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The quadratic gravity constraints are reformulated in terms of the Newman-Penrose-like quantities. In
such a frame language, the field equations represent a linear algebraic system for the traceless Ricci tensor
components. In principle, a procedure for the combination of the Ricci components with standard
geometric identities can be applied in a similar way as in the case of general relativity. These results could
serve in various subsequent analyses and physical interpretations of admitted solutions to quadratic gravity.
Here, we demonstrate the utility of such an approach by proving general propositions restricting the
spacetime geometry under assumptions on a specific algebraic type of curvature tensors.
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I. INTRODUCTION

In 1915, Albert Einstein finished his theory of general
relativity (GR) [1], which provided a geometric description
of gravity in terms of curved four-dimensional spacetime.
Einstein’s theory brought dozens of surprising implications
during more than a century of its analyses and astrophysical
applications. However, simultaneously with its formulation,
there appeared concerns about the possibility of solving its
highly-complicated nonlinear field equations. These doubts
were allayed almost immediately by Karl Schwarzschild
and his famous spherically symmetric solution [2].
Unfortunately, the Schwarzschild spacetime also uncovered
difficulties related to physical interpretation and insecurity
of employing a particular coordinate choice. In the follow-
ing decades, the construction of coordinate-independent
quantities, revealing the true nature of a given gravitational
field, become crucial. The conceptually important step
within the coordinate-independent analysis was to express
studied quantities in terms of their frame components. The
privileged role within the frame approaches to Einstein’s
theory plays the Newman-Penrose (NP) formalism [3]
employing a null vector basis, see Sec. I B for its summary.
The spacetime description in terms of the frame projections
allows one to invariantly define the ansatz geometry, e.g.,
admitting specific null congruences or special algebraic
structure of related tensors, and then try to find and discuss
its explicit form restricted by the field equations and
geometric identities. Importantly, this formalism naturally
reflects distinct parts of a gravitational field and its peeling
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properties. The generalization of NP formalism becomes
important also in studies of higher-dimensional GR [4-7].

Even though GR has beyond doubt proved its ability to
describe various strong-field gravitational situations and
processes, there remain important theoretical issues unclari-
fied. One can think, e.g., about its combination with
quantum field theory or the nature of singularities that
necessarily occurs in its solutions. Attempts to solve these
open problems typically consider additional fields or
various modifications of GR extending the FEinstein-
Hilbert action, see e.g., reviews [8—12]. Alternatively and
more pragmatically, one can study modified gravities to
analyze the unique position of GR in the space of general
metric theories of gravity. From this perspective, the
simplest extension of GR corresponds to the quadratic
gravity (QG) [13-16] including all possible curvature
squares into the Einstein-Hilbert action (see also Sec. [ A).
Such a class of theories may directly solve some of the open
problems (however, simultaneously it introduces new ones),
or it may be understood as a higher-order correction to GR
induced by some unknown final theory.

To better understand QG and its implications on a
geometric level, the exact solution analysis becomes impor-
tant, see, e.g., QG counterparts to the classic Schwarzschild
black hole [17-20] or algebraically special geometries [21].
It is extremely interesting to compare solutions to QG with
those to GR. However, to do so one has to invariantly define
the same geometric ansatz, and therefore, the extension of
the Newman-Penrose formalism for the case of quadratic
gravity seems to be very natural starting point. This is thus
the main aim of our contribution.

The paper is organized as follows. In Introduction we
summarize concepts of QG and NP formalism. In Sec. II,
the NP form of the QG field equations is derived which

© 2023 American Physical Society
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represents our main result. Two simple examples of its use
are subsequently discussed (see Sec. III). Finally, in
Appendix A the geometric NP identities are summarized,
in Appendixes B and C we compare various conventions
related to the NP formalism, and in Appendix D, the QG
field equations are listed in the fully explicit form.

A. Quadratic gravity

The vacuum quadratic gravity can be introduced via its
action as

1
S= / |:R (R - ZA) - acabcdcade + sz vV _gd4x’ (1)

where R is the Ricci scalar, Cy,.4 is the Weyl tensor, K, a,
and b are coupling constants of the theory, and A stands for
the cosmological term, see, e.g., [13—16]. Due to the Gauss-
Bonnet theorem, this represents the most general class of
four-dimensional quadratic theories. Subsequently, the
least action principle 65 = 0 leads to the fourth-order field
equations in the form

1 1
K (Rab - ERgab + Agab) —4aB,,

1
+ 2b (Rah - ZRguh + gahD - vavb> R = 0’ (2)
where B, is the Bach tensor defined as

1
B, = (vcvd + ERCd) Cacha (3)

which is symmetric, traceless, divergence-free, and con-
formally rescaled, i.e.,

Bab = Bbav Babgab =0, Bab;cgbc =0,
Gab = ngab = Bab = Q_zBab’ (4)

The field equations trace yields immediately the condition
for the scalar curvature, namely

R = 6bKLIR + 4A. (5)

To employ the Newman-Penrose-like approach to the
discussion of admissible gravitational fields in quadratic
gravity we separate the Ricci tensor contribution in (2).
Substituting the Bach tensor (3) and grouping all terms with
the Ricci tensor we thus get

1
<R + 25R> R, —2aR“C oy + Zap = 0, (6)

where Z,, is a shorthand for

1/1 .
Zab = _R <§ R.gab - Agab> - 4avcvdcacbd

—-2b (i Rgah - gahD + vavb> R. (7)

B. The Newman-Penrose quantities

To set up the notation and fix the conventions, we
summarize essential definitions of the Newman-Penrose
formalism.' Subsequently, the geometric constraints includ-
ing the commutation relations, the Ricci and Bianchi
identities are listed in Appendix A. Let us introduce the
null orthonormal frame {k,I, m,m}, where k, I are real null
vectors and m, m are complex null vectors, respectively.
They are normalized as

k-1=-1, m-m=1, (8)
with other combinations being vanishing. The metric thus
becomes

Gab = —Zk(alb) + Zm(aﬁ’lb). (9)

Freedom in a choice of the frame is given by the Lorentz
transformations, namely:
(i) boost in the plane of null vectors k and [ with a
positive parameter A:
k¢ — Ak, 14— A7, m®+— m?, (10)
(i1) rotation in the transverse space of vectors m and m
encoded in a real parameter ©:
k¢ > k@ 1 [ i®

m® — e©m?, (11)

(iii) null rotation with k fixed given by a complex

parameter B:
k* — k9, m“ +— m® + Bk,
[+ 1* + Bm® + Bin® + |B|*k*, (12)
(iv) null rotation with [ fixed given by a complex
parameter E:
1“1, m‘ +— m* + El*,
k% > k¢ + Em + Em® + |E|*1°. (13)

"Here we follow the notation of classic book [22] while its
relation to other common sources [23,24] is summarized in
Appendix B.
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We will say that a quantity ¢ has a boost weight (b.w.) b if it transforms under the boost (10) as
g~ Abg.
The covariant derivative components in the frame vector directions are denoted by
D = kV,, A =1V, 6=m"V,, 6 = mV,.

To characterize the above derivatives action on the frame vectors we define the spin coefficients as

Kk = —kgpymik?, v=1l,,m, €= % (Mg Mk — kg 1K),
p=—kggmtilt, = Lt = (g — ko),
6 = —kg,ym*mb, A=l ymem?, y = %(la;bk“lb — Mgpym?1b),

T = —kg,m®I®, 7= l,,mik?, a= %(la;hk“rhb — Mgpm®in®).

The Weyl tensor null tetrad independent components are

\PO = Cabcdk“mbkcmd,
lIll = Cabcdkalbkcmd,
1
lI”z = Cahcdkambﬁ’lcld = ECabcdk“l”(k"ld - m"ﬁid),
lP3 - Cabcdlakblcﬁld,

lP4 - Cabcdlaﬁ”lblcﬁ’ld,

and the projections of the Ricci tensor (or equivalently its traceless part S,, = R, — %Rgah) can be introduced as

1
(I)OO = ERuhkakh’

1 1
(I)Ol = ERabkamb’ (I)lO = zRabkaﬁ’lb,
1 ajb agb 1 a,,b 1 2107 b
(I)ll = ZRab(k l + m°m ), @02 = zRabm m-, (Dzo = ERabm m-,
1 1
Dy = ERuhlambs 0y = ERablambv

1
@,y = —R,, 10",
22 2 ab
with the trace R = 2R,;,(m*m” — k“I”) which implies

1 1
Rabkalh = _ZR+2(D”’ Rabm“mh :ZR+2(I)”
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II. QUADRATIC GRAVITY CONSTRAINTS

The quadratic gravity field equations (6), expressed in terms of the null frame {k,l,m,m}, take the form

- - _ 1
0 = —4a[®y)¥) + Dy, Py — 2@0'¥; — 20, 'P| + Do (P, + ¥,)] + 2 <R + 2[’R) Do + Z(0)(0),

0 = —4a[@y V) + @ ¥, — 20 (¥, + ¥,) + Py ¥ + ©¥5] + < + 25R) 20, — ) Zo)(1)»

—

0 = —4a[®) W) — 20, V) + P, ¥| + P (¥ — 2¥;) + Do P3] + 2
0 = —4a[@y (¥, + ¥5) — 20,¥5 — 20,5 + Do ¥y + DygPy] 42

+ 2bR

0 = —4(1[@22‘111 @12(2\112 le) + q)oz‘Pg - 2q)11lp3 + (I)IO\P4 + 2 + ZBR

-+ 2bR

1
< + 2BR> @y, + Z())
(k- 2er)

1
0 = —4a[@¥) — 20 ¥| + Py (¥ + P2) — 2P0, W3 + PgoPy] + 2 <R >

_ - - 1 R
0= —4a[®y ¥ + ©p'¥) =20, (¥, +¥5) + Pp W3 + @yo'¥3] + (R + 25R) (2‘1)11 + Z) +Z2)3)s

(24)

(25)

(26)

where components of the Weyl and Ricci tensors are defined by (17) and (18), respectively. The symbols Z .4 =

Zabe(g)e(z) stand for the frame components of Z,, given by (7), e.g., Z(p)0) = Z.»kk? and Zine) = Z.p1%m? etc. In

principle, the above system of equations can be understood as algebraic constraints on the traceless Ricci tensor components

which have to be further combined with the geometric conditions” listed in Appendix A.
Finally, to be fully explicit we express all relevant projections of the Z,, tensor, i.e.,

Z(O)(O) = —4(IBZ

{)(0) + 2b[(e + €)DR — DDR — &6R — KkOR],

1
Z(O)(l) = —4(IBZ)<1) + =

1
% 2k(R—2A)+ZBL—lR2—(y+7—/¢—ﬁ)DR—(p+p)AR+ADR

+(a—ﬁ+%)5R—63R+(&—ﬁ—i—r)SR—EéR},

Z(0)(2) = —4aBf 5 + 2b[ZDR — D6R — kAR + (¢ — €)0R],

Z(y) = —4aBf ) +2b[=(y + 7)AR — AAR + v6R + USR],

Z(l)(2) = —4(IBZ

) T 2B[ZDR — TAR = ASR + (y — 7)0R],

Z(3)(2) = —4aB 5, + 2b[ADR — 6AR — (& — B)6R — 56R),

1 1 ) i
Zo)) = —4aBf 5 — K (R—2A)+2b [— ZR2 +(y +7—i)DR —DAR + (p — e —€)AR — ADR

—(a—B—n’—i—%)éR—i—(iz—T)SR—I—%R},

(27)

(28)
(29)
(30)

(31)

(32)

(33)

*In fact, the same approach is applied in the context of vacuum Einstein’s general relativity, where the Ricci tensor components are
also directly restricted by the field equations. However, in such a case (a = 0 = b) the constraints are very simple with all components

(18) vanishing and R = 4A.

024036-4



NEWMAN-PENROSE FORMALISM IN QUADRATIC GRAVITY PHYS. REV. D 107, 024036 (2023)

where B(ZC)( Q= bee(‘i)e(bd) represents the Ricci-independent part of the Bach tensor (3) corresponding to the second
covariant derivative of the Weyl tensor, namely

Z - chdcacbd. (34)
The frame components become

BZ

f)0) = 50y — D&Y, — 6DW, + DDW, + AD¥, + 5A%, + (27 — Ta — B)8¥,

+ (Sa + p - 37)D¥, — RAY, — 66%¥, + (3¢ + €+ 1p)0¥, — (€ + & + 6p)D¥, + RO, — 5k6F, + 4kDW;

+Wolkv +4a(Ba+f) — (e + &+ 3p)A+ a(x — Ta— ) + &(u — 4y) + DA — 46a + 67]

+2¥2kA + k(y — u) + p(57 = 9a = 2B) + &5(f + 27) + €(2n — 4a — ) + &(x — @) + Da — Dz + S¢ + 25p]

+ 3%, [k(3a + = 3x) — ikt + p(e + &+ 3p) — 65 — Dp — 5k] + 2W¥5[k(e — & — 5p) + ko + D] + 2¥4«? + c.c.,
(35)

— 5AW, — DAY, — 55%, + DS — AW, — 18W, + 2uDW, + (27— a + B)AY, + 8¥,
+(u—p—2y)0%, + (i —3u)D¥, + (2p — e — €) AW, + (a — f — 27)6Y, + (7 + 37)0%P,
+ (28— 7 —27)DW; — kAW; + (e + & —2p)6¥; — 200W; + oDWy + kW, + P [A(4y —u+ i) +v(a—f —2x) — bV
+2¥ [y(a—p—=27) —A(B+ 7 +27) + u(f— a+2x) + ji(a—x) +v(e+&—2p) + Dv— 8y + 5]
+ 3%, kv +pu(2p — € — &) — fip + 27 + Ao + (2 — a+ ) — Du + 87] + 2W5 [k (i — 21 — 7)
+e(f—1-7)+E(B—1)+p(7—2B+27)+0(a—p—2n) + D —Dr— 0]
+¥,k(4f—7—1)+0(e+&—2p)+ Do +c.c., (36)

Z
Bioya

= 5AY, — DAY, — 8%, + D6¥, + DY, + (7 — 3a + f) AW, + (u — i — 47)6%,
+ (2y = 2u+ @)D¥, + (e — € + 3p)AY, + (3a —p — )%, + (28 + 7 + 47)6¥,
— (7 + 37)D¥, — 2kAY, — (¢ — & + 3p)6¥, — 366¥, + 26DW; + 2k56¥;
+Wo[(4y —u)(Ba = —r) + ji(da — ) + v(€ — € — 3p) — Azt + Dv — 45y + oy
+2¥ 2kv+ (u—y)(e—€+3p) —i(2p +€) + (B + 27)(m = 3a + p) + #(n — )
+ Dy — Du + 6f + 267] + 3%, [k(ii — 2u) + 7p + 6(3a — f — n) + 7(e — € + 3p) — Dz — 0]
+ 2¥;[k(2 — 7 — 27) + 6(¢ — € — 3p) + Do] 4 2¥,4k0 + 6%, — 5DV, — D&P, + DDW;
— 2169, + 3ADY, + 6A¥, + (47 —3a — B)6P, + (a + f — 57)D¥, — kAP, + (e — & + 5p)0F, — 66P,
+ (32 — € — 4p)DW5 — 3k6W; + k65 + 2kDY, + Wo[A(5@ + B — 37) — vo — 1)
+ 2%, [k0 + a(a + ) + 727 — 3@ — ) — A(4p +¢€) + o(ii — 7) + DA — da + 57]
+ 3W,[2k A —«fi + 7(e — &) + p(47 — a — ) + 67 — D7 + 8p| + 2W;[x(B — 7)
+&k(p—47) — 06+ (p—€)(e — &+ 2p) + D& — Dp — 6k| + P, [k(5¢ — € — 3p) + x& + D], (37)

Z
02
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Bl = AAY| — A8, — 6AY, + 663 — 20AW + (4u — 3y +7) AW, +306¥, — 08, +ID¥, + (St —a - f)AY,
+(y =7 —=51)0¥, + 16, — AD¥; — 36AW; + (& + 38 — 47)6%5 + 2609, + Wo[v(Sy — 7 — 3u) + v — Au]
+2¥ [W(a—47) + (e —n) = A+ (y =) (y =7 = 2u) = Ay + Ap + 60] + 3, [u(41 —a - p)
+ A —0p + 2w + (7 — ) + Ar — 8] + 2W5[kD — o(7 + 4u) + (2t —a = 3B) + f(a+ )
+A(p —€) — Ac + 8B — 61] + Wy [—KkA + (@ + 56 — 37) + 66| — ADW; + ASY, + 6DV, — 565
—2AAY, — 208, + 20DY, + (37 + 1) AV, + (¥ — v + 311)6P, + 346, + (y — 7 — 3i) DY,
+(2p—p—28)AY; + (a =34 +7)0¥; — 2a + 47+ 1)0¥; + 3 —a—T)DW, — kAW, + (46 +p —p)oP,
+ 2o AT 2, [Ay —7 = 30) +D(2a— 27 — 1) — A + 3P, (A3 -7 —a) + 73—y +7) +D(p —2p)
+ar+ AT+ 6]+ 2¥32k v+ (& —p)(y —7 = 3f) —p(7 +20) + ©(7 = ) + (@ +27) (@ = 3 + T)
—Ae+Ap—S5a—267] + V4k(y —7 —30) +p(4p—7) + p(a =3B +7) +4E(3F —T— a) — 67— Ak +45€ -5 ),
(38)
BY) ) = AAY, — ASY| — AW, + 66, + (2u =Ty +7) A +v8%, — 05'Yy + IDY, + (T — a + 36)AY¥,
+ (57 =7 = 3u)8¥, + 16¥, — ADY, — 56AY, + (& — f — 67)6%¥, + 466¥5 + WYol[u(u — Ty +7)
+uv(a—pB=37) +0(da—n)+4y(3y —7) — A — 4Ay + Au + v] + 2%, [2ve — D(e + 2p)
+ A=)+ F=27)(B+2t)+ (u—7)(5t —a+2B) + AB + 2A7 + Sy — S + 3V, kD + Ap
+ 063y —7—3u) + (3t — @ + B) — Ac — 57] + 2W¥5[—kA + o(@ + f — 57) + Jo] + 2¥,6°
+ DDV, — D¥; — 6D¥; + 66\, — 416%, + 5IDY, + 6AY, + (a — B + 67)09,
+ (B =3a —77)DW¥; — kAY; + (€ — 5¢ + 3p)0W; — 66¥; + (7€ — € — 2p)DP, — k6P, + k0P,
+2Wo 22 + 29 [A(a + B — 57) — Do — 84 + 3P, [kD + A(3€ — € — 3p) + jic + 7(a — B + 37) + DA + 57
+2W;2k A -k (2 +7) + (7 = B) + (p — &) (2@ — p + 57) + (e — 2€)(27 + &) — D& — 2D7 — 5¢ + 5p]
+W,[x(4B —7) + k(B —a —37) + (p — 4€)(e — 32 + p) — 66 + 4De — Dp — 5«], (39)
Bf) 1) = AAY, — ASY; — 5AY; + 6%, — VAW, + (y +7 + 6u) A, + Su6, — voY,
+ ID¥; + (31— a — 58)AW; — (37 +7 + Tu)o¥; + A6 V5 — DY, — cAY,
+(a+ 7P —27)6¥, + 2Wor? + 2%, [v(y — 7 — 5u) + A0 — Av] + 3%, [u(y +7 + 3p)
+v(@+38—-37) =M —x+ Au+ 8] +2¥;[0(e — p) + A(a+27) +y(27 — a — 4p)
+7(t = B) +u(5t = 2a = 9B) + 2ve — AR + At — Sy — 25u] + W4[k0 + A(p — 4e)
—o(y+7+3u) +4p(Bp+a) + t(zr —a—7p) — Ao + 48 — 51] + c.c., (40)

where c.c. denotes the complex conjugation. Backwards, the Bach tensor can be constructed as

B o)) = B(Zo)<o) + Dy Wy + PPy — 2010 ¥; — 20, P + Do (W, + P5). (41)

o)
=
=
=
=
=

I

B<Zo)(1) + @y V) + P, =20, (P, + P,) + O ;5 + Dy, (42)

B(Zo)(z) + @y Wy — 20, ¥ + D (¥, — 2¥,) + PPy + D'V, (43)

o)
=
=
=
S

I

B(Zl)(2) + DY) — P (2Y; — 1) + P W3 — 20, Y3 + DYy, (44)

o~
=
=
=
C
I

Bl ) + Pn¥o — 20, + @pp (¥ + W,) — 20y 5 + Ppo'Ps. (45)

o
=
B
=
S

I

B<Zl)<1) + @ (Vs + W3) = 201,¥; — 20,5, V5 + Do Wy + Dy'Ps (46)

—
—
N2
—~
—
=
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Since m is a complex vector, we have, e.g., B<0>(2) = B(0)(3)>
and since the Bach tensor is traceless, it holds that
B o)1) = B(2)(3)» and actually also B(Z())(l) = B(Zz)(3).

III. APPLICATIONS

To illustrate efficiency of the above general approach we
analyze particular scenarios corresponding to special alge-
braic properties of the Ricci and Weyl tensors, respectively.
Such assumptions are related to a specific behavior of
privileged null geodesic congruence defining the Kundt
and/or Robinson-Trautman classes in terms of its twist,
shear, and expansion.” In these important cases we discuss
algebraic structure of the Bach tensor.

A. Restrictions following from a special form of the
Ricci tensor

In this section we use NP formalism to prove
Propositions 1.2 and 1.1 in [29] in four dimensions. The
original proof using higher-dimensional NP formalism was
based on the analysis of dominant boost weights, however,
here we can proceed fully explicitly.

Let us briefly summarize the algebraic classification of
tensors in higher dimensions used in [29] and introduced in
[4,30] (see also [6] for a review) in the case of rank-2
symmetric tensors.

In a null frame {#,n,m"}, employed in Appendix C, a
rank-2 symmetric tensor

LI 0.IL,D

A —
ab 007l + 2Roin My + 2R N lp) + RjjMa ny

b.w.2,type G

—1.I0

A . -2N
+2R1,-f(am§;))+R11fafh (47)

has components Ry, Ro;, (Roi, R;j), Ry;, and Ry of boost
weights 42, +1, 0, —1, and -2 [see (14)] A Symbolically, it
can be expressed as

R=(R) 2+ R)41)+ (R) ) + (R)_yy + (R) ). (48)

For various algebraically special classes of rank-2 symmetric
tensors, it is possible to transform away components of
certain boost weights by choosing an aligned null frame.
In generic case this is not possible (type G). If b.w. 42
components can be transformed away the tensor is of type I,
if b.w. +2 and +1 components it is of type II etc (see
Table I).

By definition, the Kundt family of geometries admits a
nontwisting, shear-free, and nonexpanding null geodesic con-
gruence [25,26], while additionally, the Robinson-Trautman class
allows a nontrivial expansion [27,28].

“In Appendix C, the reader can find boost weights of all Ricci
and Weyl components, and Ricci rotation coefficients.

TABLE I. Algebraic types of a rank-2 symmetric tensor.
Algebraic type Conditions

Type G General

Type I (R)(42) =0

Type Il (R)(+2) = (R)(+1) =0
Type D Only (R)( ) #0
Type TII Only (R)(_y). (R) (5 #0
Type N Only (R)_5) #0

Similarly, using the frame {k,l,m,m}, a symmetric
rank-2 tensor, e.g., the Bach tensor, has components of
the following b.w.

bw. 42 +1 0 -1 -2

1. Traceless Ricci type 111

Propositions 1.2 in [29] reads:
Proposition 1. A vacuum solution to quadratic gravity
(2) with the Ricci tensor of the form

Rap = Ngap +Wi(amy) +mi6y) + o't 4, Wiy #0,

[using the frame {#,n,m)}, see Appendix C] and aligned
Weyl tensor of Petrov type II, or more special, is neces-
sarily Kundt.

Proof.—Using the NP formalism notation, ¥ = ¥; = 0
and the Ricci tensor is of the form (using the frame
{k%, 19, m*, m})

R, = 2@k ky — 2@ (ki + k)
- 2¢)21 (kamb + mukb) + Agabv (49)

where A = const, i.e., (I)U() = (D()l = CD]O = (1)11 = (I)()z =
q)zo - 0

Considering the above assumption on the Petrov type II
or III, the Bianchi identities imply ¥, =0 (A23) or
k¥V; =0 (A24), respectively. For type III or N and
@, # 0, the Bianchi equations imply «®;, =0 (A27),
while for ®;, =0 it follows that x®,, =0 (A33).
Therefore, in all possible cases we obtain

k=0, (50)

and the multiple principal null direction (PND) congruence
generated by k is necessary geodetic.

Further, let us assume that the congruence is affinely
parametrized and the frame is parallelly propagated along
this congruence, i.e.,

7=0. (51)

024036-7



R. SVARC, A. PRAVDOVA, and D. MISKOVSKY

PHYS. REV. D 107, 024036 (2023)

Now, it is convenient to discuss specific Petrov types
separately:
(i) Type II (¥, = ¥, = 0): the QG field equation (20)

simplifies to —4aB<ZO)(0) =0,

BZ

(0)(0) = DD¥, — 6pD¥; + 3%¥,(3p? — 66 — Dp)

+c.c. =0, (52)
and using the Ricci and Bianchi identities (A6) and
(A24) for type II it implies

305(¥, +P,) =0, (53)

and therefore

c=0. (54)

Equivalently, it immediately follows from (A27) that
36¥, = 0 and thus ¢ = 0.

The field equation (22) reduces to —4aB(ZO)(2) =0
which gives

Z
Bloye)

= D&%, — 3:DY, — 3pé¥, — 3¥, (D7 — 3p1)
— 6D¥, — D§¥, + DD¥; + (@ + f)DY¥,
+ 5p8%, — 4pDW; + 3¥,(5p — (& + B)p)
+2¥;(2p> — Dp) = 0. (55)
Using geometric identities (A6), (A7), (A15), (A24),
(A25), (A28), and (A33) we obtain

—4pp®1; =0, (56)

and therefore

p=0. (57)
The spacetime has to belong necessarily to the
Kundt class.

(i) Type Il (¥, =¥, =¥, = 0): the QG field equa-
tion (20) is automatically satisfied, while Eq. (20),
namely —4aB(ZO)<2) = 0, reads

BZ

()2 = 20D + 2¥3(Do — 3p0) + DDY,

—4pDW; +2W5(2p* — 66 —Dp) = 0. (58)

Using (A6), (AS), (A25), (A28), (A33), it implies
(together with its complex conjugate)
(66 + pp) @1y + op®y; =0, (59)

(66 + pp)®y1 +5p P, = 0. (60)

To have @, # 0, the determinant should be vanish-

ing, i.e.,

(65)* + (pp)* + o5pp = 0. (61)
We thus get 6 = 0 and p = 0 and the spacetime has
to be Kundt.

(iii) Type N (¥, =¥, =¥, =¥; =0): the Bianchi
identity (A28) simplifies to —2p®;, =0 and we
immediately get either p =0 or @, = 0. Taking
p = 0, the Ricci identity (A6), i.e., Dp = p* + 05,
implies ¢ = 0. In the case @, = 0 combined with
the Weyl type N, the QG field equations (20) and
(22) are automatically satisfied, while Eq. (25)

becomes —4aB(22)<2) = 0, namely

BZ

D) = 2¥a0” + DDY, — 2pD¥,

+¥,(p>—66—-Dp)=0.  (62)
Using (A6), (AS), (A26), (A29), (A32) it takes the
form
—46*¥, =0 (63)
and we get 0 = 0. Moreover, a combination of the
Bianchi identities (A29) and (A32) leads to p®,, =
oY%, that gives
p=0. (64)
Therefore, in both cases the resulting spacetime has

to be Kundt.
| |

2. Traceless Ricci type N

Propositions 1.1 in [29] reads:

Proposition 2. A vacuum solution to quadratic gravity
(2) with the Ricci tensor of the form

Rab :Agab—F(D,fafb, 0),7&0, fafa :0,
and aligned Weyl tensor of any Petrov type is neces-
sarily Kundt.

Proof.—Using the NP formalism, ¥, = 0 and the Ricci
tensor is of the form (using the frame {k%, [, m*, m“})

Rup, = 2P0k ky + Agap. (65)

where A = const, i.e., ¢)00 = (DOI = (DIO = (I)ll = ¢)02 =
Dy =Dy =Dy =0.

To prove this proposition let us begin with the Bianchi
identity (A33) which gives k®,, = 0 and therefore
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Kk =0, (66)

and the congruence is geodetic. Further, let us assume that
the congruence is affinely parametrized and the tetrad is
paralelly propagated, i.e.,

Z
Bloy

€=0, z=0. (67)

(i) Type I: interestingly, in combination with geometric
identities, the QG field equations (20) and (22) are
identically satisfied. Equation (21) reduces to

—4aBﬁ)><] , =0 and (36) explicitly gives

= SAY, — DAY, — 66¥, + D65 + 20D¥, — (a — B)AY, + A6, — (2y — 2u + j1)o¥,

- (3/4 - /Tt)D‘Pz + sz\Pz + (a - B)é“Pz + 31’5‘1’2 + (2ﬂ - 2T)D“P3 - 2p5“P3 - 20’3“1’3 + 6D‘P4
+ W2y (a = B) = 2A(B + 21) + 2u(f — @) + 2aji — 4up + 2Dv — 28y + 26u] — 3%, [p(in — 2u)
— A6 + t(a — ) + Du — &7] + 2%5[2p(t — B) + 6(a — B) + DB — Dz — éo] + ¥4(Do — 2p6) +c.c.,  (68)

which can be significantly simplified to

(pp + 06)@y, = 0. (69)
This condition obviously implies
c=0, (70)
and the resulting spacetime has to be necessarily Kundt.

(ii) Type II: employing ¥, = ¥, = 0 the Bianchi iden-
tity (A27) reduces to

369, =0 (71)

and therefore ¢ = 0. Alternatively, the QG field
equation (20) becomes

BZ

{0)(0) = DD¥; — 6pD'¥; + 3%,(3p? — 66 — Dp)

+c.c. =0, (72)

which gives
366(¥, +¥,) =0, (73)
and therefore we get ¢ = 0 again. The QG field

equations (22) and (25) are identically satisfied.
However, the QG field equation (21) implies

—pp(@y; + D) =0 (74)

and therefore also p = 0. The spacetime has to be
Kundt. Since Eq. (74) does not contain ¥, it holds
also for more algebraically special Petrov types III
and N.

(ii1) Type III: the Bianchi identity (A28) implies

20, =0 (75)

and therefore ¢ = 0. Employing Eq. (74), which
does not contain ¥, and holds also for Petrov type
I, we end up with the Kundt spacetime.

(iv) Type N: in this case, the last part of the Proposition
1.2 proof (discussing the subcase ®;, = 0) can be
used and therefore the spacetime is Kundt again.

]

B. The Bach tensor for Robinson-Trautman geometries
of specific Weyl type

Due to their geometrical and physical importance,
various particular Robinson-Trautman (RT) and Kundt
spacetimes have been already studied within quadratic
gravity. For example in [29], solutions to quadratic gravity
were constructed by a conformal transformation from
Kundt seed metrics. Starting with a vanishing Bach tensor,
the resulting spacetimes then became Kundt or RT
preserving a vanishing Bach tensor. There was also a
specific case discussed, where all tensors (Weyl, Ricci,
and Bach) were of type N. All spherical solutions
discussed in [19,20,31,32] are of Petrov type D and
general Ricci and Bach type. Here, the simplifying
assumption of constant scalar curvature was employed.
Thus the Bach tensor became the only nontrivial higher-
curvature correction in the field equations (2) and therefore
its properties crucially affected the resulting geometry. Its
contribution was directly reflected in analysis of geodesic
deviation representing, in principle, observable effects. All
these cases are in agreement with Table II.

Here, let us examine possible Bach types for different
Petrov types of the RT metrics

ds? = g, (u, r, x*)du? — 2dudr + 2g,,(u, r, x*)dudx’
+ g;;(u, r, xR dxidx, (76)
admitting geodetic (k = 0) shear-free (¢ =0), twist-

free (p =p), and expanding (p # 0) null congruence
generated by
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TABLE II. Possible Bach types depending on the Petrov type
for Robinson-Trautman spacetimes. The privileged RT null
vector field k is taken as the Weyl PND.

Petrov type Vanishing Bach components Possible Bach types

N B)0)s Boy2)s By I/II/N/O

I Boy0) VIVII/N/O

/D G/VI/I/II/N/O
k=o9, (77)

which is affinely parametrized (¢ + € = 0). The coordinate
r is the affine parameter along the congruence, u labels
null hypersurfaces with k tangent (normal), and x?, x*
cover the transverse Riemannian 2-space. Moreover,
without loss of generality, we employ a parallelly propa-
gated frame, i.e.,

e =0. (78)

In what follows, the Ricci equations (A6)—-(A10), (A15)
will be useful, namely

Dp = p* + @y, (79)
Dt = pt+ ¥ + @, (80)
Da = pa + @, (81)
DB =pp+¥,, (82)
" R
D]/:al""ﬂT'f"Pz—f—q)“—ﬁ, (83)
op =pla+p) =¥+ Q. (84)

1. Petrov type N

Let us start with the Petrov type N (with k being PND)
represented by the Weyl components
1114?50’ lPOZlPIZ\Pzzle,:O. (85)

Within this setting, the Bach tensor components (41)—(46)
simplify to

Bioy0) = 0. (86)
Bo)e) = Bioy2) = By =0, (87)
B)a) = By =0, (88)
B(2)2) = DDV, — 2pDV,, (89)

B()) = By3) = 6D¥, — (a — 34+ 7)DV, + @0,

B(iy1) = 66%s — ADYy + (@ + 7 — 27)5¥4 4 ¥y
+ W, [4p(a+3p) +ip +1(t —a—1T1p)
+46p — 8t] + c.c. 1)

Since the b.w. zero component B,),) is nonvanishing, the
Bach tensor is in general of type II. In a special case with
B(Q)(z) =0, e.g., if D¥, = 0, then the Bach tensor becomes
of type III or more special.

2. Petrov type 111
For the Petrov type III, with the Weyl components

lP3 ?é 0, lP4 ?é 0, lPO = lPI - \Pz - 0, (92)

the non-negative boost-weight components of the Bach
tensor (41)—(46) simplify to

By = 0. (93)
B(o)2) = DD¥5 — 4pD¥5 — ¥3(Pyg — 297), (94)
Boy1) = D8Y3 + 2(f — 7)D¥5 — 2p5¥;
= W5[®@g; +2p(f—1)] +c.c.. (95)
B2y = DDy — D5¥; — 6DW; + ( — 3a) D¥;
+3p8¥; — 2pDP, — 295 (D, — 2pa), (96)

where we use the Ricci equations (79)—(82) and (84). Since
the b.w. +1 component B g)(;) is nonvanishing, the Bach
tensor is of type L.

3. Petrov type 11/D
For the Petrov type D, defined by

‘{’2#0, T0:T1:T3:q’4:0, (97)

even the highest b.w. +2 component, namely
B(O)(O) = DDlPZ - 6,0DT2 — 2‘{12 ((DOO - 3p2) + C.C., (98)

is nonvanishing and therefore, the Bach tensor is of general
type G.

IV. SUMMARY

In the introduction, we briefly described a formulation
of quadratic gravity (1) and a suitable form of its field
equations (6), and summarized basic definitions of the
Newman-Penrose formalism (see Sec. I). In Sec. II, we
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immediately proceed to our main result that is reformulation
of the quadratic gravity field equations in terms of the NP
quantities, see expressions (20)—(26) with the substitution
from (27)—(33) and (35)-(40), or Appendix D. Importantly,
the traceless Ricci tensor contribution to the field equations
is only linear within QG. Therefore, the procedure combin-
ing (20)—(26) with the geometric constraints, listed in
Appendix A, is similar as in the case of classic general
relativity, i.e., we deal with the linear system of algebraic
equations for the Ricci tensor frame components. The main
aim of these results is to provide a tool for a systematic
analysis of (exact) solutions to the quadratic gravity, where
the invariant assumptions on the algebraic properties of
curvature tensors, or e.g., specific behavior of null geo-
desics, can be simply made. This should allow one to
compare four-dimensional quadratic gravity with other
theories of gravity, primarily with Einstein’s general rela-
tivity, on the level of admitted solutions where the initial
ansatz is introduced in terms of purely geometric conditions.
Needless to say that such prominent GR concepts as a study
of peeling properties of the gravitational field and related
results on spacetime asymptotic structure are also formu-
lated in the NP language, and their extension to QG is still
an open problem. From the family of exact spacetimes, more
involved gravitational waves models possibly belonging to
the Robinson-Trautman family, and nonstatic Vaidya-like
generalizations of the Schwarzschild geometry, should be
studied. The ultimate goal, also naturally defined in terms of
the NP quantities, is the investigation of rotating Kerr-like
solutions. One can also go beyond exact models and employ
the NP approach within a discussion of perturbations to a
given background solution, see e.g., [33]. Such Teukolsky-
like analysis constrained by the QG field equations is of our
recent interest.

In the subsequent Sec. III, we present two simple
examples of applicability of the above mentioned general
expressions. In particular, its Sec. IIl A contains explicit
calculations proving pair of propositions previously for-
mulated in [29], where the original proofs were based on
the highest boost-weights discussion which does not need
knowledge of the complete Bach tensor. In the Sec. III B,
we analyze possible algebraic structure of the Bach tensor
in the case of Robinson-Trautman geometries (76). The
Weyl tensor is assumed to be of algebraically special Petrov
type with respect to the frame associated with the privileged
nontwisting, shear-free, and expanding null geodesic con-
gruence. Under such conditions the admitted structure of
the Bach tensor is discussed. These new results are
summarized in Table II.

Moreover, the standard geometric Ricci and Bianchi
identities of the Newman-Penrose formalism are summa-
rized in Appendix A using unified notation of [22].
For the readers convenience, subsequent Appendix B
compares this notation and conventions with those used
in other common textbooks [23,24]. Two decades ago the

arbitrary-dimensional version of the Newman-Penrose
formalism was introduced, and, almost immediately, it
became a useful tool with many applications, where the
algebraic structure of curvature tensors or specific behavior
of null geodesics play crucial role within spacetime
analysis, see e.g., [34-39]. Therefore, we present relation
of such a real formalism, in the case of four spacetime
dimensions, to the classic complex NP quantities used
within this paper in Appendix C. Finally, Appendix D
presents a fully explicit form of the quadratic gravity field
equations, expressed in terms of the null frame quantities,
which do not require any additional substitutions.
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APPENDIX A: GEOMETRIC CONSTRAINTS
ON THE FRAME COMPONENTS

In Secs. I and II we have introduced frame components of
crucial tensor quantities and constraints implied by the
quadratic gravity field equations, respectively. In addition,
these NP objects have to satisfy conditions directly arising
from their purely geometric properties. In particular, we
have commutation relations of the frame derivatives, the
Ricci identities defining the Riemann tensor, and the
Bianchi identities coming from the covariant derivatives
of the Riemann tensor. For more details see [22].

1. Commutation relations

Expressing the Lie bracket of all possible combinations
of the frame vectors, which are understood as the direc-
tional derivatives, and simultaneously, rewriting covariant
derivatives in terms of the Ricci rotation coefficients we
obtain the commutation relations, namely

AD-DA=(y+7)D+(e+&A—(T+x)5— (t+ 7)0,

(A1)
SD-Ds=(a+p—7)D+xA—(p+e—€)5—0d, (A2)
SA—AS=-iD+ (t—a—B)A+ (u—y+7)5+15, (A3)

66—86=(F =)D+ (p—p)A + (a = p)5 + (5 - a)o.
(A4)
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2. Ricci identities

Using the notation of Ricci spin coefficients (16) the Riemann tensor nonzero components can be expressed as

Do -6k =0(3¢—e+p+p)+x(m—7-3—a)+ ¥, (A5)
Dp — ok = p? + 066 + p(e + &) —kr + k(7 —3a — f) + Dy, (A6)
Dr—Ax=p(t+7)+0o(t+x)+1(e—€)—x@By +7) + ¥ + Dy, (A7)
Da — e = a(p + & — 2¢) + 5 — e — kA — Ky + (e + p) + @, (A8)
Dp-de=oc(a+n)+p(p—€)—k(u+y)+e@—a)+¥, (A9)
Dy—Ae=a(t+a)+pF+n)—yle+e)—ely+7) +mr—vk+¥, + D —%R, (A10)
DA — 67 = pA+6u+ n(m+a—f) — vk + A€ — 3e€) + Dy, (A11)
Dﬂ—5ﬂ:ﬁﬂ+ﬁﬂ+ﬂ(ﬁ'—5£+ﬂ)—ﬂ(€+€‘)—I/K+T2+éR, (A12)
Dv—An=u(n+7)+Am+7)+nly—7)—v(3e+e) +¥; + Dy, (A13)
AM—-v=A7-3r—pu—p)+vBa+p+rn—-7)—¥,, (A14)
p =6 = p(a+ ) +o(f —3a) +2(p—p) +x(u—f) =¥ + Dy, (A15)
Sa—8f=up—ic+aa+pp—2ap+y(p—p)+e(u—p) —¥,+d, +2—14R, (A16)
82 —bop=v(p—p) +alu—p) + pla+p) + A@—3p) = ¥s + @y, (A17)
Su—Au=p*+ A +uly+7)—im+v(r=3f—-a)+ ®p, (A18)
Sy—Ap=y(t—a—p)+ut—ov—ev+plu—y+7) +al+ ®,, (A19)
St—Ac=pc+lp+t(t+p—a)+o(7—3y)—ki+ D, (A20)
Ap =3t =—(pii+oh) +t(P—a—7) +p(y+7)+w<—‘l’2—1—12R, (A21)
Aa—dy =v(p+e)=Ar+p)+a(f—p) +r(f—7) - ¥s. (A22)

3. Bianchi identities

The projection of the Riemann tensor covariant derivative with cyclic exchange of indices leads to the first Bianchi
identities,

O = —S‘PO + D\Pl + (4a - ﬂ')lpo - 2(2[) + 6‘)\{,1 + 3K\P2
— D®y; + 6Py + 2(e + p) Doy + 20Dy — 2kDy;
— @y + (7 — 2& — 2) Dy, (A23)
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0 = +(_3\P1 - D‘Pz - /I\PO —+ 2(7’[ - a)‘P1 + 3,0‘1’2 - 2K‘P3
+ Sq)OI - ACI)OO - 2((1 + ’f')q)()l + qu)ll + 5(1)02

1
+ 2y +27 = ) Dy — 21Dy — EDR’

O = —S‘Pz + D‘“P:; + 2/1\111 - 371"{12 + 2(6 - p)q]:}, + qu4
= D®,; + 6@y +2(p — €)®y — 2udy + 27D

1 -
— KDy + (2B —2a + 7) Dy — E(SR,

0 = +0%; — D¥, — 34, + 2(27 + a)¥; + (p — 4e)¥,
— ADy + 6Dy + 2(a — T)Dy; + 20D + 5D,
= 20®y; + (27 — 2y — 1)@y,

0= —A%, + 6%, + (47 — u)¥, — 2(27 + B)¥, + 30'P,
— D@y, + 5Dy + 2(7 — f)@g; — 2kP, — 4Dy
+ 20Dy, + (p + 2e — 26) Dy,

0=—-AY, 4+ 6%, + ¥y + 2(y — u)¥, — 37¥, + 20¥;
+ ADy; — 6By, + 2(ji — 1) Doy — 2pPp — DDy

- 1
+ 2’[(1)11 + (i’ - 2ﬁ + 26!)(1302 + EéR,

0= _AIP2 + 6‘{’3 + 21/‘{”1 - 3/llP2 + 2(ﬂ - T)“Pj, + 0‘1"4
= DDy, + 5Dy + 2(7 + f) Py — 2u®; — ADy

1
+ 277(1)12 + (p - 26 - 2@')@22 - E AR,

0= —AW; + 6%, + 30¥, — 2(y + 2u)¥s + (46 — )P,
+ ADy; — 5@y + 2(ji + 1)@y — 20Dy — DDy
+ 2/1@12 + (’f - 2(1 - ZB)szz,

and the contraction gives the second Bianchi identities, namely
- R
0Dy, + 6@y — D <<I>“ + §> — AD,
= I_(CDIQ + K(I)Zl + (2a + 2’? — ﬂ')q)()l + (2& + 2T - 7_7,')(1310
=2(p+p)®@yy — 6Py, — 6Dy + [u+ i = 2(y +7)]Poo,
- R
6@y +6®y —A (q)u + g) — DDy,
= —Z/CI)OI - IJCI)IO + (’E - ZB - Zﬂ)q)lz + (T - Zﬂ - 27_[)CI)21
+2(u+p)®yy + (26 + 28— p = p) @y + 4D, + ADy,
R -
5(@11 - 8) — DDy — Ay + 6P,

= K.'(I)zz - l_/q)()() -+ (7_: -7+ 200 — ZB)Q)OZ - 6q)21 + /_lq)l()

+2(r—7)®) + (26 =2p = p) Dy + (20 + = 27) Dy, -
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APPENDIX B: COMPARISON OF NP NOTATION IN CLASSICAL TEXTBOOKS

Within the geometric formulation of general relativity, several different conventions have appeared which typically affect
signs of particular expressions. Here we follow the classic reference book [22], however, it is useful to compare our notation
with other canonical sources [23,24]. The differences in notation’ are summarized in Table III. However, the NP equations
are the same in all three books [22-24]. To compare actual values of different quantities the subsequent Table IV can
be used.

From Table IV it follows that all scalars as defined in Chandrasekhar/Penrose books, appearing in the NP equations, have

the opposite/same as in Stephani, respectively, and thus all NP equations have the same form.

TABLE III. Notation comparison for the definitions of crucial geometric quantities.

Quantity Stephani [22] Chandrasekhar [23] Penrose, Rindler [24]
Signature +++- +-— +-—

Frame m¢, m?, 1%, k4 1% n m, m® 1%, n%, m“, m<
Riemann t. Rpea =20 q ) + 20 X R%ea = 2 a ) + 21 Lap Rpea = =21, — 21 1 T g
Einstein equations G, =Ty, G = *xT G, = —«Ty

NP scalars ‘Pi \I‘O = Cabcdk“mbkcmd, etc. lPo = —Cabcdl“mhlcmd, etc. lPO = Cabcdl“mblcmd, etc.
NP scalars q)i CI)OO = %Sabkakb, etc. q)oo = _%Sablalb, etc. q)o() = _%Sablalb’ etc.

Ricci rotation coefficients K = —k,;mik®, ete.

K

= la;bm"lb, etc. K= la;bm“l", etc.

TABLE IV. Values comparison summarized according to classic books by Stephani (S), Chandrasekhar (C), and
Penrose, Rindler (P). Note that the definition of €T, is not clear, see footnote 4. Also the sign in front of ¢®; ; does
not seem to be correct since the NP equations in all three books are same, i.e., the correct sign should be +.

Quantity Values

Metric 59ab = =Gar = ~"9ap

Contravariant frame Sk = +C19 = 414, 519 = +5n* = +Fn?, Sm® = +m* = +Fm*
Covariant frame Sk, = =1, = -"1,, %1, = =“n, = -n,, Sm, = —“m, = -"m,
Christoffel symbols ST, = +T%, = +T9,.

Riemann tensor SRYyeq = +RYey = —TR% ey

Weyl tensor

Ricci tensor

Ricci scalar

Einstein tensor
cosmological constant
stress-energy tensor

NP scalars ¥,

NP scalars @,

Ricci rotation coefficients

5C%eq = +C%ea = ="C%eq
SRup = +Rap = "Ry
SR — _CR — +PR
SGab = +CGab = _PGab
SA — _CA — —|—PA
STab = :l:CTab = PTab
Y, = +V, = 47,
0, = —@; =+
Sk = +C% = +7x, etc.

>The definition of the energy-momentum tensor could be misleading in the Chandrasekhar book [23], namely, page 34/ Eq. (236)

__ 86

gives G;; = 82’—46T,»j or, alternatively, page 34/ Eq. (236') is R;; =4
—@(Tij - %Tg,-j) [for electromagnetic field see also page 205/ Eq. (3) or page 564/ Eq. (11)].

c
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APPENDIX C: COMPARISON WITH HD NP FORMALISM

Since the computer implementation of symbolical calculation within classic Newman-Penrose formalism may become
more difficult due to the presence of complex quantities, it can be useful to employ its real version following from the real
higher-dimensional (HD) NP formalism introduced in [4,5], see also [6] for a review.’® Therefore, as a byproduct, we derived
relations between complex four-dimensional and real higher-dimensional NP formalisms. These identifications are
presented in the form of Tables V-XV. As abbreviation for the frame components of an arbitrary tensor 7, let us use
T 0. =T 00T ). =T q.n%and T @ =T o m. Moreover, each index T (o)., T 1)... and T ;). .

contributes +1, —1, and 0 to the boost weight of a component, respectively.

TABLE V. Relation between real HD frame vectors {€, n, m(i)} with i = 2, 3, satistying £, ,n* = 1, m?[.)mu ) — 5{ s

and standard four-dimensional NP frame vectors {k,l,m,m}, see (8).

b.w. +1 0 -1
4 = k¢ m(Z)a — %(ma +ﬁ1“) nd = —Ja
m(3)a — %(ma _ ﬁ,la)
et = (@ — im)
it = s (m i)

TABLE VI. Definition of the directional derivatives in the HD NP notation.

b.w. +1 0 -1
D = ¢V, 5 =m0y, A =nV,

TABLE VII. Relation between directional derivatives in the classic NP formalism, i.e., D = k*V,, A = 1°V,,,
8 =mV,, 6 = m*V,, and in its HD reformulation.

b.w. +1 0 -1
=23
i(6-0)
& ="7
§=J5(8, — i3)
6= J5(8, +1id;)

TABLE VIII.  Definition of the HD Ricci components (frame {#,n,m"}).

b.w. +2 11 0 ~1 )
® = Rg)(0) wi = R bij = Ry wi =Ry @' = R
¢ = R

®Note that in [7], there are some sigh errors whenever there is an odd number of r’s in the expression, i.e., involving A, ¢, y}, ¥;, ®; i

A ! /) i
(I)ij’ lPijk’ Tis Tjs pij’ LIO’ Lli’ and Mll
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TABLE IX. Relation between Ricci components in the classic four-dimensional NP formalism and their HD counterparts, see also
Table VIII.

b.w. +2 +1 0 -1 ]
@ = 2@ Wy = (Poy + Ppi)V2 ¢ = DPg + ‘i)(_)z +20;, +£& wh = —(®p, + Dp)V2 o =20,
w3 = i(@g — Py )V2 33 = =Ppy = Py + 20y, +% = —i(Ppp — P12)V2

ts = i(Poy — D)
¢ =20, +%

oo =3 Dy = %2_7\/[;” Do = 3 (P22 — 33 — 2igh3) Dy = =55 (s — i) Dy =2
O =3 (=20 + ¢ + h33)
R=2¢+¢;

TABLE X. Definition of the HD Weyl components [frame {#,n,m)}]. In four dimensions, the Weyl tensor symmetries imply
Qi3 = Q. Qi = —Qy, BF, = —1Ppyy = OF;, @ = 0= D5, ¥ = Wy, ¥y = P, W) = Wiy, ¥ = Py

b.w. +2 +1 0 -1 —2
Q;; = Co)i0)j) ¥i = Como ®;j = 1C<o><i><1><j> ‘I’: = Coon Q:J = Commy)
Q; =0 Fije = Comim @ =3 Commn Fiie = Cayatw ;=0
Vi =W @ = Coymon = Pi ¥ =P
@} = =3 Chwunm

TABLE XI. Relation between complex Weyl components in the four-dimensional NP formalism and their real HD counterparts, see
also Table X.

b.w. +2 +1 0 -1 -2
Q=5 (¥ + %) =-5¥ +¥)  0h=+5(F+Y) l}"zzﬁ(‘y3+@3) Q=5 (¥s + ¥y
Q== (¥ +%) W=-G5-¥) &=0, Vy=—5(Ps =) Q=3+ W)
Q3 =5 (Yo — W) Dy =0=d5, Q3 = —5 (¥4 —¥y)

DYy = —5(¥, = ¥s)
q) == lpz + l{‘z
Yo = Qo — €23 v, = _Lﬂ\“a ¥, = @5, + ids, v, — ‘Plz\‘;;*ﬂs P, = Q) + i,

TABLE XII. Definition of the Ricci rotation coefficients in HD NP formalism with a specific boost weight.

b.w. +2 +1 0 -1 -2

Ki = £(i)(0) Pij = i) =) Pl = Mx(j) Ki = R(ix(1)
n
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TABLE XIII. Definition of the Ricci rotation coefficients in HD NP formalism that have a boost weight only under constant boosts.

b.w. +1 0 -1
Lip = C(1y,0) i =) Ly =2y
) -_<i> i)
M'jo = m; ) M= mj ) My =mg

TABLE XIV. Relation between Ricci rotation coefficients in the four-dimensional NP formalism and their real HD counterparts that
transforms with a specific boost weight.

b.w. +2 +1 0 -1 -2
K, —%(KJrl?) ppn=—3(p+o+p+5o) 12:%(r+%) p’zzz—%(/l+/4_+/_1+ﬂ) K&Z\%(-I/Jrﬂ)
Ky =—"5(k=K) py=5(6-p+5-p) u="20-7) py=3A-p+i-p K=-5v-0)
pn=5(p—0-p+0) ==t ) gy =s-u—dt )
pr=-35(p+0-p=-5) ==  ph=5A+u-1-p)
k=—5(ky—ik3) p==75(po2+p33 +ilprs = p3)) 7= J5(r2 — i13) = =3 (P + i3 +ilphy = ph3)) v =5 (ks + iK})
6=—%(pn—pyn—ilpys +pn) 7= —%(7/2 + ”3) = —3(phy = Py +i(phs +pha))

TABLE XV. Relation between Ricci rotation coefficients in the four-dimensional NP formalism and their real HD counterparts that
transforms with a specific boost weight only under constant boosts.

b.w. +1 0 -1
Lg=¢+¢ Lp=Js(at+p+ra+p) Ly=-(+7)
M?3 = —i(e — &) L13:ﬁ(ﬁ—a+5’—ﬁ) M3 =i(y —7)

M2 :%(ﬂ—a—&—ﬁ—ﬁ)

My = —\%(GJrﬁ—a—ﬁ)
=1(Liop+ iM?*5) a=

f=

5 (Lip +iLy3 = MP33 + iM?3;) y=—3(Ly +iM?)
5 (Lip = iLy3 + M?33 + iM?3;)

sl s\—

APPENDIX D: COMPLETE SET OF QUADRATRIC GRAVITY FIELD EQUATIONS

Finally for the readers convenience and direct applicability, we list the fully explicit set of the quadratic gravity
field equations (2) expressed in terms of the null frame {k,l,m,m}, see (8). In fact, the following equations correspond to
(20)—(26) with Z,) ) substituted from (27)—(33), where the quantities B? are substituted from (35)—(40).

(a)(D)
The kk-projection is

_ - - 1
0 = —da[DyP) + 'Yy — 2P0V — 2D, ') + Pgo (P + ¥3)] +2 (R + 25R> Dy

+ 2b[(e + €)DR — DDR — kR — k6R] — 4a[6 6 ¥ — DO¥, — 6D¥, + DDW, + IDY¥,

+6AY, + (27 — Ta — B)8¥, + (Sa + p — 37)D¥, — kAW, — 56%, + (3¢ + & + 7p)o¥,

— (€ + & + 6p)D¥, + k6¥, — 5k6W, + 4kDW; + ¥y[kv + 4a(3a + B) — (e + &+ 3p)A

+n(r—Ta—P) +&(u—4dy) + DA —4da + on] + 2%, [2kA + k(y — u) + p(57 — 9a — 2p)

+6(f+27) + (27 — da — ) + &(x — @) + Da — Dx + 8¢ + 28p] + 3¥,[x(3a +  — 37)

— k7 + ple + &+ 3p) — 66 — Dp — k] + 2¥;[k(e — & — 5p) + ko + Dk] + 2W4k? + c.c.], (D1)
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the kl-projection is

0 = —4a[®y W) + P W, — 20, (¥, + ¥,) + Py W3 + P1W5] + 2(& + 2BR> @y +% <§ - A)
+ 2b[ADR — 86R — 86R — (y +7 — p — i)DR — (p + p)AR + (a — p + 7)6R + (@ —  + 7)5R)]
— 4a[5AY, — DAY, — 56%, + D6W; — AAW, — 13, + 20D¥, + (27 — a + B)AY, + 16¥,
+ (2u — i = 2y)0%, + (i — 3u)D¥, + (2p — € — €)AY, + (a — f — 27)6%¥, + (7 + 37)56¥,
+ (28 — 7 —27)DW¥; — kAW; + (€ + & — 2p)6¥5 — 200W5 + 6DW, + k6, + WYo[A(dy — p + 1)
+v(a—p=2x) = &) + 2% [y(a~f = 27) = A + 7+ 2v) + u(f — a + 2x) + jp(a - 7)
+v(e+&—2p) +Dv— 8y + | + 3, kv + u(2p — € — &) — jip + nz + Ao + (27 — a + )
—Du+67] +2¥s[k(i —2u—y) +e(f—1—7) + &P —71) +p(7 =28+ 27) + 6(a— - 2x)
+Dp =Dt — 6] +Wy[k(4p — 7 — 7) + 6(e + € — 2p) + Do] + c.c], (D2)

the km-projection is

_ - - 1
0= —4(1[@21\1]0 - 2@11‘{11 + q)ozlpl + (I)Ol (lpz - 2‘{’2) + q)()olpﬂ + 2 <k + 2BR> (I)()]

+ 2b[ZDR — DSR — kAR + (€ — €)5R] — 4a[0A¥, — DAY, — 56¥, + DS¥, + vD¥,

+ (7 =3a+ B)AY, + (u — it — 4y)0% + (2y — 2u + f)D¥, + (e — & + 3p)AY,

+ Ba—pf—n)6¥, + (2B + 7 +47)0%, — (7 + 37)D¥Y, — 2kAY, — (¢ — € + 3p)d¥,
—366%, + 20DW; + 2k8W¥; + Wo[(4y — ) (3a — f — ) + j(4a — ) + v(e — e — 3p)

— A%+ Dv — 48y + ou] + 2%, 2kv + (u—y)(e =€ +3p) —i(2p + €) + (B + 27)(m — 3a + f)
+ #(x — a) + Dy — Du + 8B + 257] + 3W, [x(ii — 2u) + 7ip + 6(3a — p — 7)

+7(e — & + 3p) — Dt — S0] + 2¥3 k(28 — & — 27) + 6(¢ — € — 3p) + Do + 2¥ k0

+ 86%¥, — 6D¥, — DS, + DDV; — 216%, + 3AD¥, + 6A¥, + (47 — 3a — §)6%P,

+ (a+ p = 57)DWP, — kAW, + (€ — & + 5p)0F, — 66%F, + (3€ — € — 4p)DV¥; — 3k6'¥;

+ k6W5 + 28D, + Py[A(5a + f — 37) — Do — 6] + 2%, [xkD + a(a + B) + 7(27 — 3a — )
—A(4p + €) + o(ii — 7) + DA — 8 + 67] + 3V, [2k A —«fi + (e — &) + p(47 — a — )

+ 067 — D7 + p] + 2¥;[k(f —7) + k(S — 47) — 66 + (p — €)(e — € + 2p) + Dé — Dp — 67

+ W, [k(5¢ — € — 3p) + x& + Di]], (D3)

the ll-projection is

k
4+ 26[=AAR — (7 + 7)AR + U6R + D3 R] — 4a[AAW, — ASW; — SAY; + 65%, — 4UAP,
+ (y +7 4+ 6u)AY, + 506W, — 06, + D5 + (37— a — 5B)AY; — (3y +7 + Tu)dW; + 16,
— DY, — 6AW, + (@ + 7 — 21)6Wy + 2Wr? + 2%, [L(y — 7 — Sp) + AU — Av] + 3%, [u(y + 7 + 3u)
+uv(@+38—37) =AM —rm+ Au + 6] + 2Ws[i(e — p) + Ala +27) + y(27 — a — 4p)
+7(t—=B) +u(5t —2a —9p) + 2ve — AB + At — 8y — 26u] + W4[ki + A(p — 4e) — o(y +7 + 3u)
+4p(3p+a) +t(zr—a—"1p) — Ac + 45 — 57] + c.c], (D4)

_ - - 1
0= —40 [q)zz(lpz + ‘Pz) - 2‘D12T3 — 2@21‘1’3 + (I)02T4 + q)zo\Pd + 2 <— + 2BR> (I)22
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the Im-projection is

- - - 1
0= —4(1[@22\{]1 - @12(2‘{’2 - \Pz) + q)oz"P:; - 2@11‘1’3 + (Dlolpd + 2<R + 2BR) CDIZ

+ 26[ZDR — AR — AR + (y — 7)6R] — 4a[AAY, — ASY, — AW, + 665 — 2UAY,,

+ (4 =3y +7)AY, +306¥, — 06, + DY, + (St —a — B)AY, + (y —7 — 5u)6%¥, + 16 P,

— AD¥; — 36AY; + (& + 36 — 47)0¥; + 266, + Wolv(5y — 7 — 3u) + v — Av

+ 2% [u(a —47) + D(a—n) =24+ (y = p)(y =7 = 2p) — Ay + Dp + 61

+ 3%, [u(dr—a—p) +in—ip+2wo + (7 —y) + At — Su] + 2W5[k0 — (7 + 4u)
+1(2t—a=38)+p@+p) +Alp—e) — Ac + 8f — 6t] — W, [xA — o(a + 56 — 37) — do]

— ADY; + ASY, + 6DV, — 665 — 2AAY, — 2069, + 20DV, + (37 4 1) AW, + (7 — 7 + 31)6P,
+346%¥, + (y —7 = 3a)D¥; + (2p — p — 28)AW; + (a — 34 + 7)0¥; — (2a + 47 + 7)0P;

+ (38— a—7)DWP, — kAP, + (4¢ + p — )0, + 2P A0 +2Y, [A(y — 7 — 3f1) + 0(2a — 27 — 1) — AJ]
+3%,A38-1—a) + 7B —y+7) + blp —2p) + it + Az + 5 1]

+ 2932k 0+ —p)(y —7 = 30) — p(7 + 25) + ©(7 = B) + (@ + 27)(a = 3f + %) — Ae + Ap
—8a-207] +Wulk(y —7—30) +p(df—7) +pla—=3p+7) +4e(3f -7 —a) — 67— Ak +46e-5p]], (D5)

the mm-projection is

_ - - 1
0= —4(1[(1)22\110 - Zq)lzlyl + q)oz (lpz + ‘PQ) - 2(1)01IP3 + (I)O()lyd + 2 <R + 25R> CDOZ

+ 26[ADR — 6AR — (& — })6R — 66R] — 4a[AAY, — ASY, — SAW, + 86, + (2u — Ty +7)AY,
+ 0¥y — 06y + ID¥, + (Tt — a + 36)AY, + (Sy — 7 — 3u)d¥; + 16, — AD¥, — 56AY,

+ (@ = — 61)8%¥, + 466¥s + Wolu(u — Ty +7) + v(@—p—37) + v(da—r) + 4y(3y —7) — 14
—4Ay + Ap + 8] + 2%, [2v6 — D(e + 2p) + A(m —a) + (7 = 2¢) (B + 27) + (u —y) (5t — & + 2p)
+ AP+ 2A7 + 8y — ) + 3W, (k0 + Ap + 6(3y =7 — 3u) + (3t — @ + ) — Ao — 57]

— 2¥[kh — o(a + f — 57) — 66] + 2¥46> + DD¥, — D8¥5 — 6DV, + 56\, — 416%, + 5IDY,

+ 6AY, + (& — p 4 67)0P, + (B — 3a — 77)D¥5 — kAP + (e — 5¢ + 3p)0F¥; — 66P5

+ (7é — € — 2p)D¥, — k6P, + k6P, + 2% A% + 2%, [A(@ + B — 57) — Do — 6]

+ 39, (kD + A(3€ — € — 3p) + fic + 7(a — B + 37) + DA + 67 + 2¥3[2k 1 —«x(2i + 7)
+0(z=p)+ (p—€)(2a — B + 57) + (€ — 2€)(27 + &) — Da — 2Dz — 5¢ + 5p)

+ ¥, [k(4B —7) + k(f —a —37) + (p — 4€)(e — 3¢ + p) — 66 + 4Deé — Dp — 5k]], (D6)

the mm-projection is

. . _ 1 1 R

0 = —40[@21T1 + (1)12‘{11 - 2®]l(lP2 ‘|‘ ‘Pz) + CDOllP3 + (I)IO\P:*:] + 2<k + 25R>q)11 + R (A - 4>
+26[(y +7 — A)DR—DAR — ADR + (p —e —&)AR — (a — p— n + 7)5R + (7 — 7)0R + 56R)|
- 4(1[SAlP1 - DA‘PZ - 35‘1’2 + DélP3 - /IATO - Z/SLPO + ZI/DLPI + (271' —Qa + B)ALPI + 2,5‘{‘1

+ (2u — it = 27)0%, + (i — 3u)D¥, + (2p — € — &) AW, + (a — p — 27)8Y, + (7 + 37)5%,
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+ (28 — 7 — 21)DW¥5 — kA5 + (€ + & — 2p)6W5 — 200¥; + oDW, + k6, + Yo[A(dy — u + i)
+u(a—p=2m) = &) + 2% [y(a = p—27) = A(B + & + 27) + u(f — a + 27) + fila — 7) + v(e + & —2p)
+ Dv — 8y + ] + 3k + u(2p — € —€) — jip + 7% + Ao + 1(2x — a + ) — Dp + 67]
+2¥s[k(i—2u—y) +e(f—1—7) +&B 1)+ p(7 =28+ 27) + 6(a — f — 27) + DB — Dz — 0]

+ k(4 —7—1)+o(e +€—2p) +Do| +c.c.].

(D7)
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