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Adiabatic equatorial inspirals of a spinning body into a Kerr black hole
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The detection of gravitational waves from extreme mass ratio inspirals (EMRIs) by the future space-
based gravitational-wave detectors demands the generation of accurate enough waveform templates. Since
the spin of the smaller secondary body cannot be neglected for the detection and parameter estimation of
EMRIs, we study its influence on the phase of the gravitational waves from EMRIs with a spinning
secondary. We focus on generic eccentric equatorial orbits around a Kerr black hole. To model the spinning
secondary object, we use the Mathisson-Papapetrou-Dixon equations in the pole-dipole approximation.
Furthermore, we linearize in spin the orbital variables and the gravitational-wave fluxes from the respective
orbits. We obtain these fluxes by using the Teukolsky formalism in the frequency domain. We derive the
evolution equations for the spin-induced corrections to the adiabatic evolution of an inspiral. Finally,
through their numerical integration, we find the gravitational-wave phase shift between an inspiral of a

spinning and a nonspinning body.
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I. INTRODUCTION

Extreme mass ratio inspirals (EMRIs) are promising
sources for future space-based gravitational-wave (GW)
detectors such as the Laser Interferometer Space Antenna
(LISA) [1,2]. These systems consist of a primary super-
massive black hole and a secondary, much lighter compact
object such as a neutron star or a black hole. In an EMRI,
the mass ratio ¢ = u/M of the secondary mass y and the
primary mass M is expected to lie between 1077 and 107,
Because of the gravitational radiation reaction, the secon-
dary object is slowly inspiraling into the primary while it
radiates gravitational waves. The detection of EMRIs will
provide the opportunity to study strong gravitational fields
around supermassive black holes lying at the center of
galaxies and to test general relativity.

The millihertz GW bandwidth that EMRISs are emitting is
expected to be rich in GW sources. To overcome the fact
that signals from various sources will overlap during their
detection by LISA, matched filtering is planned to be
employed; i.e., the detected signal will be compared with a
large number of GW templates covering the estimated
parameter space [1]. The use of templates will not only
allow the detection of EMRI signals, but it will also be
employed for the parameter estimation of these systems. To
get these estimations adequately enough, we need to
generate waveform templates whose phases are accurate
up to fractions of radians.

To achieve such accuracy, a series of techniques can be
employed. The backbone of them is that the system is
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treated as the motion of a secondary object in the back-
ground spacetime of the primary object. Hence, to model
the GW phase, we need first to find the trajectory of the
secondary z. The secondary is perturbing the background
spacetime, and the gravitational self-force drives the
secondary away from the trajectory which it would follow
without this pelrturbation.1 To find this self-force, pertur-
bation theory is used. Namely, the exact metric is expanded
in the terms of the mass ratio as

g = g, + hia) + b + O(qP), (1)

where g, is the background metric, which in our case is the
Kerr one, h,(,lJ = O(q) is the first-order perturbation, and

hﬁ) = O(q)?* is the second-order perturbation. hf,ny) are

found by expanding the Einstein equations in the mass ratio
with the source constructed from the secondary body and
solving order by order [3,4]. The parts of the metric
perturbation are then used to construct the first- and
second-order self-force:

Dz # 2 pm 3
FZC]f(l)+CIf(z)+O(0 ): (2)

'This unperturbed trajectory is a geodesic orbit for a non-
spinning secondary, while, for a spinning secondary, the trajec-
tory can be provided by the Mathisson-Papapetrou-Dixon
equations.
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where 7 is the proper time and f’(‘ N is constructed from h,(}y)

and the secondary’s spin-curvature coupling, while f’(‘z) is

constructed from hfﬁ,) [4-6].

Because the radiation reaction is of the order O(g), its
effects act on a much larger timescale than is the orbital
timescale. Actually, the secondary makes O(q~!) cycles
around the primary due to the radiation reaction, before it
plunges into the primary. Thanks to this timescale differ-
ence, we can use the so-called two-timescale approxima-
tion [7]. In this approximation, the coordinates are
transformed to anglelike variables ¢g,, which can be
expanded in the mass ratio as’

4u(1) = j[ O(gn +a (g + 0. (3)

where t is the evolution parameter. The first term q,(,o) (gt) is

called the adiabatic term and can be calculated only from the
time-averaged dissipative part of the first-order self-force.
The second term qf,l)(qt), which is called the first-order
postadiabatic term, is constructed from the oscillating
dissipative and conservative parts of the first-order self-force,
the averaged dissipative part of the second-order self-force,
and the contribution from the spin of the secondary body.
These angle variables are directly related to the phases of the
GW. The adiabatic term for generic orbits around a Kerr
black hole was calculated only recently [8—11], and, so far,
the postadiabatic term with the first-order self-force was
calculated for a spinning secondary only for quasicircular
orbits in the Schwarzschild spacetime [12] and for a non-
spinning secondary for equatorial orbits in the Schwarzschild
[13] and Kerr [14] spacetime, while the full first- and second-
order self-force for quasicircular orbits in the Schwarzschild
spacetime was calculated in Ref. [15].

The error in the adiabatic term must be less than the mass
ratio to obtain subradian precision. It has been proven for a
nonspinning secondary [16,17], but also for a spinning
secondary [18], that the time-averaged dissipative part of
the self-force can be reconstructed from the time-averaged
energy and angular momentum fluxes calculated at infinity
and at the horizon of the primary black hole. Therefore, for
the calculations in the adiabatic order, we do not need to
calculate the perturbation hf,p in the vicinity of the
secondary body, but we need only to find the aforemen-
tioned GW fluxes. These fluxes were calculated for generic
orbits of nonspinning bodies around a Kerr black hole in
Ref. [19], for circular orbits of spinning bodies around a
Schwarzschild and a Kerr black hole in Refs. [18,20-24],
and, finally, for eccentric equatorial orbits of spinning
particles around a Kerr black hole [25].

’In fact, the expansion contains also a term proportional to
g~'/? caused by the orbital resonances, but here we neglect it for
simplicity.

A postadiabatic term is of the order of radians and, thus,
cannot be neglected. Hence, since the spin of the secondary
contributes to the postadiabatic term, we have to take it into
account. In the case of compact objects, like black holes
and neutron stars, a pole-dipole approximation is consid-
ered to be sufficient, and all the higher multipoles of the
body can be ignored. The scalars describing a pole-dipole
secondary are its mass y and the measure of its spin S. In
the EMRI framework, instead of S we can gain more
insight about the contribution of the secondary spin by
defining its dimensionless counterpart ¢ = S/(uM). For
example, if we consider the secondary black hole as an
extreme Kerr black hole, we have that S = y? leading
to o = g, which suggests that ¢ is of the order of the
mass ratio, i.e., 0 < g < 1. This fact, actually, allows us
to ignore all the terms with higher powers in ¢ and focus
on the linearized in spin contributions to the inspiral.’
Additionally, it is easier to fill the parameter space with
precomputed EMRI waveform templates by linearizing in
spin, since the spin contribution appears in this case as ¢
times a coefficient independent of the exact value of the
spin. This implies that we avoid the calculation of each
quantity for several values of the spin. Moreover, there is
evidence [27,28] suggesting that the pole-dipole approxi-
mation breaks down for higher than the quadratic order
in spin.

Hence, this work focuses on the influence of the
secondary spin on the evolution of an inspiral moving
on the equatorial plane of a Kerr black hole, when the
calculations are restricted to the linear order in spin. Having
confined our study on the equatorial plane of a Kerr black
hole allows us to parametrize the orbital evolution by the
energy E and the z component of the angular momentum J,
of the system. The energy and the angular momentum
fluxes, which reach infinity and the horizon, were already
derived in Ref. [25]. In this work, we linearize these fluxes
to calculate the adiabatic inspiral and the linear in spin part
of the GW phase, i.e., the phase shift between the adiabatic
inspiral of a spinning secondary and a nonspinning sec-
ondary. In particular, this phase shift 5@, can be found by
linearizing in spin of the phase, i.e.,

1 0 o
@, - §>+55cpﬁ+0(02/q). (4)

Note that in this work we neglect the other postadiabatic
terms, the evolution of the primary mass and its spin due to
the absorption of the GWs through the horizon as well as
the evolution of the spin magnitude o.

The rest of this paper is organized as follows. Section II
describes the dynamics of a spinning body in a Kerr

3This reasoning holds away from the resonances, since the
resonances are governed by the O(S?) [26], which implies a
contribution to the phase of order of radians.
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spacetime and introduces the orbital variables linearized in
the spin of the secondary. Section III focuses on GW fluxes
from spinning bodies moving on eccentric equatorial orbits
around a Kerr black hole with these fluxes linearized in
spin. Section IV presents the equations driving the adia-
batic evolution of the orbital parameters and the phases. By
linearization in spin, this section provides the equations
governing the phase shifts. Section V first discusses the
numerical methods and then provides the respective results.
Finally, Sec. VI summarizes the main findings of our work.

A. Notation

In this work, we use geometrized units where
¢ = G = 1. A partial derivative is denoted with a comma
as U,, = 0,U,, whereas a covariant derivative is denoted
by a semicolon as U, = VvV, U - The Riemann tensor is
defined as Rﬂwd = I_‘”l/i,K — Fﬂuk,l + F’uﬂkl—y}w{ - F”MF/’W,
and the signature of the metric is (—,+,+,+). For
convenience, we use some quantities in their dimensionless
form, which is denoted by a hat. A list with these quantities
and their dimensionless counterparts can be found in
Appendix A.

II. MOTION OF A SPINNING PARTICLE

Following Mathisson’s gravitational skeleton approach
[29,30] and truncating the expansion up to the second term,
the stress-energy tensor of a spinning test body in a curved
spacetime can be written as

(1 gv) alp yv)
TH — L (P IU 5 — v, <S tv 53))’ (5)
/=9 v v

where P* is the four-momentum, v# = dx*/dz is the four-
velocity, S% is the spin tensor, §° = &°(x' — x}(1)) is the
Dirac delta function located at the particle position x},(¢)
parametrized by the coordinate time #, and ¢ is the
determinant of the metric. In this so-called pole-dipole
approximation, the stress-energy tensor consists of a
monopole (first term) and a dipole (second term).

Applying the stress-energy conservation law 7., = 0
on the stress-energy tensor (5), the Mathisson-Papapetrou-
Dixon (MPD) equations [30-32]

DP* 1
= RS (6a)
DS

—— = Pl — Py (6b)

can be derived, where R¥, _ is the Riemann tensor and 7 is
the proper time.

The MPD system of equations is underdetermined,
because for the 14 independent components (x*, P, S#)

only ten independent equations are available. This

vpo

ambiguity is related to the freedom we have to choose
the center of mass of the spinning body. Thus, additional
conditions must be imposed to fix the center of mass and
close the system. One such condition is the Tulczyjew-
Dixon spin supplementary condition (TD SSC) [33,34]

swp, =0, (7)

which introduces three independent constraints to the
system. The fourth constraint comes from the fact we have
chosen the proper time as the evolution parameter in Eq. (6)
and, hence,

v, = —1. (8)

Note that, in order to follow the evolution of the body, we
actually track the worldline along the center of the mass,
which is the reason why a spinning body is often called a
spinning particle. We will use both terms interchangeably
throughout the rest of the paper.

Under the TD SSC, the mass of the spinning particle with
respect to the four-momentum

h= PP, )

and the magnitude of the particle’s spin

[sws.,

are conserved along the trajectory. Often, it is convenient to
use the dimensionless spin parameter o

c=—:, (11)
instead of the spin magnitude S and the spin four-vector

1
Sy =— 2 Cupo

u* Sre (12)
instead of the spin tensor, where w* = P*/u. It can be
checked then that the spin magnitude can be expressed
as § = /55,

Thanks to the TD SSC, it is possible to derive a relation
between the four-momentum and the four-velocity [35]:

i P QKA
=M (g 2 ReptS” (13)
H 4ﬂ2 + Raﬂyésaﬁs}/é
where m = —p#v, is the rest mass with respect to the four-

velocity. The value of this mass is not conserved under TD
SSC; however, it is constrained by Eq. (8).
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A. Motion on a Kerr background

We are interested in the motion of a spinning particle in
Kerr spacetime background. This spacetime describes a
spinning black hole at vacuum. The nonzero components of
the Kerr metric in Boyer-Lindquist (BL) coordinates

ds? = g, d* +29,5d1dp + g4, dd* + g,,dr? + gppd®*  (14)
read
B | 2Mr
9 = A
_ 2aMrsin’* 6
Jip = > )
(w* — a’>Asin’ 0) sin 0
Ipp = ¥ )
B X
grr A ’
Joo = X (15)
with
Y =12+ a?cos?0,
A =w? - 2Mr,
w? = r* +a?, (16)

where M is the mass of the black hole and a is the Kerr
parameter.

The outer horizon of a Kerr black hole is located at
r. =M+ VM? — a?, and the spacetime is equipped with
two killing vectors, one timelike 5’6) = &/ and one space-

like cf’(‘ 5 = 8. The existence of these Killing vectors

provides the conservation of two additional quantities,
namely, of the energy measured at infinity:

1
E=-P + Eg,,,A,,,S"” (17)
and of the total angular momentum projected onto the
symmetry axis of the black hole measured at infinity:

1
‘]Z :P¢—Eg¢”’ysﬂy. (18)

B. Equatorial motion
In our work, we focus on the equatorial motion; hence,
v? = 0. It can be shown that in this case the particle stays in
the equatorial plane [25], and it holds that p? = 0 and

S, = —rSé).

(19)

Bounded equatorial orbits can be characterized by their
semilatus rectum p and their eccentricity e, which are
defined as

27Ty

A PR
r1+r2

=T

A PR
r1+r2

(20)

where 7, is the pericenter and 7, is the apocenter. For the
orbital description, we introduce dimensionless counter-
parts of the involved quantities (for details, see Table I).

The radial coordinate of the particle periodically oscil-
lates between 7 and 7,. Because of this fact, we can change
the parametrization of the trajectory from proper time 7 to
the anglelike relativistic anomaly y defined as

P
1+ecos(y +x0)°

;‘:

(21)

where y, determines the initial radial position. For y +
xo = 0 and 27 the particle is at the pericenter, and for y +
xo = & the particle is at the apocenter. The equations of
motion for ¢ and ¢ in this so-called Darwin parametrization
then read

di p 1 —é?

—=V! , 22a
dy (1 + ecos(y +)(0)) P> (x + x0) (222)
> _ Vfﬁ( P > ¢ (22b)
dy 1+ecos(y +yx0) ) \| PP (x +x0)

where the functions V’, V¢, and J can be found in
Appendix B.
By integrating over y, the functions 7(y) and ¢(y) read

() = 0”£w/>dx', (23)

X
) =tot [(Lone. @)
o 4y
respectively, where we set the initial time #(0) = 0.
Since it is possible to express the energy and the angular
momentum as E(p, e,o) and jz(p, e,0), i.e., as functions
of p, e, and 6" [25] (see Appendix B), to uniquely identify a
trajectory, one needs four parameters p, e, yg, and ¢.
However, many quantities are independent of the initial
angles yo and ¢,. Therefore, we can define a fiducial
trajectory with yo = 0 and ¢y = 0. The coordinates of this
trajectory as well as all the quantities calculated from it are

denoted with a check mark as 7(y), (), and ¢ (). After the
substitution y = v — y(, Eq. (23a) can be written as

4They also depend on the Kerr parameter a, but we will treat it
only as a parameter.
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) = / f”(’f;(v)dv:?(x a0~ i) (24)

where d?/ dy comes from Eq. (22a) when y; = 0. An
analogous relation holds for ¢(y), and, therefore, a general
trajectory can be expressed using a fiducial trajectory as

00) = 1r +20) = (o), (25a)
) = Hx +x0)s (25b)
D) = do + Plx + x0) — xo)- (25¢)

Trajectory-dependent quantities such as the frequencies or
the GW fluxes, which are independent of y, and ¢, can be
calculated using the fiducial trajectory.

The radial period, i.e., the time between two successive
passages through the pericenter, can be expressed as

A V1—e¢* [22 1
- ¢ / V’( P ) dy
p 0 L+ecosy/) \/J(x)

where we can integrate from O to 7z, because the integrand is
even around z. Similarly, the accumulated phase of the
azimuthal coordinate can be written as

B V1—¢* [ " P 1
Ap=2 p AV <1+ecosx>1/J(Z)d){'

The frequencies with respect to the BL time can be then
calculated as

(27)

A 2

Q, =——, 28a
- (280)

N A¢p

Q= 7 (28b)

C. Linearization in the secondary spin

Because of the fact that the dimensionless spin o is of the
same order as the mass ratio ¢, i.e., 0 < 1, it is reasonable
to linearize the expressions for the frequencies (28) in ¢ to
obtain

A

Qi(p.e,0) = Q¥ (p,e) +050(p,e) + O(c*), (29a)

where i = r, ¢ and

A

Q¥ (p,e) =

A

(p,e,0 =0), (29b)

) 20,
5Q;(p,e) = <3a> R (29¢)

Note that the index (g) in the above quantities refers to a
geodesic orbit, i.e., for ¢ = 0.

However, for the calculation of GW fluxes, it is
convenient to linearize the quantities, such as energy and
angular momentum fluxes, with respect to a reference
geodesic with the same orbital frequencies (see Sec. III A).
In other words, we must linearize the functions para-
metrized by the frequencies, i.e., f(p(Q;.0).e(Q;.0),0).
For this, one must find the linear part of the functions

p(Qi.0) = p&(Q) + 6dp(Q;) + O(c?).  (30a)

PN

e(Q;.0) = e® (&) + 08e(Q;) + O(c?),  (30b)

where 6p and de correspond to the change of the orbital
parameters after a geodesic with frequencies Q; is per-
turbed by a secondary spin ¢ while keeping the frequencies
same. Because the relations p(;,¢) and e(€;, o) are not
known, we cannot simply take the derivative of p(;, o)
and e(Q;, o) with respect to o to find 5p(€;) and Se(Q;);
instead, we have to use the derivatives of the implicit
functions

Qr = Qr(p(Qr,Q(j,,O'),E(Qr,fl¢,6>,0), (318')

Oy = 0y (p(©,.Qy.0). €8, 0. 0).0)  (31b)
with respect to o to find them. In these functions, the lhs is
constant and the rhs are functions defined in Egs. (28).
After differentiating them with respect to o, substituting
o = 0, and solving for §p = dp/do and e = de /Do, we
obtain

20 A 90 A

250, — %50
5p = 2 - Be 4 (32a)
(@)
20 5@
—Z2 50, + %50
se =22 P o % (32b)
()

where all the derivatives are evaluated at 6 = 0 and the
determinant of the Jacobian matrix is

A

0Py 0oty
 9p  Oe de Op

Since Sp(p,e) and Se(p,e) were derived through the
above procedure, they are functions of p and e.
Actually, they can be interpreted as shifts of p and ¢ when
a geodesic originally with semilatus rectum p and
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eccentricity e is perturbed by a spin ¢, while keeping the
frequencies constant. Explicit formulas for the calculation
of 6p, de, and the derivatives of Q; can be found in a
Mathematica notebook in the Supplemental Material [36].

As was proven in Ref. [37] for the Schwarzschild
spacetime and in Ref. [38] for the Kerr spacetime, bound
geodesics cannot be uniquely parametrized by the frequen-
cies Qig and there exists a region of the parameter space
near the separatrix with pairs of orbits with identical
frequencies Q, and €. This implies that there exists a
curve in the p—e plane separating these pairs, on which the
determinant (33) is zero. Therefore, quantities linearized
with respect to a geodesic with the same frequencies cannot
be calculated on this curve.

The constants of motion £ and J . from Egs. (B1) and
(B2) are functions of p, e, and o; hence, the linear part in ¢
with respect to a geodesic with the same frequencies can be
found using the chain rule as

. oF OE® OE®
SE| =— 5 Se, 34
Q Oo|,_p + op P+ de ¢ (34a)
. aJ 97 aJ®
5. === =5 < Se, (34b
“lo; 606:0+ op P+ de ¢ (34)

where dp and de come from Eqgs. (32) and the subscript Q;
denotes that the quantity is linearized with respect to a
geodesic with the same frequencies. We have, thus,
introduced the operator §f |QI_ acting on a function

f(p.e,0) as

_of

of® of®
= 0
Q Oo

dp P Oe

5f‘ Se. (35)

=0

Using the above linearized quantities, the coordinate
functions (7(x), #(x), ¢(x)) can be linearized as well. When
an equatorial geodesic parametrized by y with frequencies

Q; is perturbed by a spin o, the change of the coordinate
time and the azimuthal coordinate can be described as

1(r) = 1®(x) + odilg, (1) + O(0).

o)

(36a)

¢ (1) + 06plo,(x) + O(a®).  (36b)

respectively, where 7€) (y) and ¢ (y) are calculated from
Egs. (22) for ¢ = 0 and equations for 6t|q (x) and 6¢|q (¥)
are derived by linearizing Eqgs. (22) in o with respect to a
geodesic with the same frequencies, i.e.,

dsi 0 (di N o (dil®) . o (di® 5
- = | — _ — | — e’
dy Oo\dy/|,.o Op \ dy P Oe \ dy

(37a)

1000f —— 0=0 ]
8005 g=0.5 A
~ 600 ' ]
400 F ]

200 F ]

40f
20f

stx)  Of

o
oy R
< 3
w
5
N
S

FIG. 1. Top: the evolution of 7&)(y) for a geodesic orbit with
a=0, Q, =0.00577033, and Q, = 0.00942436, which corre-
sponds to p® =10, ¢(® = 0.8, and #(y) for a trajectory of a

spinning particle with ¢ = 0.5 and the same frequencies as the
geodesic orbit, which corresponds to p = 8.6538 and

e = 0.831688. Bottom: difference 8i(y) = (i(y) — ¢ (y))/o.
We can see that if the initial difference is 7(0) — &) (0) = 0,
then at the end of the period 7(2z) — 7®)(2z) = 0 as well. The
spin value has been chosen to be unphysically large to make the

difference visible.
9 (dp® 9 (dgl®
— 1) — o
go+3p< dy ) p+0€< d )%

(37b)

dsp 0 <d¢>

& do\dy

For the fiducial trajectory, the initial conditions can be
chosen such that the linear corrections 6t and d¢) are zero
at the pericenter, namely, 5?(0) = 0 = 6¢(0). Thanks to the
frequency matching, it holds that 51(27) = 0 = 5 (2x),
because the radial period and accumulated phase in ¢ are
the same for both the perturbed and the unperturbed
trajectory. This can be seen in Fig. 1, where we plot the
evolution of 7(y) for a geodesic orbit (¢ = 0) with p = 10,
e = 0.8, and for a trajectory of a spinning particle with
o = 0.5, which frequencies were matched to the same as
the frequencies of the geodesic orbit.

The linear correction to the radial coordinate can be
calculated as

or or
or(y) =—=—0op+—=—9o
Mx) ap P t 5%
op pdecosy

" Ttecosy (1+ecosy)?

(37¢)
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III. GRAVITATIONAL-WAVE FLUXES

For the calculation of the GW fluxes, we use Teukolsky
formalism where the GWs are treated as perturbations of
the background spacetime. To obtain the GW fluxes to
infinity and to the horizon, we calculate perturbation of the
Weyl curvature scalar

lP4 = —Caﬂyﬁnaﬁlﬂn}/ﬁlﬁ, (38)

where Cpp,5 is the Weyl tensor and

1
= —(w?

3 ’ _A’Ova)’ (39)

1
mt = ————(iasin 0,0,

V2%

are two legs of the Kinnersley null tetrad with

—1,icscO) (40)

{=r—iacosf.

The Weyl scalar is related to the gravitational radiation at
infinity as

1d%h
Wy(r > o0) = 242 (41)
where h = h, —ih, is the strain, which is defined as / w =
hy ejy + he,, with the metric perturbation /,,, and polari-

zation tensors e,,;*. The Weyl scalar ¥, encodes the
gravitational radiation emitted to infinity; however, by
using the Teukolsky-Starobinsky identities, it is possible
to infer from W, the fluxes at the horizon as well.

Teukolsky in Ref. [39] introduced the master equation
for the field in the form’

sOsl//(tv r,0, (,b) = 4z3T, (42)

where ;O is a second-order partial differential operator and
T is a source term calculated as a certain differential
operator acting on projections of the stress-energy tensor
(the interested reader is referred to Ref. [39] for more
details). In the case of GWs, the calculated quantity from
Eq. (42) is _,y = {*W,.

In this paper, we use frequency domain solutions of the
Teukolsky equation (TE), for which the field is written
using Fourier modes

© | fo -
oW = IZE /_ ) ADY iy (7) S92 (O) e~ Himd  (43)

°In this section, the coordinates (7, r, 6, ¢) denote an event in
the spacetime in which the field is measured, while the trajectory
of the particle is denoted by (1,7, 6,, #p).

Having done that, Eq. (42) can be separated into two
ordinary differential equations: one for the radial part
Wime(r) and one for the angular part _,S7*(0), which is
called the spin-weighted spheroidal harmonic.

The asymptotic behavior of the radial part at infinity and
at the horizon can be written as [9]

(44a)

+ 3
l//lma)(r) ~ Clmm lwr ’ r— oo,

l//lma)( ) ~ (), Ae_lkHr

Imw

r—r, (44b)
respectively, where ki, = @ — m€y, is the frequency at the
horizon, Q;, = a/(2Mr, ) is the horizon’s angular velocity,
and r* is the tortoise coordinate defined as dr* /dr = w?/A.

The amplitudes C ﬁnw can be calculated using Green
function formalism as

Chay = [ dte-mb0 1 (r,(0.0,(0)  (45)

with

1 d
I},,(r.0) = (Ao — (A +B))—

dr
d? d3

+ (A B - B
+ (Ay + 2)d 34,3

) REa). 6)

where R (r) are homogeneous solutions of the radial
equation satisfying boundary conditions at infinity “+” or
at the horizon “—)’ respectively, W is the invariant
Wronskian, and A; and B; are functions of the orbital
quantities. These quantities can be found in Appendix B
in Ref. [25].

After we confine the particle trajectory into the equato-
rial plane, it can be shown that, thanks to the periodicity of
the radial motion, the frequency spectrum is discrete, and
the amplitudes can be written as a sum over individual n
modes:

lma) - Z Clmn o= a)mn) (47)

n=—oo
with frequencies

Wy = MQy + N, (48)
where n is an integer.

After reparametrization of the orbit with y, the partial
amplitudes can be calculated as

Clmn: V/O d){Zd Imn p()( 7[/2D>

X exp(ZDr(pmn (Z)) ’ (49)
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where I, = I}, » @un(¥) = @ty () — mey(x), and
D, is the sign of the radial velocity.

After Egs. (25) are substituted into the above equation
and the integration variable y — y — y, is changed, the
partial amplitudes from an equatorial orbit with yo # 0,
¢o # 0 can be expressed using partial amplitudes from the

fiducial trajectory Cf, and a phase factor as

Ci

Imn

= ¢ Ciyy. (50)
where the phase factor reads

é:mn = _wmn;p(){()) + m(%p()(()) - ¢0) (51)

This factor agrees with Eq. (3.19) in Ref. [9] for equatorial
motion.

From Egs. (41), (43), and (44a), the strain at infinity can
be expressed as

_ 2 C?r_nn AWy =@, (t=1")+imep
h= =2 =l giom () e~ om . (52)
T @mn

The effective stress energy of a GW can be reconstructed
from the strain. From it, the orbit-averaged energy and
angular momentum fluxes to the future null infinity 7 can
be derived as

ETIR SRR (e
=53 Sk
J.TJ* SN . m|Clmn|2
=303 3 el (s

respectively, where the brackets denote averaging over the
radial period. Similar relations can be derived for the fluxes
through the future horizon H™:

(53c¢)
=2 m=—I] n=—o0 mn
o l o0 P
+ m| mn|
<fJH >:ZZ Z Imn 4 ,\13 ’ (53d)
=2 m=—ln=-oc0 mn

where @, = @y, can be found in Ref. [25]. These
fluxes are defined from the dimensionless quantities in
accordance with Ref. [25]. Note that, thanks to the absolute
value of the partial amplitudes in Eqgs. (53), the phase
correction in Eq. (50) is canceled and, thus, the averaged

fluxes can be computed from the fiducial trajectory.

A. Linearization in the secondary spin

The partial amplitudes C7, = calculated above depend on

p, e, and o, but, since the formula contains the dependence
on the frequencies Q;(p, e, ), the partial amplitudes can be
written as C?f,m(p, e,Q;(p,e,0),0). In this form, they can
be linearized in o as

Chn(p.e.0) = CE(p.e) +06CH,, |, (p.e) + O(?).

(54)
where
oC+E aC'®* 90,
5ci- , — Imn Imn l’ 55
), (PO =500 Y a0 be 0 )

in which we use the convention that all repeated indices are
summed over and |, , denotes that the quantity is calculated
with respect to reference geodesic with fixed p and e. The
partial amplitudes C; =~ depend on the frequencies Q;,
since the functions giving it, like the homogeneous sol-

utions R, (r) and $9(6), depend on w,,,. Thus, for the
calculation of 6C?§nn p’e(p,e), one needs the derivatives

of Rj,,(r) and S${*(0) with respect to w. To find these
derivatives, the radial and angular TE must be differentiated
with respect to @, and then this system of equation must be
solved. Rather than developing a code for finding these
derivatives, we were able to achieve our goal by calculating
slightly different quantities, for which the @ derivative of
the homogeneous solutions is not needed. In this alternative
procedure, we can use the TE solver implemented in the
Black Hole Perturbation Toolkit. In particular, we calculate
the linear part of the partial amplitudes with respect to
a reference geodesic with the same frequencies. Formally,
the dependence of the partial amplitudes on ; can be
written as Ci, (p(Q;.0),e(Q;,06),Q;,0), which can be
linearized as

Cion(©i,0) = CEL(Q0) + 06C5, |, () + O(6?), (56)
where
ac:t ac(g)i ac(g)i'
5Ci Q) = Imn Imn 5 lmn 5 57
Imn 'Qi( l) 9o "o + ap P+ De e ( )

and op and Je are defined in Egs. (32). All the above
derivatives are calculated for 6 = 0, i.e., for a geodesic, and

we can use the fact that Q; = Ql(-g)( p,e) to obtain these

linear parts as functions of p and e.
The linearized expression for 5C;,, (p, e) from Egs. (49)
and (57) reads
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5C o, = © A ’ d;(; exp(iD,@n(x))
< @l + ToniDoun(r). (9
where £, = dt/dyl%,, and
5P () = @t () = mop(y). (59)
From Egs. (53), we can find the linear in o part of the fluxes

F(Q:,0) = FO(Q,) + 66F(Q;) + O(c?), where F stands
for ]:EJ*’ fEH+, ]:Jz~7+, and F/"" The result is

= O (RefsCH,, o IRe{C 5}

! Imn

5}'(,’Z+,HJr

Nt
FIm{oC, o m{ ) T (60)
T,

~ n+ _
D ﬂ./zlmn = m,

BEimn = Qmp@py, and B, = ay,,,m. All the linear parts

where C stands for E or J, and Bg,mn =

above are with respect to geodesic with the same frequencies.

When the geodesic fluxes and their linear corrections are
calculated on a grid in the p—e plane, it is possible to find
the linear part 6|, , from 6|, and the derivatives of 7 (2)
with respect to p and e. Namely,

dF@
Sp — o de, (61)

dF@
dp

5‘;E|17,e = 5‘7:|Ql- -

where 0F |Qi is computed using Eq. (60), ép and de are

from Eqgs. (32), and the derivatives with respect to p and e
are understood as

OF© 98,
oQ; dp.e’

dr@ gF@
dp.e  Op.e

(62)

although, in our scheme, they are directly calculated
numerically on the grid in the p—e plane.

Let us now prove that Eq. (61) holds. The linear part
6F|q, reads

OF @ OF @
é 1)
T p+—5 % (63)

oF

o =56

since Q;(p, e, 6). Replacing the above along with the total
derivatives with respect to p and e [Eq. (62)] into Eq. (61)
reduces Eq. (61) to

oF
Jdo

OF® /90 Lol
5F],, = 4 ( ;

- S L e ). (64
o—0 0L dp P de e) ( )

By substituting Egs. (32) into the latter, it can be proven

that the term in brackets equals to —9€; /9o, and we, thus,
obtain

OF OF @ 0Q;

6F|,, = ——
|[)-€ 80' {7:0+ an 86

(65)

which is the definition of 6F |p,e similar to Eq. (55).

Note that, though the linear part 67| is singular for
some points on the p—e plane due to a vanishing |J(q,)]
[Eq. (33)], the linear part 6F],, is regular in the whole
parameter space for which the semilatus rectum p is larger
than the separatrix one pg. This is caused by the cancella-
tion of the diverging terms in 67|, , 6p, and e in Eq. (61).
However, due to numerical errors arising in the calculation
of dF®/dp,e, the result is not reliable near these
diverging points and the error may be high.

IV. ADIABATIC EVOLUTION OF THE ORBITS

During an equatorial inspiral, the orbital parameters p
and e are slowly evolving due to gravitational radiation
reaction. Using the adiabatic approximation in the frame-
work of the two-timescale approximation, thanks to the
balance law, the evolution of an inspiral can be calculated
from the energy and angular momentum fluxes to infinity
and to the horizon [18]. In particular, the evolution of the
constants of motion is related to the averaged fluxes as

b= (5 ) = -alF=) + 7)), (661)
o= () =-aF =)+ F7. oo

Using the chain rule, the derivatives of £ and J, can be
calculated from the derivatives of p and e as

dE oL OE dp
a7 op Oe a4

=0 ). (67)
di dp e di

By inverting the Jacobian matrix, we obtain the equations
for p and é in the form

0, 9k
dp G5 E—-3.J:

5 = = p(p(i).e(i). 0). (68a)
dt ‘J(E’j)
. & | OEA
d ——=F+5J . .
= o(p(i).e(D).0).  (68D)
dl |J(E’]Z>

respectively, where we have omitted the angle brackets for
simplicity and where the Jacobian determinant is

OEdI, Ok,
V(&) = apde e dp (69)
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Thanks to Eq. (68), the evolution of p and e can be
computed using the fluxes which, in fact, depend on p
and e.

Once we have the evolution of p(7) and e(7), the
waveform at infinity can be computed from Eq. (52) as [4]

z : A am,m
Almn u Im

Imn

p(@t),e(i)) (g)e—iCD,,,n(ﬁ)Jrim(ﬁ’ (70)

where 2 =17—7* is the retarded coordinate and the
amplitudes and phases read, respectively,

(71)

() = A "o(p(@). (@))ddl.  (72)

From Eq. (48), the phase can be written as ®,, =
m® + n®,, where the particular phases

®,(2) = / " 0,(p(it). e())dur (73)

can be calculated separately. The partial amplitudes
C;..(p(it), e(it)) can be calculated from the fiducial partial
amplitude éltnn and the phase factor ¢&,,(p(it),e(it)),
which evolves over time. This correction changes slowly
and remains at the order of unity [9].

Note that the above amplitudes (71) and phases (72) are
part of the two-timescale expansion in the first-order
perturbation theory [4]. However, with modifications, this
scheme can be used even in the calculations of second-
order perturbations [40].

A. Linearization in the secondary spin

The evolution equations (68) of p and e depend on p, e,
and o. Therefore, the evolution can be linearized in ¢ as

p(i,6) = p¥ (1) +66p(7) + O(c?), (74a)

e(i,0) = (1) 4 ode(1) + O(c?), (74b)
where p(®)(7) and e(®)(7) describe inspirals with a non-
spinning secondary and §p(7) and Se(?) are corrections to
the evolution due to the secondary spin.

Functions p(®(7) and e(®(7) are calculated from
Egs. (68) for 6 = 0:

®Note that these quantities are different from the quantities in
Eqgs. (32), which denote the change in the orbital parameters
when a geodesic is perturbed with secondary spin while keeping
the frequencies constant.

dp® R N

P = b, @0, (5)
de(® R R

% p® (1), e®(3),0), (75b)

and 6p (1) and Se(t) are calculated from the linear part of
Egs. (68):

Wp b1 _ sh(p® (i), @3
di  dol,_, =0p(p'¥(7). e'¥(7).5p(7). be (7). (76a)
dée de
— = = 5e(n'® (7 (g )
T = do),_, = 2P D). €00, 5p(0).5¢(0)).  (76b)
where the total derivatives are defined as
df of ofe afe
do| .~ 9o 6 oe. 77
do =0 86 =0 ap p + ae ¢ ( )

More explicit formulas can be found in Appendix C.

The linear parts of £ and J . inEqgs. (76) are calculated from
the linearized fluxes with respect to geodesic with the same p
and e, i.e., from 5‘F|p,e’ which is computed from Eq. (61).
This equation as well as Egs. (76) contains derivatives of the
geodesic fluxes F(& with respect to p and e which must be
calculated numerically.

After we expand the phase in the secondary spin as

@,(1,0) = O () + 06®,(21) + O(c%),  (78)

we get the leading adiabatic term ®;* ® which is (9( h,
and the linear in spin term together w1th the spin value
66®;, which is O(c/q) = O(1). Since for LISA data
analysis the GW phase is needed with precision to fractions
of radians, apart from the former dominant term, also the
latter term must be included. In this work, we call 66®; a
phase shift. The linear in spin term can be calculated by the
linearization of Eq. (73) as

Yo A(8) Ag)
oo = ["(Ge] + T pta + et Jaw
0 80 =0

op Oe
where the derivatives of Q; are evaluated at p® (i)
and e® (@),
The evolution of the phase factor &,,(p(it), e(it)) also
changes when the secondary spin is included. The linear in
spin part of the phase factor,

O O
0o |, Op

g

(79)

émn

op +

5§mn = de, (80)

evaluated at p(® (@) and e®) (i1) contributes to the phase as
60¢,,, < 1. This contribution is of the same order as the
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second postadiabatic term and can be neglected in
the framework of a first-order postadiabatic analysis.
Note, however, when the inspiral approaches the separatrix,
our approximation fails because ép and de diverge (see
Sec. V B), and a different scheme must be employed.

V. NUMERICAL IMPLEMENTATION
AND RESULTS

In this section, we discuss how we implemented the
results from the previous sections in order to calculate an
inspiral of a spinning particle into a Kerr black hole in the
linearized in spin approximation. Moreover, we present the
phase shifts 66®; between the phase of an inspiral with a
spinning secondary and an inspiral with a nonspinning
secondary. All the calculations were done in Mathematica
and we have used the Black Hole Perturbation Toolkit
(BHPT) [41].

A. Implementation

Let us now discuss our approach to the numerical
calculations of the adiabatic inspirals and of the phase
shift in steps.

(1) For given p and e, we calculate conservative trajec-

tories; i.e., we find E, jz, Q. i(y), ?(){) and éﬁ(;()

(2) we find the linear in o parts of the trajectory, i.e., op,
de, 8E, 81 ,. 81(x), 6#(x), and 8¢p(x);

(3) we compute the partial amplitudes Cgf;zf and 6C5,
over a range of [, m, and n;

(4) we repeat steps 1-3 for many points in the p—e
plane, and then we interpolate the total energy and
angular momentum fluxes;

(5) we calculate the evolution of p(& (1), (@) (1), 5p(7),
and Se(7) for given initial parameters using the
interpolated fluxes;

(6) using p®)(?), e® (1), 6p(7), and e(?), we find the
linear parts of the phases 6®;.

The above steps are described in detail in the following
sections.

1. Trajectories

Before we calculate the amplitudes Ci,,, we have to
precompute the orbital quantities. For given a, p, and e, we
calculate the geodesic quantities €, E, J,, 1(y), #(¢). and
55(;{) and the linear corrections due to the secondary spin
with respect to this geodesic for the same frequencies. In
particular, we obtain dp and de from Egs. (32), SE and 57 i
we get from Eqs. (34), and, finally, 57(y), 5#(y), and 8¢ (x)
are calculated from Egs. (37). Moreover, the geodesic
quantities 7(y) and ¢(y) are calculated through the
BHPT, which uses the discrete cosine transform (DCT)
[42]. This method numerically transforms the integrand in
Eqgs. (23) into a series of cosines which is trivial to
integrate. Actually, the linear in spin part of the trajectory,

i.e., 5t(y) and 6¢(y), is derived by employing DCT on 50
points obtained from Egs. (37). With this number of points,
the error is less than 107 for all the calculated orbital
configurations; however, note that this error is much lower
for orbits far from the separatrix and for orbits with lower
eccentricity.

2. Gravitational-wave fluxes

The obtained orbital parameters can now be used for the
calculation of the partial amplitudes. The description of
how to calculate the nonlinearized in spin amplitudes C ﬁm
can be found in Ref. [25]. In this work, we discuss the
procedure allowing us to calculate the geodesic partial

(8)+
Imn

amplitude C from Eq. (49) for ¢ = 0 and the linear in
spin part 5é’?f,1n|gi according to Eq. (58). In particular, the
integral in Eq. (58) is evaluated using the midpoint rule,
which should have exponential convergence [42], while for
the calculation of the homogeneous solutions R;  and S¢
the BHPT has been employed. More details about the
calculation of the partial amplitudes and tests of their
validity can be found in Appendix D.

To obtain an adequately accurate energy or angular
momentum flux, we need to calculate the amplitudes
Fimn for a range of [, m, and n values. Thanks to the

symmetry

fl,m,n = fl,—m,—nv (81)

A

é\)mﬂ = —W_p,—p> (82)

we decided to calculate only the modes with @,,, > 0, and
the total sum F can be found as double of the sum of
calculated modes.” The structure of the summation is

Mmax

F=2Y Fn (83a)
lmax
Fm= Fims (83b)
l:lmin
’7:lm = Z ]:lmm <83C)
where mpy, = =5, I, = max{2, |m|}, and my., Lnao

Rmin, and ng,. are chosen dynamically according to a
given accuracy ¢, i.e., the maximal allowed error. This error
for the geodesic fluxes should be lower than the mass ratio;
otherwise, it will be larger than the contribution from the

" All formulas in this subsection are valid for both the fluxes F
and their linear parts . We demonstrate the formulas with F for
brevity.
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postadiabatic terms, notably the secondary spin. In our
calculations, we set the accuracy of the geodesic fluxes to
€ = 107% and the accuracy of the linear corrections to the
fluxes to € = 1073,

Our first step in our computation scheme is to calculate
the modes with m = 1 =2, [ — m€,/Q,] < n < 20, where
the lower bound corresponds to the mode with minimal 7,
for which &,,, > 0. In all the cases we treated, the mode
with maximal flux max;,, , F ., lays in this range. Then
we continue the summation in n until the stopping con-
dition for n,,,, is reached. This stopping condition is that
the magnitude of three successive modes drops below
(e/10) max F,,. This condition must be satisfied for three
consecutive modes, because the modes are not monotonic
in n, as has been reported already in other papers [9,19].

At this point, we have obtained the dominant F;_,,,_,
mode. Similarly, we calculate the other F,,,_, modes until
the stopping condition for ln,y, i.e., F; ., <€F,,, is
satisfied. The magnitude of F,, drops quickly with /, and
usually for given m no more than four / modes are needed.
In this way, we obtain the dominant F,,_, mode. After that,
we calculate other m modes. For high m, modes with low n
can be neglected. Therefore, we start the sum over n at
ny = | 10me?], which is close to the maximal value of F,,,,
for given [ and m as we found empirically. Then we
increase n until the stopping condition for n,,,, is satisfied.
Finally, we decrease n until the condition for n.;, is
satisfied or until we reach n = [ — mfl¢ /Q.].

The above procedure is repeated for other values of m.
The stopping condition for m,, is

‘7:m € mmax
max - F . 84
=F, R 22 T (84)

M=Mpin

If we assume that for high m the modes F, decrease
exponentially, the lhs of Eq. (84) corresponds to the terms
neglected by the truncation of the sum over m at m,,,. For
orbits with low p around a Kerr black hole with a = 0.9,
the number of m modes required for an accuracy € = 107°
is very high, so we truncate the sum at m,, =25
consciously knowing that we lose in accuracy.

The amplitudes were calculated in Mathematica using
extended precision. For lower a, I, and m, the input
parameters are given to 48 places. However, for modes
with higher & and 4, the calculation returns a wrong result
due to the loss of precision during the calculation of R}, .
Therefore, we check if the result lays orders of magnitudes
away from the Newtonian amplitudes for circular orbits in
Eq. (B3) in Ref. [23], and, when it does, we repeat the
calculation with higher precision. The maximal precision is
112 places for higher a, [, m, and n and lower p.

The calculation of individual modes with low eccentric-
ity and n takes around one second, but for high

eccentricities and n the computation time can be up to
tens of seconds. All the modes in one grid point are
calculated in around 1 h (1 day) for lower (higher)
eccentricity. The calculation of the whole grid takes
hundreds of CPU hours.

3. Interpolation in the p—e plane

Because of the high computational cost, instead of
calculating the fluxes during the evolution of the orbital
parameters, they are precalculated on a grid in the p—e
plane and then interpolated. The grid is chosen to reflect the
behavior near the separatrix and to avoid some problematic
regions. Actually, this grid is not in the p and e coordinates,
but in a new set of variables X and y which are obtained
after several transformations from p and e.

The first transformation reads

U= \/(P - ;'ISCO)Z — (ps(e) = ?Isco)z, (85)
V = e?, (86)

where p,(e) is the location of the separatrix. The purpose of
this transformation is to make the quantities and their
derivatives finite for circular orbits, i.e., for e = 0. Namely,
since the fluxes depend only on even powers of e, their
derivative with respect to e vanishes for e = 0. The inverse
relation of Eq. (85) reads

p = Fisco + \/02 + (Ps(\/v) — Fisco)™. (87)
Next, we transform from U to

C

U_log(l +¢/U) (88)
to regularize the quantities near the separatrix. ¢ is a
parameter controlling the grid density near the separatrix.
For higher ¢, the grid points are more dense near the
separatrix, while for ¢ — 0 it holds that U — U. We have
chosen the value ¢ = 25 in our calculations. The asymp-
totic behavior of these transformations is

(1) U — p, when p - oo, and

(2) U— —1/log(p — ps), when p = p,
which is proportional to the behavior of the radial fre-
quency Q, near the separatrix [38,43].

We made one additional transformation to avoid two
areas with high eccentricity: (a) an area with high p, for
which the total time of the inspiral is very long, and (b) an
area close to the separatrix, for which the inspiral must
start with very high eccentricity. This transformation to
x€ (0,1),y € (0,1) is given by

084033-12



ADIABATIC EQUATORIAL INSPIRALS OF A SPINNING BODY ...

PHYS. REV. D 105, 084033 (2022)

0.8 —7—

vyvv;“.nf..v-vvvyvvvvyvvvvyvvvv

0l

Q>
Il

o

0.6

02" *

ool .t

15 20 25 30 35 40

0.8

0.6

021,

00 .1 .A A.A A.l " A. " " 1. " " : " 1 .A " " .A 1 A. " .A A.‘
5 10 15 20 25 30

o7kl T
0.6F . .
05 .
0.4;:... . . - .. .. S ]
0.3 )
0.2

0.1

0_0".1.“‘.‘1.‘“71“.“1.“‘.‘1.“.“.‘

FIG. 2. Grids for the interpolation in p—e plane. The grid points
are at Chebyshev nodes in X —y plane.

U= Uy = U+ Uy = U)Xy + (Uyg — Ugo)X
+ (Ug1 = Ugp)Y + Ugo. (89)

V= (Vi =Vo)xy + (Vor = Vo), (90)

where the parameters U,y and V), are chosen according to
the boundaries described in the following paragraph.

The GW fluxes were calculated on a grid in Chebyshev
nodes in the X, y coordinates. We used 15 grid points in
both directions. The boundaries were chosen for each value
of a separately. In all & cases, the coordinates of the lower
left corners are (p,e) = (F5co(@) + 0.15,0). For a =0,

the upper left corner is at (py(0.6) +0.1,0.6) and at
(ps(0.5) +0.1,0.5) for a =0.5, 0.9. The lower right
corner is located at (40,0) or (30,0) for a =0 or
a = 0.5, 0.9, respectively. The coordinates of the upper
right corner are (20,0.8) for a = 0, (15,0.8) for a = 0.5 and
(15,0.75) for @ = 0.9. These grids are depicted in Fig. 2.

On the grid, we interpolated the total energy and angular
momentum fluxes FF©& and F/:(®) with their linear in
spin counterparts 5FX and 8F”:, respectively, the time
derivatives of the orbital parameters p(@ and ¢®, and the
derivatives of p and é with respect to o, p, and e for the
calculation of 6p and de using Eq. (76). Each function was
divided by the following normalization factors to regularize
the behavior near the separatrix, for high p and for low e:

73

32 37
N]:E:?p_5<1—62)3/2(1+ﬂ62+%64), (91a)
32
Np. = gp—7/2(1 _ 62)3/2(1 + €2>’ (91]3)
25 _ p?
N(;]:E = —Zp 3/2N]:Eﬁ, (91C)
25 ey p2
Nﬁ]—" = _Ip ]\[]:Jz ﬁ’ (9ld)
8 3 23/2 N
N =3P (1—€?)%%(8+7e )ﬁ (91e)
N —iep—‘*(l —e2)32(304 + 121{32)‘12 (91f)
@ 15 =3
No,p =7z (1 — )2, (91g)
Ny, =e 1~ (1—e?)3? (91h)
€ pU4 ’
_P 2\3/2 .
Ny jp =75 (1 =€), (91i)
2 .
Naep = €~—4, (91])
1 2\3/2
Noe—eﬁ(l—e)‘ . (91k)
p
No.: =i (911)

The behavior of Ny and Nz, comes from Ref. [44],
where they derived the fluxes from a Keplerian orbit, which
represents the large p limit. On the other hand, the behavior
of Nsre and Ngzs. for large p is derived from the post-
Newtonian GW fluxes of spinning particles on circular
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equatorial orbits [45]. The accuracy of the interpolation is
discussed in Appendix E.

4. Evolution of the orbital parameters

Using the interpolated functions obtained in the previous
section multiplied by the normalization factors allows the
calculation of the evolution of the geodesic orbital param-
eters p®)(7) and e(®)(7) and the respective corrections 5p (%)

and Se(7). For given initial parameters p(()g> and e(()g), we

numerically solved Egs. (75) in Mathematica using the
7/8th-order Runge-Kutta method with adaptive step size.
The calculation was terminated when the orbital parameters
reached the boundary at X = 0.

These results were then used to evolve Egs. (76) for
given initial conditions 5p\¥ and Self’. These initial
conditions specify the trajectory of a spinning particle,

which is then compared with the geodesic starting at p(()g>

and e(()g>. The case dpy = 0 = de corresponds to a trajec-

tory of a spinning particle compared with a geodesic which

starts at the same pég) and e(()g).

However, 6p, and dey, can be chosen such that we
compare a trajectory of a spinning particle with a geodesic
with the same initial orbital frequencies Q, and f2¢. In this
case, we set Op, and dej to

(g) (o

opy = 51’(1’0 » € ), (92a)

ey = 5€(P(()g)’ eé)g))7

(92b)
respectively, where the functions §p and de have been
defined in Eq. (32).

We have also calculated the case where the trajectory of
a spinning particle is compared with a geodesic with the
same initial eccentricity e and azimuthal frequency Q¢.
This choice was used in previous works [24,46] when
calculating quasicircular inspirals. In this case, we set

0%,

5}70 = _aa_g;;” (93&)
dp

Seg =0 (93b)

evaluated at p&, e, and o = 0.

5. Evolution of the phase shifts

After the calculation of the orbital parameters, we calcu-
lated the linear parts of the phases 6®; using Eq. (79) with the
default solver NDSolve in Mathematica. The results were
compared with nonlinearized inspiral to verify them. Details
are given in Appendix F.

B. Results

1. Matched eccentricity and azimuthal frequency

When the phase shift 6@, is calculated for circular
orbits, the phase from an inspiral with a nonspinning
secondary is compared with an inspiral with a spinning
secondary which has the same initial azimuthal frequency
Q, and initial eccentricity e =0 as the inspiral with a
nonspinning secondary. Obviously, the radial frequency €,
is not relevant for circular orbits; in fact, the partial
amplitudes CY ~ vanish for n # 0, and only the modes
with frequency m£, remain. However, we can extend this
approach to the calculation of the phase shift from eccentric
inspirals by choosing properly the initial conditions as
given in Eq. (93). The corresponding numerical examples
are given in Fig. 3, which shows the phase shift 6®,  for
the dominant m =2 mode. Figure 3 is consistent with
Fig. 2 from Ref. [46] and Fig. 3 from Ref. [24]. Note that,
since we examine the phase at constant distance from the
central black hole, i.e., at constant 7, we can use ¢ as the
time variable instead of u.

When the initial azimuthal frequency and eccentricity are
properly matched, the phase shift 6®,, grows as 7, whereas
5@, grows as 7 for low 7, as can be seen in Fig. 4. The reason
for this behavior is that the initial value for

a0
5 L e, 94
P+, e (94)

a0, lolS

8Q; =
" Jo G=0+ dp

which appears in the integral (79), is zero for 5f2¢, but it is

nonzero for Q.. Thus, the phase shift 6@, grows linearly in
1 after the integration for low 7.

[ —— =01 — g =04

10F =02 — =05

I —— =03 — ¢ =06
1k
% F
> [
0.10¢
001

100 200 300 400 500
t
days
FIG. 3. The phase shift ¢g5®,, = gmé®, of the dominant m =

2 mode for properly matched initial azimuthal frequency Q, and
eccentricity e. The inspirals of a spinning particle with u =
30 M, into a Kerr black hole with M = 100 Mg, a = 0.9, start

from p'¥ = 10.1.
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100 —— 6@, (matched Qg4,€) —— 6@, (matched Qg, Q,) -

1 [—— 6®, (matched Qy, &) —— 6, (matched Qy, Q)]

& 001f 1
8
o

107 F 1

10781 1

0.1 05 1 5 10 50 100

tq

FIG. 4. Phase shifts go®; for different initial conditions. The
inspirals are around a Kerr black hole with @ = 0.9 and start at
P = 10.1 and e = 0.2. For matched Q, and e, 5®,, grows as
7% and 6@, grows as 7 for low 7, while for matched €, and Q, both
5®, and 6P, grow as 7.

2. Matched frequencies

Since for eccentric orbits both frequencies are observ-
able, we prefer to match the initial frequencies according to
Egs. (92) than as discussed in Sec. V B 1. For this initial
setting, both 6@, and 6@, grow as 1 for low t, as can be
seen in Fig. 4. In the numerical example given in Fig. 5, we
have calculated the inspiral providing the evolution of p(¢) (%)

and ¢(®)(7) for initial semilatus rectum pég> = 12 and differ-
ent initial eccentricities. The respective phase shifts for
a=0,a=0.5, and a = 0.9 are shown in Figs. 6-8. The
linear in spin part of the azimuthal phase 5@ is increasing
and is positive as opposed to the case with matched initial €2,
and e in Sec. V B 1, where it is negative (see Fig. 3). The
linear part of the radial phase 6®, is increasing and positive
for the majority of the inspiral; however, right before the
trajectory reaches the separatrix, 0@, starts to decrease. Both

FIG. 5. Adiabatic evolution of p(® and e® for a = 0 (solid
line), a = 0.5 (dashed line), and a = 0.9 (dotted line), while the
respective black lines denote the separatrices, where the evolution
ends.

6

JR— e(g‘)o =0.1
Sf—— 69y =0.2 1
4f— €9,=03 ]
ee s [— e(g)o =0.4 3
2 JR— e(g)o =05
A &9, =06 ]
11— €9y =0.7 ]
0 ]

q 6%,

0 50 100 150 200 250 300

FIG. 6. The azimuthal (top) and the radial (bottom) phase shift
for orbits around a Schwarzschild black hole with initial semi-
latus rectum p(()g) = 12 and different initial eccentricities. This
plot shows the phase shift when the particle has spin ¢ = ¢, i.e.,
the secondary corresponds to an extremal Kerr black hole.

14 -_ e(g)0 =0.1 -
12f—— €95 =0.2 ]
10— é9,=03 ]
s 8f—— =04 ]
g [ ]
o gL— e9,=05 ]
Jf— €9,=06 ]
ol €9=07 ]
g
o

FIG. 7. The same as Fig. 6, but for a Kerr black hole with

a=0.5.
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60

— 9, =0.1
S0F—— g0, =02
40— e(g)o =0.3
— e, =04
& 3o0f €% =0.
Le)
o — e(g)o =0.5
20F
— 9, =06
10f—— e, =0.7
0 1 1 1 1 1 1
201 ]
15} ]
g
o 10} ]
5 - .
0 1 1 1 1 1 1 ]
0 100 200 300 400 500 600
iq
FIG. 8. The same as Fig. 6, but for a Kerr black hole with
a=20.9.

0@, and 5@, diverge when the trajectory is approaching the
separatrix, because both the linearization in spin and the two-
scale approximation break at the separatrix.

In Ref. [47], where they compared eccentric equatorial
inspirals of spinning particles into a Schwarzschild black
hole using the osculating geodesics method, they found
initial parameters for which the difference A¢ = ¢,—, —
$o—o between the azimuthal coordinates ¢,_, of a spinning

140 | —— p(g)o =17

120 f—— p©@, = 18 ]
100f—— p¥9 =19 1
& sof T p9 =20 ]
S gob— P9 =21 ;

40l

20

0 200 400 600 800 1000 1200

2

FIG. 9. The phase shift for inspirals around a Schwarzschild
black hole with initial eccentricity e®’ = 0.75 and ¢ = g. The
horizontal axis corresponds to the number of passages through
the pericenter.

0

&lo)

0

elo)

0

elo)

FIG. 10. The maximal radial phase shift max ¢gé®, for different
initial eccentricities, mass ratios, and Kerr parameters. The mass
of the central black hole is M = 10 M, and the duration of the
inspirals is 1 yr. This phase shift corresponds to a particle with
spin ¢ = q.

body and ¢,_, of a nonspinning body changes its sign
during the inspiral (Fig. 2 in Ref. [47]). However, that work
included only the MPD force into the equations of motion
and did not take into account the correction to the self-force
caused by the body’s spin. We have calculated the phase
shift gé®,, which should correspond to A¢ when the
particle passes the pericenter, for the same initial param-
eters as Ref. [47] and found no change in the sign of A¢
(see Fig. 9). However, note that we have not included the
conservative and oscillating dissipative parts of the self-
force, and, thus, these results are not directly comparable.
Also, the accumulated phase shift is higher in our Fig. 9,
where the secondary’s spin contribution is incorporated
to the fluxes, than in Fig. 2 in Ref. [47], where this
contribution has not been taken into account.
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To systematically probe the parameter space, we have
calculated the inspirals for various initial parameters, and
for each inspiral we have found the maximum of the radial

phase shift max q5<1>,.8 Then we have plotted this maxi-

mum against the initial eccentricity e(()g) and the mass ratio

g, assuming that the duration of the inspiral is 1 yr while the

mass of the central black hole is M = 10% M. At each

()

point in the g — ey plane, the inspirals start at different

initial semilatus rectum p(()g>. The calculation was repeated

fora =0, 0.5, 0.9, and the results are shown in Fig. 10. We
can see that for a higher mass ratio the maximal phase shift

is higher, which corresponds to higher p(()g>. For higher a,

the maximal phase shift is almost independent of the initial
eccentricity, but, to find the degeneracies in the parameter
space and to assess the detectability of the initial eccen-
tricity or the secondary spin, proper analysis must be done,
which is out of the scope of the present technical work.

VI. CONCLUSIONS

We studied the influence of the spin ¢ of a secondary
body on the phase of a GW from an EMRI moving on the
equatorial plane of a Kerr black hole. Thanks to the fact that
the spin o is of the same order as the mass ratio g, we
worked in the linear order in o, neglecting higher-order
terms. We emphasize that our results are not sufficient for
the generation of the waveform templates for the detection,
since they must be accurately and rapidly generated in the
whole parameter space. The purpose of this work is to
provide the technical background needed to calculate the
secondary’s spin contributions to the waveform.

The first step to achieve our goal was to derive the linear
in ¢ parts of the orbital parameters p and e, constants of
motion E and J_, and the coordinate functions #(y), r(y),
and ¢(y) in the Darwin parametrization. The linearization
was done with respect to a reference geodesic with the same
frequencies Q, and Q4. Then we used these quantities to
linearize the GW fluxes to infinity and through the horizon.
We provided the linear parts §F and 5F’: of the total
energy and angular momentum flux using the Teukolsky
formalism in the frequency domain. Again, we calculated
the linear part with respect to a geodesic with the same
frequencies. We also found the relation between the latter
type of linearization and the linearization with respect to a
geodesic with the same orbital parameters p and e.

The fluxes were calculated on a grid in the p—e plane and
interpolated, since the calculation at one point is computa-
tionally expensive. Once we have calculated the energy and
angular momentum fluxes linearized in o, we derived the
evolution equations for the orbital parameters p(®(¢) and
¢(®)(¢) for a nonspinning secondary and for corrections due

*In Appendix F, we verify that the accuracy of the phase shift is
high and the approximations are valid at this point.

to the spin 6p(t) and Se(t). After that, we have evolved
these quantities numerically. From the evolution of the
orbital parameters and their corrections, we then con-
structed the evolution of the phase shifts §®,(¢) and
o®,(t), which is the difference between the GW phase
from an inspiral with a spinning and a nonspinning
secondary. We tested the results against nonlinearized
evolution obtained from the fluxes, that were derived in
Ref. [25]. We found that the error of the phase shifts, i.e.,
the relative difference between linearized and nonlinearized
phase shifts, is around 1073,

The phase shifts were computed using two different
types of initial conditions. First, we set the initial conditions
such that we compared inspirals with a spinning and a
nonspinning secondary which start with the same azimuthal
frequency Q and eccentricity e. This was done to validate
the results against quasicircular inspirals. We have found
the expected behavior where the azimuthal phase shift
grows as # for low ¢ and the radial phase shift grows as ¢.
After that, we set the initial condition such that we compare
inspirals with the same initial radial frequency Q, and
azimuthal frequency Q. We found that the azimuthal phase
shift is positive, as opposed to the previous choice of initial
condition, and that the radial phase shift is positive and
increasing up to a point before it reaches the separatrix,
where it becomes decreasing. Both the azimuthal and radial
phase shift diverge when the inspiral reaches the separatrix,
and, thus, a different method must be employed for the
waveform generation near the plunge in the future.

To systematically probe the parameter space and find the
general behavior of the phase shifts, we calculated the
maximal value of the radial phase shift for different initial
eccentricities, mass ratios, and Kerr parameters while fixing
the masses of the bodies and the observation time. We
found that the maximal radial phase shift grows with the
mass ratio and the Kerr parameter and almost does not
depend on the eccentricity.

In the future, this work can be extended to off-equatorial
orbits with precessing spin, which is significantly more
complex since the equations of motion are not separable,
even in the linear in spin order [48]. We are also planing to
generate the waveforms using the FastEMRIWaveforms
package [11] to find the degeneracies in the parameter
space and to assess the detectability, since in Ref. [49] it
was claimed that for quasicircular orbits the secondary spin
should not be detectable, while in Ref. [50] it was claimed
that effects of spin-induced quadrupolar deformation,
which are of O(6?), are strong enough for the detection.
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APPENDIX A: LIST OF DIMENSIONLESS
QUANTITIES

In this work, we define some quantities in their dimen-
sionless form. However, since we use these quantities often
in both full and dimensionless form, we present the
respective relations in Table 1.

Note that some quantities such as x or the fluxes F have
been defined solely as dimensionless; quantities derived
from others, e.g., by linearization in o, have the same
relation between their dimensionless and full form as the
original quantities.

APPENDIX B: ECCENTRIC EQUATORIAL
ORBITS OF SPINNING PARTICLES

This appendix briefs some formulas describing the
motion of spinning particles on bound eccentric equatorial
orbits around a Kerr black hole. Details regarding these
formulas can be found in Refs. [25,51].

Bound equatorial orbits of a spinning particle moving
around a Kerr black hole can be parametrized by the
eccentricity e and the semilatus rectum p. This para-
metrization is in one-to-one correspondence to the para-
metrization with respect to the energy E and the z
component of total angular momentum J .. The expressions
of E and J, as functions of p and e read

TABLE I. List of dimensionless quantities.

o =S/(uM) Secondary spin
t=1t/M BL time

F=r/M BL radial coordinate
E=E/u Energy
J.=J./(uM) Angular momentum
a=a/M Kerr parameter
T,=T,/M Radial period

Q =QM Radial BL frequency
Q¢ =Q,M Azimuthal BL frequency
o = oM Frequency

Cipy = Ch M?/u Partial amplitudes
AL, = AL M Waveform amplitudes
n=u/M Retarded coordinate
A=A/M?

& = o /M?

2k + 2€6 — 2sgn(J.)5 /€ + k¢
B p* + 4ne

, (B1)

G = 2kn — sgn(J,)p\/ € + kC
) (p* +4nd)E

, (B2)

respectively, where the coefficients

k = dihy —dyhy,
e =dig —drg1.
p = fihy— fah,
n=f192 = fa91,
6 = g1hy — oy,
(=difr—drf,

are calculated from the functions

o a0
g(?) —2a%+a<§+a( aA+”)—(A—3)%>,
r r

R 2
h() = A — (a+§) ,
r
) A(?3—62)2
d(}’) = o

at the pericenter f; = f(p/(1 + ¢)) and at the apocenter
f2=F(p/(1-e)), etc.

The trajectories in Darwin parametrization can then be
calculated from the evolution equations (22) with

362 w?
t=al1 —P B3
V a( +?20>x+ A 7 ( )
362 a
Ve =1 —P,, B4
( +;’26>x+ ? ( )
A [0}
PO‘ = ZO.E— <& +7>x, (BS)
r
2
- %2<1 —"3) (B6)
r
x=1J.—(a+o)E, (B7)

and
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) 5(e)

6 k 10
= (1 +ecosy) "Z% (B8)
k=0 I= R
with
i =1
]gp) — _2’
W =at+2aEx+x
i ==2((1 = E?)o? - Eox + 22)
i = 4o,
j¥ = =2a6(a0 + x(Eo + x)).
j(6p) =a2((1- ]3;2)(;2 —2Fox — x?)
and
i) = 1.
i =2
jge) - 62 + 37

=4+,
jgd =e* 4+ 10e* + 5,
S =2(e2 +3)(3e2 + 1),

S = e +21e* 4+ 35¢% 4 7.

APPENDIX C: LINEARIZED EVOLUTION OF
THE ORBITAL PARAMETERS

In this appendix, we provide formulas for the evolution
of the corrections p and de in Sec. IV A. The evolution of
the linear parts 6p and de is governed by Eqgs. (76) where
the functions 6p and é¢é are, respectively,

ap ople op'®
1
6p = % + o op + P de, (C1)
e He® He(®)
6 = — . 2
oé %0 ap op + e e (C2)

After substitution from Eqs. (68), the ¢ derivatives read

ap 8686E+OL5E_5)€2§57J — )6'71

do 7

0, 4 9k .
G E=5 0
oo

Vel

) dJ. o 2E 4 E o
e oo B =5, 0E + 5 50, + 3561,
do 2l
ol ok
UL BT O s
B) ap? 2OV (k]

OB 1. 2E 01, OF 07,

Op0edo 0edo dp e Opdo’

olJ|  O*E 07,

o dOpdo De

(C5)
where SE and 57 . are given by the linear parts of the fluxes

OF = —goF*|,, (C6)

8T, = —qdF|, . (C7)

The derivatives of p and e with respect to p and e are
calculated similarly, while the derivatives of the constants
of motion with respect to p, e, and ¢ can be calculated from
Egs. (B1) and (B2). The exact formulas of the latter are not
presented here, because, even if they are straightforward to
calculate, they have long complex forms. Interested readers

can find them in the Supplemental Material [36].

APPENDIX D: LINEARIZED PARTIAL
AMPLITUDES

Here, we give more details about the calculation of the
linearized in spin partial amplitudes 6C7, . [Eq. (58)]. The
linear part of /i, from Eq. (46) reads

lmn

Imn

dI d

dl;"” <5A0 —(6A, + 6By —Aydr) 5
2
+(6A5+ 6B, —

d 3
A 5}") d (533 A251") ) Ima®

(D1)

where the coefficients §A; and 6B; are calculated by the
linearization in spin of the expressions in Eqgs. (B1)—(B3)
and (B9)—(B11) in Appendix B in Ref. [25]. Particularly,
the linear part of A%, . is calculated as

(i)
i d
5A2bl (6C0 - 5C2b)f£dz + nglg) %5’," (Dz)

and the calculation of 5Aa(’;”, 0A’, ., and 6B;
because these functions are proportional to o.
The linear parts of the partial amplitudes 5Ci,, a
calculated simultaneously with the geodesic amphtudes
C?;fn). We have tested the results against nonlinearized
partial amplitudes C;; 7n Dy comparing them with numerical
o derivatives of Ci,, with respect to a reference geodesic

with the same frequencies. To find the orbital parameters of

is trivial,
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a trajectory of a spinning particle with the same frequencies
as those of a geodesic with p(®) and e®), we numerically
calculated p* and e™ satisfying

Q,(p*,e*, +0) = Q¥ (p¥), e®).  (D3)
Then we numerically calculated the derivative
5Climl\’1lum — C?I:nn (p+’ e+’ 6) - C?r:nn (p_’ e, _G) (D4)
20
and the relative difference
5Cthurn
| - D5
e >3

If the calculation of 6C ?;m from Eq. (58) is correct, then the
relative difference equals the relative truncation error of
second-order finite difference formula and behaves as O(o?).

We have calculated the relative difference for two orbits,
namely, with p(&® = 12, ¢(&) = 0.6 and p(@ =4, ¢ = 0.4
for @ = 0.9 and for two modes with [ =2, m =2, n =0
and [ =11, m =10, n = 36. The results are plotted in
Fig. 11. We can see that for sufficiently small o the relative
error tends to zero and, therefore, the linear parts 5Cy;, are
correct.

—— 60‘2,2,1;
~= 6C 500
I 0~ 6C" 11,106
i 6C 11,1036

rel. truncation error

10710 b

—e— 6C'220

rel. truncation error
=)
&

1077
- 6C 220
10°® ~0- 6C" 11,1036 1
100k ‘ —“— 60_11,10,36‘ ]
5.x10° 1.x10™ 5.x107* 0.001
ag
FIG. 11. The relative truncation errors (D5) for a = 0.9,

p® =12, and ¢!® = 0.6 (top) and & = 0.9, p® =4, and e® =
0.4 (bottom). These errors tend to zero for sufficiently small o,
and the calculation of 6Ci  is, therefore, correct.

lmn

APPENDIX E: ACCURACY OF THE
INTERPOLATION

In this appendix, we discus the interpolation error
originated when interpolating the fluxes and other quan-
tities in the p—e plane in Sec. VA 3.

We use global interpolation on the Chebyshev nodes.
The advantage of this method is that the convergence is
exponential and the interpolation error is bounded and
uniform. The disadvantage is that the convergence is slow,
when the function is not analytical, and the errors in the
evaluation at individual points spread across the whole
domain.

The interpolation error of the Chebyshev interpolation
can be easily estimated. Namely, when a function f is
expanded into the Chebyshev polynomials as

Imax  Jmax

fley)=>3"

i=1 j=1

CijTi(x)Tj(y)’ (E1)

where T;(x) are Chebyshev polynomials and c;; are the
coefficients, then the error can be estimated as

max Ciil.
i:imaxvj:jmax| IJ|

(E2)
Using this approach, we have found that the relative error of
the interpolated geodesic fluxes F () is around 1074, the
relative error of j)(g) and ¢® is around 1075, and the relative
error of the derivatives of p and ¢ is between 10~ and 1072,
Since the functions 6p and dé are calculated from these
derivatives, their precision is also between 1073 and 1072,

To verify the geodesic energy flux to infinity for the
Schwarzschild black hole, we compared the data with 9PN
series [41]. Figure 12 shows both relative difference
between the PN series and the interpolated function and

logqg(err.)

FIG. 12. The relative error of the interpolated energy flux to
infinity compared to a 9PN series (purple), the relative error at
individual grid points (green), and the relative error of the 9PN
series deducted from the last term (red). We can see that the
relative interpolation error is around 107*. In the area near the
separatrix or with high eccentricity, the 9PN series loses accuracy.
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the value of the flux at individual points. It also shows the
error of the PN series estimated by its last term. We can see
that the interpolation error is dominant for higher p and
lower e, and its value is around 10~*. The error of the fluxes
at individual grid points is between 1078 and 1077, but the
error of the PN series grows with decreasing p and
increasing e, and, therefore, the fluxes near the separatrix
cannot be verified using the PN series.

APPENDIX F: ACCURACY OF THE PHASE
SHIFTS

In this appendix, we compare the linearized phase shifts
5®@; (1) obtained in Sec. IV A with the phases computed using
nonlinearized formula (73). The purpose of this section is to
test the validity and accuracy of the calculation.

First, we have computed the nonlinearized fluxes on a grid
in the p—e plane for 6 = 1072 and @ = 0. The grid is similar
to the grid for @ = 0 in Fig. 2, but the separatrix is located at
different position fulfilling p,(6) = 6 + 2e + O(0), i.e.,
around 1073 away from the geodetic separatrix. The calcu-
lation of the nonlinearized fluxes was equivalent to the
calculation of linearized fluxes in Sec. VA. Because the
numerical error in the nonlinearized fluxes is around 1074,
we have chosen such a high value of ¢ to prevent the loss of
the spin contribution in the noise. Note that we tested the
linearized results against only the aforementioned value of
the spin in the nonlinearized case, because the calculation of
the fluxes on the whole grid is computationally expensive.

We have computed the evolution of the orbital param-
eters p(t) and e(¢) using Egs. (68), and from p(¢) and e(t)
we calculated the phases (73). The initial orbital parameters
po and ey were chosen to match the initial frequencies of a

geodesic with initial parameters pég) and e(()g). Similarly, we

have calculated the phase for ¢ = 0. We have compared the
phase shift

_ () - ®,(c = 0)

AD; F1
l " (F1)
with the linear part of the phase 6®; as
0D,
1 ——. (F2)
AD;
This relative difference is plotted in Fig. 13 for
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FIG. 13. The relative difference between the nonlinearized

phase shift A®; and the linearized phase shift 6®; for i = ¢
(top) and i = r (bottom). It can be seen that the relative difference
is below 5 x 1073 for the majority of the inspiral. At the end of
the inspiral, the relative difference grows rapidly, because the
linearization in ¢ breaks. The black dots show points where 5@,
changes from an increasing to a decreasing function of ¢ and it has
maximal value. The error at these points is below 5 x 1073,

eccentricities e(()g>. We can see that the relative difference is

below 5 x 1073 for the majority of the inspiral. Before the
particle reaches the separatrix, the relative difference
diverges, because the linearization in ¢ breaks here.
This is caused by the fact that the linear parts Sp(r)
and Se(t) diverge here and the functions as p(p®(r) +
6op(t), e® (1) + 66e(t), o) cannot be linearized. The rel-
ative difference diverges also for = 0, because both d®;
and A®; are close to zero; i.e., we divide two very small
inaccurate quantities.

Since the quantity A®; is nonlinearized, it contains O(o)
contribution to the phase which should be around 1073.
However, since the accuracy of the nonlinearized calcu-
lations is around 1073, the relative difference shows this
numerical error.
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