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Inspirals of stellar-mass compact objects into massive black holes, known as extreme mass ratio inspirals
(EMRIs), are one of the key targets for upcoming space-based gravitational-wave detectors. In this paper we
take the first steps needed to systematically incorporate the effect of external gravitating matter on EMRIs.
We model the inspiral as taking place in the field of a Schwarzschild black hole perturbed by the gravitational
field of a far axisymmetric distribution of mass enclosing the system. We take into account the redshift,
frame-dragging, and quadrupolar tide caused by the enclosing matter, thus incorporating all effects to inverse
third order of the characteristic distance of the enclosing mass. Then, we use canonical perturbation theory to
obtain the action-angle coordinates and Hamiltonian for mildly eccentric precessing test-particle orbits in this
background. Finally, we use this to efficiently compute mildly eccentric inspirals in this field and document
their properties. This work shows the advantages of canonical perturbation theory for the modeling EMRIs,
especially in the cases when the background deviates from the standard black hole fields.
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I. INTRODUCTION

Extreme mass ratio inspirals (EMRIs) are one of the most
complex sources of gravitational waves that we expect to be
observed by the Laser Interferometer Space Antenna [1].
These binary sources are composed of a primary super-
massive black hole and a secondary much lighter compact
object, such as a black hole or a neutron star. These systems
are called extreme mass ratios (EMRs), because the mass
ratio between the secondary and the primary is below 10−4.
Such a small mass ratio allows us to approach the
contribution of the secondary object to the binary system
in a perturbative way, i.e., to treat the secondary as a
perturbation to a given black hole background. In particu-
lar, by expanding the background metric in terms of the
mass ratio, we can calculate the gravitational self-force
[2,3]. The respective radiation reaction carries away from
the binary energy and angular momentum in the form of
gravitational waves causing the secondary to inspiral
towards the primary.
The aforementioned dissipation due to radiation reaction

is actually slow when compared to the orbital motion of the
secondary around the primary. This allows us to use a two
timescale approach to model an EMRI [4,5]. The slow
timescale is concerned with the evolution of the constants of

motion, which correspond to the action variables of the
system, while the fast timescale is concerned with the orbital
phases (or “orbital anomalies”) of the secondary, which
correspond to the angle variables of the system [6]. Hence,
expressing an EMR system in action angle variables is a
natural way to capture its dynamics.
In Ref. [7], following the action-angle line of thought,

Schmidt was able to compute the fundamental orbital
frequencies of a body moving on geodesics in a Kerr black
hole background. Reference [8] went one step further the
above work in the direction of EMRIs, when the authors
used the fundamental frequencies to efficiently decom-
pose the Teukolsky equation [9] in the frequency domain
in order to find the energy and angular momentum fluxes
emitted by the secondary. Many other works employed the
idea that the system describing an EMR should be, in
principle, reexpressed in action-angle variables [4,10–14].
References [15,16] derived integral and special-function
formulas for the transformation to action-angle coordi-
nates for bound geodesics in Kerr space-time, but no work
expressed the full closed-form transform to and from
action-angle coordinates for black hole geodesics. This
was only achieved in Ref. [17] and the present work.
In Ref. [17] a Taylor series like approach has been used to
find the action-angle variables for bound geodesics as a
function of the energy and the angular momentum on a
Schwarzschild background, while in the present work
we employ a Lie series approach based on canonical*gglukes@gmail.com

PHYSICAL REVIEW D 106, 044069 (2022)

2470-0010=2022=106(4)=044069(20) 044069-1 © 2022 American Physical Society

https://orcid.org/0000-0002-9464-2834
https://orcid.org/0000-0002-6333-3094
https://orcid.org/0000-0002-9209-5355
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.044069&domain=pdf&date_stamp=2022-08-30
https://doi.org/10.1103/PhysRevD.106.044069
https://doi.org/10.1103/PhysRevD.106.044069
https://doi.org/10.1103/PhysRevD.106.044069
https://doi.org/10.1103/PhysRevD.106.044069


perturbation theory (see, e.g., [18,19] for a comprehensive
introduction into this theory).
Canonical perturbation theory has a long history of

successes, such as the celebrated Kolmogorov-Arnold-
Moser theorem [20] or the computation of asymptotic
manifolds [21] (for more see, e.g., [22,23]). Our study uses
the framework of this theory to address the problem of
EMRIs in a background dominated by a Schwarzschild
black hole and perturbed by a surrounding matter field. The
Lie series approach simplifies the system and allows us to
have the respective Hamiltonian expressed purely in terms
of actions. This implies that we have all the important
quantities, such as the characteristic frequencies of motion
in closed form. The Lie series approach also provides a
canonical transformation to the action-angle variables,
which implies that we have at hand the invertible mapping
between the original coordinates and the action-angle ones.
The perturbed black hole field that we study here can

serve as a model for a broad range of physical scenarios.
Massive black holes in the centers of galaxies are well
known to be surrounded by dense nuclear star clusters and
other molecular and dust structures [24,25]. Other pos-
sibilities of external gravitational perturbations come from
more exotic sources such as dark matter [26,27] or scalar
fields [28]. On the other hand, various physical effects such
as tidal forces, increasing rotational shearing and the
associated instabilities, or gravitational radiation lead to
the evacuation of the immediate vicinity of the black hole
with only a few massive objects remaining in the inner few
hundred Schwarzschild radii [29]. This motivates our
approach, where the external matter distribution is consid-
ered far from the black hole and its field expanded only to a
handful of leading external multipoles.
To date, the motion in the fields of black holes with

external gravitational perturbations was mostly studied
through the methods of numerical integration. References
[30,31] showed that the motion of free test particles in black
hole fields superposed with external multipoles (exactly as
we study here) corresponds to a weakly nonintegrable
system with the appearance of resonances and chaos.
Several other works have since documented these properties
for various exact matter sources outside of the black hole
by using a number of methods of numerical analysis [32–
38]. Our work stands out by using an analytical method,
while we have to be aware of its limitations due to the weak
nonintegrability of the system proven by the large body of
numerical studies.
All the advantages of using the Lie series approach come

with the cost that the new system is faithful to the original
one only up to a certain accuracy. Nevertheless, every
model has such flaws, the true issue is whether the
approximation used is accurate enough for the purpose it
will be used for. In this sense, this work provides a proof of
principle that by using the Lie series approach one is able to

compute fast adiabatic EMRIs with fair accuracy even in
the case of more complex black hole backgrounds.
The rest of the article is organized as follows. Section II

briefly introduces the perturbation theorymethod. Section III
describes the background onwhich the inspirals evolve in our
study, and details the methodology we followed to describe
the geodesic motion on this background using the Lie series
method. Section IV discusses the techniques used to generate
the inspirals, while Sec. V presents our numerical results.
Finally, Sec. VI discusses our main conclusions, and further
steps and refinements that will be needed for applications of
this approach in contexts such as theproductionofwaveforms
for the Laser Interferometer Space Antenna.

II. CANONICAL PERTURBATION THEORY

In this section we summarize the general method that
will be used to cast the conservative dynamics in action-
angle coordinates in Sec. III.

A. Action-angle coordinates

Consider a Hamiltonian system of N degrees of freedom
with the Hamiltonian Hðqi; piÞ satisfying the following
conditions:
(1) The system possesses N linearly independent

isolating integrals of motion Ii, fIi; Ijg ¼ 0, i;
j ¼ 1;…; N.

(2) The motion in the phase space is bounded.
According to the Liouville-Arnold theorem (see for
example [6,39]), the motion is then confined to an N-
dimensional subset of the phase space diffeomorphic to the
torus TN . The particular torus on which the selected
trajectory lies is defined by N parameters Ji called actions
and can be parametrized by N periodic angles ψ i ∈ ð0; 2πÞ.
Angles are canonically conjugate to actions and together
they are known as action-angle coordinates.
If we perform a canonical transformation to action-angle

coordinates we find that the new form of the Hamiltonian
has one remarkable property, it depends only on the actions

ðqi; piÞ → ðψ i; JiÞ; Hðqi; piÞ → HðJiÞ:
Consequently the solution to Hamilton equations is trivial

JiðtÞ ¼ constant;

ψ iðtÞ ¼ Ωitþ ψ0i; ð1Þ

where Ωi ¼ ∂HðJjÞ
∂Ji

are the frequencies of motion. Inserting
the solution (1) into the transformation relations we obtain

qi ¼ qiðψ jðtÞ; JjÞ; pi ¼ piðψ jðtÞ; JjÞ: ð2Þ

Thus, finding the transformation from action-angle coor-
dinates to the original coordinates is equivalent to solving
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the Hamilton equations of motion in the original coordi-
nates ðqi; piÞ.
In the particular case of a separable system, in which the

motion is periodic in coordinate qi, the corresponding
action can be computed using the formula [40]

Ji ¼
1

2π

I
pidqi; ð3Þ

where the integral is taken along a complete time period of
the motion.
Unfortunately, there are very few examples in which the

integral (3) can be evaluated in a closed form. One such
example is the harmonic oscillator whose Hamiltonian can
be transformed as

Hðq; pÞ ¼ p2

2m
þ 1

2
mΩ2q2 → Hðψ ; JÞ ¼ ΩJ; ð4Þ

while the transformation relations are given by

q ¼
ffiffiffiffiffiffiffiffi
2J
mΩ

r
sinðψÞ; p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2JΩm

p
cosðψÞ: ð5Þ

In these relations one can clearly see the familiar solution to
the harmonic oscillator problem.
At this point one can surely ask whether it is possible to

perform such a transformation in case of a more compli-
cated integrable system or even in a case of a slightly
perturbed integrable system. This question leads us directly
to the Lie series formalism.

B. Lie series

The Lie series are a class of canonical transformations
defined by an arbitrary generating function ωðqi; piÞ
(details in Refs. [18,19,41]). We will first describe this
on the best-known case of time evolution. Denoting zi as
the phase space coordinates, the evolution equation can be
written as

dzi
dt

¼ fzi; Hg: ð6Þ

The solution to this equation can then be found using the
Taylor expansion where the time derivative is replaced by
the Poisson bracket with the Hamiltonian, which is a
consequence of Eq. (6). Denoting zið0Þ ¼ zi we have

ziðtÞ ¼ zi þ fzi; Hgtþ 1

2
ffzi; Hg; Hgt2 þ…

¼ expðt£HÞzi; ð7Þ

where the operator £g is defined as £gf ¼ ff; gg. The
operator £g is called Lie derivative because in the geomet-
rical formulation of Hamiltonian mechanics we have

£g ¼ £Xg
where Xg is the Hamiltonian vector field asso-

ciated with the function g.
If we now make an exchange: H ↔ ωðqi; piÞ, t ↔ ε

where ε is a small parameter, we can define a new
transformation

Zi ¼ ziðεÞ ¼ expðε£ωÞzi: ð8Þ

This transformation is indeed canonical as the Poisson
brackets are preserved due to the following identity [41]:

fexpð£ωÞf; expð£ωÞgg ¼ expð£ωÞff; gg; ð9Þ

which leads to fzi; zjg ¼ fZi; Zjg. Another useful identity
is the inverse relation for the Lie operator

ðexpðε£ωÞÞ−1 ¼ expð−ε£ωÞ: ð10Þ

Having introduced the Lie series formalism, we can now
use it to approximately transform a Hamiltonian into
action-angle coordinates, or to be more specific, to find
the so-called Birkhoff normal form of a Hamiltonian.

C. Birkhoff normal form

Assume we have a Hamiltonian in the form

Hð0Þ ¼ H0ðJiÞ þ
X
j¼1

εjHð0Þ
j ðψ i; JiÞ; ð11Þ

where H0ðJiÞ is a well-known integrable Hamiltonian
already expressed in the action-angle form while the other
part is expanded in a small perturbation parameter ε.
Computing the Birkhoff normal form of Hð0Þ actually
means eliminating the angle variables from the Hamiltonian.
Starting from the first order of the perturbation we

decompose the Hamiltonian Hð0Þ
1 into the part that does

not depend on the angles and the other that does:

Hð0Þ
1 ¼ Z1ðJiÞ þ h1ðψ i; JiÞ. If we then act with the Lie

operator on Hð0Þ we get

expðε£ω1
ÞHð0Þ ¼ H0 þ εZ1 þ εfH0;ω1g þ εh1 þOðε2Þ:

ð12Þ

Since h1 is to be eliminated, the terms proportional to ε
have to satisfy

fH0;ω1g þ h1¼! 0: ð13Þ

This is called a homological equation that has to be solved
for the so far unknown generating function ω1. Once we
have found ω1 we can compute a new form of our
Hamiltonian
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Hð1Þ ¼ expðε£ω1
ÞHð0Þ ¼ H0ðJiÞ þ εZ1ðJiÞ þOðε2Þ: ð14Þ

Thus, we have our Hamiltonian in the action-angle vari-
ables up to the first order in ε. We can now proceed in a
similar fashion, i.e., solving another homological equations
and so on until arriving at a desired order n in which the
Hamiltonian reads

HðnÞ ¼ expðεn£ωn
Þ expðεn−1£ωn−1

Þ… expðε£ω1
ÞHð0Þ

¼ UðωiÞHð0Þ; ð15Þ

where the notation UðωiÞ is used just for brevity to
represent the n canonical transformations applied.
Furthermore, HðnÞ can be decomposed into

HðnÞ ¼ HNFðJiÞþRðnÞðψ i;JiÞ;

HNFðJiÞ ¼ H0ðJiÞþ
Xr
j¼1

εjZjðJiÞ; RðnÞðψ i;JiÞ ¼ Oðεnþ1Þ;

ð16Þ

where HNF is the Birkhoff normal form of nth order, while
RðnÞ is a remainder which can be neglected as εnþ1 is a
sufficiently small number. The Birkhoff normal form now
allows us to compute the frequencies of motion which tell
us how the new angles evolve [see Eq. (1)]. The old
coordinates can now be expressed in terms of the new ones

ψ ð0Þ ¼ UðωiÞψ ; Jð0Þ ¼ UðωiÞJ: ð17Þ

Inserting Eq. (1) into the transformation relation (2) gives
us an approximative solution to the equation of motion with
the error given by the size of the remainder RðnÞ.
The Lie series is generally only asymptotic; there may

exist a maximum order above which the approximation
becomes less and less precise. The question of convergence
of canonical perturbation theory is tied to the existence of
small divisors and resonances, and the Lie series is not
guaranteed to converge everywhere even in fully integrable
systems (see, e.g., Refs. [6,18]). We shall demonstrate the
issues with resonances also in Sec. III D.

III. TIDALLY PERTURBED BLACKHOLEORBITS

Here we compute the conservative evolution of mildly
eccentric orbits of test particles near black holes perturbed
by a faraway gravitating ring surrounding the system. We
first introduce the metric field and then apply the Lie series
method to obtain action-angle coordinates of near-circular
geodesics in this field. Consequently, we apply another
round of canonical perturbation theory to obtain the
approximate solution of these orbits under the tidal per-
turbation by the ring. This will be a basis for the adiabatic
inspirals computed in Sec. IV.

A. A black hole perturbed by a ringlike source

Picture a black hole of mass M encircled by a rotating
gravitating ring with mass Mr and radius rr ≫ M much
larger than the black hole horizon. What are going to be the
leading-order effects of the ring on the gravitational field
near the black hole? It was found already by Thirring in
1918 [42,43] that the local inertial system inside a light,
thin rotating shell is rotating with respect to the inertial
system at infinity with an angular velocity

ΩThir ¼
2J sh

r3sh
; ð18Þ

where J sh, rsh are the total angular momentum and radius
of the shell. Similarly, the rate of time inside the shell is
redshifted with respect to observers at infinity by the
gravitational potential on the surface of the shell

zsh ¼
Msh

rsh
; ð19Þ

where Msh is the total mass of the shell.
Based on the works of Refs. [44,45], we show in

Appendix A that a similar effect occurs in the case of
the ring-hole system. Specifically, the inertial frame near
the center of a ring of angular momentum J r and
Schwarzschild radius rr rotates, to leading order in
rr ≫ M ≫ Mr, with an angular velocity

Ωin ¼
2J r

r3r
þOðr−5r Þ: ð20Þ

We assume that the ringlike structure is moving approx-
imately as a test body in the black-hole field, so to leading
order we have J r ¼ Mr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mr2r =ðrr − 3MÞ

p
, and we can

write

Ωin ¼ 2Mr

ffiffiffiffiffi
M
r5r

s �
1þ 3M

2rr

�
þOðr−9=2r Þ: ð21Þ

Additionally, the internal frame is redshifted by a factor

zin ¼
Mr

rr

�
1þM

rr

�
þOðr−3r Þ: ð22Þ

Finally, the gravitational field near the black hole will also
have a tidal contribution from the ring. Apart from
assuming that the black hole is static in the “internal”
inertial frame, we also truncate the tides to leading
quadrupolar order. Then we obtain the metric valid near
the black hole (see Appendix A for details):

POLCAR, LUKES-GERAKOPOULOS, and WITZANY PHYS. REV. D 106, 044069 (2022)

044069-4



ds2r≪rr ¼ −
�
1 −

2M
r

�
ð1þ 2νQÞdt2 þ

1þ 2χQ − 2νQ
1 − 2M=r

dr2

þ ð1 − 2νQÞr2½ð1þ 2χQÞdϑ2 þ sin2ϑdφ2�; ð23Þ

νQ ≡Q
4
½rð2M − rÞsin2ϑþ 2ðM − rÞ2cos2ϑ − 6M2�; ð24Þ

χQ ≡QMðM − rÞsin2ϑ; ð25Þ

where Q≡Mr=r3r is the quadrupole perturbation param-
eter and t, r, ϑ, ϕ are Schwarzschild-like coordinates in the
local frame. The local metric is approximately vacuum,
static, and axisymmetric with respect to the local time and
azimuthal angle t, φ with corresponding Killing vectors
ξμðtÞ ¼ δμt , ξ

μ
ðφÞ ¼ δμφ. As such, it is an approximate Weyl

metric [46,47].
The form (23) of the metric is valid only for r ≪ rr and

rings that are not compact, Mr ≪ rr. Specifically, it
neglects all terms starting from Oðr−4r Þ and OðM2

r Þ.
Also, as already discussed, the local coordinates are related
to the coordinate time and azimuthal angle T, ϕ of static
observers at infinity as

dT ¼ ð1þ zinÞdt; ð26Þ

dϕ ¼ dφþ Ωindt: ð27Þ

This has to be taken into account when predicting obser-
vations from the dynamics in the metric field (23).
Note that this framework is very flexible, since it does

not necessarily fix the relationship between zin,Ωin, andQ.
For more general matter distributions than a thin ring, these
parameters can be computed separately and fed into the
formalism the same way as it is done here. However, one
case which we do not treat are time-dependent and non-
axisymmetric perturbations that would correspond to
perturbers orbiting our EMR binary at intermediate dis-
tances. The possibility of inclusion of this case is discussed
in Sec. VI.

B. Quasicircular Schwarzschild geodesics

We would now like to apply the aforementioned theory
to the Hamiltonian

Htot ¼
1

2
gμνpμpν; ð28Þ

where gμν is our background metric (23) and the four-
momentum pμ is normalized to unity, i.e., gμνpμpν ¼ −1.
We will first start with the well-known Schwarzschild
Hamiltonian (Q ¼ 0)

HSchw ¼ 1

2

�
−1

1− 2M
r

p2
t þ
�
1−

2M
r

�
p2
r þ

1

r2

�
p2
θ þ

p2
ϕ

sin2θ

��
:

ð29Þ

Unfortunately this Hamiltonian cannot be put exactly into
the action-angle variables like the Kepler Hamiltonian.
Nevertheless HSchw remains separable, which means that
by adopting a new evolution parameter λ defined as
dτ ¼ r2dλ we can separate our Hamiltonian to a radial
and an angular part. The parameter λ is a special case of the
Carter-Mino time [48,49] used for similar reasons in the
Kerr spacetime. The Hamiltonian generating evolution in λ
(see Appendix B) can be written as

HSchwðλÞ ¼
1

2
r2ðgμνS pμpν þ 1Þ ¼ Hrad þHang; ð30Þ

where

Hrad ¼
1

2
r2
�
−

1

1 − 2M
r

p2
t þ

�
1 −

2M
r

�
p2
r þ 1

�
ð31Þ

is the radial part and

Hang ¼
1

2

�
p2
θ þ

p2
ϕ

sin2θ

�

is the angular part of the Hamiltonian.
Having separated our Hamiltonian we can now perform

the transformation of the respective parts into action-angle
coordinates. Since the metric does not depend on ϕ, the
specific angular momentum pϕ ¼ Jϕ ¼ Lz, i.e., the z
component of the angular momentum per unit mass, is
already an action variable while for the θ part we have

Jθ ¼
1

2π

I
pθdθ ¼ L − Jϕ; ð32Þ

where L is the specific total angular momentum. The action
Jθ, thus describes the part of angular momentum associated
with nonequatorial motion.1 The angular part of the
Hamiltonian in the action-angle coordinates reads

Hang ¼
1

2
ðJθ þ JϕÞ2: ð33Þ

The conjugate angles ψθ and ψϕ to the actions Jθ and Jϕ are
obtained by canonical transformations, which can be found
in Appendix B.
Let us now discuss the more difficult part, which

involves the radial part Hrad. In Eq. (31) we replace the
pt component of the four-momentum by the specific energy

1For equatorial motion Jθ ¼ 0.
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of the system E ¼ −pt and we perform an expansion of the
system around a stable circular orbit (r ¼ rc, pr ¼ 0,
E ¼ Ec). The perturbation parameter along which the
expansion takes place is the distance from the circular
orbit (something akin to the eccentricity). We assume that
the relevant phase space coordinates deviate from those
corresponding to the circular orbit like

r − rc ¼ OðεÞ ¼ pr; E − Ec ¼ δE ¼ Oðε2Þ; ð34Þ

where ε is a book-keeping parameter telling us how big
each term in our expansion is. Keep in mind that ε is not the
perturbation parameter, after the computation we can just
set it to ε ¼ 1.
As the radius rc is the minimum of the effective potential

Veff ¼ Hrad (see, e.g., [50]), the first postcircular approxi-
mation is the harmonic oscillator. After performing a
transformation similar to Eq. (4) (details in Appendix B)
we get the radial part in the form

Hrad ¼ K0 þ K2δEþ JrΩrc þ RðδE;ψ r; JrÞ;

where K0 and K2 are constants and Ωrc is the frequency of
the respective harmonic oscillator (Appendix B).
Neglecting the remainder RðδE;ψ r; JrÞ ¼ Oðε3Þ we

could accurately describe quasicircular orbits. However
we would like to describe orbits with higher eccentricities
with sufficient precision, which is why we implement the
canonical perturbation theory as discussed in the next
section.

C. Tidally perturbed orbits

In this section we finish the construction of the approx-
imative Hamiltonian system of a Schwarzschild with a ring
in action-angle variables. First, we perform two trans-
formation steps, as described in Sec. II B. This implies
finding two generating functions ω1 and ω2 to be used in
the Lie operators acting on the Hamiltonian HSchwðλÞ

expð£ω2
Þ expð£ω1

ÞHSchwðλÞ ¼ HNSðJr; JθÞ þOðε5Þ: ð35Þ

For the purposes of our study we deem approximation (35)
to be sufficiently describing geodesic bound orbits around a
Schwarzschild black hole, hence, we can now add the
ringlike source.
Our initial Hamiltonian (28) can be naturally split into

the Schwarzschild and the ring part as in the case of the
linearly perturbed metric (23)

Htot ¼ HSchwðλÞ þQHring: ð36Þ

The perturbation part is then transformed into the same
coordinates as the Schwarzschild part

expð£ω2
Þ expð£ω1

ÞHring ¼ HQ1 þOðε5Þ; ð37Þ

while the terms of higher order in ε are neglected. And,
thus, the total Hamiltonian reads

Htot ¼HNSðJr;JθÞþQHQ1ðψ r;ψθ;Jr;JθÞþOðε5Þ: ð38Þ
The last step in our computation is to solve the homological
equation for the function χ in order to eliminate the angles
from HQ1.

2 After this, the total Hamiltonian reads

Htot ¼ HNSðJr; JθÞ þQZQ1ðJr; JθÞ þOðQ2Þ;
¼ HNðJr; JθÞ þOðQ2Þ: ð39Þ

The original coordinates can be expressed using the Lie
operators as functions of the new ones as follows:

r¼ expðQ£χÞexpð£ω2
Þexpð£ω1

Þr0¼Uðω1;ω2;χÞr0;
pr ¼Uðω1;ω2;χÞpr0 ;

θ ¼ expðQ£χÞθ0; pθ ¼ expðQ£χÞpθ0 ; ϕ¼ expðQ£χÞϕ0;

ð40Þ

where r0, pr0 , θ0, pθ0 , and ϕ0 are the original trans-
formation functions given by Eqs. (B8), (B3), and (B4),
respectively, in Appendix B.
Solving the homological equation (13) at each step is

quite straightforward, the relatively difficult part is finding
the generating function χ as it involves two degrees of
freedom. By expanding the Hamiltonians in parameters ε
and Q, the h1 part of HQ1, which is to be eliminated, takes
the form

h1 ¼
X
k;l

akleiðkψrþlψθÞ; ð41Þ

where the coefficients akl are in fact functions of actions.
The solution to Eq. (13) can then be expressed as

χ ¼
X
k;l

akl
1

iðkΩr0 þ lΩθ0Þ
eiðkψ rþlψθÞ; ð42Þ

whereΩr0 ¼ ∂HNS
∂Jr

andΩθ0 ¼ ∂HNS
∂Jθ

are the frequencies of the
Schwarzschild Hamiltonian obtained in (35). When close to
resonances the denominator of this expression tends to zero
which causes the remainder to be large, thus making the
approximation less accurate as we shall see in the following
section.
All the above-mentioned calculations involving canoni-

cal perturbation theory are included in the Maple notebook
called “Canonical perturbation theory” which is a part of
our Supplemental Material [51].
The analytical formulas (40) can be plotted for fixed

values of the actions to illustrate our result (Fig. 1). It is

2Note that now Q is the perturbation parameter.
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clear from the figure that nonequatorial motion is no longer
planar since the ring (located in the z ¼ 0 plane) breaks the
spherical symmetry of the Schwarzschild spacetime.

D. Validity of the approximation

Knowing the explicit expressions (40) and the approxi-
mate normal form of our HamiltonianHNðJiÞ (39) we have
essentially perturbatively solved the original equations of
motion given by Htot. First we fix three of our new set of
conserved actions and then compute the fourth so that the
normalization condition

HNðJr; Jθ; δE; JϕÞ ¼ 0 ð43Þ

is satisfied. Then, we find the frequencies of motion for our
new angles as well as the relation between the coordinate
time t and λ

dψ i

dλ
¼ ∂HN

∂Ji
¼ ΩiðJr; Jθ; δE; JϕÞ;

dt
dλ

¼ ∂HN

∂δE
: ð44Þ

Finally we substitute the angles and actions into Eq. (40) to
get the coordinates and their respective momenta as explicit
functions of Mino time λ ðxiðλÞ; piðλÞÞ.
The evolution of the deviations from the exact solutions

is governed by the remainder Rðψ i; JiÞ, which contains all
the terms of the order Oðε5Þ and OðQ2Þ. It is clear that the
validity of our approximation not only depends on the fixed
parameter Q describing the gravitational field of our
ringlike source but also on all our actions Jr, Jθ, Jϕ.
The most straightforward way to test our approximation

would be plotting and comparing our analytical solution to
the numerical one. This is certainly illustrative, never-
theless, it is still useful to have some quantity to describe
the deviation from the exact solution. For this purpose we
can use quantities denoted as δJi, which measures the
relative error of the conservations of actions. The errors δJi
can then be expressed as functions of actions Ji in order to
study the validity of the approximation (details are given in
Appendix C).
In general, it can be said that the larger the value of Jr is

the less accurate the approximation becomes. Apart from
that the approximation depends on the perturbation param-
eter Q and the total angular momentum L. These two,
however, are not independent from each other as increasing
the value of L is equivalent to increasing Q. This comes
from the fact that νQ is not bounded by a fixed value of Q
instead we have νQ ∼ r2 [see Eq. (24)] and r ∼ L2. We can,
thus, conclude that it is the value of the quantity QL4=M2

that characterizes the entire strength of the perturbation.
The most general type of motion is the nonequatorial

one, for which we have Jθ ≠ 0. The dependence of δJr and
δJθ on actions is the same as in the equatorial motion; what
is new here, however, is the presence of the resonances of
the form

kΩr0 þ lΩθ0 ¼ 0; k; l ∈ Znf0g; ð45Þ

where Ωr0 and Ωθ0 are the Schwarzschild frequencies.
When the orbit is close to these resonances the approxi-
mation is no longer reliable because the denominators in
the expression (42) tend to zero. These small divisors then
prevent the convergence of the normalization procedure
(see, e.g., [18]). In our particular case we only applied one
generating function involving two degrees of freedom,
which is χ [used in Eq. (39)]. From the analysis of the
function χ and the Schwarzschild frequencies it becomes
clear that the only ratios Ωr0

Ωθ0
present in the expansion (42) of

χ are the 1
2
, 2
3
, and 1. This is illustrated in Fig. 2, which

depicts the resonance sets in the Jr-Jθ plane for a fixed
value of Jϕ. It is important to stress at this point that even
though Ωr0 depends explicitly on the total angular momen-
tum L ¼ Jθ þ Jϕ it is correct to treat both angular actions
separately. The same can be said for the dependence on Q,
which is much more significant than that on L, e.g., smaller
value ofQ shifts the resonance curves to larger values of L.
This dependence can be understood from the substitution
of the energy from constraint (43) in Ωr0, for which we
have E ¼ EðQ; Jr; Jθ; JϕÞ ≠ EðQ; Jr; Jθ þ JϕÞ. Namely,
in total the expression for the radial frequency reads
Ωr0 ¼ Ωr0ðEðQ; Jr; Jθ; JϕÞ; Jr; Jθ þ JϕÞ.
In summary, the geodesics obtained from the

Hamiltonian (39) approximate the exact solution suffi-
ciently well provided that the errors δJi are small and we
are not close to resonances. However, the size of δJi

FIG. 1. Spatial representation of the approximate solution
to the geodesic equation (Q ¼ 10−6M−2, Jr ¼ 0.1M, Jθ ¼ 1.5M,
Jϕ ¼ 3.5M).
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unfortunately does not tell the whole story. The error in the
evolution of ðψ i; JiÞ accumulates over time and it is up to us
to fix the accuracy of the approximation, so the error does
not become substantial for ε−1m number of orbital periods
(Appendix C), where εm is the mass ratio.
To conclude this part we illustrate the advantages and the

drawbacks of this approximation on the precession of near-
circular and near-equatorial orbits. The precession rates of
orbits can be expressed using fundamental frequencies as

ΔΨr ¼ 2π

�
1−

Ωr

Ωϕ

�����
rcirc

; ΔΨθ ¼ 2π

�
1−

Ωθ

Ωϕ

�����
rcirc

; ð46Þ

where ΔΨr corresponds to the pericenter precession per
one period of the azimuthal coordinate ϕwhile similarly for

the nodal precession rate we have defined the quantityΔΨθ.
Of course the frequencies are functions of the integrals of
motion (actions) and for a near-circular and near-equatorial
orbits they need to be evaluated at (δE ¼ 0, Jr ¼ 0,
Jθ ¼ 0). The precession rates are then functions solely
of Jϕ, which itself can be expressed as a function of the
radial coordinate r or rather the circular-orbit location rc.
For the Schwarzschild spacetime the precession rates (46)
reduce to simple results

ΔΨrjQ¼0 ¼ 2π

�
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

6M
rc

s �
; ΔΨθjQ¼0 ¼ 0: ð47Þ

Alternatively instead of rc we can use a dimensionless
frequency parameter x

x ¼ ðMΩðtÞ
ϕ Þ23; ΩðtÞ

ϕ ¼ Ωϕ
dλ
dt

; ð48Þ

where the azimuthal frequency ΩðtÞ
ϕ is defined with respect

to the coordinate time t (and not the Mino time λ). For
Schwarzschild the frequency parameter x is related to rc by
a simple formula x ¼ M

rc
. In the superposition background,

however, the quantity x is not an injective function of rc,
which can be seen in Fig. 3 (right panel). The same figure
also shows the relation between x and the precession rate of
near-circular near-equatorial orbits. The nodal precession
rate is in general nonzero and tends to grow (in absolute
value) with the distance from the black hole, which can be
expected since we are approaching the external gravitating
ring that breaks the spherical symmetry. This in turn means
that it is small for large values of x.
The left panel in Fig. 3 shows an unexpected divergence

of ΔΨr close to the Inner Stable Circular Orbit (ISCO).
This we deem to be completely unphysical as it happens in
the region dominated by the black hole. The divergence is

FIG. 2. Resonances in the Jr-Jθ plane for Jϕ ¼ 3M,
Q ¼ 10−5M−2.

FIG. 3. The relation between pericenter (left panel) and the nodal (middle panel) precession rate of near-circular near-equatorial orbits
and a frequency parameter x which itself can be expressed as a function of rc (right panel), Q ¼ 10−6M−2.
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in fact caused by the factor Ω−1
rc present in the generating

functions ω1 and ω2 as Ωrc ¼ 0 for rc ¼ 6M. The sudden
decrease of x at ISCO is caused for the very same reason.
One would be able to invert the function xðrcÞ if not for this
unphysical part of the graph. The fact that xðrcÞ cannot be
inverted can be also seen from the graph of ΔΨr. Actually,
this effect is a consequence of the perturbation expansion
we have chosen.
Had we used the expansion from the circular equatorial

orbits of the superposition, the unphysical part of the graph
would not have appeared as the fundamental frequencies of
the circular orbits are finite. In fact, we have checked this
claim numerically. On the other hand the expansion scheme
we have used is easier to perform due to the simplicity of
the Schwarzschild Hamiltonian and it can also describe
orbits with arbitrary inclination. Nevertheless, note that
close to the Schwarzschild ISCO the approximation fails to
describe the correct geodesic dynamics anyway.

IV. ADIABATIC INSPIRALS INTO
THE PERTURBED BLACK HOLE

In this section we are going to present our model of an
EMRI in the perturbed background field by using a basic
prescription for radiation reaction. In the geodesic context
we defined our Hamiltonian (28) using a four-momentum
normalized to −1. To reintroduce the mass m of our
“particle,” we retain the original form of our Hamiltonian
with actions and energy normalized to unit mass,

E ¼ EðmÞ=m, Ji ¼ JðmÞ
i =m instead of using the new

coordinates JðmÞ
i and normalization to −m2. Regardless

of that, every not dimensionless quantity is still scaled
with respect to M as can be seen in all the figures
presented in our paper.

A. Computation of the gravitational-wave fluxes

Following the general approach described in [4,5], we
can write down the equations of motion of an inspiraling
binary as an expansion in the mass ratio εm

dψ i

dt
¼ ΩðtÞ

i ðJÞ þOðεmÞ; ð49Þ

dJi
dt

¼ εmGiðψ; JÞ þOðε2mÞ; ð50Þ

where Gi corresponds to radiation reaction to the orbital
elements of the binary, which drives the inspiral.
Note that the evolution equations (49) and (50) use the

“internal” coordinate time t as the evolution parameter,
which is trivially redshifted by the ring with respect to the
time T of observers at infinity. It is also important to note
that equations (49) and (50) represent the action-angle form
of the evolution equations of an exactly integrable system at
zeroth order in εm. Examples of such integrable systems

considered in the EMRI scenario include bound geodesics
in the Schwarzschild or the Kerr spacetime. Using canoni-
cal perturbation theory, however, we can approximate a
nearly integrable system by an integrable one, which is
exactly what we did in the previous section.
The global inspiral solution to Eqs. (49) and (50) can be

naturally expanded with respect εm using a two-timescale
analysis. The first timescale is the orbital timescale of the
geodesic motion ∼1=Ω. Since this involves the evolution of
the angles ψ i these are then called “fast” variables. On the
other hand we have the inspiral timescale that deals with the
decays of the actions on the much longer timescale
εMJ=G ∼ εM=Ω. The actions are thus classified as “slow”
variables. The standard procedure is then to separate these
two timescales by averaging the functions Gi over the fast
variables, that is the n-dimensional invariant tori Tn para-
metrized by the angles

giðJÞ ¼ hGiðψ; JÞi ¼
Z
Tn
Giðψ; JÞdnψ : ð51Þ

We can then first solve the equations for the actions

dJiðtÞ
dt

¼ εmgiðJðtÞÞ; ð52Þ

while the angles can be obtain simply by integrating the
fundamental frequencies whose evolution is given by the
actions JiðtÞ

ψ iðt̃Þ ¼
Z

t̃

0

ΩðtÞ
i ðJðtÞÞdt: ð53Þ

Let us now discuss the particular method we employed to
compute the gravitational wave fluxes (i.e., the functions
gi). For this purpose we employ the quadrupole formalism,
which is the lowest order expansion in the post-Newtonian
theory. The limitations of this method in the context of
strong-field inspirals are obvious, but this method is
sufficient for a qualitative analysis, and computing the
fluxes with more sophisticated approximations is beyond
the scope of our work. Hence, the flux formulas for the
energy and the components of the angular momentum read

dE
dt

¼ −
1

5

X3
i;j¼1

hð I…ijÞ2i;

dLi

dt
¼ −

2

5

X3
j;k;l¼1

ϵijkhð I
…

jl
̈IklÞi; ð54Þ

where the traceless quadrupole moment of our particle has
the form

IijðtÞ ¼ m

�
xiðtÞxjðtÞ − 1

3
δijxkðtÞxkðtÞ

�
: ð55Þ
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The functions xiðtÞ represent the orbital motion in Cartesian
coordinates. Since we have so far used spherical-like
coordinates, it is necessary to transform into the coordinates
xi, for that purpose we used the standard (flat-space)
relations between spherical and Cartesian coordinates.
The time derivatives present in Eq. (54) are computed in

accordance with the assumptions of the adiabatic approxi-
mation, which means that we neglect the change in the slow
variables

_xiðψðtÞ; JðtÞÞ ¼ ∂xi

∂ψ j

dψ j

dt
þ ∂xi

∂Jj

dJj
dt

≈ ΩðtÞ
j

∂xi

∂ψ j
: ð56Þ

Note that the frequencies in the above expression are with
respect to the coordinate time t, while our fundamental
frequencies are related to the Mino time λ. This is not a
problem since we have

ΩðtÞ
j ¼ Ωj

dλ
dt

: ð57Þ

In fact, we can exchange t → λ in higher time derivatives in
the adiabatic approximation, since the differentiation of dλ

dt
with respect to timewould involve terms proportional to the
time derivatives of the actions which can be neglected as in
(56). We can thus write

dn

dtn
≈
�
dλ
dt

�
n dn

dλn
;

dt
dλ

¼ ∂HN

∂δE
ðJÞ: ð58Þ

We would like to remind the reader here that all
quantities depending on J also depend on E (or δE), but
the energy and the three actions are not independent, since
we have the normalization condition (43), which is why the
energy dependence is often omitted. Ideally the coordinate
functions xiðtÞ can be expressed as a Fourier-like expan-
sions, the same can then be said about expression for the
fluxes. The averaging is then equivalent to eliminating all
the oscillating terms

G¼
X
k

ckðJÞeiðk·ψðtÞÞ⇒ hGi¼c0ðJÞ; k∈Z3: ð59Þ

In practice, however, this fully analytical approach is not
feasible because of the number of terms present in Eq. (54),
this is especially true for the nonequatorial orbits. It is
easier to numerically integrate the function G. Instead of
using a multidimensional integral like in Eq. (51), we can
integrate over an orbit that densely covers the invariant
torus determined by the actions. This implies integrating
over a sufficiently long time Λ

hGðψðλÞ; JÞi ¼ 1

Λ

Z
Λ

0

GðψðλÞ; JÞdλ: ð60Þ

We now have to find the evolution equations for the three
independent integrals of motion. It is straightforward to use
the energy and the z component of the angular momentum
(Jϕ) since we have explicit formulas (54) for them. The
third integral will be the action Jθ, which can be written as

Jθ ¼ Jð0Þθ − δJθ; δJθ ¼ fJθ; χ1g; ð61Þ

where the action Jð0Þθ is the original one derived in Eq. (32),
i.e., the one before applying the Lie operator with the
generating function χ1 [see Eq. (42)]. Knowing the quadru-
pole fluxes for the angular momentum components we can
compute its time derivative as

dJð0Þθ

dt
¼ L⃗ · dL⃗dt

L
−
dJϕ
dt

: ð62Þ

The components of the angular momentum can be
expressed in terms of our original phase-space coordinates
as

Lx ¼ − sinðϕÞpθ − cosðϕÞ cotðθÞJϕ; ð63Þ

Ly ¼ cosðϕÞpθ − sinðϕÞ cotðθÞJϕ: ð64Þ

Since the function δJθ contains only oscillating terms it
does not survive the averaging

�
dJθ
dt

	
¼
�
dJð0Þθ

dt

	
;

�
dδJθ
dt

	
→ 0 as Λ→∞: ð65Þ

We, thus, arrive at the complete system of evolution
equations for three independent integrals of motion.
These three equations can then be solved numerically.

The radial action Jr can be computed at each time step from
the normalization condition (43), while the evolution of the
angles is given by the integrals of their respective funda-
mental frequencies [expression (53)].
The computation of the fluxes is detailed in the

“Gravitational-wave fluxes” Maple notebook which is
included in the Supplemental Material [51].

V. RESULTS

In this section we present the adiabatic evolution in the
general nonequatorial case. Let us again stress that our
results provide essentially a qualitative analysis due to the
approximative methods we have employed. This includes
the particular values of various parameters we have used in
this section, some of which are not relevant for realistic
EMRIs. For instance, the mass ratio we use in this section is
εm ¼ 10−3, but it does not practically matter in our
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approach, since the equations which govern the adiabatic
evolution of actions do not depend explicitly on the time;
any other value of εm would just rescale the time variable in
our solution. Another important parameter is the external
quadrupole Q representing the ring, its value was inten-
tionally chosen to be large (Q ¼ 10−6M−2) in the following
so that its effect is prominent in the figures. Lastly the ring
radius is set to rr ¼ 50M.

A. Phase shifts

First we investigate the effect of the ring perturbation on
the orbital phases, i.e., the angle coordinates.

δψ iðtÞ ¼ ψ iðtÞ − ψ iðtÞjQ¼0; ð66Þ

where the evolution of ψ iðtÞ is given by Eq. (53). As the
fundamental frequencies are in principle observable, it is
natural to parametrize our orbits by them instead of the
actions. Thus, we start from the same initial frequencies in
both the perturbed and unperturbed cases so that not only
δψ ið0Þ ¼ 0, but also δ _ψ ið0Þ ¼ 0. This matching of the
frequencies was used in [52] in the case of a spinning
particle in Kerr spacetime. Unlike in their case however our
reference spacetime is Schwarzschild whereΩSchw

θ ¼ ΩSchw
ϕ ,

which is a consequence of spherical symmetry while for
Q ≠ 0 we have Ωθ ≠ Ωϕ.
Despite the inability to match all the frequencies we can

still choose two of them (in our case Ωr and Ωϕ) and match
them to their Schwarzschild counterparts for a fixed value

of Q. In addition we can find the matches for different
values of Jθ, which effectively means different initial
inclinations.
When evolving the angles (or other quantities) one

should use the proper time T of the asymptotic observer
as an evolution parameter instead of t. This involves
including the redshift factor zin given by Eq. (22), which
was absorbed into the coordinates t and r. This monopole
term of the expansion [see Eq. (A6)] is necessary to include
what is dynamically dominating; however, it is the non-
constant quadrupole term that breaks the spherical sym-
metry. For this reason, we compute the phase shift only for
the quadrupole perturbation, which means using the def-
inition (66) but with the time T. The phase shifts for the two
matched frequencies are then plotted in the Fig. 4. It is
interesting to see that jδψ ij is smaller for larger values of Jθ,
keeping in mind that ψ iðtÞjQ¼0 remains unchanged as the
evolution in the Schwarzschild spacetime does not depend
on the initial inclination.

B. Inclination and eccentricity

When considering nonequatorial motion in a nonspheri-
cally symmetric spacetime one can study the behavior of
orbital inclination i. This quantity is defined as an angle
between the current orbital plane and the equatorial plane.
In terms of our action variables it can be expressed as

i ¼ arccos

 
Jϕ

Jϕ þ Jð0Þθ

!
: ð67Þ

FIG. 4. The left panel shows a logarithmic plot of the radial phase shift δψ rðTÞ, and the right panel shows logarithmic plot of the
azimuthal one δψϕðTÞ for different initial value values of Jθ. For these plots we have usedQ ¼ 10−6M−2 and rr ¼ 50M while the initial
frequencies are matched to the Schwarzschild ones with Jrð0Þ ¼ 0.1M, Lð0Þ ¼ 5M. In all cases the phase shifts remain negative during
the evolution.
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When the quadrupole perturbation is present the inclination
of a geodesic orbit does not remain constant, but it
oscillates. The oscillations is caused by the δJθ term

contained in Jð0Þθ [see Eq. (61)].
In order to show the effect of the adiabatic evolution on

the inclination, it is useful to separate this geodesic
evolution by defining the averaged inclination

I ¼ hii ¼ arccos

�
Jϕ

Jϕ þ Jθ

�
: ð68Þ

This inclination is constant in the geodesic case, since it
depends only on the integrals of motion. During an inspiral,
however, I shall evolve on the inspiral timescale and it is
interesting to compare the geodesic oscillation of i to the
EMRI evolution of I.
Figure 5 shows that the geodesic oscillation of inclina-

tion for a particular choice of initial conditions is two orders
of magnitude larger than the drift of I caused by radiation
reaction. This difference of course depends on the strength
of the perturbation (Q), which in our example is quite large;
however, we must also keep in mind that the influence of
the ring on the dynamics decreases as we approach the
black hole. This is caused by the smaller value of the total
angular momentum close to the ISCO, where the amplitude
of the geodesic oscillations of i is comparable to the total
change of I during the EMRI. The fact that the function I is
decreasing is expected, as the dissipation of the constants of
motion should, in principle, lead to the equatorial plane
value I ¼ 0. On the other hand, for some initial conditions
we have seen an increase of I as the inspiral reaches ISCO,
we speculate this effect to be possibly of numerical origin.
This growth is also present in the case of eccentricity, which
can be defined as

e ¼ r1 − r2
r1 þ r2

; ð69Þ

where r1 is the maximum value of rðtÞ for a given geodesic
while r2 is the corresponding minimum. An evolution of
the eccentricity during the inspiral can be seen in Fig. 6.
The growth of eccentricity close to the ISCO was also
found in other works (see, e.g., [53]), but it is questionable
whether it has a physical significance or it is just a
coordinate effect.

FIG. 5. The left panel shows the oscillation of the orbital inclination (dashed black) with respect to the averaged constant inclination
(red continuous curve) for a geodesic orbit. The right panel shows the evolution of the averaged inclination I during the inspiral. For
these plots we have used Q ¼ 10−6M−2, Jrð0Þ ¼ 0.11M, Jθð0Þ ¼ 1.5M, Jϕð0Þ ¼ 3.5M.

FIG. 6. The adiabatic evolution of eccentricity as a function of
time T in the case of an equatorial inspiral (Q ¼ 10−6M−2,
Jrð0Þ ¼ 0.098M, Jθð0Þ ¼ 0, Jϕð0Þ ¼ 5M.).
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C. Waveforms

Finally let us conclude our results with some plots of
gravitational waveforms. In our radiation-quadrupole for-
malism the components of the metric perturbation can be
written in the TT gauge as

hTTij ¼ 2

R
̈ITTij ðuÞ; ð70Þ

where u ¼ T − R is the retarded time and ITTij can be
obtained from Iij using projectors Pij as

ITTij ¼ Pk
i IklP

l
j −

1

2
PijPklIkl; Pij ¼ δij − ninj; ð71Þ

where ni is a unit vector pointing from source to the
observer. Naturally, as in the case of the calculations of the
fluxes, Ikl depends on the coordinates of our particle. Their
adiabatic evolution is determined by the evolution of
actions and angles

xiðTÞ ¼ xiðψðTÞ; JðTÞÞ: ð72Þ

In following we decompose hTTij as it was done in [54]. For
that we need to define two additional vectors p⃗ and q⃗,
which together with n⃗ form an orthonormal basis in the 3D
Euclidean space.

p⃗ ¼ n⃗ × L⃗

jn⃗ × L⃗j ; q⃗ ¼ p⃗ × n⃗:

The components of the angular momentum L⃗ can be
computed from our action-angle variables as was the case
in Eq. (63). The two independent polarizations have the
form

hfþ;×g ¼ 1

2
Hfþ;×g

ij hijTT; ð73Þ

where Hfþ;×g
ij are defined as

Hþ
ij ¼ pipj − qiqj; H×

ij ¼ piqj − qipj: ð74Þ

With all the ingredients in place we can plot some
waveforms. One such an example is depicted in Fig. 7,
where we can see the component hfþg at the beginning of
the evolution around r ≈ 21M and at a later time when
r ≈ 9M. Despite not having decomposed the signal into
modes it is evident from the figure that the amplitudes and
frequencies grow during the inspiral as expected.
In Fig. 8 we compare two waveforms to see the effect of

the quadrupole term in our Hamiltonian. Although the
initial radial and azimuthal frequencies are matched as
above the phase shifts tend to grow rather quickly for the
large value of Q we had chosen. In addition to that we can
see a great difference in the amplitudes as well.
Throughout the Sec. V we included the value Q for each

figure. It is, however, the quantity QL4=M2 that character-
izes the strength of the quadrupole perturbation (as was
mentioned in Sec. III D). The reason we chose Q over
QL4=M2 is because the latter is not a constant during the
inspiral as the total angular momentum L is a decreasing

FIG. 7. The gravitational wave strain (hfþg) of a single nonequatorial EMRI (Q ¼ 10−6M−2, Jrð0Þ ¼ 0.11M, Jθð0Þ ¼ 1.5M,
Jϕð0Þ ¼ 3.5M) at two different instants: u ¼ 0 (left panel) and u ¼ 3.2 × 106M (right panel).
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function of time. Namely, the effects of perturbation are
lower as we get farther from the ring. On the other hand, it
is important to point out that due to the expansion scheme
we used the effects of the perturbation will again grow close
to the Schwarzschild’s ISCO, where the approximation
breaks down as was demonstrated in Sec. III D for the
precession rates. Nevertheless, the maximum strength of
the perturbation is at the beginning of the adiabatic
evolution, where we had QL2ð0Þ=M2 ¼ 2.5 × 10−5.

VI. SUMMARY AND DISCUSSION

This work showcased the advantages of using the Lie
series approach to tackle the EMRI problem. For this
purpose, we used a fairly complex background system, in
which the primary black hole is surrounded by a matter
distribution. In particular, we truncated a gravitating ring-
like source up to its leading quadrupole term to introduce a
quite generic tidal field around the primary Schwarzschild
black hole. We wrote the Hamiltonian system providing the
geodesic motion in the above background and noticed that
it can be split into a part giving the motion in the
Schwarzschild background, which corresponds to an inte-
grable system, and a perturbative part expressing the
perturbation due to the quadrupole term.
By using the Mino time, we further split the

Schwarzschild part of the Hamiltonian into a radial and
angular part. After relatively simple manipulation we
showed that the angular part can be written in action-angle
variables, while for the radial part we perturbed it around a
circular orbit as a harmonic oscillator and used a standard
canonical transformation to get it into action-angle

variables as well. To expand our scheme further from the
circular orbit we applied two canonical transformations
using the Lie series approach on the Schwarzschild part of
the Hamiltonian. The same series of transformations were
also applied on the perturbative part of the Hamiltonian
leading to a Hamiltonian system in action-angle variables
valid up to the separatrix. We tested the obtained
Hamiltonian system and found that as far as we stay away
from the 1∶1, 1∶2, and 2∶3 resonances between the radial
and polar frequencies and ISCO the system is behaving
sufficiently well.
After establishing the conservative part of our approxi-

mation to an EMRI, we addressed the dissipative part. To
introduce dissipation into the system we used fluxes
computed by the quadrupole formula. By averaging out
the oscillating terms of the fluxes, we were able to provide
the equations for the adiabatic radiative decay of the actions
and evolve the inspirals. Since we derived the characteristic
frequencies of the system, we were able to easily obtain the
orbital phase shifts caused by the matter distribution.
Moreover, we were able to compute the eccentricity and
inclination changes as the inspiral evolves and the respec-
tive waveforms.
In the future, we would like to improve this work in a

number of ways. First, it is necessary to also treat the case
of a perturbed inspiral into a generic spinning black hole,
that is the Kerr space-time. Second, our formalism breaks
down near resonances, so we would like to implement a
variant of the formalism sketched in Ref. [55] to evolve
the inspiral faithfully through the resonances. Third, we
have restricted to the case of a perfectly axially symmetric
stationary cloud of matter. However, in astrophysically
realistic scenarios the external matter sources are only
approximately so. In particular, when the external matter
consists of a halo of orbiting objects such as stars, the
largest deviations from stationarity and axisymmetry
come from those objects that have either outstanding
masses or are very close to the center [56]. Even though
the question of resonances caused by such perturbations
was already treated by Refs. [56,57], we wish to system-
atically address the symmetry breaking within our for-
malism in the future.
The last, but perhaps most salient point we would like to

improve upon in the future is the question of the
gravitational-wave fluxes of energy and angular momen-
tum. Rather obviously, it is necessary to include a strong-
field flux computation using the Teukolsky equation or a
similar method. However, the additional issue is that the
tidal quadrupole perturbation also causes a perturbation to
the Teukolsky equation. This perturbation then adds a Q-
proportional contribution to the flux, which implies a
comparable contribution to the inspiral phasing as the
perturbation to the geodesics we have treated here.
However, the perturbation makes the equation nonsepar-
able and will require a delicate analysis.

FIG. 8. A comparison of the unperturbed (red) and perturbed
waveform for two matched frequencies in the equatorial plane
(Q ¼ 10−6M−2, Jrð0Þ ¼ 0.002M, Jθð0Þ ¼ 0, Jϕð0Þ ¼ 5M).

POLCAR, LUKES-GERAKOPOULOS, and WITZANY PHYS. REV. D 106, 044069 (2022)

044069-14



ACKNOWLEDGMENTS

L. P. and G. L.-G. have been supported by the fellowship
Lumina Quaeruntur No. LQ100032102 of the Czech
Academy of Sciences. V.W. was supported by by
European Union’s Horizon 2020 research and innovation
programme under Grant Agreement No. 894881. L. P.
acknowledges support by the project “Grant schemes at
CU” (Grant No. CZ.02.2.69/0.0/0.0/19 073/0016935).

APPENDIX A: DERIVATION OF PERTURBED
BLACK-HOLE FIELD

To derive the tidally perturbed black hole field, we use
the formulas for black hole fields surrounded by light
ringlike sources at finite distances as recently presented by
Čízek and Semerák [45] (see also the seminal work of Will
[44]). They start from metrics of the form

ds2 ¼ −e2νdT2 þ R2

�
1 −

M2

4R2

�
2

e−2νðdϕ − ωdTÞ2

þ e2ζ−2νðdR2 þ R2dθ2Þ; ðA1Þ

where T, ϕ, R, θ are coordinates of the Carter-Thorne-
Bardeen type, and ν, ω, ζ are unknown metric functions.
The zeroth-order solution (isolated static black hole) is
presented in this case by the metric functions

ν0¼ ln

�
2R−M
2RþM

�
; ω0¼0; ζ0¼ ln

�
1−

M2

4R2

�
: ðA2Þ

It can then be easily seen that R is the isotropic radius at
zeroth order. The linear perturbations ν ¼ ν0 þ δν, ω ¼
ω0 þ δω by a rotating ring are then obtained by using
Green’s functions Gν and Gω in Eqs. (66) and (75) of Čízek
and Semerák [45]. Specifically, for a ring of Komar mass
Mr and angular momentum J r we obtain

δν ¼ −
2Mr

M
GνðxðRÞ; θ; xðRrÞ; π=2Þ; ðA3Þ

δω ¼ −
8J r

M3
GωðxðRÞ; θ; xðRrÞ; π=2Þ; ðA4Þ

xðRÞ ¼ R
M

�
1þ M2

4R2

�
; ðA5Þ

where xðRÞ is the auxiliary dimensionless radius used by
Čízek and Semerák. The perturbation to ζ ¼ ζ0 þ δζ is
then obtained by a particular line integral involving the
gradient of ν. We expand the Green’s function in the limit
Rr ≫ R ∼M to obtain

Gν ¼ M
2Rr

þM½ðM2 þ 4R2Þ2 − ð3M4 þ 8M2R2 þ 48R2Þcos2θ�
128R2R3

r

þOðR−4
r Þ; ðA6Þ

Gω ¼ −
M3

4R3
r
þ 3M4

4R4
r
þOðR−5

r Þ: ðA7Þ

Note that we consider the Gω expansion to order R−4
r since

it enters the metric multiplied by J r ∼ R1=2
r . Finally, we

obtain for δζ

δζ ¼ −
MrMsin2θðM2 þ 4R2Þ

4RR3
r

þOðR−4
r Þ: ðA8Þ

Now the transformation to the local Schwarzschild-like
coordinates in which the metric attains the form (23) is
given by

r ¼ R

�
1þ M

2R

�
2

ð1þ zinÞ; ϑ ¼ θ; ðA9Þ

t − t0 ¼ Tð1 − zinÞ; φ − φ0 ¼ ϕ −ΩinT; ðA10Þ

where t0, φ0 are integration constants and the redshift
and angular-velocity factors are

zin ¼
Mr

Rr
¼ Mr

rr

�
1þM

rr

�
þOðr−3r Þ; ðA11Þ

Ωin ¼
2J r

R3
r

�
1 −

3M
Rr

�
¼ 2J r

r3r
þOðr−5r Þ: ðA12Þ

APPENDIX B: SCHWARZSCHILD
IN ACTION-ANGLE COORDINATES

In order to find the action-angle form of the
Schwarzschild Hamiltonian we first have to separate its
radial and angular parts, which can be done by replacing the
proper time as an evolution parameter using dτ ¼ r2dλ.
One can easily make sure that the Hamiltonian HðλÞ ¼
1
2
r2ð2H þ 1Þ ¼ 1

2
r2ðgμνpμpν þ 1Þ is the generator of evo-

lution in λ
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dxμ

dλ
¼ ∂HðλÞ

∂pμ
¼ r2

∂H
∂pμ

¼ r2
dxμ

dτ
;

dpθ

dλ
¼ −

∂HðλÞ
∂θ

¼ −r2
∂H
∂θ

¼ r2
dpθ

dτ
;

dpr

dλ
¼ −

∂HðλÞ
∂r

¼ −r2
∂H
∂r

− rð2H þ 1Þ ¼ r2
dpr

dτ
:

The angular part of the Hamiltonian takes a simple form
(33) with actions Jϕ ¼ pϕ and Jθ ¼ L − Jϕ [derived using
the integral (32)] the angles can be found using a generating
function of the second kind, which is a solution to the
corresponding Hamilton-Jacobi equation. We can take
advantage of the separability of the Hamilton-Jacobi
equation and write the generating function as

S¼ Sθðθ;Jθ; JϕÞþSϕðϕ; JϕÞ ¼
Z

pθðθ; Jθ;JϕÞdθþϕJϕ:

ðB1Þ

From here it is straightforward to get the angles conjugated
to actions Jθ and Jϕ

ψθ ¼
∂S
∂Jθ

; ψϕ ¼ ∂S
∂Jϕ

: ðB2Þ

These expressions can then be inverted to express the old
coordinates in terms of the new. For the coordinates θ and
pθ we have

θ ¼ π − arccos

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Jϕ2

ðJϕ þ JθÞ2
s

sinðψθÞ
1
A;

pθ ¼ cosðψθÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JθðJ3θ þ 4J2θJϕ þ 5JθJ2ϕ þ 2J3ϕÞ

J2θcos
2ðψθÞ þ 2JθJϕcos2ðψθÞ þ J2ϕ

s
; ðB3Þ

while the coordinate ϕ can be written as

ϕ¼ ψϕ−ψθ

þ 1

2
arctan

�
JϕðJϕþ JθÞ sinð2ψθÞ

cos2ðψθÞðJ2θ þ 2JθJϕþ 2J2ϕÞ− J2ϕ

�
: ðB4Þ

Of course one has to keep in mind that in this expression it
is necessary to add factor π=2 each time the denominator
inside arctan is zero so that the transformation is continu-
ous. It is also worth noting that in the equatorial plane
(Jθ ¼ 0) the Eq. (B4) is reduced to ϕ ¼ ψϕ.
The following step is to write the radial Hamiltonian (31)

as a Taylor expansion from a stable circular orbit. The
location of a circular orbit (r ¼ rc) is related to the total
angular momentum L ¼ Jθ þ Jϕ as

rc ¼
L
2M

ðLþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 − 12M2

p
Þ: ðB5Þ

Our expansion parameter is ε. The order of ε is for the
relevant quantities given by (34). In particular when
expanding the energy one obtains

E¼ Ec þ δE¼ Ec þ
∂E
∂r

����
r¼rc
pr¼0

ðr− rcÞ þ
∂E
∂pr

����
r¼rc
pr¼0

pr þOðε2Þ;

¼ Ec þOðε2Þ; ðB6Þ

where the partial derivatives vanish since our stable circular
orbit has minimal energy, thus, we get δE ¼ Oðε2Þ. The
energy of the circular orbit is then

Ec ¼
rc − 2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2c − 3Mrc

p : ðB7Þ

We can now expand the radial Hamiltonian, identify the
harmonic oscillator terms and transform them into action-
angle coordinates

r ¼ rc þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jrrc2

Ωrc

�
1 −

2M
rc

�s
sinðψ rÞ;

pr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2JrΩrc

rc2ð1 − 2M
rc
Þ

s
cosðψ rÞ; ðB8Þ

where the frequency of the harmonic oscillator can be
written as

Ωrc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðrc − 6MÞrc

rc − 3M

s
: ðB9Þ

After performing the transformation we arrive at the
radial Hamiltonian in the form

Hrad ¼
1

2

Mrc2

3M − rc
−

rc3δEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rcðrc − 3MÞp þ JrΩrc

þ RðδE;ψ r; JrÞ: ðB10Þ

We can now employ the canonical perturbation theory to
get farther from the circular orbit and closer to the
separatrix. In our case we applied the Lie operator twice

expð£ω2
Þ expð£ω1

ÞHSchwðλÞ ¼ HNSðJr; JθÞ þOðε5Þ: ðB11Þ

For instance the first generating function ω1 can be
written as
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ω1 ¼
4
ffiffiffi
2

p

3ð−rc þ 2MÞ4Ω2frc


��
−
rc
2
þM

�
4

ðM − rcÞΩ2 þ rc4f2M3Ec
2

4

�
Jre−3iψr

þ
�
3

�
−
1

2
rc þM

�
4

ðM − rcÞJrΩ2 − 9rc4f

�
−
1

2
rc þM

�
2

δE

�
M −

1

3
rc

�
EcΩ −

9rc4f2JrM3Ec
2

4

�
e−iψ r

þ
��

−
rc
2
þM

�
4

ðM − rcÞΩ2 þ rc4f2M3Ec
2

4

�
Jre3iψ r

þ 3

��
−
1

2
rc þM

�
4

ðM − rcÞJrΩ2 − 3rc4f

�
−
1

2
rc þM

�
2

δE

�
M −

1

3
rc

�
EcΩ −

3

4
rc4f2JrM3Ec

2

�
eiψ r

� ffiffiffiffiffiffiffi
Jrf
Ω

r
;

where f is the factor Schwarzschild factor

f ¼ 1 −
2M
rc

: ðB12Þ

The normal form of the Schwarzschild Hamiltonian reads up to the Oðε5Þ terms

HNS ¼
Mrc2

6M − 2rc
−

rc3δEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijrcð3M − rcÞj
p þ JrΩþ 1

2
ðJθ þ LzÞ2

þ 1

4rcΩ4ð−rc þ 2MÞ5


48

�
Jr2M2 −

4

3
MrcJr2 þ

2

3
rc2ðδE2rc2 þ Jr2Þ

��
−
rc
2
þM

�
4

Ω4

− 192Ec

�
M2 þ 1

3
Mrc −

1

6
rc2
�
rc3
�
−
rc
2
þM

�
3

δEJrΩ3

− 96

�
−3M2rc4δE2 þ 2Mrc5δE2 −

1

3
rc6δE2 þ Jr2M4 − 2M3rcJr2

�
Ec

2rc2
�
−
rc
2
þM

�
2

Ω2

− 576Ec
3M3

�
M −

rc
3

�
rc5
�
−
rc
2
þM

�
δEJrΩþ 240M6Ec

4rc4Jr2
�
þOðε5Þ:

APPENDIX C: LIMITS
OF THE APPROXIMATION

In the flow generated by HN the actions Jr and Jθ are
conserved, which is not true in the case of the full
Hamiltonian H. By inverting the coordinate transforma-
tions (40) we can express the actions in terms of our
original phase space coordinates. This enables us to evolve
actions Ji under Htot and compute the relative error

δJi ¼ max
τ

jJ0i − JiðτÞj
J0i

;

which tells us how the evolved actions JiðτÞ differ from
their theoretical counterparts J0i . The maximum is com-
puted for a sufficiently large value of proper time τ, which
serves as our evolution parameter here. This relative error
is the quantity we will use to test our approximation.
Before switching on the perturbation we should briefly

examine the approximation for the Schwarzschild solution

itself, for which the situation is fairly simple, since we have
only one perturbation parameter ε. The Schwarzschild
circular orbits are in our approximation represented exactly
and from our expansion of the Schwarzschild Hamiltonian
(40), it is clear that the farther we get from a fixed circular
orbit the less accurate our approximation is. This “phase-
space distance” is measured by the action Jr, where Jr ¼ 0
corresponds to a circular orbit. If our approximation is
accurate enough, then we should approach the separatrix as
we increase the value of Jr. When close to the separatrix the
approximation should break down which is actually the
case. The change of δJr with Jr and the total angular
momentum L is illustrated in Fig. 9.
The value of L selects the circular orbit around which the

expansion takes place. The minimum value of L, which can
be chosen, is L ¼ 2

ffiffiffi
3

p
M representing the ISCO located at

r ¼ 6M. When L is close to its ISCO value, while the
value of Jr is large, we can get a bound orbit that can reach
the phase-space region corresponding to the infalling orbits
(for low r) leading to a direct contradiction with the
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exact dynamics. We can, thus, expect that for higher L the
approximation is more precise, since the orbit is
farther from ISCO, this is verified for example in
Fig. 9.
Let us now switch on the perturbation. Even in the case

of equatorial motion (Jθ ¼ 0) the situation is now slightly
more complex than in the Schwarzschild case. As pre-
viously the larger the value of Jr the greater the approxi-
mation error is. Note that Jr ¼ 0 still corresponds to
circular orbits, however these are not represented exactly.3

The other relevant action in this setting is Jϕ. The
approximation breaks down for large values of Jϕ because
we get farther from the black hole and closer to the ringlike
source, which is equivalent to increasing Q. The depend-
ence δJrðJr; JϕÞ is illustrated in Fig. 10.
In the nonequatorial motion the presence of the reso-

nance of the form (45) has to be taken into account. Thus
when plotting the relative errors of actions δJθ and δJr as
functions of Jθ we get an increasing function except for the

FIG. 9. The relative error of the radial action (δJr) in the
Schwarzschild spacetime for a fixed value of L ¼ 3.6M (top
panel) and for Jr ¼ 0.3M (bottom panel).

FIG. 10. δJr as a function of Jr and Jϕ in the case of equatorial
motion for Q ¼ 10−6M−2.

FIG. 11. Relative error δJr (top panel) and relative error δJθ for
Jr ¼ 0.1M, Jϕ ¼ 3M, and Q ¼ 10−6M−2 (bottom panel).

3The exact Schwarzschild circular orbits are shifted by the
perturbation.
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close neighborhood of the resonance curves where
δJi → ∞. This corresponds to the two gaps in Fig. 11
(resonances 1∶2 and 2∶3).
If we were to plot the functions rðτÞ and θðτÞ we

would find that they even leave the domains they
are defined on (for example r < 0). This is caused by
the perturbative parts proportional to Q which become
larger then the Schwarzschild parts. Alternatively
we can plot the relative error of a coordinate as a function
of proper time. For example for the radial coordinate we
have

δrðτÞ ¼ jrðτÞ − rðnÞðτÞj
rðnÞðτÞ ; ðC1Þ

where rðnÞðτÞ is the numerical solution to the geodesic
equation. This error tends to grow over time and even
to much larger (but finite) values than the action errors
δJi. This growth is especially prevalent in the case of
nonequatorial examples, which can be seen in Fig. 12.
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