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Spacetimes representing expanding impulsive gravitational waves propagating on a flat background
are studied. The impulses are generated by various configurations of snapped cosmic strings. Employing
the previous results [J. Podolský et al., The global uniqueness and C1-regularity of geodesics in expanding
impulsive gravitational waves, Classical Quantum Gravity 33, 195010 (2016)], analyzing the geodesic
motion in generic expanding impulses, we investigate geometric properties of more intricate stringlike
wave sources than the standard case of a single snapped string. Such solutions representing pairs of
snapping strings were technically derived in Podolský and Griffiths [The collision and snapping of cosmic
strings generating spherical impulsive gravitational waves, Classical Quantum Gravity 17, 1401 (2000)],
however, the corresponding physical analysis requires to introduce their generalizations to point out various
subtleties in the construction. As the main tool, we thus use the close connection between the spacetime
structure and the motion of free test particles crossing the impulse. Within our contribution, the explicit
models of a boosted snapped cosmic string and boosted perpendicular or parallel configurations of string
pairs are discussed in detail.
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I. INTRODUCTION

Interestingly, the prediction of gravitational waves (GW)
became an immediate consequence of Einstein’s geometric
description of gravity in terms of curved spacetime. The
analysis of the weak-field regime [1,2] as well as pioneer-
ing studies of invariants within full theory [3,4] pointed out
their inherent properties and gave quantitative estimates
about the magnitude of typical amplitudes. Simultaneously,
it became clear that their observation is going to be very
challenging or even impossible. In 1974 Hulse and Taylor
discovered the binary pulsar PSR 1913þ 16 [5]. The
systematic measurements of its orbital period shifts exactly
corresponded to the gravitational energy loss radiated away
in the form of GWs. This was in perfect agreement with the
general relativity (GR) prediction and endorsed the hunt for
their direct detection. The unrelenting effort was rewarded
in 2015 when the LIGO facility detected a signal produced
by merging pair of black holes more than one billion light
years away [6]. Until now, dozens of other events have
been detected with the prominent case of merging neutron
stars [7], where the GW signal was supplemented by
observations in the whole range of the electromagnetic
spectrum.

These ultimate experimental achievements are based
on sophisticated numerical simulations. However, to better
understand the GW properties, or to verify various models
and numerical schemes, even the exact analytical radiative
spacetimes are necessary. The most important wavelike
solutions to Einstein’s general relativity belong to the
expanding Robinson-Trautman and nonexpanding Kundt
classes of exact spacetimes [8–11], see [12,13] for the
comprehensive review. Interestingly, both these classes
allow for the impulsive profiles of the wave, where the
propagating curvature is located only on the singular null
hypersurface. The impulsive solutions are then interpreted
as extremely short, but simultaneously very intense, bursts
of gravitational radiation. Technically, it corresponds to
the presence of distributional terms in the spacetime geo-
metric quantities. Therefore, these geometries are also of
purely mathematical interest since careful manipulation
with inherently non-linear distributional terms is required
that necessarily goes beyond the classical theory, see
e.g., [14,15].
Within this paper, we are interested in the expanding

Robinson-Trautman impulses propagating on a flat
Minkowski background. It is worth mentioning that the
elegant geometric construction of these models goes back
to the seventies when Roger Penrose proposed the “cut and
paste” approach [16]. Two decades later Penrose and Nutku
found the continuous line element for these solutions [17].
Subsequently, various extensions and applications of such a
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construction were presented, e.g., including the cosmo-
logical constant or other additional parameters [18–23].
The historical content, summary of other construction
methods (e.g., limits of expanding sandwich waves or
infinite acceleration limit of the C-metric), and detailed list
of references can be found, e.g., in [13,24,25]. In the
original work [17], the snapped cosmic string serving as a
wave source was described and the possibility of impulses
generated by a pair of colliding and snapping strings was
outlined. This scenario was elaborated by Podolský and
Griffiths [26]. However, the complete understanding of the
spacetime topology remained an open problem, since at
that time the suitable tools for such an analysis within
spacetimes of low regularity were not developed.
Simultaneously, based on the simple one-string case, the
topology seems to play a crucial role in the behavior of free
test particles affected by the expanding gravitational
impulse, and vice versa, the geodesic motion reflects the
spacetime geometry [27,28]. The studies of one-string
geodesics were put on a solid rigorous ground later in [25]
assuming a fully general expanding impulses. However,
these theoretical results were lacking for their explicit
applications going beyond the simplest case [28].
Therefore, the present contribution aims to combine the

previous results, mainly [25,26,28], and discuss properties
of selected stringlike sources of the expanding impulses in
terms of the induced geodesic motion. This provides a
direct insight into the properties of such impulsive geom-
etries. As we have already mentioned, such an analysis
could have been a very natural supplement already to the
original works, however, there were no suitable methods
to do so. We thus fill this gap. Moreover, the physical
interpretations of solutions obtained in [26] in terms of the
geodesics motion following [25] requires their generaliza-
tion simultaneously uncovering several subtleties of the
construction. To make our contribution self-consistent
we briefly summarize all necessary previous results. In
particular, in Sec. II, the expanding impulsive waves are
described based on the original papers [16,17,25].
Subsequently, the elements of construction of stringlike
geometries are reviewed in Sec. III following mainly [26].
The description of geodesics derived in [28] and rigorously
justified in [25] is presented in Sec. IV. The new results
generalizing the original complex mapping of [26] are then
contained in the Secs. V and VI, where we simultaneously
discuss and interpret specific properties of one and two-
string geometries, respectively, employing the analysis of
the interaction of free-test particles with corresponding
gravitational impulses.

II. EXPANDING GRAVITATIONAL IMPULSES
ON A FLAT BACKGROUND

Here, we follow the original works [16,17] and the
comprehensive review [25] to summarize the construction

of expanding gravitational impulses. It is natural to begin
with a description of the Penrose geometric “cut and paste”
method in the simplest situation of an expanding impulse
propagating on a flat Minkowski background

ds2 ¼ −dt2 þ dx2 þ dy2 þ dz2; ð1Þ

which can be simply rewritten using the double null
coordinates,

t ¼ 1ffiffiffi
2

p ðV þ UÞ; z ¼ 1ffiffiffi
2

p ðV − UÞ;

x ¼ 1ffiffiffi
2

p ðηþ η̄Þ; y ¼ 1

i
ffiffiffi
2

p ðη − η̄Þ; ð2Þ

to the form

ds2 ¼ −2dUdV þ 2dηdη̄: ð3Þ

Applying further transformation to the Minkowski
metric (3),

V ¼ V
p
− ϵU; U ¼ jZj2

p
V −U; η ¼ Z

p
V; ð4Þ

with

p ¼ 1þ ϵZZ̄; where ϵ ¼ −1; 0;þ1; ð5Þ

we get the line element

ds2 ¼ 2
V2

p2
dZdZ̄ þ 2dUdV − 2ϵdU2; ð6Þ

which explicitly describes the foliation of the flat spacetime
by null cones that are labeled by constant values of the
coordinate U. The parameter ϵ encodes the Gaussian
curvature of spatial two-surfacesU ¼ const and V ¼ const,
see [13] for the detailed geometric picture.
However, another more involved transformation of (3)

can be performed (simultaneously leading to the explicit
null-cone foliation), namely

V¼AV−DU; U¼BV−EU; η¼CV−FU; ð7Þ

where
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A ¼ 1

pjh0j ; D ¼ 1

jh0j
�
p
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þ ϵ

�
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2

h00

h0
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2

h̄00

h̄0

��
;

B ¼ jhj2
pjh0j ; E ¼ jhj2

jh0j
�
p
4

���� h
00

h0
− 2

h0

h

����
2

þ ϵ

�
1þ Z

2

�
h00

h0
− 2

h0
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þ Z̄

2

�
h̄00

h̄0
− 2

h̄0

h̄

	��
;

C ¼ h
pjh0j ; F ¼ h

jh0j
�
p
4

�
h00

h0
− 2

h0

h

	
h̄00

h̄0
þ ϵ

�
1þ Z

2

�
h00

h0
− 2

h0

h

	
þ Z̄

2

h̄00

h̄0

��
; ð8Þ

with h ¼ hðZÞ representing an arbitrary complex holomor-
phic function (apart from its singular points) and a prime
denoting its derivative. The resulting line element becomes

ds2 ¼ 2

����Vp dZ þUpH̄dZ̄

����
2

þ 2dUdV − 2ϵdU2; ð9Þ

where H is the Schwarzian derivative of the function h
defined as

HðhðZÞÞ≡ 1

2

�
h000

h0
−
3

2

�
h00

h0

	
2
�
: ð10Þ

Although the metric (9) still represents the flat space, the
nontriviality of function H leads to the topological defects
primarily induced by the choice of its generator hðZÞ.
Finally, to construct the expanding impulsive gravita-

tional wave on a flat background one has to cut the
Minkowski spacetime along the null cone and then reat-
tached the two half-spaces with an appropriate warp,
see Fig. 1. Using the coordinates of (6) and taking the
null cone U ¼ 0, corresponding to the expanding sphere
t2 ¼ x2 þ y2 þ z2, the half-spaces M− (with U ≤ 0) and
Mþ (with U ≥ 0) have to be identified across the null
hypersurface N as

½Z; Z̄; V; U ¼ 0−�M−

≡
�
hðZÞ; h̄ðZ̄Þ; 1þ ϵhh̄

1þ ϵZZ̄
V
jh0j ; U ¼ 0þ

�
Mþ

: ð11Þ

The Penrose junction conditions directly correspond to
the evaluation of transformations (4) and (7), respectively,
on the impulse U ¼ 0, i.e., UV − ηη̄ ¼ 0. The global
continuous line element can be then written as a combi-
nation of (6) and (9), namely

ds2¼2

����VpdZþUΘðUÞpH̄dZ̄

����
2

þ2dUdV−2ϵdU2; ð12Þ

where the product of U and Heaviside step ΘðUÞ repre-
sents the continuous kink function which is typically
denoted as Uþ ≡UΘðUÞ. The metric (12) then solves the
vacuum Einstein field equations everywhere except at the
singular impulse origin (U ¼ 0 ¼ V), and possible poles
of p2H as can be inferred from the curvature invariants,
see e.g., [25].

III. GEOMETRY OF EXPANDING IMPULSES

In this section we discuss the specific contributions to the
warp function hðZÞ representing the source of an expand-
ing impulse. The standard parametrization of Lorentz
transformations and conical singularities is used as, e.g.,
in the original work [26], however, we adapt the notation to
allow for a more algorithmic approach. Concerning the
Schwarzian derivative (10), the wavelike nature of hðZÞ can
be distinguished. In particular, the general Möbius trans-
formation of the complex plane to itself,

hðZÞ∶Z ↦
aZ þ b
cZ þ d

; ð13Þ

leaves HðhðZÞÞ unchanged and corresponds to the simple
Lorentz transformation. On the other hand, going beyond
the linear fractional transformation brings the nontrivial
Schwarzian derivative. In our case, it will be interpreted
as a topological defect related to the presence of cosmic
string. To geometrically describe these effects in the flat
Minkowski space, it is useful to employ stereographic
projection, see e.g., [26]. The mapping Z ↦ hðZÞ in the
complex Argand plane corresponds to the geometric

FIG. 1. Two parts M− and Mþ of the flat Minkowski back-
ground are re-attached along a future-oriented null coneN with a
suitable warp given by the junction Penrose conditions (11). Such
construction results in the presence of expanding spherical
gravitational impulse located on N whose specific nature is
encoded in the (holomorphic) function hðZÞ identifying points of
M− and Mþ across N .
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identifications of points P− and Pþ on a Riemann sphere,
see Fig. 2. The Riemann sphere can be further identified
within the background Cartesian coordinates. In particular,
taking the continuous metric (12) and the coordinate
transformations leading to the half-spaces in front of
(U ≥ 0) and behind (U ≤ 0) the impulse, respectively,
we find that the impulsive surface U ¼ 0 is a sphere
ðt�i Þ2 ¼ ðx�i Þ2 þ ðy�i Þ2 þ ðz�i Þ2, where the � sign corre-
sponds to a specific half-space from which N is
approached, and the index i indicates values obtained on
the impulse N , i.e., on U ¼ 0. Then, we get

Zi ¼
η−i
V−
i
¼ x−i þ iy−i

t−i þ z−i
; hðZiÞ ¼

ηþi
Vþ
i
¼ xþi þ iyþi

tþi þ zþi
: ð14Þ

Inversely, we can write

x−i
t−i

¼ Ziþ Z̄i

1þjZij2
;

y−i
t−i

¼−i
Zi− Z̄i

1þjZij2
;

z−i
t−i

¼ 1− jZij2
1þjZij2

; ð15Þ

xþi
tþi

¼ hþ h̄
1þjhj2 ;

yþi
tþi

¼−i
h− h̄
1þjhj2 ;

zþi
tþi

¼ 1− jhj2
1þjhj2 ; ð16Þ

where the function h is evaluated at Zi. The expressions
(15) and (16) can thus be understood as the stereographic
identification between points in the complex plane and their
images on a unit Riemann sphere representing the rescaled
impulsive surface. Subsequently, in terms of such a unit
sphere endowed with the Cartesian axes, one can interpret
the effects of mapping hðZÞ.
In particular, the construction of explicit form of the

function hðZÞ can be decomposed into operations
representing either pure Lorentz transformations of the
form (13) or mappings inducing nontrivial Schwartzian
derivative (10). Here, let us define elementary operations
which will be sequentially applied within the following
discussion:

(i) the natural starting point is an identical mapping,1

i.e.,

h0ðZÞ ¼ Z; ð17Þ

(ii) the spatial rotations Rfφ;ϑ;ψg parametrized by the
Euler angles fφ; ϑ;ψg lead to

hjþ1ðZÞ ¼ Rfφ;ϑ;ψghjðZÞ

¼ eiφ
− sinðϑ=2Þ þ eiψ cosðϑ=2Þhj
cosðϑ=2Þ þ eiψ sinðϑ=2Þhj

; ð18Þ

see the left part of Fig. 3 representing the rotated
Riemann sphere;

(iii) the Lorentz boost in the direction of the z-axis Bfwg,
parametrized by the value w, gives

hjþ1ðZÞ ¼ BfwghjðZÞ ¼ whjðZÞ; ð19Þ

see the middle plots in Fig. 3 for a pure boost and its
combination with a rotation (18); and

(iv) finally, the simplest stringlike structure can be
constructed by “cutting” out the wedge 2πδ around
z-axis, represented by the action of Sfδg, namely

hjþ1ðZÞ ¼ SfδghjðZÞ ¼ ½hjðZÞ�1−δ; ð20Þ

where the wedge is missing symmetrically in the
direction of the negative x-axis, see the last example
in Fig. 3. To be more precise, this operation does not
only remove a given angle. However, the spherical
surface is cut along the z–x plane (for the negative
x values) and then the angle 2πδ is opened, while the
surface is “compressed” (as an accordion or a paper
lantern), which may affect already existing defects
as we show later.

These operations have to be understood as the active trans-
formations of the sphere, while the coordinate system and
axes are kept fixed. In general, the Euler angles are arbitrary
and it thus seems to be possible to cut out an arbitrary number
of strings along different axes, which are moving with
different velocities. We will show explicit examples below.
Finally, the elementary operations (17)–(20) could be sup-
plemented with other operations, e.g., boosts in the x- and
y-directions. However, these additional operations can be
simply understood as their compositions.

IV. INTERACTION OF GEODESICS
WITH THE EXPANDING IMPULSES

We aim to analyze properties of particular expanding
impulses prescribed by explicit choices of the generating

FIG. 2. Stereographic projection corresponds to the mutual
identification between points of the Riemann sphere and complex
Argand plane. In the case of expanding impulses, it gives direct
geometric interpretation to the holomorphic mapping hðZÞ and
the Penrose junction conditions (11).

1The subscript j of hjðZÞ identifies particular step in a
sequence of the final hðZÞ construction.
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function hðZÞ, see Secs. V and VI. Such a discussion is
closely related to the geodesic motion of test observers
affected by interaction with the gravitational impulse.
However, due to the presence of a kink function in the
continuous metric (12), the distributional terms appear in
the geodesic equation and its analysis becomes more
tricky. The particular case of Z ¼ const geodesics was
studied in [27]. Assuming the C1 geodesics, the refraction
formulas for their interaction with a generic impulse were
derived in [28]. Subsequently, the existence and global
uniqueness of such C1 geodesics crossing an expanding
impulse, propagating on all constant curvature back-
grounds, was rigorously proved in [25,29] using the
Filippov solution concept [30,31]. Such refraction for-
mulas connect initial data fUþ

i ;V
þ
i ; η

þ
i ; U̇

þ
i ; V̇

þ
i ; η̇

þ
i g and

fU−
i ;V

−
i ; η

−
i ; U̇

−
i ; V̇

−
i ; η̇

−
i g for the straight lines parame-

trized by τ, namely

U�ðτÞ ¼ U̇�
i τ þ U�

i ;

V�ðτÞ ¼ V̇�
i τ þ V�

i ;

η�ðτÞ ¼ η̇�i τ þ η�i ; ð21Þ

i.e., geodesics in the Minkowski half-spaces Mþ and
M−, starting/ending on the impulse N at τ ¼ 0, see (22)
and (23) below.
Here, let us summarize the main result of [25,28] which

is important for our further discussion. The explicit C1

matching of geodesics crossing the impulse can be
expressed in the form of the refraction formulas encoding
the shift of positions and change of the velocities with
respect to the fiducial interpretative background. These are
derived starting from the fact that the geodesics in coor-
dinates (12) are unique C1 lines across the impulsive wave
front N given by U ¼ 0, i.e., components of position and
velocity evaluated on the impulsive boundary N (denoted
by the subscript “i”) are the same irrespectively whetherN
is approached from the regionMþ withU ≥ 0 (denoted by
the superscript “þ”) or from the complementary half-space
M− with U ≤ 0 (denoted by the superscript “−”).
However, to observe the influence of the impulse on test

particles, it is natural to employ the fiducial background
coordinates (3) forMþ andM−, respectively. With respect
to the background space, the global geodesics do not cross
the impulse continuously and the effects of impulse on their
motion become explicit. In particular, evaluation of the
transformations (4) and (7) on U ¼ 0, and elimination of
the continuous coordinates, gives the position shift,

U−
i ¼jh0j jZij2

jhj2 U
þ
i ; V−

i ¼jh0jVþ
i ; η−i ¼jh0jZi

h
ηþi ; ð22Þ

while the same procedure for derivatives of (4) and (7)
leads to the refraction of the velocities,

U̇−
i ¼ aUU̇

þ
i þ bUV̇

þ
i þ c̄U η̇

þ
i þ cU ˙̄η

þ
i ;

V̇−
i ¼ aVU̇

þ
i þ bVV̇

þ
i þ c̄V η̇

þ
i þ cV ˙̄η

þ
i ;

η̇−i ¼ aηU̇
þ
i þ bηV̇

þ
i þ c̄ηη̇

þ
i þ cη ˙̄η

þ
i ; ð23Þ

where the coefficients are constants evaluated onN with Zi

obtained via hðZiÞ ¼ ηþi
Vþ
i
, namely

aU ¼ 1

jh0j
����1þ Zi

2

h00

h0

����
2

; ð24Þ

aV ¼ 1

4jh0j
���� h

00

h0

����
2

; ð25Þ

aη ¼
1

2jh0j
�
1þ Zi

2

h00

h0

	
h̄00

h̄0
; ð26Þ

bU ¼ jhj2
jh0j

����1þ Zi

2

�
h00

h0
− 2

h0

h

	����
2

; ð27Þ

bV ¼ jhj2
4jh0j

���� h
00

h0
− 2

h0

h

����
2

; ð28Þ

bη ¼
jhj2
2jh0j

�
1þ Zi

2

�
h00

h0
− 2

h0

h

	��
h̄00

h̄0
− 2

h̄0

h̄

	
; ð29Þ

FIG. 3. Visualization of specific elementary operations acting on the whole Riemann sphere associated with the rescaled impulsive
surface. Their combinations enter the construction of a particular form of the function hðZÞ that, subsequently, encodes the geometric
nature of a given expanding impulsive wave described by (12).
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cU ¼ −
h
jh0j

�
1þ Zi

2

�
h00

h0
− 2

h0

h

	��
1þ Z̄i

2

h̄00

h̄0

�
; ð30Þ

cV ¼ −
h

4jh0j
�
h00

h0
− 2

h0

h

	
h̄00

h̄0
; ð31Þ

cη ¼ −
h

2jh0j
�
1þ Zi

2

�
h00

h0
− 2

h0

h

	�
h̄00

h̄0
; ð32Þ

c̄η ¼ −
h̄

2jh0j
�
1þ Zi

2

h00

h0

	�
h̄00

h̄0
− 2

h̄0

h̄

	
: ð33Þ

Notice that c̄V ¼ cV , c̄U ¼ cU . As shown in [25], the
normalization of velocity is preserved across the impulse,
i.e., η̇−i ˙̄η

−
i − U̇−

i V̇
−
i ¼ η̇þi ˙̄η

þ
i − U̇þ

i V̇
þ
i . The above (local)

expressions do not depend on the Gaussian curvature ϵ,
however, to construct a global picture the parameter ϵ
encoding the spacetime foliation has to be considered,
see [13,25]. The refraction formulas become identical in
the trivial case hðZÞ ¼ Z that implies H ¼ 0 and lacks
the impulse. However, one should be careful in the case
of nontrivial hðZÞ and still trivial H ¼ 0, where the
above expressions identify two Minkowski half-spaces
via Möbius transformation (13), see Sec. VI. This
ambiguity in mutual background Cartesian coordinate
identification on both sides of the impulse, nonphysi-
cally affecting in the above refraction formulas, arises
from the absence of global Cartesian-like impulsive
metric for the expanding waves in contrast to the
nonexpanding case, see e.g., [32].
To identify the pure-wave action on the test observers, a

specific choice of the initial data fUþ
i ;V

þ
i ; η

þ
i ; U̇

þ
i ; V̇

þ
i ; η̇

þ
i g

has to be made which enters the above expressions. Due to
the time shift given by a combination of (2) and (22), we
can naturally consider either a swarm of test particles which
is hit by the impulsive wave front N at the same constant
coordinate time tþi in Mþ, or vice versa, which appears in
the region M− simultaneously at constant coordinate time
t−i . The second possibility can be also understood as the
case of an impulse passing through the continuous dustlike
distribution of particles where we observe one fixed-
emergence slice given by constant time t−i . To emphasize
the geometric effect of the particular impulse realization
encoded in themapping hðZÞ, wewill assume test particles at
rest inMþ (the rest is defined with respect to the background
Minkowskian coordinates, i.e., U̇þ

i ¼ V̇þ
i ¼ η̇þi ¼ 0), which

are spherically distributed at radii tþi ¼ const or t−i ¼ const,
respectively. A schematic visualization of the above cases
(in the simplest one-string situation) is given in Fig. 4.
The explicit initial data constraints are summarized in the
following subsections.

A. Spheres in front of the wave

A Cartesian sphere (formed by test particles) of a
constant radius tþi in front of the wave corresponds to
the particle’s displacement on a particular cut of the null
impulsive cone U ¼ 0 encoded in specific values of the
global coordinate V i at the instant of interaction. In
particular, evaluation of the transformation (7) with (2)
on the null cone U ¼ 0 gives the constraint

tþi ¼ V iffiffiffi
2

p jh0j
1þ jhj2
1þ ϵjZij2

¼ const; ð34Þ

which, combined with the initial assumption tþi ¼ const,
fixes the values V i for specific choices of complex plane
positions hðZiÞ (and inversely Zi). The hðZiÞ value is
related to the Cartesian parametrization via stereographic
projection (16),

xþi ¼ hþ h̄
1þjhj2 t

þ
i ; yþi ¼−i

h− h̄
1þjhj2 t

þ
i ; zþi ¼ 1− jhj2

1þjhj2 t
þ
i .

ð35Þ
In the case of nontrivial hðZÞ with respect to its
Schwartzian derivative (10), the Cartesian image will suffer
for different cutouts. At this moment, it is useful to adopt
natural parametrization,

Zi ¼ tan
θ

2
eiϕ; ð36Þ

so that ðx�i ; y�i ; z�i Þ are functions of θ ∈ ½0; πÞ and
ϕ ∈ ½−π; πÞ. Subsequently, the deformation of such a test
ball is explicitly described by the shift of positions (22), or
directly in terms of the continuous coordinates using the
stereographic projection (15) of null cone N as viewed
from the region behind the impulse. The scale in terms of
the original constant radius tþi is given by

t−i ¼ V iffiffiffi
2

p 1þ jZij2
1þ ϵjZij2

¼ jh0j 1þ jZij2
1þ jhj2 tþi ; ð37Þ

FIG. 4. A swarm of particles at rest in Mþ hit by the typical
expanding impulse (null cone N ) as seen from the half-space
Mþ (lower part of the schema) and its emergence at the null cone
N as seen from the half-space M− (upper part of the schema).
On the left, the test particles interact with the impulse at tþi ¼
const while the right part is the case with t−i ¼ const. In this
particular case, it can be seen that the particles attain a radial
component of the velocity being “attracted” to the axis at the time
they leave the wave which causes a formation of caustics later.
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while the deformed surface in front of the wave can be
plotted as

x−i ¼ jh0j Zi þ Z̄i

1þ jhj2 t
þ
i ; y−i ¼ −ijh0j Zi − Z̄i

1þ jhj2 t
þ
i ;

z−i ¼ jh0j 1 − jZij2
1þ jhj2 t

þ
i ; ð38Þ

which still satisfy ðx−i Þ2 þ ðy−i Þ2 þ ðz−i Þ2 ¼ ðt−i Þ2, however,
t−i is no more a constant.

B. Spheres behind the wave

The second very natural choice of the initial data is such
that the test particles form a sphere at a given constant time
t−i behind the wave, i.e., in the region without any strings.
The null cone cut is fixed in terms of values V i of the global
coordinate V by the condition

t−i ¼ V iffiffiffi
2

p 1þ jZij2
1þ ϵjZij2

¼ const; ð39Þ

and the Cartesian positions on a sphere are related to the
values Zi by (15),

x−i ¼
Ziþ Z̄i

1þjZij2
t−i ; y−i ¼−i

Zi− Z̄i

1þjZij2
t−i ; z−i ¼

1− jZij2
1þjZij2

t−i :

ð40Þ

Viewed from the region U > 0, this corresponds to the
deformed initial displacement given by (16) satisfying
ðxþi Þ2 þ ðyþi Þ2 þ ðzþi Þ2 ¼ ðtþi Þ2 with nonconstant scaling

tþi ¼ V iffiffiffi
2

p jh0j
1þ jhj2
1þ ϵjZij2

¼ 1

jh0j
1þ jhj2
1þ jZij2

t−i ; ð41Þ

and Cartesian positions given by

xþi ¼ 1

jh0j
hþ h̄

1þ jZij2
t−i ; yþi ¼ −

i
jh0j

h − h̄
1þ jZij2

t−i ;

zþi ¼ 1

jh0j
1 − jhj2
1þ jZij2

t−i : ð42Þ

The resulting deformed displacement in Mþ contains
defects given by a particular choice of hðZÞ.

C. Visualizations and location of strings

Although the deformations (35) and (42), respectively,
do not depend on the value of the Gaussian curvature ϵ, it is
natural to assume the choice ϵ ¼ 1. This way, the cuts of the
null cone U ¼ 0, V i ¼ const, parametrized by the remain-
ing global coordinate values Zi, are manifestly spheres
behind the wave. The radius is t−i proportional only to V i,

namely ðx−i Þ2 þ ðy−i Þ2 þ ðz−i Þ2 ¼ 1
2
V2
i , see (39). This

assumption allows for simpler visualizations in terms of
the schematic cut and paste Fig. 1, while other choices of ϵ
lead to more complicated sections of the null cone.
To understand the resulting geometry it is natural to

investigate where the string ends are attached to the null
cone. Their location is related to the scaling factors t�i . In
particular, in the case of initial configuration representing a
constant sphere in front of the wave, see Sec. IVA, these
points correspond to the divergence of t−i given by (37),
while for the constant sphere behind the impulse, see
Sec. IV B, we are inversely looking for zeros of tþi given
by (41). They thus represent extremes of the “radial”
distance of the deformed “spherical” surface.
Determination of the string positions allows to distin-

guish qualitatively different physical situations. For exam-
ple, we can arrive at the same string configurations by
applying the elementary operations in a different order.
However, this typically leads to the different forms of the
generating function hðZÞ. Analogously, the rotations will
also not change the mutual string configurations, but the
functions hðZÞwill differ. This can be solved by finding the
string ends. Therefore, we map the constant spherelike
configuration to obtain its deformed image behind the wave
and find points of divergence on such a surface. Then, we
can measure mutual angles between all possible pairs of
such points for particular functions hðZÞ. Two configura-
tions are identical if angles agree in both cases.
Finally, keep in mind that we infer all the information

about the strings from the behaviour on the null cone or
properties of its spherical cuts. To proceed more explicitly,
the coordinates (9) in front of the wave, where the strings
are present (and, possibly, moving), should be employed in
the whole space. However, they are extremely complicated
and their analytic inversion to the Cartesian coordinate
system, where the topological defects can be directly
interpreted, seems to be impossible since it requires finding
the inverse of (7) with (8).

V. ONE-STRING GEOMETRIES

Although the one-string case has been frequently stud-
ied, we would like to provide its description to point out the
important technical aspects of the construction that will
subsequently appear in more involved two-string cases.
The simplest situation of one string located along the
z-axis, and therefore inducing the deficit angle 2πδ around
it, is given by the mapping

hðZÞ ¼ Z1−δ: ð43Þ

As we have already mentioned in Sec. IV, test particles
forming an initial spherical shell in the region Mþ, and
interacting with the impulse simultaneously at a constant
time tþi , will be displaced in both the space and time
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directions ofM−, and vice versa. The surfaces representing
such initial conditions are visualized in Fig. 5. In the case of
sphere with a constant radius tþi in Mþ, we get

t−i → ∞; z−i → �∞; ð44Þ

along the axis, corresponding to the diverges of (37) at the
places Z ¼ f0;∞gwhere the string ends are attached to the
null cone, see the left part of Fig. 5. This divergence is in
reverse translated into the shape of the initial time slices in
the part (bþ) of Fig. 5 leading to particles emerging
simultaneously at constant time t−i .
Moreover, to visualize the effect of the Penrose junction

condition (11) as a null cone mapping, which was sche-
matically illustrated in Figs. 1 and 4, we plot its explicit
realization for the one string case (43), see Fig. 6.

The above one-string situation can be nontrivially
extended by its boosting in the perpendicular direction.
The corresponding complex mapping hðZÞ can be con-
structed as a series of string creation along the z-axis,
perpendicular rotation, boost, and final backward rotation,
namely

hðZÞ ¼ Rf−π
2
;0;0gBfwgRfπ

2
;0;0gSfδgZ: ð45Þ

It explicitly becomes

hðZÞ ¼ −
w − 1 − ðwþ 1ÞZ1−δ

wþ 1 − ðw − 1ÞZ1−δ : ð46Þ

In comparison with simple case (43), the boost-induced
asymmetry is reflected in the deformation of the natural

FIG. 6. The initial tþi ¼ const sphere is cut by a plane passing through the origin and including both string ends (a). Since the plane
does not contain the deficit angle, taking specific values tþi corresponds to the full circles of test particles (b) that are lying on the null
coneN , where the time goes in the direction of the cone axis. The function hðZÞ then maps the initial circles (b) along the null coneN as
in Figs. 1 and 4. In (c) we can see the resulting displacement of test particles on N viewed from the M− region. The divergences
correspond to the moving string ends related to the infinities of (37).

FIG. 5. In part (aþ), the test particles are chosen to form a sphere of a constant radius tþi and deficit angle 2πδ along z-axis in the region
Mþ (in front of the wave). The “sphere” is embedded in the Euclidean space with Cartesian coordinates ðxþi ; yþi ; zþi Þ. The thin dashed
lines represent lines of constant θ and ϕ of the stereographic projection (36). This sphere is distorted behind the wave in ðx−i ; y−i ; z−i Þ
coordinates as visualized in part (a−). The particles appear at different times and different locations, see (22). The time shift is depicted
by a color change ranging from green to yellow and the lines of constant t−i are shown as thick blue lines. There is a singularity along the
z-axis (the spikes reach infinity) while the deficit angle disappears. The part (bþ) represents such initial conditions in Mþ that the
particles emerge as a real geometric sphere inM− with radius t−i ¼ const and coordinates ðx−i ; y−i ; z−i Þ, see part (b−). In (bþ) the same
color scheme as in (a−) is used.
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static spherical initial data, with tþi or t−i being constant,
respectively. The transversal string motion induces another
caustic formation in addition to those given by the string
snapping itself. The possible initial setting is visualized
in Fig. 7.
In analogy with Fig. 6, the example of an explicit null

cone mapping for the moving string (46) is visualized in
Fig. 8. In general, plotting such a picture requires to
suppress one spatial dimension, i.e., to chose a particular
spatial cut through the initial data. In the case of Fig. 8,
the string ends are not included in the cut and therefore
the test particles are mapped only to the finite values
of t−i .

Finally, as a comprehensive picture characterizing the
dynamical structure of boosted one-string impulsive space-
time with (46) we plot a sequence of deformations of an
initially static swarm of particles. Their initial space and
time displacement in the region Mþ is chosen in such a
way that they all emerge simultaneously in the region M−

as a sphere of constant radius t−i , i.e., it is described by
Fig. 7(bþ). Subsequently, due to the nontrivial impulsive
effect, the particles gained nontrivial velocities and start
moving along geodesics (straight lines) in the Minkowski
background (21) with initial data given by (22) and (23),
see Fig. 9. Here, the vertical deformation and particle
acceleration along the z-axis are given by their attraction by

FIG. 7. Description of the plot is the same as in Fig. 5. The differences in the shape of the particles swarm interacting with the impulse
are caused by the additional string motion in the x-direction related to the form of function hðZÞ given by (46) with the boost parameter
w ¼ 0.6. In the second picture in (a−) we can observe a sharp “fin” with the time equipotentials being nonsmooth. That is the region
through which the string travels. In these visualizations, the relation between (a) and (b) clearly corresponds to the multiplication of the

radius by a scaling factor jh0j 1þjZij2
1þjhj2 . The string ends are at the north and south pole behind the wave regardless of its transversal motion.

FIG. 8. The planar cut of the initial swarm of particles is visualized in analogy with Fig. 6. However, here in part (a), the plane is
chosen to explicitly contain the topological defect caused by the string (b) while the string ends are out of the plane. The finlike
deformation in part (c) corresponds to the string motion in the x-direction, however, it does not contain divergences since the string ends
are out of our planar cut.
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the moving ends of the snapped string. Near poles, where
the string ends are attached to the impulsive sphere, the
speed of test particles reaches the speed of light. The
attractive effect of the string ends results in the caustics
formed by a mutual crossing of trajectories starting on
opposite sides of the initial sphere with respect to the z-axis.
Such behavior agrees with the simple static one-string case
described in [28]. However, there is the additional hori-
zontal asymmetry induced by the boost of the string in the
x-direction. To emphasize the boost effect we plot the cut
by z ¼ 0 plane in the left part of Fig. 9, where the additional

caustic formation due to the string transversal motion can
be observed.2

The above discussion shows the effects of a moving
snapped cosmic string on free-test observers and the way
how these effects can be understood and visualized. Notice
that the subcase without string boost was already studied in
[27,28] considering also cosmological backgrounds. In the

FIG. 9. The effect of snapping boosted string (46) on free-test particles initially at rest in Mþ with positions satisfying xþi
2 þ

yþi
2 þ zþi

2 ¼ tþi
2 such that particular choice of tþi leads to t−i ¼ const, i.e., the data are prepared as in the bottom part of Fig. 7 to emerge

as a real sphere at given time t−i . However, the test observers gain nontrivial velocities. Their time evolution is plotted in the left column.
To visualize the asymmetry induced by the string motion in the x-direction we show the cut by the plane z ¼ 0, perpendicular to the
string, in the right column.

2In the evolutionary Figs. 9, 14, 19, and 22, the color scale has
no other meaning than to visualize plasticity of the spatial
deformation.
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subsequent section, we follow [17,26] and analyze various
impulses generated by a pair of snapped strings in the same
way as in the one-string case.
Naturally, in the case of boosted string one can be

worried by the fact that the cut out planes are not extrinsi-
cally flat, as can be seen in Fig. 7. However, it can be
analytically shown that following situations are equivalent:

(i) initially static particles and their interaction with
impulse generated by a string boosted by w in the
positive x-direction, i.e., hðZÞ given by (46); and

(ii) initially moving particles in the negative x direction
with the speed v ¼ 1−w2

1þw2 interacting with a static
string described by (43).

VI. TWO-STRING GEOMETRIES

Here, we extend the results presented in [26] and discuss
their geometric properties via analysis of induced geodesic
motion. To do so, an alternative sequences of basic steps
entering the two-string complex mapping hðZÞ construc-
tion has to be employed and particular differences in the
resulting motion identified.

A. Original results by Podolský and Griffiths
and their generalization

The possibility of expanding impulse generated by a
colliding and snapping pair of cosmic strings was originally
anticipated by Nutku and Penrose in [17]. Simultaneously,
there were doubts that explicit realization of the corre-
sponding function hðZÞ is hard to find, however, its
existence should be guaranteed by the Riemann theorem.
Surprisingly, a few years later Podolský and Griffiths
explicitly performed such a construction in [26]. Their
simplest nonboosted two-string formula reads

hðZÞ ¼ SfεgRfπ
2
;π
2
;π
2
gSfδgZ ¼

�
iZ1−δ − 1

Z1−δ − i

	
1−ε

: ð47Þ

In terms of fixed Cartesian coordinates, it can be described
in such a way that the string parametrized by δ and placed
along the z-axis is rotated to take a place along the y-axis
and the second string (encoded in ε) is then created along
the z-axis. However, the construction should be more
precisely understood in terms of the active Lorentz trans-
formations (13). In particular, this can be seen from the no
string limit of (47). Taking both parameters trivial, namely
δ ¼ 0 ¼ ε, does not provide the identity, but

hðZÞ ¼ iZ − 1

Z − i
; ð48Þ

which is exactly the residual rotation Rfπ
2
;π
2
;π
2
gZ employed

within construction of (47). The Schwarzian derivative (10)
is vanishing and the seemingly nontrivial position shift (22)
directly shows the unphysical rotation or the artificial

identification of the background Cartesian frame.
However, to directly gain all relevant information about
test particles interacting with the impulse from the refrac-
tion formulas (22) and (23), it is important and useful to
remove such a coordinate discrepancy. Before we do that,
let us also show the ultimate result of [26], which adds a
boost to the simplest interaction of static strings (47), and
therefore, it was interpreted as the collision of strings that
induces their snap and subsequent creation of the impulse.
The particular complex mapping reads

hðZÞ ¼ w2

h1−εc − 1

h1−εc þ 1
ð49Þ

with

hcðZÞ ¼ −
ðw1 − iÞZ1−δ þ ðw1 þ iÞ
ðw1 þ iÞZ1−δ þ ðw1 − iÞ : ð50Þ

As in the case of (47), setting w1 ¼ 1 ¼ w2 and δ ¼ 0 ¼ ε
do not provide an identical mapping, and therefore, it can
not be directly employed in the refraction formulas (22)
and (23).
Now, we remove the artificial coordinate effect in (47),

and subsequently also in (49), and include an addition
boost to the overall mapping, which will be important
within the subsequent discussion. In particular, let us
perform the following sequence of mappings, namely

h0ðZÞ ¼ Z; ð51Þ

h1ðZÞ ¼ Sfδgh0ðZÞ; ð52Þ

h2ðZÞ ¼ Bfw2gRfπ
2
;π
2
;πgh1ðZÞ; ð53Þ

h3ðZÞ ¼ Bfw3gRf−π
2
;0;0gh2ðZÞ; ð54Þ

h4ðZÞ ¼ Sfεgh3ðZÞ; ð55Þ

h5ðZÞ ¼ Bfw5gRfπ
2
;π
2
;π
2
gh4ðZÞ: ð56Þ

These operations can be geometrically understood in terms
of the Riemann sphere, see Figs. 10 and 11 for the special
cases, while the fully general mapping takes the form

hðZÞ ¼ iw5

−1þ i


w3

ðiþw2ÞZδ−ði−w2ÞZ
ði−w2ÞZδ−ðiþw2ÞZ

�
1−ε

1þ i


w3

ðiþw2ÞZδ−ði−w2ÞZ
ði−w2ÞZδ−ðiþw2ÞZ

�
1−ε ; ð57Þ

which naturally becomes identical for trivial boosts and
deficit angles, i.e., wj ¼ 1 and δ ¼ 0 ¼ ε. The simplest
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“static” interaction3 of the strings is then described by
choosing w2 ¼ w3 ¼ w5 ¼ 1 in (57) which then corre-
sponds to (47) with the artificial coordinate rotation
removed, namely

hðZÞ ¼ i
−1þ i



−i 1−iZ1−δ

1þiZ1−δ

�
1−ε

1þ i


−i 1−iZ1−δ

1þiZ1−δ

�
1−ε ; ð58Þ

while for a specific choice of boosts wj we may obtain an
improved version of (49). On a general level, the location of
ends of the strings for (57) is given by

Z ¼
�
0;∞;

�
iþ w2

i − w2

	 1
1−δ
;

�
i − w2

iþ w2

	 1
1−δ
�
: ð59Þ

Here, let us also emphasize the important observation
that the elementary operation Sfεg, see (55), which creates
the second string placed along z-axis, inherently shifts the
position in the x-direction of the already existing string. In
Fig. 10, this corresponds to the step h3 → h4, where the
sphere is distorted and the existing string is effectively
boosted in the x-direction.

We can counterbalance this effect by the newly intro-
duced additional boost in the opposite direction, namely

w2 ¼ tan
π

4ð1 − εÞ ; ð60Þ

and w3 ¼ 1 ¼ w5, see Fig. 11 and changes in the
sequence h2 → h3 → h4.
The resulting nodal points are then aligned with the axes

and there is no transversal velocity (as could be seen from
their action on test particles). These situations are also
compared in Fig. 12 which visualizes structure of the
Riemann sphere cuts with respect to w2.
The discussion of an additional boost is connected with

the real location of the strings viewed from the region
behind the wave. Geometrically, after cutting out two
wedges (deficit angles) we are glueing the corresponding
“lips” back together, however, it is done in a particular
order. Here, the string governed by parameter δ remains
straight along the z-axis, while using (59) the string parts
governed by ε, and lying in the x-y plane, can be identified
by the polar angle ϕs, namely

ϕs ¼ �
π − arg w2þi

w2−i

1 − δ
: ð61Þ

In the case with (60) and w3 ¼ 1 ¼ w5, i.e., the constants
are set so that there is no transversal motion of the strings,
pieces of one string are attached to the north and south

FIG. 10. A sequence of elementary mappings (51)–(56) employed within the construction of the function (57) encoding
interaction of two cosmic strings and their snap. Here we plot the simplest case w2 ¼ w3 ¼ w5 ¼ 1 directly improving (47). The
function hðZÞ then enters the junction conditions (11) of two half-spaces “in front of” and “behind” the impulsive wave.
Interestingly, the second string creation, step h3 → h4, inherently induces an additional boost. This can be counterbalanced by a
specific choice of wj, see Fig. 11.

FIG. 11. The same sequence of elementary mappings as in Fig. 10. However, here we decided to take w2 ¼ tan π
4ð1−εÞ, see (60), and

w3 ¼ 1 ¼ w5 so that the additional inherent boost in h3 → h4 is compensated and the strings are placed along the axes, compare
h4 steps.

3To be more precise, this case is static only in terms of the
boost parameters wj, however, the second string creation induces
the additional inherent boost as we will discuss later.
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pole, respectively, while the second string ends form the
mutual angle

Δϕ ¼
�
2 −

1

2ð1 − δÞð1 − εÞ
	
π; ð62Þ

which is found as a direct application of the general
formula (61).
Finally, based on the geodesic motion let us describe the

effect of an impulse generated by (58). We visualize its
interaction with initially static test particles prepared in
Mþ to emerge synchronously on a sphere in M−, see the
right part of Fig. 13 identifying the initial data and Fig. 14
depicting the overall deformation caused by the impulse.
The shape evolution corresponds to the straight motion
on a flat background. As in the previous one-string case,
the test particles are dragged by the moving string ends
and by the boost of the string itself. Obviously, there is a
nontrivial distribution of their velocities given by (23).
Using these formulas, the speed of a given particle can be
evaluate as

v− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv−x Þ2 þ ðv−y Þ2 þ ðv−z Þ2

q
ð63Þ

with

ðv−x ; v−y ; v−z Þ≡
�
ẋ−i
ṫ−i

;
ẏ−i
ṫ−i

;
ż−i
ṫ−i

	
: ð64Þ

Such a distribution is plotted in Fig. 15, which again
indicates the string end locations since in their neighbor-
hood the test particles approach the speed of light.

B. Peculiar form of the simple two-string mapping

In this part, let us derive an alternative form of the
function hðZÞ in the case of a pair of cosmic strings, which
should demonstrate the subtlety of the construction process.
Let us start with the sequence of elementary steps

h0ðZÞ ¼ Z; ð65Þ

h1ðZÞ ¼ Bfw3gSfδgh0ðZÞ; ð66Þ

FIG. 13. As in Fig. 5 two natural sets of static initial data are prepared for the improved two-string case (57) with w3 ¼ 1 ¼ w5 and w2

given by (60). The plot of the initial condition for the original mapping (47) would differ by rotation and a trivial choice w2 ¼ 1.

FIG. 12. In part (a) we plot the Riemann sphere as in Fig. 11 h5, i.e., corresponding to the mapping (57) with w2 ¼ tan π
4ð1−ϵÞ

compensating the additional boost. The cut by x-y plane of the tþi ¼ const initial condition image in M− [see Fig. 13(a−)] is shown in
part (b). The string ends follow the red lines, whose mutual angle is given by (61). The same situations with a generic boost w2 ¼ 0.4 are
visualized in (c) and (d). In (a) and (c) we plot the blue surfaces given by parametrization of the wedge edges. If there is no transversal
motion of the strings, the surfaces are planes with vanishing extrinsic curvature, while in the case of boosted strings, the situation
becomes more complicated.
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h2ðZÞ ¼ Rfπ
2
;0;0gh1ðZÞ; ð67Þ

h3ðZÞ ¼ Bfw7gSfεgh2ðZÞ; ð68Þ

h4ðZÞ ¼ Rf−π
2
;0;0gh3ðZÞ; ð69Þ

which leads to the mapping

hðZÞ ¼ −
1 − w7



1þw3Z1−δ

1−w3Z1−δ

�
1−ε

1þ w7



1þw3Z1−δ

1−w3Z1−δ

�
1−ε : ð70Þ

Surprisingly, we identify only three string ends located at

Z ¼
n
0;∞; w

− 1
1−δ

3

o
: ð71Þ

The sequence (65)–(69) thus cuts out the wedge 2πδ along
the z-axis and performs a boost, makes rotation about
y-axis, applies another stringlike cut parametrized by ε
along the original x-axis with another boost, and finally
rotates backwards about unchanged y-axis. The simplified
construction is visualized in Fig. 16. The mapping then
leads to identity for δ ¼ 0 ¼ ε and w3 ¼ 1 ¼ w7.
Similarly to in the previous section and the case of

mapping (57) as shown in Fig. 12, the second-string

FIG. 14. In analogy with Fig. 9 we plot a burst of test particles hit by the impulsive wave generated by the improved mapping (58),
which can be directly used in refraction formulas (22) and (23) entering geodesics (21). This choice is visualized in Fig. 10. The
employed initial conditions represent static particles in front of the wave displaced to emerge synchronously at constant time. The typical
values δ ¼ 1

4
and ε ¼ 1

8
are used. We observe the dragging of test particles in the directions of four moving ends of the snapped string

pairs. This is combined with inherent (noncompensated) boost in the x-direction induced by the second string creation.
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creation induces an additional boost. Then the edges of
Riemann sphere cutouts, parametrized by V, represent a
generic curved surface. The corresponding extrinsic cur-
vature vanishes and the surface becomes a plane if the
inherent boost is compensated by a suitable choice of the
artificial boosts in our construction. In particular, taking

w3 ¼ 1; w7 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin επ

2



tan δπ

2

�
−ð1−εÞ

1 − sin επ
2



tan δπ

2

�þð1−εÞ

vuuut ; ð72Þ

guarantees that the strings do not move in the transverse
direction at all. This is illustrated in Fig. 17.
Based on the construction (65)–(69) with two string-

like operations, one would naively expect that it
describes a pair of perpendicular cosmic strings with
four moving ends after their snap. However, inspecting
(71) and the static initial data choice in Fig. 18, we may
conclude that there are only three string pieces. This is
exactly the above-mentioned subtlety in the hðZÞ
construction. One part of the first string disappears
by the creation of the second string (68) which removes

FIG. 16. Particular steps of the construction of peculiar mapping (70) simplified by assuming trivial boost parameters w3 ¼ 1 ¼ w7.

FIG. 17. In the case of generic boosts, one surface swept by the Riemann sphere edge has nonvanishing extrinsic curvature, while the
second one is a trivial plane, see two views in part (a). In the static case, given by the boost choice (72), all the surfaces are planar. The
pictures are reflectively symmetric with respect to the y ¼ 0 plane corresponding to the blue and green axis.

FIG. 15. The speed distribution of the test particles (63) in the region behind the impulse. The initially static particles in front of the
impulse emerging simultaneously behind the wave generated by (58) are considered with the typical values δ ¼ 1

4
and ε ¼ 1

8
of the deficit

parameters. In such a case, the minimal gained speed is 0.18 in yellow regions and reaches the speed of light near the four string ends
colored by red. Here, we show the Kavrayskiy VII projection (left) and the spatial scheme (right).
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FIG. 18. The static initial data choice for the simplified complex mapping (70) with w3 ¼ 1 ¼ w7. The infinities in the part (a−)
indicate the presence of only three moving string pieces.

FIG. 19. Deformation of an initially static swarm of particles that emerge instantly as a sphere of constant radius t−i . The impulse is
generated by (70) with w3 ¼ 1 ¼ w7 and string parameters δ ¼ 1

4
, ε ¼ 1

8
. The asymmetry in the resulting motion of test particles is caused

by the absence of one semi-infinite cosmic string along the negative x-axis and a boost induced by the second string creation.
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the associated nodal point of the Riemann sphere, see
h2 → h3 in Fig. 16.
Finally, we can visualize the kinematic effect of the

impulse generated by (70) with w3 ¼ 1 ¼ w7 on the
motion of initially static test observers, see Fig. 19 for
the evolution picture and Fig. 20 for the speed distribu-
tion. Due to the absence of a string piece along the
negative x-axis and noncompensated inherent boost the
resulting picture is asymmetric. Without an appropriate
global view, one may be confused. In particular, restrict-
ing the analysis to just a quarter of the picture including
two perpendicular string pieces in the positive x- and
z-directions, and taking the deficit parameters δ ¼ ε one
would expect a symmetric picture in the presumed case of
a pair of complete strings with four ends. However, we

observe an induced motion of test particles that prefers the
single-end direction.

C. Two parallel strings

As a last example let us briefly introduce hðZÞ repre-
senting two parallel strings. By the definition, they
cannot be made standing simultaneously. Therefore, the
straightforward idea is to create the first (generically
boosted) string, apply the rotation and another boost to
induce its motion in the perpendicular direction, rotate
back and create the second parallel string again with a
generic boost. The relevant sequence in terms of elemen-
tary operations is

hðZÞ ¼ Rfπ=2;0;0gBfw10gRf−3π=2;0;0gSfεgRf3π=2;0;0g
× Bfw5gRf3π=2;0;0gBfw3gSfδgZ; ð73Þ

with the string ends given by

Z ¼
�
0;∞;

�
1

w3

1þ w5

1 − w5

	 1
1−δ
;

�
1

w3

1 − w5

1þ w5

	 1
1−δ
�
: ð74Þ

The mapping (73) could be analyzed in the same way as
in two previous cases. Here, we only show the effect of
such a mapping in terms of the Riemann sphere and
deformation of the related tþi ¼ const spherical initial
data, see Fig. 21.
The physical interpretation of the above construction (73)

can be directly deduced from the resulting motion of initially
static test particles, see Fig. 22. The deformation is again
induced by the dragging of geodesics due to the motion of
the string ends.

FIG. 20. In analogy with Fig. 15, the speed distribution (63) of initially static test particles, simultaneously escaping the impulsive
surface, is plotted. Here, the impulse is generated by (70) with w3 ¼ 1 ¼ w7 and δ ¼ 1

4
, ε ¼ 1

8
. The color scale stars at the minimal gained

value 0.18. There are only three regions with the speed approaching the speed of light corresponding to three moving string pieces, see
the Kavrayskiy VII projection (left) and the spatial picture (right).

FIG. 21. For the two parallel string configuration (73) we plot
the resulting unit Riemann sphere mapping in Mþ (left) where
the string ends are visualized in light blue. Divergences of its
image (right) in M− indicate motion and mutual angles between
these ends. In the right picture, we also plot the unit sphere in dark
blue to represent the scaling.
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VII. CONCLUSIONS

We studied geometries representing expanding impulsive
gravitational waves. Our main aim was a geometric descrip-
tion and physical interpretation of the complex mapping
hðZÞ entering the Penrose junction conditions (11). In
particular, situations related to the stringlike nature of the
wave source were elaborated. The hðZÞ properties and its
refractive effects were connected with the motion of free test
particles crossing the null wave surface. This was possible
due to employing the recent rigorous results on the geodesic
motion in expanding impulses. To clarify the role of
elementary steps in hðZÞ construction, we analyzed specific
initially static classes of geodesic congruences. Such an
approach was introduced in the case of boosted one string as
the simplest possibility. Subsequently, it was followed by
three situations with two strings, where we clarified and

extended previous results. In particular, we studied a snap-
ping pair of cosmic strings, its degenerate subclass with only
three string pieces generating the impulse, and finally, a case
of two parallel strings. In general, the effects of expanding
impulses generated by snapped cosmic strings acting onto
geodesic motion can be described as a dragging of test
particles by the string ends and induced motion in their
directions. This analysis also showed nontrivial inherent
boostlike effects within the construction of the two-string
scenarios and the way of its compensation.
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