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Theories of non-linear electrodynamics naturally describe deviations from Maxwell’s theory in the strong 
field regime. Among these, of special interest is the recently discovered ModMax electrodynamics, which 
is a unique 1-parametric generalization of Maxwell’s theory that possesses the conformal invariance as 
well as the electromagnetic duality. In this paper we construct the asymptotically AdS accelerated black 
holes in this theory and study their thermodynamics – providing thus a first example of accelerated 
solutions coupled to non-linear electrodynamics. Our study opens a window towards studying radiative 
spacetimes in non-linear electromagnetic regime as well as raises new challenges for their corresponding 
holographic interpretation.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Maxwell’s electrodynamics is one of the most remarkable and ex-
perimentally verified classical field theories ever constructed. Yet, 
it is theoretically plausible that even at the classical level modifica-
tions of Maxwell’s equations will occur in the strong field regime. 
The corresponding theories, that approach Maxwell in the weak 
field limit but modify the field equations in the vicinity of charges, 
are known as the theories of Non-Linear Electrodynamics (NLE). 
Such theories can, for example, be utilized to provide a physical 
source for regular black holes [1], as well as find their applications 
in more general contexts – see the recent modern review [2].

Perhaps the best known example of NLE is the Born–Infeld the-
ory [3]. It features remarkable mathematical properties, has unique 
propagation of waves, and naturally appears in the context of 
string theory and early Universe cosmology. However, Born–Infeld 
electrodynamics is less symmetric than the Maxwell theory. While 
it possesses a fundamental S O (2) duality [4], it features a dimen-
sionful parameter and thence it is no longer conformally invari-
ant. For a long time it was thought that Maxwell’s theory is the 
only theory with the above two fundamental symmetries. This is, 
however, not true. Not long ago, a 1-parametric generalization of 
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the Maxwell theory with both these symmetries have been con-
structed. The corresponding theory is known as the ModMax theory
[5,6]. (See also [7–15] for recent extensions of this theory.)

In order to better understand the effects that arise from non-
linearities of the ModMax theory, it is useful to find some of its 
exact solutions. Interestingly, there is already a small catalogue of 
such solutions. Namely, it was shown that the spherically sym-
metric [16,17] and the Taub-NUT [17,18] solutions in the ModMax 
theory are (although slightly different from those of Maxwell) re-
markably ‘Maxwell-like’, though this is no longer true in the pres-
ence of slow rotation [19].

In this paper, we will focus on finding fields of uniformly ac-
celerated charges and fields of self-gravitating accelerated black holes
in the ModMax theory. Such solutions are of particular interest as 
they allow one to study electromagnetic and gravitational radia-
tion, e.g. [20,21], as well as are very interesting from the holo-
graphic point of view, e.g. [22,23]. In particular, we shall construct 
the ModMax generalization of the slowly accelerating charged AdS 
C-metric [24] and study its thermodynamics. As we shall see, also 
this solution is remarkably similar to that of the Maxwell the-
ory. As far as we know, these solutions provide a first example 
of charged accelerating black holes beyond Maxwell’s theory.

2. Theories of NLE and the ModMax theory

Let us start by reviewing the general framework of NLE theo-
ries. To this purpose we consider the following Einstein-NLE ac-
tion:
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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I = 1

16π

∫
M

d4x
√−g

(
R + 6

�2
− 4L

)
, (1)

where R stands for the Ricci scalar, � is the AdS radius, related to 
the cosmological constant � = −3/�2, and L is the Lagrangian of 
the corresponding NLE theory. In general this may depend on two 
electromagnetic invariants,

S = 1

2
Fμν F μν , P = 1

2
Fμν(∗F )μν , (2)

where the field strength Fμν is given in terms of the vector po-
tential Aμ by the familiar expression, Fμν = ∂μ Aν − ∂ν Aμ , and 
(∗F )μν = (1/2)εμν

ρλ Fρλ . Whereas S is a true scalar, the invari-
ant P is only a pseudoscalar. To restore parity invariance, we thus 
consider theories that depend on P via its ‘square’:

L = L(S,P2) . (3)

The generalized Einstein-NLE equations write as

Gμν = 8π Tμν , d ∗ E = 0 , dF = 0 , (4)

where E is a non-linear function of Fμν and (∗F )μν , E = E(F , ∗F ), 
and Tμν has a similar structure to that of Maxwell’s theory. 
Namely, we have

8π T μν = 4F μσ F ν
σLS + 2(PLP −L)gμν , (5)

Eμν = ∂L
∂ F μν

= 2
(
LS Fμν +LP ∗Fμν

)
, (6)

using the following notation:

LS = ∂L
∂S

, LP = ∂L
∂P

. (7)

In what follows we shall calculate the electric and magnetic 
charges inside a closed spacelike two-surface H. These are sim-
ply given by

Q e = 1

4π

∫
H

∗E , Q m = 1

4π

∫
H

F . (8)

In particular, we will be interested in the following ModMax 
theory [5,6]:

L = 1

2

(
S coshγ −

√
S2 +P2 sinhγ

)
, (9)

a 1-parametric generalization of the Maxwell theory characterized 
by the dimensionless parameter γ . Setting γ = 0 recovers the 
Maxwell’s case. When γ �= 0 a birefringence phenomenon occurs: 
apart from the light-like polarization mode there exists another 
mode which is subluminal for γ > 0 and superluminal for γ < 0, 
hinting on a physical restriction γ ≥ 0 (see [5] for more details). 
The ModMax theory is distinguished by being both: invariant un-
der conformal transformations of the metric, g → �2 g , and invari-
ant under the S O (2) duality rotations(

E ′
μν

∗F ′
μν

)
=

(
cos θ sin θ

− sin θ cos θ

)(
Eμν

∗Fμν

)
, (10)

where from (6) we have

E =
(

coshγ − S sinhγ√
S2 +P2

)
F − P sinhγ√

S2 +P2
∗ F . (11)

Obviously, solutions of the ModMax theory with vanishing in-
variant P coincide with those of the Maxwell theory. This is for ex-
ample the case of static electrically/magnetically charged solutions. 
2

However, when both electric and magnetic charges are present, al-
ready static spherical solutions feature ‘small’ deviations from the 
corresponding solutions of the Maxwell theory, e.g. [16,17] (see 
also [17,18] for the case of Taub-NUT solutions). On the other 
hand, the presence of slow rotation reveals the full non-linearity of 
the theory [19] and the full rotating solution is currently unknown. 
In what follows we concentrate on a particularly interesting class 
of solutions of the ModMax theory (9) that describes accelerated 
charges and black holes.

3. Accelerated charge in flat space

The uniformly accelerated charges have puzzled researchers 
for many years. In Maxwell’s theory, the corresponding electro-
magnetic field can be obtained with the help of the Lienard–
Wiechert potentials, e.g. [25]. This field is quite complicated in 
the Minkowski frame where it features time dependent electric 
and magnetic fields. However, when transformed to the coordinate 
system associated with an observer ‘sitting on a charge’ (Rindler 
frame), the corresponding field significantly simplifies and be-
comes ‘static’ – ‘Coulomb-like’.

For this reason, let us consider the accelerated Rindler frame 
(T , X, ρ, ϕ),

ds2 = −(1 + A X)2dT 2 + dX2 + dρ2 + ρ2dϕ2 , (12)

related to the Minkowski cylindrical coordinates (tM, xM, ρ, ϕ), by 
tM = (X + 1/A) sinh(AT ) , xM = (X + 1/A) cosh(AT ), with A the 
magnitude of the 4-acceleration, and x the direction of motion of 
the charge. The corresponding Coulomb’s vector potential is then 
modified due to the acceleration as follows:

B = − Q e(2 + Ay)

r
dT + Q m y

r
dϕ , (13)

where

y = 2X + A(X2 + ρ2) , r =
√

y2 + 4ρ2 . (14)

One can easily check that it satisfies the Maxwell equations in the 
Rindler frame (12).

Finding the corresponding solution for any NLE different from 
Maxwell is (due to the lack of generalized Lienard–Wiechert po-
tentials) a surprisingly complicated task. However, one can easily 
check that (up to the rescaling of electric and magnetic charges), 
the above solution remains valid also for the ModMax electrody-
namics.1 Namely, we find that the following potential:

B = − Q ee−γ (2 + Ay)

r
dT + Q m y

r
dϕ (15)

satisfies all the ModMax equations in the Rindler frame (12). 
Note that due to the presence of both Q e and Q m , this solu-
tion is non-trivial as the invariant does not vanish and reads 
P = −32Q e Q me−γ /r4. As we shall see in the next section, this 
‘test field solution’ can be extended to the full solution of the 
ModMax–Einstein system, where the test accelerated charge is ‘re-
placed’ with the self-gravitating accelerated black hole.

4. Accelerated black holes beyond Maxwell

4.1. Solution

Let us now present the full self gravitating solution of the 
Einstein–ModMax theory describing a slowly accelerated black 

1 After this work was published, the Lienard–Wiechert potentials corresponding 
to the ModMax theory were discussed in [26].
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hole in AdS space. The solution generalizes the (Maxwell) charged 
AdS C-metric, e.g. [24]. Employing (t, r, θ, ϕ)-type coordinates used 
in [22,23,27], the corresponding generalized AdS C-metric reads:

ds2 = 1

�2

(
− f dt2

α2
+ dr2

f
+ r2

[dθ2

h
+ h sin2θ

dϕ2

K 2

])
, (16)

where the metric functions f , h and � take the following form:

f = (1 − A2r2) f0 + r2

�2
,

h = 1 + 2mA cos θ + A2z2 cos2θ ,

� = 1 + Ar cos θ , z2 = e−γ (q2
e + q2

m) , (17)

and

f0 = 1 − 2m

r
+ z2

r2
, (18)

which would be the static metric function characterizing the 
(asymptotically flat) static solution. The angular variable ϕ has pe-
riodicity 2π , and the time coordinate t was rescaled by a constant 
α (see below). The metric is accompanied with the following Mod-
Max field:

F = dB, B = −qee−γ

αr
dt + qm cos θ

dϕ

K
, (19)

and is characterized by the following two invariants:

S = �4
(
q2

m − (qee−γ )2
)

r4
, P = 2�4qee−γ qm

r4
. (20)

It yields an exact solution to the Einstein–ModMax equations.
This solution is characterized by the following six independent 

parameters: {m, qe, qm, �, A, K }. These are related to the proper-
ties of the black hole, such as its mass, electric and magnetic 
charges, AdS radius, black hole acceleration, and conical deficits 
in the spacetime. Alternatively, we may re-express the two param-
eters A and K in terms of the conical deficits of the north-pole 
(δ+) and south-pole (δ−) axes, or more physically, in terms of the 
corresponding cosmic string tensions

μ± = δ±
8π

= 1

4

[
1 − � ± 2mA

K

]
, (21)

where

� = 1 + A2z2 . (22)

In this physical picture, the black hole is pulled by two cosmic 
strings situated on the symmetry axis, and the difference between 
their tensions causes the black hole to accelerate. The constant α is 
not an independent parameter – similar to the Maxwell case [23], 
we define it to be

α =
√

�(1 − A2�2�) . (23)

As we shall see, this choice yields well defined variational principle 
as well as makes thermodynamics consistent.

Similar to the Maxwell case [23], we have to impose a num-
ber of restrictions on the parameters of the solution, in order the 
above metric is Lorentzian and describes a (spherical) slowly ac-
celerating black hole. Namely, i) For the standard interpretation of 
the coordinate θ on [0, π ], we must have h(θ) > 0, giving

mA <

{
1
2 � for � ∈ (0,2] ,√

� − 1 for � > 2 .
(24)
3

ii) The conformal boundary is located at � = 0, that is, rb =
−1/(A cos θ). On the other hand, for the black hole interpretation 
we need a horizon in the bulk – located at f (r+) = 0. Thus f (r)
needs to have at least one root in the range r ∈ (0, 1/A). iii) The 
black hole accelerates slowly when there is no acceleration hori-
zon reaching all the way till infinity. We thus have to require that 
on the boundary f (r = −1/(A cos θ)) has no roots. Similar to the 
Maxwell case, this condition already guarantees that the above de-
fined α is real, that is, 1 ≥ A2�2�.

4.2. Thermodynamics

Let us now turn towards thermodynamics of these black holes, 
following the strategy developed in [22,23,28] (see also [29–31]). 
Namely, we want to identify thermodynamic quantities obeying 
the following first law:

δM = T δS +φeδQ e +φmδQ m + V δP −λ+δμ+ −λ−δμ− , (25)

together with the corresponding Smarr relation

M = 2T S − 2P V + φe Q e + φm Q m . (26)

Here, apart from the standard black hole charges and their conju-
gates, we observe the +V δP term, where P is the thermodynamic 
pressure induced by the negative cosmological constant,

P = − �

8π
= 3

8π�2
, (27)

and V is its conjugate quantity that was properly introduced into 
the black hole thermodynamics in [32]. We also observe two ex-
tra work terms, −λ±δμ± , due to the presence of cosmic strings. 
Namely, λ± are the conjugates to string tensions μ± that are called 
the thermodynamic lengths [28]. The Smarr relation (26) is consis-
tent with the first law (25) via the dimensional scaling argument 
[28,32].

Let us now proceed and identify all the remaining thermody-
namic quantities. As always, the simplest to calculate are the black 
hole temperature and its entropy (given by the Bekenstein’s area 
law). We have

S = Area

4
= r2

4K

∫
sin θ

�2
dθdϕ

∣∣∣
r=r+

= πr2+
K (1 − A2r2+)

, (28)

and

T = f ′(r+)

4πα
(29)

= 1 + 3r2+
l2

− A2r2+
(
2 + r2+

l2
− A2r2+

)
4παr+(1 − A2r2+)

− z2(1 − A2r2+)

4παr3+
.

Next, using the definition of the dual tensor Eμν , (11), and formu-
lae (8), we find the following electric and magnetic charges:

Q e = 1

4π

∫
∗E = qe

K
, (30)

Q m = 1

4π

∫
F = qm

K
, (31)

reflecting the electromagnetic duality

qm ↔ qe . (32)

The mass of the black hole is also relatively easy to calculate, 
for example, by employing the conformal methods [33]. Namely, 
in order to calculate an asymptotic conserved charge associated 
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with a Killing vector ξ , one considers a conformally rescaled met-
ric, ḡμν = �̄2 gμν (in order to remove the divergence near the 
boundary). The corresponding conserved charge is then given by 
the following formula:

Q(ξ) = �

8π
lim
�̄→0

∮
�2

�̄
NαNβ C̄ν

αμβξνdS̄μ , (33)

where C̄μ
ανβ is the Weyl tensor of the conformal metric and 

(in our case) dS̄μ = δt
μ�2/(αK )d(cos θ)dϕ is the spacelike sur-

face element tangent to �̄ = 0, with the normal to the boundary 
Nμ = ∂μ�̄. The charge Q(ξ) is independent of the choice of con-
formal completion even though the conformal completion is not 
unique. The choice �̄ = ��r−1 provides a convenient conformal 
completion, smooth as A → 0. In particular, using the Killing vec-
tor ∂t , we find

M = Q(∂t) = m

αK
(1 − A2�2�) , (34)

in accord with holographic calculations coming from the holo-
graphic energy momentum tensor.

A bit more tricky is to calculate the electrostatic potential. 
Naively, one may identify φe(r) = −(∂t) · B . When evaluated on the 
horizon (r = r+) this yields

φe = qee−γ

αr+
. (35)

However, the corresponding quantity on the boundary does not 
vanish and is (due to the presence of acceleration) θ -dependent. 
Thus, similar to the Maxwell case [23], in order to justify that 
(35) is the correct thermodynamic potential, one needs to use the 
(properly generalized) Hawking–Ross prescription [34]. This goes 
as follows. One considers a Wick-rotated Euclidean version of the 
metric and gauge potential, while transforming to a gauge where 
φe(r) vanishes on the horizon. The thermodynamic potential is 
then defined via the (generalized to NLE) Hawking–Ross term

φe = 1

4π Q eβ

∫
∂M

d3x
√

hnμEμν Aν , (36)

where Eμν is the dual tensor (6), β = 1/T is the inverse periodicity 
in Euclidean time, and nμ is the outward pointing unit normal to 
∂M (which in our case is given by � = 0). One can easily confirm 
that this indeed yields (35). Moreover, employing the electromag-
netic duality (32) immediately yields the magnetic potential

φm = e−γ qm

αr+
. (37)

Finally, the remaining conjugate thermodynamic quantities are 
given by

V =
(∂M

∂ P

)
S,Q e,...

= 4π

3Kα

[
r3+

(1 − A2r2+)2
+ mA2l4�

]
,

λ± = −
( ∂M

∂μ±

)
S,Q e,...

= r+
α(1 ± Ar+)

− m

α�
∓ Al2�

α
,

(38)

where we have used the explicit expression (23) for α. It is then 
easy to verify that with these both the generalized first law (25)
and the Smarr relation (26) are satisfied.2

2 When calculating the thermodynamic volume V , it is often easier to use the 
Smarr relation (26) rather than the definition (38). This immediately yields the ex-
4

An ‘independent’ check of the above thermodynamic quanti-
ties is provided by the Euclidean action calculation. Namely, we 
identify the Gibbs free energy G with the (total) Euclidean action, 
G = IT/β , where the bulk action I , (1), is supplemented by the 
York–Gibbons–Hawking term and the AdS counterterms:

IT = I + 1

8π

∫
∂M

d3x
√

h

[
K − 2

l
− l

2
R(h)

]
, (39)

where K and R(h) are the extrinsic and Ricci scalar of the confor-
mal boundary, respectively. From here we obtain

G = m(1 − 2A2l2�)

2αK
− r3+

2Kαl2(1 − A2r2+)2

−e−γ (q2
e − q2

m)

2Kαr+
. (40)

One can easily check that the obtained G then satisfies

G = G(T , φe, Q m,μ+,μ−, P ) = M − T S − φe Q e , (41)

as expected [39]. One can then ‘independently arrive’ at various 
thermodynamic quantities. For example, the magnetic potential 
and entropy are then given by

φm =
( ∂G

∂ Q m

)
T ,φe,μ±,P

S = −
(∂G

∂T

)
φe,Q m,μ±,P

, (42)

and are easily verified to yield (28) and (37), respectively.
Having constructed the consistent thermodynamics of the 

above solution, the next step would be to study the holographic 
interpretation of the constructed solution, and in particular to an-
alyze the holographic stress energy tensor τab . Interestingly, as 
noticed in [22,23] (see also [30,40]), holography can also be used 
to determine the expression for α. Namely, one demands that (for 
fixed P and μ±)

δ IT = −1

2

∫
∂M

d3x
√

h τabδhab = 0 , (43)

which yields the expression (23). We shall leave the details of 
these calculations to [41].

5. Summary

To summarize, in this paper we have constructed the first ex-
ample of fields of accelerated charges and black holes beyond 
the Maxwell electrodynamics. Namely, we have constructed a field 
of the uniformly accelerated ModMax charge, as well as the 1-
parametric generalization of the charged AdS C-metric in the Mod-
Max theory. We have seen that such solutions are remarkably 
‘Maxwell-like’. This similarity stems from the ‘static character’ of 
these solutions – the observed small deviations from Maxwell can 
be traced to the interaction of electric and magnetic charges (giv-
ing rise to non-trivial invariant P).

In order to formulate properly the associated black hole ther-
modynamics, we have generalized the Hawking–Ross prescription 
for the electric potential, which for any NLE theory is given by for-
mula (36). The resultant thermodynamics is also remarkably sim-
ilar to the Maxwell case. The holographic properties of the newly 
constructed solutions will be presented elsewhere [41].

pression in (38). Note also, that there are several geometric definitions for the black 
hole volume, e.g. [35–37]. For complicated black holes, however, these not neces-
sarily reproduce the thermodynamic volume, e.g. [38].
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As a next step, it would be interesting to probe the effect of 
non-linearities of the electromagnetic field on the bulk [42,43] and 
boundary phase transitions. The latter is likely to generalize the 
findings of [44,45] to the accelerating and ModMax charged situ-
ations. It would also be interesting to find accelerated black holes 
in other NLE theories.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements
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