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By respecting the conformal symmetry of the dual conformal field theory, and treating the conformal
factor of the Anti-de Sitter boundary as a thermodynamic parameter, we formulate the holographic first law
that is exactly dual to the first law of extended black hole thermodynamics with variable cosmological
constant but fixed Newton’s constant.
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“Extended black hole thermodynamics,” also known as
“black hole chemistry” [1,2], is one of the major develop-
ments in classical black hole thermodynamics in recent
years. The idea stems from reconsidering the thermody-
namics of asymptotically Anti-de Sitter (AdS) black holes
in the context of a variable cosmological constant Λ [3,4],
which is treated as a thermodynamic pressure according to
the following (perfect fluid) prescription:

P ¼ −
Λ

8πGN
¼ ðd − 1Þðd − 2Þ

16πGNL2
; ð1Þ

where GN is Newton’s constant, L is the AdS radius, and d
stands for the number of (bulk) spacetime dimensions.
This identification allows one to define the black hole

volume V and introduces the standard pressure-volume
term into black hole thermodynamics. Namely, we now
have the extended first law, together with the corresponding
generalized Smarr relation [5]:

δM ¼ TδSþ VδPþΦδQþ ΩδJ; ð2Þ

M ¼ d − 2

d − 3
ðTSþ ΩJÞ þΦQ −

2

d − 3
PV; ð3Þ

with the two being related by a dimensional scaling argu-
ment (resulting ind-dependent factors in the Smarr relation).
The key result to emerge from the black hole chemistry
approach is the realization that AdS black holes exhibit

phase transitions that are fully analogous to those of ordinary
thermodynamic systems. In particular, one observes phase
transitions à la Van der Waals [6,7], reentrant phase
transitions [8], isolated critical points [9,10], superfluidlike
behavior [11], and multicritical points [12]. Very recently a
mechanism for the higher-dimensional origin of a dynamical
cosmological constant was proposed [13].
However, the holographic interpretation of extended

thermodynamics remained unclear for many years. The first
attempts [14–18] suggested that, according to the Anti-de
Sitter/Conformal Field Theory (AdS=CFT) correspondence
[19], theVδP term should be related to aμδC term in the dual
CFT, where C is the central charge and μ the thermody-
namically conjugate chemical potential. For holographic
CFTs dual to Einstein gravity the dictionary for the central
charge is

C ∝
Ld−2

GN
; ð4Þ

where the proportionality constant depends on the normali-
zation ofC, which is irrelevant for the discussion below. The
situation is not that simple, however, as it is also standard to
identify the curvature radius of the spatial geometry on
which the CFT is formulated with the AdS radius L [20].
Namely, the boundary metric of the dual CFT is obtained by
the conformal completion of the bulk AdS spacetime and
reads [21,22]

ds2 ¼ ω2ð−dt2 þ L2dΩ2
k;d−2Þ; ð5Þ

where ω is an “arbitrary” dimensionless conformal factor, a
function of boundary coordinates, that reflects the conformal
symmetry of the boundary theory. For k ¼ 1, dΩ2

k;d−2 is
the metric on a unit (d − 2)-dimensional sphere. For k ¼ 0,
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it is the dimensionless metric ð1=L2ÞPi dx
2
i on the plane,

and for k ¼ −1, it is the unit metric on hyperbolic
space du2 þ sinh2ðuÞdΩ2

k¼1;d−3.
The standard choice is to set ω ¼ 1, in which case the

CFT volume V is proportional to Ld−2. Consequently a
variation of the cosmological constant in the bulk induces
also a variation of the CFT volume V. Hence, a pressure-
volume work term, −pδV, should be present on the CFT
side. This implies that either (i) the corresponding CFT first
law is degenerate as the μδC and −pδV terms are not truly
independent (leaving the CFT interpretation of black hole
chemistry a bit obscure), or (ii) apart from varying the
cosmological constant we also have to vary Newton’s
gravitational constant GN so that the variations of V and
C are independent [20].
Alternatively, in the spirit of the second option, the

authors of [23] have proposed the so-called “restricted
phase space” (RPS) formalism, where the CFT volume
V ∝ Ld−2 is kept fixed. This leaves only the μδC term on
the CFT side coming from a variable GN in the bulk. The
resultant holographic thermodynamics thus has nothing to
do with the original black hole chemistry.
In this Letter, we generalize the approach developed in

[24] to find the holographic first law that is dual to Eq. (2)
while avoiding both of the above mentioned problems.
Namely, in order to capture the above rescaling freedom
of the CFT, while in the setting of equilibrium thermo-
dynamics, in what follows we shall treat ω as a (dimen-
sionless) thermodynamic parameter (similar to the
horizon radius or AdS radius) rather than a function of
the boundary coordinates. This will make the volume and
central charge independent variables.
This is not without precedent. For the k ¼ 0 planar AdS

black brane case, variations of volume V and central charge
C are clearly independent; varying the former corresponds
to changing the number of points in the system, whereas
varying the latter corresponds to varying the number of
degrees of freedom at each point. Since the planar case can
be reached as a limit of the k ¼ 1 spherical case, it is
reasonable to expect this independence to extend to non-
planar cases.
Consequently, rather than using the standard choice

ω ¼ 1, we regard ω as another variable. This effectively
amounts to changing the CFT volume, which is now
proportional to

V ∝ ðωLÞd−2: ð6Þ

In [24,25] we considered the choice ω ¼ R=Lwith R being
a constant boundary curvature radius, but here we allow the
conformal factor to be a generic parameter that need not
depend on L. For the Einstein-Maxwell Lagrangian density
L ¼ ð1=16πGNÞðR − 2ΛÞ − 1

4
F2 this results in the follow-

ing generalized dictionary between the bulk (without tildes)
and dual CFT (with tildes) thermodynamic quantities:

S̃ ¼ S ¼ A
4GN

; Ẽ ¼ M
ω
; T̃ ¼ T

ω
; Ω̃ ¼ Ω

ω
;

J̃ ¼ J; Φ̃ ¼ Φ
ffiffiffiffiffiffiffi
GN

p
ωL

; Q̃ ¼ QL
ffiffiffiffiffiffiffi
GN

p : ð7Þ

If we now allow the bulk curvature radius L to vary, while
holding GN fixed, the variation of the central charge C,
Eq. (4), is then purely induced by variations of L.
Analogously to the calculation in [24] (see also [25,26]),

it is straightforward to show using Eq. (3) that the extended
first law, Eq. (2), can be rewritten as follows:

δ

�
M
ω

�

¼ T
ω
δ

�
A

4GN

�

þ Ω
ω
δJ þΦ

ffiffiffiffiffiffiffi
GN

p
ωL

δ

�
QL
ffiffiffiffiffiffiffi
GN

p
�

þ
�
M
ω

−
TS
ω

−
ΩJ
ω

−
ΦQ
ω

�
δðLd−2=GNÞ
Ld−2=GN

−
M

ωðd − 2Þ
δðωLÞd−2
ðωLÞd−2 ; ð8Þ

or simply as

δẼ ¼ T̃δSþ Ω̃δJ þ Φ̃δQ̃þ μδC − pδV; ð9Þ

where, using Eqs. (4), (6), and (7),

μ ¼ 1

C
ðẼ − T̃S − Ω̃J − Φ̃ Q̃Þ; ð10Þ

p ¼ Ẽ
ðd − 2ÞV : ð11Þ

The CFT first law, Eq. (9), is no longer degenerate, as both
V and C can now be independently varied. Together with
Eqs. (10) and (11), it is exactly dual to the first law of
extended black hole thermodynamics.
As is obvious from the derivation, the variation ofΛ does

not only enter in the variation of the central charge, but it
also appears in the dictionary for the spatial volume and
electric charge. The variation of Λ [the VδP term in Eq. (2)]
has thus been split into several pieces and is related to the
variation of the volume, electric charge, and central charge
of the CFT.
Equation (11) is the equation of state for conformal

theories, which is derivable from the scaling symmetry of
the CFT. Moreover, Eq. (10) is the Euler relation for
holographic CFTs, which can be derived on the CFT side
from the proportionality of the thermodynamic quantities
with the central charge, Ẽ; S̃; J̃; Q̃ ∝ C, which occurs in the
deconfined phase (that is, dual to an AdS black hole
geometry). We note the absence of a −pV term in the
Euler relation, which reflects the fact that the internal
energy is not an extensive variable on compact spaces at
finite temperature in the deconfined phase. This is not an
issue, as claimed in [23], but rather a feature of holographic
CFTs. In the high-temperature or large-volume regime, i.e.,
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ωLT̃ ≫ 1, the μC term becomes equal to −pV, and hence
the energy becomes extensive. As explained in [20,24], the
Euler relation, Eq. (10), is dual to the Smarr formula,
Eq. (3), for AdS black holes. The latter relation contains
dimension dependent factors, whereas the former does not.
We can understand this by expressing the PV term in the
Smarr formula in terms of a partial derivative of the CFT
energy:

−2PV ¼ L

�
∂M
∂L

�

A;J;Q;GN

¼ Lω

�
∂Ẽ
∂L

�

A;J;Q;GN

: ð12Þ

The boundary energy depends on the bulk quantities as
Ẽ¼Ẽ½SðA;GNÞ;J;Q̃ðQ;L;GNÞ;CðL;GNÞ;VðL;ωÞ�. Hence,
the dictionary, Eqs. (4), (6), and (7), implies that
�
∂Ẽ
∂L

�

A;J;Q;GN

¼ 1

L
½Φ̃Q̃þðd−2ÞμC− ðd−2ÞpV�

¼ 1

L
½ðd−3ÞðẼ− Φ̃Q̃Þ− ðd−2ÞðΩ̃Jþ T̃SÞ�;

ð13Þ
where we inserted the Euler relation and the equation of
state to obtain the last equality. By combining Eq. (12) and
Eq. (13) and using the holographic dictionary, we recover
the Smarr relation.
Since the Euler relation and equation of state follow from

the scaling of the thermodynamic quantities with C and
with V, respectively, one can eliminate some of the terms in
the first law, Eq. (9), by rescaling the CFT quantities. In
particular, using Eq. (11) and rescaling some of the CFT
quantities by ωL we can eliminate the −pδV term to obtain
the laws

δÊ ¼ T̂δSþ Ω̂δJ þ Φ̂δQ̃þ μ̂δC; ð14Þ

Ê ¼ T̂Sþ Ω̂J þ Φ̂ Q̃þμ̂C ð15Þ
for the rescaled (dimensionless) quantities

Ê ¼ ωLẼ; T̂ ¼ ωLT̃; Ω̂ ¼ ωLΩ̃;

Φ̂ ¼ ωLΦ̃; μ̂ ¼ ωLμ: ð16Þ
The advantage of Eq. (16) is that all thermodynamic
quantities are now scale invariant, and so the thermal
description respects the symmetries of the CFT.
While the laws in Eqs. (14) and (15) are formally the

same as those of the recently proposed RPS [23], their
physical interpretation is different. In our case the CFT
lives on a geometry with an arbitrary curvature radius ωL,
distinct from the AdS radius L. At the same time we allow
the central charge C to vary. Contrary to the RPS approach,
this variation is induced by a variable cosmological con-
stant in the bulk, rather than a variable Newton’s constant.
Perhaps more interesting is to employ the Euler relation,

Eq. (10), to eliminate the μδC term from Eq. (9), yielding

δĒ ¼ T̃δS̄þ Ω̃δJ̄ þ Φ̃δQ̄ − p̄δV; ð17Þ

Ē ¼ ðd − 2Þp̄V; ð18Þ

with the rescaled quantities

Ē¼ Ẽ
C
; S̄¼ S

C
; J̄¼ J

C
; Q̄¼ Q̃

C
; p̄¼ p

C
: ð19Þ

These quantities are no longer proportional to C, i.e., they
are OðC0Þ. The advantage of these laws is that all
thermodynamic quantities keep their correct dimensional-
ity. Moreover, for fixed C one recovers the “standard”
thermodynamic first law, with Ē interpreted as internal
energy. Of course, the rescalings in Eqs. (16) and (19) can
be combined together, to obtain a dimensionless CFT law
for the rescaled quantities without −pδV and μδC terms.
However, both the central charge C and the CFT volume V
can remain dynamical quantities in this first law.
To summarize, we have established an exact duality

between the extended black hole thermodynamics and the
CFT description. Whereas the bulk first law, Eq. (2), has one
extra (VδP) term and is accompanied by a single Smarr
relation, Eq. (3), to reflect the scaling symmetry of the dual
CFT, the corresponding CFT first law, Eq. (9), has two extra
terms and is accompanied by two relations: the Euler
equation, Eq. (10), and the equation of state, Eq. (11). For
this reason, the variation ofΛ in the bulk corresponds to both
changing the CFT central charge C and the CFT volume V.
Furthermore, the corresponding μδC and −pδV terms

can be further eliminated by using Eqs. (10) and (11). In
this way one formally recovers the laws of the RPS, or the
striking Eq. (17)—but we emphasize that our approach
differs from [23] in that we keep GN fixed but allow the
AdS radius L and conformal factor ω to independently
vary. Finally, it would be interesting to generalize the
holographic dual of extended black hole thermodynamics
to other geometries, e.g., de Sitter spacetime, and other
gravitational theories, e.g., higher curvature gravity.
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