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We revisit the motion of massless particles with anyonic spin in the horizon of Kerr-Newman geometry.
As recently shown, such particles can move within the horizon of the black hole due to the coupling of
charges associated with a two-parametric central extension of the two-dimensional Carroll group to the
magnetic field generated by the black hole—the so-called “anyonic spin-Hall effect.” We show that the
previously computed magnetic field is not invariant under Carroll diffeomorphisms and find another result
which respects these symmetries of the horizon. We also consider a more astrophysically relevant case of a
(weakly charged) rotating back hole placed in a uniform magnetic field, which could, for instance, be
induced by the surrounding plasma. We show that a qualitatively similar magnetic field assisted anyonic
spin-Hall effect takes place, even in the absence of black hole rotation. The theoretical possibility of a
motion induced by a magnetic monopole is also studied.
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I. INTRODUCTION

Black holes are among the most fascinating objects in
our Universe. Their fundamental characteristic is the
existence of the black hole horizon where many interesting
physical phenomena are predicted to happen. Among these,
the most puzzling is the quantum black hole evaporation [1]
and the associated black hole information paradox [2–5].
From a classical perspective, the event horizon is the
surface which defines the point of no return for infalling
observers. In fact, any massive particle would require
infinite proper acceleration to remain on the horizon.
However, the event horizon is also a null surface, which
implies that, in principle, a massless particle could stay on
the horizon without falling into the black hole.
The symmetry group of a null surface is the Carroll

group, which can be thought of as the vanishing speed of
light limit, c → 0, of the Poincaré group [6–8]. The
dynamics of particles in Carroll manifolds can be formu-
lated in an associated Carroll-homogeneous symplectic
manifold [9]. These so-called Carroll particles then have
unique dynamics that is a consequence of the particular
group structure that defines them. This procedure can also

be carried out in the horizon of a black hole, and the
associated dynamics of Carroll particles living in the
horizon can be studied.
Although it has been well known that Carroll fluids have

nontrivial dynamics [10–12], until recently, it was thought
that a single Carroll particle could not move [7,10,13,14].
This belief was disproven in the case of (2þ 1) Carrollian
manifolds in Ref. [9], where it was shown that by
considering the double central extension of the Carroll
group, one endows a Carroll particle with two central
charges. This allows a massless chargeless particle with
anyonic spin to move under the influence of a magnetic
field in a Carroll manifold.
The results of Ref. [9] were first applied to black holes in

Refs. [15,16], where the authors found an analog to the
spin-Hall effect for massless Carrollian particles in the
horizon of a Kerr-Newman black hole, which they termed
the anyonic spin-Hall effect. The induced magnetic field of
the charged rotating black hole couples to the Carroll
particle and results in nontrivial motion in the horizon.
However, as we will show in this manuscript, the method
used in Refs. [15,16] to compute the magnetic field induced
in the horizon gives a field that does not respect the Carroll
symmetry, making it incompatible with the application of
the results of Ref. [9].
In this manuscript we find a consistent way of inducing

an electromagnetic tensor in the horizon, which respects its
induced Carrollian symmetries. This allows us to restate the
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results of Refs. [15,16], with another expression for the
resulting magnetic field. We also apply the double central
extension of the Carroll group to the dynamics of anyonic
particles in the horizon of astrophysically more relevant
spacetimes of weakly charged rotating black holes placed
in an external magnetic field [17], obtaining so the
“assisted” anyonic spin-Hall effect.
Our manuscript is organized as follows. In Sec. II we

review the basic properties of the horizon of a Kerr-Newman
black hole and discuss its Carrollian structure. In Sec. III we
apply the results of Ref. [9] to the motion of a massless
anyonic particle in this horizon, offering an alternative to the
magnetic field employed inRefs. [15,16]. InSec. IVwe show
that the new magnetic field respects the Carroll symmetries
of the horizon, favoring it against themagnetic field obtained
in Refs. [15,16]. In Sec. V we consider the motion of a
Carrollian particle in a rotating black hole in an external
magnetic field. Section VI deals with a possibility of
including black holes with a magnetic monopole. The
conclusions of our work can be found in Sec. VII.

II. THE HORIZON OF KERR-NEWMAN
BLACK HOLES

The Kerr-Newman solution [18] describes charged and
rotating black holes in Einstein-Maxwell theory. The
corresponding metric in the ingoing Kerr coordinates
ðv; r; θ;ϕÞ is given by

ds2 ¼ −
Δ
Σ

�
dv −

Σ
Δ
dr − asin2θdϕ

�
2

þ Σ
Δ
dr2

þ sin2θ
Σ

ðadv − ðr2 þ a2ÞdϕÞ2 þ Σdθ2; ð1Þ

where

Σ ¼ r2 þ a2cos2θ;

Δ ¼ r2 þ a2 þQ2 − 2Mr: ð2Þ

M describes the black hole mass, Q is its charge, and
J ¼ Ma is the hole’s angular momentum, written in terms
of the rotation parameter a. The metric admits two Killing
vectors: ∂v and ∂ϕ, corresponding to time translations and
angular rotations along the axis of angular momentum of
the black hole.
The metric (1) solves the Einstein equationsGμν¼8πTμν,

where

Tμν ¼ −
1

4π

�
FμαFα

ν þ
1

4
gμνFαβFαβ

�
ð3Þ

is the stress-energy momentum tensor of the electromag-
netic field Fμν ¼ ∂μAν − ∂νAμ, derived from the following
gauge potential:

A ¼ −
Qr
Σ

ðdv − asin2θdϕÞ: ð4Þ

The field strength Fμν obeys the vacuum Maxwell
equations ∇μFμν ¼ 0. More explicitly, it can be written
as follows:

F ¼ Q
Σ2

ðr2 − a2cos2θÞdr ∧ ðdv − asin2θdϕÞ

−
2aQr
Σ2

sin θ cos θdθ ∧ ðadv − ðr2 þ a2ÞdϕÞ: ð5Þ

The black hole horizon is located at the largest root

of ΔðrÞ ¼ 0, at rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 −Q2

p
. When M2 ¼

a2 þQ2, the horizon becomes degenerate, and the black
hole is called extremal. The chosen coordinates are regular
on the horizon (the apparently singular dr2 terms cancel
out). The horizon is the (2þ 1) null surface generated by
the spacelike vectors ∂θ and ∂ϕ and the null vector
ξ ¼ ∂v þΩþ∂ϕ, where

Ωþ ¼ a
r2þ þ a2

ð6Þ

is the angular velocity of the horizon.
Taking into account the angular velocity of the horizon,

one can perform a change of coordinates, which takes this
rotation under consideration. We define

φ ¼ ϕ − Ωþv ð7Þ

so that the metric in the new coordinates ðv; r; θ;φÞ reads

ds2 ¼ −
Δ
Σ

�
r2þ þ a2cos2θ

r2þ þ a2
dv − Σ

Δ
dr − asin2θdφ

�
2

þ sin2θ
Σ

�
a

�
r2þ − r2

r2þ þ a2

�
dv − ðr2 þ a2Þdφ

�
2

þ Σ
Δ
dr2 þ Σdθ2: ð8Þ

In these coordinates, the vector ∂v is then tangent to the
horizon and null at r ¼ rþ. The electromagnetic potential
reads

A ¼ −
Qr
Σ

�
r2þ þ a2cos2θ

r2þ þ a2
dv − asin2θdφ

�
; ð9Þ

and the electromagnetic field can be written as
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F¼ Q
Σ2

ðr2−a2cos2θÞdr∧
�
r2þþa2cos2θ

r2þþa2
dv−asin2θdφ

�

−
2aQr
Σ2

sinθcosθdθ∧
�
a

�
r2þ−r2

r2þþa2

�
dv−ðr2þa2Þdφ

�
:

ð10Þ

One can then obtain a null form normal to the horizon, nμ
which is orthogonal to ∂θ and ∂r and such that nμξμ ¼ 1. It
is explicitly given by

n ¼ dv −
aðr2þ þ a2Þ

Σþ
sin2θdφ; ð11Þ

where Σþ denotes Σ evaluated at r ¼ rþ. Using ξ and n one
can define the projector into the horizon as

qμν ¼ δμν − ξμnν − nμξν; ð12Þ

or, in terms of the basis of 1-forms,

q ¼ ðr2þ þ a2Þ2sin2θ
Σþ

dφ2 þ Σþdθ2: ð13Þ

The latter represents a degenerate metric on a (2þ 1)
surface. The horizonH is therefore a null 2þ 1 surface but
with a degenerate metric. Therefore we cannot study it as
any other (pseudo-)Riemannian manifold embedded in
spacetime. Recently it was shown [19] that black hole
horizons can be endowed with a Carrollian structure [20].
This structure not only allows for a consistent treatment of
null surfaces, but also makes explicit the symmetries of
black hole horizons.
The starting point is constructing coordinates ðv; ρ; θ;φÞ,

valid sufficiently close to the horizon, such that the metric
acquires a simple form [21]. The construction procedure is
carefully described for general spacetimes in Ref. [22] and
then specified to the case of the Kerr-Newman black hole.
The metric in these new coordinates is

ds2 ¼ −ρα2dv2 þ 2dvdρ − 2ρUAdvdxA

þ ðΩAB − ρλABÞdxAdxB þOðρ2Þ; ð14Þ

where, denoting χþ ≡ r2þ þ a2 and Δ0þ ¼ Δ0ðrþÞ ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 −Q2

p
, we have

α2 ¼ Δ0þ
χþ

; Uθ ¼
2a2 sin θ cos θ

Σþ
;

Uφ ¼ a sin2θ
Σ2þ

½2rþχþ þ ΣþΔ0þ�;

Ωθθ ¼ Σþ; Ωφφ ¼ χ2þ
Σþ

sin2θ; ð15Þ

and finally λAB is given by

λθθ ¼
2rþχþ
Σþ

; λθφ ¼−
2χþa3sin3θcosθ

Σ2þ
;

λφφ¼ χþsin2θ
2rþχþΣþ−a2sin2θð2rþχþþΔ0þΣþÞ

Σ3þ
: ð16Þ

In these coordinates the horizon is located at ρ ¼ 0, where ρ
is the affine distance to the horizon. Notice that the induced
metric at the horizon q is obtained in this coordinates by
just setting ρ ¼ 0, where it is explicitly degenerate. The
coordinate v is the advanced Eddington-type coordinate,
which acts as a “null clock” in the horizon. The coordinates
xA ¼ fθ;φg parametrize the angular direction in the two-
dimensional slices of the horizon at fixed v.
The gauge potential can also be written as a Taylor

expansion in ρ in these coordinates. To leading order in ρ its
components are explicitly given by [22,23]

Av ¼ −
Qrþ

r2þ þ a2
þOðρÞ; Aρ ¼ Oðρ2Þ; Aθ ¼ OðρÞ;

Aφ ¼ aQrþsin2θ
r2þ þ a2cos2θ

þOðρÞ: ð17Þ

There is a natural class of diffeomorphisms that act on
the 2þ 1-dimensional horizon, defining its symmetry
group: the Carroll group [24]. These can be obtained as
the projection of spacetime diffeomorphisms into the
horizon. The infinitesimal generators of the Carroll algebra
can be written as

χ ¼ fðv; xAÞ∂v þ YAðxBÞ∂A; ð18Þ

for an arbitrary supertranslation f and a superrotation YA.
The Carroll group appears naturally [7,13] when one
considers the contraction of the usual Poincaré group as
the speed of light goes to zero, c → 0. In that sense, the
Carroll group is dual to the Galileo group, where the
concepts of space and time get interchanged. The remark-
able observation is that this group also appears as the
symmetry group of the metric (14) as one takes surfaces
with constant ρ, in the limit where ρ → 0, i.e. in the horizon
of a black hole. We will use the fact that the coordinate ρ
plays a similar role in the gravitational sector to the one
played by the speed of light in Minkowski space when we
discuss the induced magnetic field in the horizon of a
black hole.
Now we show explicitly that the horizon H can be

endowed with a Carroll structure. This structure is given by
a fiber bundle p: H → S, where S has the topology of S2

and is just any constant v slice, S ¼ Hjv¼v0 . The projection
is the usual projector constructed from the metric, and the
surface S is a Riemannian manifold with a metric given by
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dl2 ¼ ΩABdxAdxB ¼
X
Â¼1;2

ðeÂÞ2; ð19Þ

where the latter represents the orthonormal frame. The fiber
bundle has a vertical vector field given by ∂v, which
generates the vertical space (the “time” evolution). In order
to have a full Carroll structure a preferred horizontal
subspace is needed in order to define a connection which
is covariant under Carrollian diffeomorphisms. In this case,
the covariant derivative is given (in a schematic way) by

∇A ↦ ∇̂A ¼ ∂̂A þ Γ̂A; ð20Þ

where Γ̂A are the Carroll-Levi-Civita symbols and the
partial derivatives get corrected as [8,22]

∂̂A ¼ ∂A þ UA

α2
∂v: ð21Þ

In the following, both the background metric and the fields
are static (in v), so the Carroll-covariant derivative coin-
cides with the usual covariant derivative. We refer the
interested reader to Ref. [8] for a complete exposition on
the emergence of the Carroll structure on null surfaces.

III. MOTION OF CARROLLIAN PARTICLE
IN THE HORIZON

In Ref. [9] it was shown that a massless spinless particle
confined in a (2þ 1) Carrollian manifold admits a non-
trivial equation of motion in the presence of magnetic field.
In a (2þ 1)-dimensional manifold equipped with coordi-
nates xa ¼ ðv; xAÞ, the electromagnetic tensor can be
decomposed as

F̃ ¼ EAdv ∧ dxA þ F̂; ð22Þ

where

F̂ ¼ 1

2
FÂ B̂e

Â ∧ eB̂ ¼ Be1̂ ∧ e2̂: ð23Þ

Whereas EA can change under the Carrollian diffeomor-
phisms,

B ¼ 1

2
ϵABF̂AB ð24Þ

is a scalar under the action of the Carroll group (including
the possible rotation of the orthonormal frame).
In Ref. [9] the authors show that the equations of motion

for the massless spinless particle undergoing a trajectory
xAðvÞ, A ¼ 1, 2 are

dxA

dv
¼ μχ

κmag
ϵAB∂BB; ð25Þ

where v is the Carrollian time, μ is the magnetic moment of
the particle, χ its anyonic spin and κmag is a central
extension parameter which allows for the particle to couple
to electromagnetism. ϵAB is the Levi-Civita tensor of the
two-dimensional metric (19) (including its determinant:
ϵ12 ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi
detΩ

p
). This equation of motion can be com-

pared to the (three-dimensional) equation of motion
describing the spin-Hall effect [25]:

dxi

dv
¼ −eðE × ΘÞi; ð26Þ

where e is the electric charge of the spinning particle, Θ its
Berry phase, and E the external electric field. If Eq. (26) is
restricted to a plane with Θ normal to it, we recover an
analog of Eq. (25) for the motion of an exotic photon by
identifying the electric charge e with the combination μχ,
the electric field E with the gradient of the magnetic field
∂iB, and the magnetic field responsible for the Berry phase
with κmag [15,16].
The results above show that it is, at least in principle,

possible for a massless anyonic particle to live in the
horizon and undergo a nontrivial motion due to the
magnetic field of the black hole. In fact, this is what
was explored in Refs. [15,16]. In order to obtain the
equations of motion for such a particle, it is enough to
find the induced scalar magnetic field in the horizon. In
Refs. [15,16] the authors find

Bref ¼
2aQrþðr2þ þ a2Þ cos θ

ðr2þ þ a2cos2θÞ3 ¼ ð⋆FÞrv ð27Þ

and thus obtain the corresponding equation of motion from
Eq. (25). This magnetic field can be obtained via the
operation

Bref ¼
1ffiffiffiffiffiffi−gp Fθφ

���
r¼rþ

¼ Fθφ

Σ sin θ

���
r¼rþ

: ð28Þ

However, one could argue that perhaps a more natural way
of obtaining such a magnetic field is by projecting the
electromagnetic tensor in the horizon, using the projector
qμν [Eq. (12)]. We define the projected electromagnetic
tensor F̃ as

F̃ab ¼ qμaqνbFμν: ð29Þ

Notice that we have written F̃ as the projection of the
electromagnetic tensor in the (2þ 1)-dimensional horizon,
taking into account both its spacelike and lightlike direc-
tions. We are interested in this projection because it is the
(2þ 1)-dimensional horizon which can be regarded as a
Carrollian manifold. We obtain
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F̃ ¼ 2Qarþðr2þ þ a2Þ sin θ cos θ
ðr2þ þ a2cos2θÞ2 dθ ∧ dφ: ð30Þ

To extract B we compare this to Eq. (22). Namely, we write
the metric (19) in an orthonormal frame

e1̂ ¼ eθ̂ ¼ ffiffiffiffiffiffi
Σþ

p
dθ; e2̂¼ eφ̂ ¼ðr2þþa2Þsinθffiffiffiffiffiffi

Σþ
p dφ: ð31Þ

Using Eq. (24) then yields

B ¼ 2aQrþ cos θ
ðr2þ þ a2cos2θÞ2 : ð32Þ

This is nothing else than Fθφ evaluated on the horizon and
written in the orthonormal frame.
The two magnetic fields obtained in Eqs. (27) and (32)

are obviously different. (While in both cases the direction
of the magnetic field is the same, in Refs. [15,16] the
magnitude of the magnetic field is larger than in our case
for all values of θ.) However, there should be no ambiguity
in prescribing a physical quantity that directly impacts the
dynamics of a particle. In order to address which pre-
scription of the magnetic field is correct, one requires to
study in detail the compatibility of electromagnetism in
(2þ 1) with the symmetries of a Carroll manifold used to
derive the equations of motion in Ref. [9].

IV. INDUCED CARROLLIAN
ELECTROMAGNETISM

Previously we have discussed that the horizon can be
endowed with a Carroll structure. The structure emerges as
the ρ → 0 limit in an adapted set of coordinates. This limit
turns out to be equivalent to the c → 0 limit of the Poincaré
group. This identification breaks the Lorentz invariance:
the quantities that are well defined in the Carroll structure
must transform covariantly under Carrollian diffeomor-
phisms and not under the whole group of diffeomorphisms.
Therefore, the symmetries at the horizon give a natural
prescription to define the induced magnetic field, which is
the object of our interest. Wewill first discuss how to obtain
this for a usual electromagnetic theory defined on (2þ 1)-
dimensional Minkowski space, where the Carroll limit
appears as the limit in which the speed of light vanishes.
Then we will make use of the analogy that connects this
limit to the near-horizon limit in order to extend the
construction to obtain a consistent electromagnetic theory
at the horizon.
Let Aμ be the electromagnetic potential in Minkowski

spacetime, which we can decomposed as ðAt=c; AAÞ. These
quantities can be expanded in powers of the speed of
light as

At ¼ cp
X∞
n¼0

AðnÞ
t c2n; AA ¼ cp

X∞
n¼0

AðnÞ
A c2n ð33Þ

for some positive constant p. In Ref. [26] it was proved
that only the leading order term of the expansion,

Að0Þ ¼ ðAð0Þ
t =c; Að0Þ

A Þ, is invariant under Carroll diffeomor-
phisms. Indeed, it is not hard to check that Carrollian boosts
will mix different powers of the speed of light. Since we
know that the induced electromagnetic field in the
Carrollian structure (which arises as the c → 0 limit) must
be Carroll covariant, it must be given by the Að0Þ sector.
Notice that there is another possibility to take the c → 0
limit and obtain a consistent Carrollian electromagnetism,
dubbed electric contraction in Ref. [27] (as opposed to the
contraction taken here, referred to asmagnetic contraction).
That contraction, however, involves rescaling the fields
with powers of c (see below).
Now we can discuss the electromagnetic field around a

charged rotating black hole. Using the analogy between the
roles played by ρ in this case and c in the discussion above,
we consider the expansion of Eq. (17). We notice that this
expansion is precisely the expansion (33) considering ρ
instead of c. Therefore, the Carroll-covariant sector is just
given by the following contribution:

Að0Þ ¼ aQrþsin2θ
r2þ þ a2cos2θ

dφ: ð34Þ

The ρ component must vanish since we are taking the
projection onto the horizon.1 Indeed, setting ρ ¼ 0 in
Eq. (4), we obtain Eq. (34) for the gauge potential apart
from a pure gauge term in the dv term. Notice that in our
case the gauge potential is fixed, since the Carroll structure
of the horizon is actually embedded in the Kerr-Newman
spacetime. Therefore we are not free to rescale the gauge
potential with powers of ρ, as to obtain an electric
contraction: such a rescaling would violate the Einstein
equations. For this reason, the only consistent Carroll-
covariant electromagnetism is given by the magnetic
contraction.
The magnetic field can be consistently calculated from

Eq. (24), where FAB ¼ 2∂½AAB�, obtaining directly

B ¼ 2aQrþ cos θ
ðr2þ þ a2cos2θÞ2 ; ð35Þ

which is the same result as taking the projection of the
magnetic field onto the horizon in Eq. (32). This should not
be surprising because the ρ → 0 limit is essentially a
suitable way to project into the horizon such that the

1In this sense the structure does not depend on any foliation of
stretched horizons. This is just a convenient tool that allows us to
choose a particular set of coordinates where the Carroll structure
becomes more intuitive.
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horizon structure is manifest. Actually the geodesic embed-
ding of the horizon is just a way of writing the embedded
surface in Gaussian null coordinates.
Going back to the motion of a Carrollian particle in the

horizon, its equations of motion can be read directly from
Eq. (25):

dθ
dv

¼ 0;

dφ
dv

¼ 2Qμχ

κmag

arþ
Σ3þðr2þ þ a2Þ ðr

2þ − 3a2cos2θÞ: ð36Þ

These exotic particles would exhibit a circular azimuthal
motion at the horizon; see Fig. 1. When the spin and charge
parameters are both small then the particle would corotate
with the spin of the black hole depending on the relative
sign of the magnetic moment μ and the charge of the black
hole Q. However, if the black hole is sufficiently close to
extremality, the direction of the rotation changes when
moving closer to the poles (an interesting effect not
discussed in Refs. [15,16]). The range of parameters where
this effect happens is shown in Fig. 2. In particular, that
implies that there are particular points at the horizon where
the exotic particles would not move due to the vanishing
gradient of the induced magnetic field.
We show explicitly this behavior in Fig. 1. This allows

for an interesting thought experiment: two exotic photons
with opposite magnetic moments could be placed to
corotate at very close latitudes within the horizon due to
the same magnetic field. This could lead to intriguing
effects if the particles were allowed to couple to each other,
since it was shown that despite the ultrarelativistic limit,
Carrollian particles can retain nontrivial interactions [10].

V. ASSISTED ANYONIC SPIN-HALL EFFECT

There is another example of an (astrophysically well-
motivated) black hole horizon where we can have nontrivial
Carrollian motion—that of a (possibly weakly charged)
black hole in a uniform magnetic field [17].
In a test field approximation, the corresponding vector

potential can be obtained from the underlying isometries of
the Kerr solution. Namely, consider a spacetime with a
Killing vector ζ, i.e.

FIG. 1. Carrollian motion at the horizon. Schematic represen-
tation of the velocity field of the Carroll particle with μχ=κmag ¼
1 for two different black holes, as indicated in the figure. The
color of the arrows indicates the magnitude of the velocity, with
brighter colors corresponding to larger values. The green arrow
indicates the direction of angular momentum of the black hole.

0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

FIG. 2. Region in the parameter space ða=M;Q=MÞ where the
exotic particles rotate in opposite directions in different regions
of the horizon. The black dashed line represents an extremal
black hole.
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∇μζν þ∇νζμ ¼ 0: ð37Þ

Then, expressing the second derivative of the Killing field
in terms of the Riemann tensor and using the Bianchi
identity we have the following integrability condition:

∇μ∇νζρ ¼ ζσRσμρν; ð38Þ

where Rσμνρ is the Riemann tensor. Identifying the gauge
field with the Killing vector,

Aμ ∝ ζμ ⇔ Fμν ∝ ∇μζν ¼ ∇½μζν�; ð39Þ

we thus have dF ¼ 0, and

∇μFμν ¼ Rμ
νζμ: ð40Þ

That is, in vacuum (where Rμν ¼ 0), ζ gives rise to the
solution of vacuum Maxwell equations via Eq. (39).
Following Wald [17] we apply this to the Kerr spacetime

(1), where Δ ¼ r2 þ a2 − 2Mr. Choosing B0 to represent
the strength of the constant magnetic field surrounding the
black hole and Q0 to represent a small charge for the black
hole, one finds the following vector potential:

A¼ 1

2
B0ðð1−2aΩþÞ∂φþ2a∂vÞ−

Q0

2M
ð∂v−aΩþ∂φÞ; ð41Þ

upon employing the two Killing vectors of the Kerr
geometry ∂v −Ωþ∂φ and ∂φ. Lowering the index and
performing a simple gauge transformation, we thus have

A ¼ −
Q0r
Σ

�
Σþ

r2þ þ a2
dv − asin2θdφ

�

−
B0ð1þ cos2θÞaΔ

2Σ

�
Σþ

r2þ þ a2
dv − asin2θ dφþ dr

�

−
B0ðr4 − a4Þ

2Σ
dφ: ð42Þ

Notice that the electromagnetic potential can then be
written as Eq. (4) for a charged black hole added to a
new term associated with the external magnetic field B0.
One can repeat the procedure outlined in Sec. IV to find

the induced magnetic field driving the exotic Carrollian
motion. In fact one finds the identical expression but with a
renormalized charge or field magnitude:

B ¼ ðB0ðr4þ − a4Þ þ 2aQ0rþÞ cos θ
ðr2þ þ a2cos2θÞ2 : ð43Þ

Notice that the test charge enters into this expression in the
same way as the charge in the Kerr-Newman case.
Equation (43) allows us to interpret the anyonic spin-

Hall effect in terms of the effective magnetic field seen by

Carrollian particles in the black hole. Namely, let BQ
denote the constant that characterizes the magnetic field
induced by the black hole’s charge Q:

BQ ¼ 2aQrþ
r4þ − a4

: ð44Þ

Then, the total induced magnetic field in the horizon of a
weakly charged rotating black hole in an external magnetic
field (43) can be written as

B ¼ ðBQ þ B0Þðr4þ − a4Þ cos θ
ðr2þ þ a2cos2θÞ2 : ð45Þ

That is, the dynamics of the Carroll particle will be the
same as the one found for a Kerr-Newman black hole, but
with the above change in the corresponding magnetic field,
BQ → BQ þ B0. It is then possible to both increase the
anyonic spin-Hall effect, or to decrease it, by using an
external B0 field. For this reason we call this the assisted
anyonic spin-Hall effect. Notice that by choosing a mag-
netic field opposite to the direction of rotation of the black
hole, it is also possible to completely cancel the effect and
to make the Carroll particles stand still in the horizon
regardless of their charge or spin.
Moreover, it is interesting that this induced magnetic

field in the horizon will survive even in the limit of zero
rotation of the black hole. That is, if one considers a
Schwarzschild black hole immersed in an (asymptotically
constant) magnetic field, the exotic Carrollian motion will
persist on its horizon. Taking the a → 0 limit, the magnetic
field becomes simply

B ¼ B0 cos θ: ð46Þ

An exotic photon like the one considered before would then
exhibit a circular motion with period T¼2πκmagr2s=ðB0μχÞ,
where rs ¼ 2M is the Schwarzschild radius. Notice that
this period is independent of the position of the particle on
the horizon.
On the other hand, for the extremal Kerr black hole, we

have rþ ¼ a. It is well known that in that case the external
magnetic field is expelled from the horizon—the so-called
black hole Meissner effect, e.g. [28–31]. In such a case, the
contribution of B0 drops out in Eq. (43), and only the
charged induced magnetic field contributes:

B ¼ 2Q cos θ
a2ð1þ cos2θÞ2 : ð47Þ

VI. EFFECT OF A MAGNETIC MONOPOLE

Let us finally study the effect of a magnetic charge on
the motion of Carrollian particles. In the presence of a
magnetic monopoleQm, the Kerr-Newman metric takes the
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same form of Eq. (8), with the replacement of the function
Δ by

Δ ¼ r2 þ a2 − 2MrþQ2
e þQ2

m; ð48Þ

while the vector potential extends as

A ¼ −
Qer
Σ

�
r2þ þ a2cos2θ

r2þ þ a2
dv − asin2θdφ

�

þQm cos θ
Σ

�
a

�
r2 − r2þ
r2þ þ a2

�
dvþ ðr2 þ a2Þdφ

�
; ð49Þ

where we now use Qe to denote the electric charge. In this
case, we find the following induced magnetic field:

B ¼ 2Qearþ cos θ −Qmðr2þ − a2cos2θÞ
ðr2þ þ a2cos2θÞ2 : ð50Þ

The appearance of the new term qualitatively modifies
the induced motion on the horizon. Namely, the presence of
a magnetic monopole causes a phase shift in velocities
and an asymmetry between the north and south poles, as
depicted in Fig. 3.

VII. CONCLUSIONS

We have studied the motion of massless particles with
anyonic spin and no charge in the horizon of a Kerr-
Newman black hole. Through our analysis we found that
the magnetic field previously prescribed in Refs. [15,16] is

not compatible with the Carrollian structure induced at the
black hole horizon and, thus, is inconsistent with the
equations of motion in a Carroll manifold [9]. We then
computed the Carroll invariant magnetic field induced in
the horizon and obtained the corresponding equations of
motion for a Carroll particle. The resulting magnetic field is
smaller in magnitude than the one previously found but
points in the same direction, so that massless anyonic
particles rotate around the axis of rotation of the black hole,
displaying the anyonic spin-Hall effect described in
Refs. [15,16]. Interestingly, for “near-extremal” black
holes, there are regions close to the poles on the horizon
where the Carrollian particles counterrotate to the particles
at lower latitudes, the two being separated by a critical
latitude (a transition region) where the particle remains at
rest. Using this effect, it would be tempting to study the
interaction of two particles with opposite magnetic
moments that corotate at close latitudes near the critical
latitude.
We also studied the case where a weakly charged Kerr-

Newman black hole is immersed in an external magnetic
field. Exploring this case allowed us to define a constant,
BQ ¼ 2aQrþ=ðr4þ − a4Þ, which characterizes the induced
magnetic field in the horizon of a charged black hole with
charge Q. We then showed that the effect of the external
magnetic B0 field is to change the magnetic field BQ to
BQ þ B0. Thus, if the magnetic field points opposite to
the axis of rotation of the black hole, it might prevent the
motion of the Carroll particle or generate motion against the
direction of angular momentum. Overall, we have charac-
terized the assisted anyonic spin-Hall effect in black hole
horizons.
Finally, we have extended our considerations by

allowing the presence of a magnetic charge in rotating
black hole spacetimes. This leads to a qualitatively different
picture, where the Carrollian velocity is no longer sym-
metric between the north and south poles and a phase shift
in velocities is observed.
For future studies, it would also be interesting to study

the motion of Carrollian particles induced by other mag-
netic fields around black holes, for example, to consider
the fully backreacting Ernst solution [32], the fields of
various sources outside of the black hole [28], solutions of
force-free electrodynamics [33], or the magnetic fields
of cosmic strings piercing the black hole horizon [34].
One may also be tempted to look at the cases where (very
strong) magnetic fields feature deviations from Maxwell’s
theory and are described by nonlinear electrodynamics,
e.g. [35]. Perhaps the most important open question is
whether the demonstrated motion of Carrollian particles in
the horizon, despite being an interesting mathematical
possibility, could produce some observational features
that could (at least in principle) be measured in future
experiments. We leave this important question for future
studies.

FIG. 3. Effects of magnetic charge. Here we plot a comparison
of the Carrollian velocity in the φ direction generated by the
induced magnetic fields at the horizon. The velocity for ordinary
Kerr-Newman is shown in blue and in red for magnetically
charged (dyonic) Kerr-Newman. We choose the same electric
charge Qe ¼ 0.1M and a ¼ 0.95M for both plots, while in the
case of magnetic charge we pickQm ¼ Qe=2. These are such that
the black holes are not extremal. One can see the presence of a
magnetic monopole causes a phase shift in velocities and an
asymmetry between the north and south poles.
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[13] J.-M. Lévy-Leblond, Une nouvelle limite non-relativiste
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