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An isolated critical point is a peculiar thermodynamic critical point that occurs in the phase diagram of
hyperbolic black holes in Kth-order Lovelock gravity in higher dimensions (with K odd) for special tuned
Lovelock coupling constants. It corresponds to a “merger” of two swallowtails and is characterized by
nonstandard critical exponents. Upon employing a recent proposal for assigning a topological charge to
thermodynamic critical points, we argue that the isolated critical point offers an interpretation
corresponding to the onset of a topological phase transition of a vortex-antivortex pair.

DOI: 10.1103/PhysRevD.107.046013

I. INTRODUCTION

The framework of extended black hole thermody-
namics [1] has introduced many new remarkable features
into the thermodynamic phenomenology of anti–de Sitter
(AdS) black holes [2]. Known as black hole chemistry, a
panoply of interesting phase transitions have been discov-
ered, ranging from understanding the Hawking-Page phase
transition [3] as a solid-liquid transition, to Van der Waals–
like phase transitions [4–6], reentrant phase transitions [7],
triple points [8], and superfluidlike features [9]. Via the
AdS=CFT correspondence, these are expected to be dual to
the phase transitions of the corresponding boundary con-
formal field theory, as has long been known for theHawking-
Page transition [10] and more recently for the Van der Waals
transitions of charged AdS black holes [11,12]. Among
these, perhaps the most unexpected was the discovery of the
isolated critical point in the phase diagram of hyperbolic
black holes of the odd-order Lovelock theories [13,14]. This
transition corresponds to a merger of two free energy
swallowtails and gives the only known example of a critical
point in black hole thermodynamics that is characterized by
nonstandard critical exponents.
In recent years there have been several attempts to

uncover the black hole microscopic degrees of freedom
responsible for the above phase transitions. For example, one

suggestion involved a proposal for calculating the correlation
length and its corresponding critical exponent [15–17]. More
recently, a new proposal for assigning a topological charge to
various critical points was put forward [18] and further
studied for Gauss-Bonnet gravity [19]. It was shown that,
apart from the standard critical points (with negative topo-
logical charge Q ¼ −1), one can also find a “novel” critical
point—characterized by the opposite topological charge [18].
Unfortunately, this example suffers from a drawback insofar
as the novel critical point is unphysical—it occurs in an
unstable branch of the free energy and so does not correspond
to a phase transition.
In what follows, we shall show that the isolated critical

point (that occurs for a special tuned Lovelock coupling,
referred to as α in the simplest third-order Lovelock case [14])
can be understood as an onset of standard (vortex) and novel
(antivortex) critical point pair creation. As the Lovelock
coupling α is decreased, the two (now physical) critical
points separate from each other—the vortex-antivortex pair
has been created. This suggests that the isolated critical point
can be interpreted as a topological phase transition.

II. LOVELOCK BLACK HOLES

In what follows, we will concentrate on hyperbolic black
holes in Lovelock gravity [20]. This is the most general
geometric higher-curvature theory that gives rise to the
second-order equations of motion for the metric. In d
spacetime dimensions, its Lagrangian reads [20]

L ¼ 1

16πGN

XK
k¼0

α̂ðkÞLðkÞ; ð1Þ

where K ¼ bd−1
2
c, the α̂ðkÞ are the Lovelock coupling

constants, and LðkÞ are the 2k-dimensional Euler densities,
given by
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LðkÞ ¼ 1

2k
δa1b1…akbk
c1d1…ckdk

Ra1b1
c1d1…Rakbk

ckdk ;

with the generalized Kronecker delta function δa1b1…akbk
c1d1…ckdk

totally antisymmetric in both sets of indices and Rakbk
ckdk as

the Riemann tensor.
To find the corresponding static vacuum spherically

symmetric black hole solutions, we employ the following
ansatz:

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
d−2; ð2Þ

where dΩ2
d−2 denotes the line element of a (d − 2)-

dimensional space of constant curvature κðd − 2Þðd − 3Þ,
with κ ¼ þ1; 0;−1 for spherical, flat, and hyperbolic
geometries, respectively, of finite volume Σd−2, the latter
two cases being compact via identification [21–23]. The
Lovelock equations of motion derived from (1) then reduce
(after integration) to the following polynomial equation for
fðrÞ [24–26]:

PðfÞ ¼
XK
k¼0

αk

�
κ − f
r2

�
k
¼ 16πGNM

ðd − 2ÞΣd−2rd−1
≡mðrÞ; ð3Þ

whereM stands for the Arnowitt-Deser-Misner mass of the
black hole,

α0 ¼
α̂ð0Þ

ðd − 1Þðd − 2Þ ¼
16πGNP

ðd − 1Þðd − 2Þ ; α1 ¼ α̂ð1Þ;

αk ¼ α̂ðkÞ
Y2k
n¼3

ðd − nÞ for k ≥ 2 ð4Þ

are the rescaled Lovelock couplings, and P ¼ −Λ=ð8πGNÞ
is the thermodynamic pressure associated with the (neg-
ative) cosmological constant Λ [1].
The black hole given by (2) and(3) is characterized by

the following thermodynamic quantities [26]:

M ¼ ΣðκÞ
d−2ðd − 2Þ
16πGN

XK
k¼0

αkκ
krd−1−2kþ ; V ¼ Σd−2rd−1þ

d − 1
;

T ¼ jf0ðrþÞj
4π

¼ 1

4πrþΔ

�X
k

καkðd − 2k − 1Þ
�

κ

r2þ

�
k−1

�
;

S ¼ ΣðκÞ
d−2ðd − 2Þ
4GN

XK
k¼0

kκk−1αkrd−2kþ
d − 2k

; ð5Þ

where

Δ ¼
XK
k¼1

kαkðκr−2þ Þk−1: ð6Þ

These satisfy the standard (extended) first law

δM ¼ TδSþ VδPþ
XK
k¼1

Ψkδαk; ð7Þ

where V is a thermodynamic quantity conjugate to pressure
P, and Ψk are conjugates to couplings αk; explicit expres-
sions for Ψk are known [13] but we will not need them. For
our purposes, we shall concentrate on a thermodynamic
ensemble defined by the following (Gibbs) free energy:

G ¼ M − TS ¼ GðT; P; α1;…; αKÞ: ð8Þ

III. ISOLATED CRITICAL POINT

Let us now, for a moment, consider a very special case of
Lovelock gravity characterized by the following fine-tuned
Lovelock coupling constants [13,14]:

αk ¼ αKAK−k
�
K

k

�
; 2 ≤ k < K; ð9Þ

with α0 arbitrary, α1 ¼ 1, and A ¼ ðKαKÞ −1
K−1. In this case,

the polynomial PðfÞ drastically simplifies and yields the
following solution for f:

f ¼ κ þ r2A

�
1 −

�
mðrÞ − α0
αKAK þ 1

�
1=K

�
; ð10Þ

and the following equation of state:

P¼ðd−1Þðd−2Þα
16πGN

�
BK−1

�
2Kð2πrþTþ κÞ

ðd−1Þr2þ
−B

�
þAK

�
;

ð11Þ

where B≡ κ
r2þ
þ A.

Concentrating on the hyperbolic κ ¼ −1 case, we then
find a very special point given by

rc ¼
1ffiffiffiffi
A

p ; Tc ¼
1

2πrc
; Pc ¼

ðd− 1Þðd− 2ÞαK
16πGN

AK;

ð12Þ

for which ∂
kP
∂rkþ

¼ 0 for all k ¼ 1;…; K − 1 and ∂
KP
∂rKþ

is

negative. When K is odd, this describes an isolated critical
point where the two swallowtails in the free energy–
temperature diagram merge together. Such a point corre-
sponds to vanishing black hole mass M ¼ 0 and is
characterized by the following nonstandard critical expo-
nents [13,14]:

α̃ ¼ 0; β̃ ¼ 1; γ̃ ¼ K − 1; δ̃ ¼ K; ð13Þ
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similar to glass phase transitions [2] and in contrast to the
standard exponents from mean field theory.

IV. REPRESENTATIVE EXAMPLE IN d = 7
DIMENSIONS

While the above isolated critical point exists for all odd
K ≥ 3 and all corresponding higher dimensions, we now
focus on the “simplest” case with K ¼ 3 and d ¼ 7. Using
the following dimensionless quantities:

v ¼ rþ
ðα3Þ1=4

; t ¼ 5ðα3Þ1=4T; s ¼ ðα3Þ−5=4S;

g ¼ 1

Σd−2
α

3−d
4

3 G; p ¼ 4
ffiffiffiffiffi
α3

p
P; α ¼ α2ffiffiffiffiffi

α3
p ; ð14Þ

and setting α1 ¼ 1, the isolated critical point occurs at the
following critical value for α:

αc ¼
ffiffiffi
3

p
: ð15Þ

We display the corresponding characteristic behavior of the
free energy and the p − t phase diagram in Fig. 1. We
observe two swallowtails that emerge from the same
isolated critical point (ICP). This is reflected by the
corresponding p − t phase diagram (right) that features
two first-order phase transitions “interrupted” by the
isolated critical point.
Let us next consider different values of α, using the

general expressions (5) for the thermodynamic quantities.
As shown in [13,14], for α >

ffiffiffi
3

p
there are no physical

critical points present. On the other hand, as α decreases

FIG. 1. Isolated critical point: α ¼ ffiffiffi
3

p
. The free energy (left) displays two swallowtails that emerge from the same isolated critical

point. This is reflected by the corresponding p − t phase diagram (right) that features two first-order phase transitions interrupted by the
isolated critical point, which is consequently characterized by nonstandard critical exponents. The diagram is displayed for
d ¼ 7 and K ¼ 3.

FIG. 2. Emergence of two critical points for α <
ffiffiffi
3

p
. Left: as the coupling constant α is decreased from its critical value αc ¼

ffiffiffi
3

p
, the

two swallowtails “separate” and terminate in their own critical points. This corresponds (right) to the two first-order phase transitions
terminating at their own critical points CP1 and CP2—the vortex-antivortex pair has been created. The diagram is displayed for K ¼ 3,
d ¼ 7, and α ¼ 1.65.
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from its critical value, the two swallowtails separate and
“travel apart.” This gives rise to two new critical points
(CP1 and CP2), each of which terminates its own coex-
istence line of first-order phase transitions. A representative
example with α ¼ 1.65 is shown in Fig. 2. Interestingly, as
α decreases further, the second critical point (CP2) travels
to larger temperature and eventually disappears (at infinite
temperature) for

α ¼ αT ¼
ffiffiffiffiffiffiffiffi
5=3

p
; ð16Þ

below which only CP1 remains present.
As we shall now argue, decreasing α below its critical

value to α ¼ ffiffiffi
3

p
yields a topological phase transition

similar to vortex-antivortex pair annihilation.

V. THERMODYNAMIC TOPOLOGICAL
CHARGES

Following [18,19], let us now assign the topological
charges to the above critical points. This is done as follows.
The temperature of a black hole T ¼ TðS; P;…Þ at a
critical point obeys the following relation1:

�
∂T
∂S

�
P;…

¼ 0: ð17Þ

This allows one to write down a new “thermodynamic
potential” (relevant for critical points)

Φ ¼ 1

sin θ
T̃ðS;…Þ; ð18Þ

where T̃ is the black hole temperature obtained via (17)
upon eliminating P, and 1= sin θ is an auxiliary factor
allowing simplification of the critical point topology [18].
Defining the corresponding vector field ϕa ¼ ðϕS;ϕθÞ,

ϕS ¼
�
∂Φ
∂S

�
θ;…

; ϕθ ¼
�
∂Φ
∂θ

�
S;…

; ð19Þ

then yields the following topological current:

jμ ¼ 1

2π
ϵμνλϵab∂νna∂λnb ð20Þ

upon extending the ðS; θÞ space to xμ ¼ ðt; S; θÞ, with
na ¼ ϕa=jjϕjj and ∂μ ≡ ∂

∂xμ. The vector field ϕ vanishes at

typical critical points of the system; these are referred to as
the zero points of ϕ.
It is easy to show that ∂μjμ ¼ 0, from which we can

construct a topological charge,

Q ¼ 1

2π

Z
Σ
jμd2Σμ ¼

X
i

wi; ð21Þ

contained within a given region Σ in a surface in parameter
space with unit normal σμ, with d2Σμ ¼ σμd2Σ. The
quantity wi is the winding number for the ith zero point
of ϕ.

VI. VORTEX-ANTIVORTEX PAIR CREATION

Returning to our subject of interest, critical points will be
located along the θ ¼ π

2
axis in the ðs; θÞ plane, which we

can reparametrize as the ðv; θÞ plane using (5), since s is a
monotonically increasing function of v if α ≤

ffiffiffi
3

p
. For a

critical point located at ðv0; π2Þ, we can write

v ¼ a cosϑþ v0; θ ¼ b sin ϑþ π

2
ð22Þ

to parametrize a contour that is near a zero point of ϕ. From
this, the deflection

ΩðϑÞ ¼
Z

ϑ

0

ϵabna∂ϑnbdϑ ð23Þ

of the vector field along the given contour can be computed.
For ϑ ¼ 2π the contour surrounds the zero point and yields
from (21) the topological charge

Q ¼ 1

2π

Z
2π

0

ϵabna∂ϑnbdϑ ð24Þ

of the critical point. The “standard” critical point is
endowed with Q ¼ −1 and the unstable novel one dis-
cussed in [18] has Q ¼ 1.
Equipped with this classification, we now proceed and

calculate the topological charges of the isolated critical
point and of the two critical points that merge as the
parameter α is increased to its critical value. These critical
points together with the corresponding vector field na in the
ðv; θÞ plane are displayed in Fig. 3 for α ¼ ffiffiffi

3
p

(left) and
α ¼ 1.65 (right). We observe that the critical point CP1
represents a stable fixed point in the v direction, whereas
the CP2 is unstable. The corresponding topological charges
are given by

QðCP1Þ ¼ −1; QðCP2Þ ¼ þ1: ð25Þ

We find that the isolated critical point does not occur at a
zero of ϕ [nor does it obey (17)]; instead, this point is the
limit point approached by both CP1 and CP2 as α →

ffiffiffi
3

p

1As shown in [18], this relation together with a requirement of
vanishing of the vector field ϕ (defined below) is equivalent to
finding the standard critical points of the system. As we shall see,
this is, however, not the case of the isolated critical point for
which the procedure breaks down: ϕ does not vanish and
imposing (17) becomes inconsistent.
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from below. It is endowed (as expected) with zero topo-
logical charge,

QðICPÞ ¼ 0: ð26Þ

As the coupling α increases to its critical value, we see that
the vortex-antivortex pair has been annihilated. Reversing
the process (decreasing α from above), we observe the
creation of a vortex-antivortex pair.

VII. CONCLUSIONS

Using the novel framework of assigning topological
charges to critical points in black hole thermodynamics,
we have reanalyzed the physical interpretation of the
isolated critical point in Lovelock gravity. We have shown
that, while this isolated critical point is very special—
occurring for fine-tuned Lovelock couplings characterized
by α ¼ ffiffiffi

3
p

(in d ¼ 7 and K ¼ 3) and having nonstandard
critical exponents—its associated topological charge van-
ishes. However, as one decreases the coupling parameter α
from this value, two new critical points emerge—one
endowed with a negative topological charge (vortex) and
the other with an equal but opposite positive topological
charge (antivortex). This suggests that an isolated critical
point can be interpreted as the onset of vortex-antivortex–
like pair creation in black hole thermodynamics.
Such an interpretation, however, should be treated with

caution. In particular, recall that, although the two emergent
critical points are displayed in the same Fig. 3, this is only a
“projection” and the actual critical points occur at slightly
different physical pressures (see Fig. 2), whose spread
becomes wider as α decreases and thence are never present
in the phase diagram simultaneously. Of course, this feature

could change upon considering a different thermodynamic
ensemble, for example, the one introduced in [11].
An examination of the topological charges of the critical

points associated with charged black holes in Gauss-
Bonnet gravity [19] indicated that some care needs to be
taken in the classification of the critical points. For
increasing pressure, conventional/novel critical points were
associated with the disappearance/appearance of new
phases. As Fig. 2 indicates, our results are in accord with
this classification.
Let us finally speculate on potential connections of

our findings with topological phase transitions in two-
dimensional spin systems. It is well known that such
systems feature vortex-antivortex pair creation at any finite
temperature. However, for low enough temperatures such
vortices are not free and quickly recombine. Nevertheless,
there exists a critical temperature, known as the Kosterlitz-
Thouless temperature [27], above which the presence of
vortices is thermodynamically favorable and the vortices
“roam free” in the system. It would be interesting to see if
one could correspondingly define some critical α for which
the two vortices observed in the black hole system could be
considered free, completing the analogy with topological
phase transitions in the framework of black hole thermo-
dynamics. A very suggestive value in this direction seems
to be α ¼ ffiffiffiffiffiffiffiffi

5=3
p

, below which one of the vortices has
moved to infinity and no longer appears in the phase
diagram.
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FIG. 3. Vortex-antivortex pair creation. We display the vector field na and its corresponding fixed points in ðv; θÞ plane for two values
of α. Left: setting α ¼ ffiffiffi

3
p

, there are no fixed points of na, and the ICP (displayed by the red cross) is endowed with a zero topological
charge (calculated, for example, along the red contour displayed in the figure). Right: setting α ¼ 1.65, two critical points have emerged
from the isolated critical point. The one on the left (vortex) is endowed with negative topological charge, the one on the right (antivortex)
has positive topological charge.
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