, T = (d − 3)(z + 1)

4πR
√

z
. (3.17)

In particular, if z = 1 we have (T×, W×) := ((d − 3)/(2πR), 1/R). This point is indicated
by the cross (“x”) in figure 6. The range z > 1 is plotted in figure 6 using dashed lines to
indicate that this is an unphysical region with a > L, which corresponds to an overspinning
black hole. This range is not included in the co-existence diagram in figure 7.

The behaviour here for the CFT dual to the Kerr-AdS family is markedly different from
that dual to the analogous ensemble for the charged Reissner-Nordström AdS family. The
latter has been studied for example in [32], with fixed electric potential Φ̃, in place of the
fixed angular velocity Ω̃ here. Like in the rotating case, the free energy diagram displays
a HP-like cusp for low Φ̃ but becomes smooth for Φ̃ > Φc (see figure 16 in appendix A for
the bulk version of the free energy diagram). However, while the deconfined phase here
has W > 0 for Ω̃R ≥ 1, that of the charged case has W ≤ 0 for Φ̃ ≥ Φc. This explains
the difference between the co-existence diagrams in the rotating and charged case: in the
former, the phase that dominates the grand canonical ensemble for Ω̃R ≥ 1 is the confined
phase, while in the latter the phase that dominates for Φ̃ ≥ Φc is the deconfined phase.

3.2.2 Heat capacity and thermal stability

We now examine the stability of the different phases as indicated by their heat capacity,

CΩ̃,V,C = −
(√

z − Ω̃Rz2√
Ω̃R − z

)d 4πC
(
Ω̃R − z

)
z
(
Ω̃Rz − 1

)2 × (3.18)

×

(
−
(
(d − 4)z2)+ 2(d − 3)Ω̃Rz − d + 2

) (
(d − 3)Ω̃R

(
z2 − 1

)
+ 2Ω̃2R2z − 2z

)
(d − 3)Ω̃R (z4 + 6z2 + 1) − 2Ω̃2R2z ((d − 2)z2 + d − 4) − 2z ((d − 4)z2 + d − 2)

.

We plot the heat capacity CΩ̂,V,C against the temperature T in figure 8. From this we see
that for Ω̃R < 1 the lower branch of the W − T diagram has positive heat capacity and
is therefore thermodynamically stable, while the upper branch has negative heat capacity.
Moreover, the heat capacity is negative in d = 4 for Ω̃R ≥ 1, and in d = 6 it is negative for
Ω̃R = 1. Further, the heat capacity of the solution with Ω̃R ≥ 1 in d = 6 has an interesting
feature: the upper branch in the W − T diagram (black curve in figure 6) has negative
heat capacity, while the lower branch has negative heat capacity for large temperatures
but positive heat capacity for small temperatures. The positive heat capacity for small
temperatures is a novel feature in six dimensions compared to four dimensions.
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line no longer terminates at a critical point. Rather, an ‘unstable region’ (subject to superradiant
instabilities in the bulk) develops for Ω̃R ≥ 1.
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Figure 8. Heat capacity CΩ̃,V,C against temperature T for V = 1 = C, d = 4 (left), and d = 6
(right). The curves correspond to Ω̃R = 1/20 (blue), Ω̃R = 5/6 (yellow), Ω̃R = 1 (green) and
Ω̃R = 3/2 (red), the same values as in figure 6. For each Ω̃, the position of the vertical asymptote
(if one exists) happens at the value of T at which the W − T diagram experiences a cusp. For
Ω̃R < 1, the heat capacity has two branches: the positive branch corresponds to the lower branch
in figure 6, while the negative CΩ̃,V,C branch corresponds to the upper branch. For Ω̃R = 1,
CΩ̃,V,C < 0. For Ω̃R > 1, CΩ̃,V,C < 0 in d = 4, while it has two branches in d = 6 (see insets for
zoom-in around origin). The (red) branch with a minimum point corresponds to the lower (black)
branch in figure 6.

– 17 –



J
H
E
P
0
8
(
2
0
2
3
)
1
4
2

0.80 0.90 0.95 1.00 1.05 1.10 1.15
x

0.5

1.0

1.5

2.0

2.5

3.0

3.5

G

0.2 0.4 0.6 0.8 1.0 1.2
x

10

20

30

40

G

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
x0.0

0.5

1.0

1.5

2.0
z

Figure 9. Physical ranges of x. The parameters used for the plots here are d = 4, V = 1, J = 1,
µ = −1 (red), µ = −0.3 (purple), µ = −0.2 (brown), µ = 1 (blue), µ = 3/2 (yellow), µ = 3 (green).
The physical range of x is limited to those values for which z ≤ 1. From the bottom figure, observe
that for µ > 0, this corresponds to x < 1 while for µ < 0, this corresponds to x > 1. The physical
ranges are depicted using solid lines in the G − x plots, while the z > 1 regions are dashed. The
same applies to the other plots in this section. The black lines correspond to superradiant states.

3.3 Novel ensemble: G(T, J, V, µ)

Finally, we study the ensemble in which the chemical potential µ for the central charge is
kept fixed, while the central charge itself is allowed to vary. Although the physical meaning
of this ensemble is not entirely clear, fixing µ corresponds to fixing W/C, or in other words
fixing the thermal free energy per degree of freedom.

The free energy G and temperature T in the fixed (J,V, µ) ensemble can be expressed as

G = 2Cxd−5z2 (x2 + 1
)2

R (z2 − 1)2 = J
z

R

x2 + 1
x2 + z2 = J

R

√(
1 + 1 − x2

µRx5−d

)(
1 + x4 − x2

µRx5−d

)
, (3.19)
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and
T = 1

4πµR2

[
µR

(
(d − 1)x + d − 5

x

)
− 2xd−4

(
x2 − 1

)]
, (3.20)

by using the following expression for the rotation parameter z:

z =
√

x4 − x2 + µRx5−d

1 − x2 + µRx5−d
. (3.21)

The above expressions for G(x, J,V, µ) and T (x,V, µ) allow us to parameterically plot the
G − T diagram using x as the parameter. However, the physical range of x is limited to
values for which z(x) < 1, since from eqs. (2.15) z > 1 corresponds to an overspinning
black hole with a > L, while eq. (2.17) shows that S < 0 when z > 1. Using (3.21) we plot
z(x) in the bottom diagram of figure 9 for d = 4 as an illustration. From this and (3.21),
we see that the physical ranges of x are x < 1 for µ > 0 and x > 1 for µ < 0. Nonetheless,
we continue to plot the unphysical ranges in the following G − T figures, but denoting the
S < 0 region with dashed lines. As in the previous two ensembles, we shall study the G−T

behaviour in d = 4 and d = 6.

3.3.1 d = 4: zeroth-order phase transitions

The first feature of this ensemble is the different behaviour exhibited by the system when
µ < 0 and µ > 0. For example in d = 4, the G − T diagram shows a single “dome” (see
figure 10, top left) for µ < 0, while for small µ > 0, the dome is accompanied by a bigger
quarter-arc (e.g. blue curve in figure 10, top right). In both cases, the G − T graphs for
different µ all intersect at the dashed-solid boundary point, (Ti, Gi) = ((d−3)/(2πR), J/R),
corresponding to x = 1.

Hence, the system has only a single phase when µ < 0 but we can identify multiple
phases for µ > 0. As in the above ensembles, we label these phases according to their
relative x values. For µ = 1 (blue) in figure 10, x is smaller on the upper quarter-arc (cf.
figure 9, bottom), which we label the low-entropy (LE) phase, whereas the high-entrop
(HE) phase refers to the inner dome. As µ gets larger, the domes move closer together,
eventually joining at a cusp for sufficiently large µ. For larger µ the cusp moves upward
and leftward, as shown by the yellow curve.

The second feature to note in this ensemble is that all phase transitions are accom-
panied with a jump in G; in other words, they are zeroth-order phase transitions. As
usual, for any fixed µ if the G − T diagram is multi-branched (considering only the solid
z > 1 regions), the branch with the lowest free energy G is thermodynamically favoured. A
phase transition between different branches is implied whenever the G−minimizing branch
changes. The bottom diagram of figure 10 shows all the implied phase transitions on the
µ − T phase diagram. For example at µ = 1, corresponding to the blue curve at the top
right, there is no solution (NS) at high temperature. As T decreases, the LE solution is
admitted; the system crosses the NS/LE boundary on the µ − T diagram. As T decreases
further, the HE phase emerges with a lower value of G, giving rise to a LE/HE zeroth-order
phase transition. The HE phase terminates at the z = x = 1 boundary (the solid-dashed
boundary point of the G− T curve) and the system undergoes another zeroth-order phase
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Figure 10. Thermodynamic behaviour in fixed (J ,V, µ) ensemble for d = 4. The figures here are
plotted for V = 1, J = 1. Top left: G − T free energy diagram for µ < 0, µ = −1 (red), µ = −0.3
(purple), µ = −0.2 (brown). Top right: µ > 0, µ = 1 (blue), µ = 3/2 (yellow), µ = 3 (green); the
black portions of the curves denote the solutions with Ω̃R > 1, where superradiant instabilities are
present in the bulk. Bottom: co-existence phase diagram. Across each solid curve a zeroth-order
phase transition takes place between the indicated phases. The IE phase is further split into a
region with positive heat capacity CJ ,V,µ and a region with negative heat capacity (shaded).
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Figure 11. Heat capacities in fixed (J,V, µ) ensemble for d = 4. Left: µ < 0, µ = −1 (red),
µ = −0.3 (purple), µ = −0.2 (brown); Right: µ > 0, µ = 1 (blue), µ = 3/2 (yellow), µ = 3
(green).

transition to the intermediate entropy (IE) phase. The IE phase is further divided into
a stable region with positive heat capacity CJ ,V,µ, and an unstable region (shaded) with
negative heat capacity. The other phases in the µ − T plot are all stable (cf. figure 11).

The explicit expression for the heat capacity in d = 4 is

Cd=4
J ,V,µ =

πJ µR
√

x
(
4µRx3 +

(
x2 − 1

)3) (
x
(
3µRx − 2x2 + 2

)
− µR

)
(−µR − x3 + x)3/2 (−µRx + x2 − 1)3/2 (µR + 3µRx2 − 4x3)

, (3.22)

which we plot in figure 11.

3.3.2 d = 6: unstable small entropy phase

A similar analysis can be done for d = 6. The G−T and corresponding CJ,V,µ−T diagrams
for µ > 0 and µ < 0 are shown in figures 12 and 13, respectively, where

Cd=6
J ,V,µ =

πJ µRx2 (µR + 5µRx2 − 2x5 + 2x3) (4µR
(
2x2 − 1

)
+ 3x

(
x2 − 1

)3)
(−µR + x3 − x)3/2 (−µR − x5 + x3)3/2 (−µR + 5µRx2 − 8x5 + 4x3)

(3.23)

is the explicit expression for the heat capacity in d = 6. While these look more complicated
than in d = 4, the main information is contained in the µ − T phase diagram, figure 14.
Similar to figure 10, obtaining this figure is straightforward but tedious. We leave the
details to appendix B and comment here only on the main features. In this diagram, a
zeroth-order phase transition again takes place across each solid curve (except of course at
the NS boundary). In fact, the structure of this diagram is somewhat similar to the d = 4
case. However, unlike d = 4, for µ > 0 solutions now extend to large T thus replacing the
NS region in the upper right portion of the diagram in d = 4 by an LE phase in d = 6. This
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phase has negative heat capacity and so is unstable, as is evident from the lower diagrams
in figure 12. Another distinction between the two cases is that the NS boundary in d = 4
which lies on (part of) the T−axis is now given by two curves in the µ > 0 region, both
terminating at a finite value of µ.

Finally, we note from (3.20) that T does not depend on J , while G only depends on J

through an overall factor in all d (see eq. (3.19)). As a result, changing the value of J has
a trivial effect on the figures presented in this subsection: for the G − T figures, changing
J only stretches the curves along the G−axis while all zeroth-order phase transitions occur
at the original T values. Consequently the µ − T phase diagrams are independent of J ,
unlike in the fixed (J,V, C) ensemble.

4 Discussion

We have studied the thermodynamic phase transitions of thermal CFT states dual to Kerr-
AdS black holes. The inclusion of the conjugate thermodynamic pair (C, µ) (the central
charge and its associated chemical potential) increases the number of possible thermo-
dynamic ensembles to eight — we have uncovered interesting phase behavior in three of
them.

In previous studies, it was argued that the (inverse) central charge plays a similar
role to the thermodynamic pressure P ∝ 1/L2 in the bulk thermodynamics of AdS black
holes [11, 48, 50]. However as explained in [25, 27, 32] and in the introduction, this does
not lead to a satisfactory duality between the bulk and boundary thermodynamics. To
achieve this latter goal, one needs to either view Newton’s constant GN as a variable
whose variation is related to variations in the CFT central charge, or introduce a new scale
R for the radius of the CFT sphere. We find the latter scenario much more plausible. In
addition, a reshuffling and rescaling of thermodynamic variables is needed to arrive at the
holographic dictionary (1.7) which gives a clean duality between bulk and boundary first
laws and Smarr relations.

In this new setting, we find that all the interesting phase behaviours in [6, 11, 48, 50]
are preserved by the CFT — this is unsurprising, since we are simply replacing P ∝ 1/L2 by
the new thermodynamic variable C ∝ Ld−2. In particular, there continues to be swallowtail
criticality in the fixed (J,V, C) ensemble for d = 4, as well as reentrant phase transitions
for d = 6. However, we also note some new features. The 1/C − T coexistence curve
is negatively sloped and cuts the T−axis in d = 4 at the Hawking-Page temperature
THP = 1/πR. Furthermore, the critical temperature is independent of C and J , unlike
in [11, 48, 50], where the critical temperature was found to be ∝ 1/

√
J . This difference can

also be easily understood as follows: our CFT temperature has been rescaled as compared
to the bulk Hawking temperature TH in eq. (1.7), specifically, we have T ∝ TH/

√
P . At

the critical point, the old bulk pressure behaves as Pcrit ∝ 1/J , thus cancelling the 1/
√

J

dependence of the critical temperature.
We emphasise that the role of the central charge C here is unconventional insofar

as studies of phase transitions of a given system generally relate to the near equilibrium
dynamics of a fixed theory; changing the central charge C relates instead to variations
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Figure 12. G− T diagrams and heat capacities for µ > 0 in d = 6. These are plotted for different
illustrative µ values. Specifically, the parameters used here are V = J = 1, and for the G − T

digrams on the first two rows, starting from the top left, we plotted µ = 0.01, 0.2, 0.5, 2, 5, 9 . The
black portions of the curves denote the solutions with Ω̃R > 1. The same parameters are used for
the analogous heat capacity plots in the last two rows.
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Figure 13. G − T diagram and heat capacities for fixed (J,V, µ) ensemble with µ < 0 in d = 6.
The parameters used here are V = J = 1, µ = −1 (blue), µ = −0.5 (yellow), µ = −0.2 (purple).
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Figure 14. µ − T phase diagram in d = 6, which follows from analysing the G − T free energy
diagrams in figure 12 and 13. Across each curve a zeroth-order phase transition (finite jump in G)
takes place between the labeled phases. There are also regions (NS) where no solution exists at
the given (µ, T,V = 1). The left IE phase is further split into a region with positive heat capacity
CJ ,V,µ and a region with negative heat capacity (shaded).
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within an ensemble of theories.3 We note that this is not without precedent. For example
in [53], the authors considered a family of two-dimensional CFTs by taking symmetric
products and studied the grand canonical ensemble by introducing a chemical potential
conjugate to the number of copies of CFTs (the central charge of the symmetric product
CFTs is proportional to this number). In the current context, the observed swallowtail
criticality is interesting in its own right — it implies that within the current ensemble of
rotating CFT theories, only those with a sufficiently large C can undergo a first-order Van
de Waals’ like phase transition.

Next, in the fixed (Ω̃,V, C) ensemble we find a (de)confinement phase transition for
Ω̃R < 1. This is dual to the black hole/radiation Hawking-Page like phase transition of
the Kerr-AdS black hole. Furthermore, in the peculiar fixed (J,V, µ) ensemble, we observe
several novel zeroth-order phase transitions between the various CFT phases (see figures 10
and 14). Moreover, at certain parameter ranges, the phase diagram suggests a transition
from a phase with positive heat capacity to one with negative heat capacity. A similar
transition was also observed in CFTs dual to charged AdS black holes in the fixed chemical
potential ensemble [32]. We caution that while these are interesting new features, the
physical viability of zeroth-order phase transitions in nature is unknown. In addition, a
physical interpretation of the fixed µ ensembles is elusive — it is unclear how one can
prepare a system with fixed µ while allowing the central charge to vary.

We have also noted the presence in all ensembles of classical superradiant instabilities
in the bulk, previously observed in [50]. It is an interesting question as to what this
classical instability means for the CFT or even the bulk black hole as a thermodynamic
system. Classically, a small perturbation to a superradiant black hole will lead to a decay
to another non-superradiant black hole with slower rotation; hence one might imagine that
a phase transition to a superradiant black hole is unphysical — the end state will instead be
replaced by the resultant non-superradiant black hole. Note however that the superradiant
instabilities were studied in the classical setting (they follow from the instability of the field
equations for the class of superradiant Kerr-AdS black holes). It is an interesting question
as to whether these can be related to what happens in the thermodynamic ensemble (where
for example in the canonical ensemble J is fixed by definition).

We also note that whereas superradiant instabilities are classical, thermodynamic phase
transitions are semi-classical. Superradiant instabilities generally set in at much shorter
timescales than thermodynamic ones. However it may be that in some circumstances the
superradiant phase could be quasi-stable. We have thus included all possible phases (su-
perradiant and non-superradiant). We leave the question of understanding the implications
of superradiant phases for (holographic) black hole thermodynamics for future study.

Note added. We note that close to the completion of this project a paper [36] appeared,
which has an overlap with our current manuscript. They studied the first two ensembles,
but did not consider the novel ensemble in section 3.3.

3In the bulk, there are theories in which the cosmological constant Λ can be treated as a dynamical
variable [51, 52] but an analogous method that makes C dynamical has, to our knowledge, not been
formulated.
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A Grand canonical ensemble in the bulk

The grand canonical ensemble for the bulk rotating black hole system is similar to that of
the boundary CFT. We summarise the main features of the bulk grand canonical ensemble
in this appendix.

The bulk thermodynamic variables for the Kerr-AdS black hole can be found in the
main text. We restate them here for convenience:

M = Ωd−2
4πGN

m

Ξ2

(
1 + (d − 4)Ξ

2

)
, S = Ωd−2

4G

rd−4
h (a2 + r2

h)
Ξ , (A.1)

TH = 1
2π

[
rh

(
1 + r2

h

L2

)(
1

a2 + r2
h

+ d − 3
2r2

h

)
− 1

rh

]
, (A.2)

Ω = a

L2
r2

h + L2

r2
h + a2 , J = Ωd−2

4πGN

ma

Ξ2 , P = (d − 1)(d − 2)
16πGN L2 . (A.3)

The associated free energy in the grand canonical ensemble is: Wbulk = M −THS−ΩJ . As
in the main text, we study the phase behaviour of the system by looking at the free energy
against temperature diagram, plotted in figure 15 for d = 4. As in the CFT case, there is
a threshold value, ΩL = 1 (cf. Ω̃R = 1 for the CFT), at which the diagram experiences a
qualitative change: for ΩL < 1 the Wbulk − TH curve displays a Hawking-Page like cusp,
while for ΩL > 1 the Wbulk − TH curve is smooth and positive. For ΩL = 1, the curve
is also smooth and positive, but terminates at finite temperature, where a = L, beyond
which the solution becomes unphysical with a > L (dashed in figure).

As in the CFT case, the behaviour of the rotating black hole in the grand canonical
ensemble is somewhat different from that of the charged black hole, illustrated in figure 16
(see also e.g. [6]). In particular, the free energy of the charged system also transitions from
a cusp to a smooth curve at some (electric) potential Φ = Φc =

√
3/2, like in the rotating

case. However, unlike the rotating case, the free energy curve with Φ ≥ Φc is negative and
the “large black hole” phase always dominates over the radiation phase for these values of
the potential in the grand canonical ensemble.
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(green) and ΩL = 3
2 (red). The physical part of the ΩL = 1 curve terminates at the point “x”, with

a = L. Right: co-existence phase diagram for Ω vs. TH .
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Figure 16. Bulk grand canonical ensemble (at fixed electric potential Φ) of Reissner-Nordström
AdS black holes. Left: free energy against temperature diagram for Φ = 1/2Φc (blue), Φ = 9/10Φc

(yellow), Φ = Φc =
√

3/2 (green) and Φ = 6/5Φc (red). Right: co-existence phase diagram for Φ
vs. TQ.
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B Phase diagram of fixed (J, V, µ) ensemble

In this appendix, we include more details on the µ−T phase diagrams in figures 10 and 14.
As explained in the main text, the phase behaviour of the system is implied by the G − T

plots. By studying these in detail, the various zeroth-order phase transition curves on the
d = 4 phase diagram (figure 10) can be obtained as follows.

1. µ > 0, NS-LE (green): the smallest real root of G = 0 (i.e., x3 − x + Rµ = 0), where
the free energy G is given by (3.19), is

x = 2√
3

cos
(4π

3 + 1
3 cos−1

(
−3

2
√

3µR

))
.

The T (µ) equation of this zeroth-order phase transition curve can then be obtained
directly by substituting this into (3.20).

2. µ > 0, LE-HE and µ < 0, NS-HE (yellow): the second real root of G = 0 is

x =
3√2
(√

81µ2R2 − 12 − 9µR
)2/3

+ 2 3√3

62/3 3
√√

81µ2R2 − 12 − 9µR
,

3. µ > 0, NS-HE (orange): the solution to ∂G/∂x|µ,R = 0 is given by

x = 1
4

µR

 µR

3
√

µ3R3 + 4
√

µ2R2 (µ2R2 + 4) + 8µR
+ 1


+ 3

√
µ3R3 + 4

√
µ2R2 (µ2R2 + 4) + 8µR

 .

4. The intersection of the above three lines takes place at

µ = 2
3
√

3R
, x = 1√

3
.

5. µ > 0 HE-IE and µ < 0 HE-NS (blue): z = 1 point, given by x = 1 at which T = 1
2πR .

6. The intersection of the curve in item (3) above with that in item (5) occurs at

x = 1 , µ = 1
R

.

The d = 6 phase diagram (figure 14) can be analysed in an analogous way, but in this case
the solutions are mostly roots of polynomials of order ≥ 5 for which no analytic expressions
exist. Qualitatively:

1. µ > 0, LE-IE (yellow), µ > 0, IE-HE and µ < 0, NS-HE (orange): these are different
solutions to the equation G(x) = 0 at given (µ, R).
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2. µ > 0, IE-NS (blue) and µ > 0, LE-HE (green): these are different solutions to
∂G/∂x|µ,R = 0.

3. The intersection of the LE-IE and IE-HE transition lines happens at

x =
√

3
5 , µ = 6

25R

√
3
5 ,

4. The (purple) vertical line with z = 1 occurs at x = 1, giving T = 3
2πR .

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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