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The detection of gravitational waves from extreme mass ratio inspirals (EMRIs) by the future space-
based gravitational-wave detectors demands the generation of accurate enough waveform templates. Since
the spin of the smaller secondary body cannot be neglected for the detection and parameter estimation of
EMRIs, we study its influence on the phase of the gravitational waves from EMRIs with a spinning
secondary. We focus on generic eccentric equatorial orbits around a Kerr black hole. To model the spinning
secondary object, we use the Mathisson-Papapetrou-Dixon equations in the pole-dipole approximation.
Furthermore, we linearize in spin the orbital variables and the gravitational-wave fluxes from the respective
orbits. We obtain these fluxes by using the Teukolsky formalism in the frequency domain. We derive the
evolution equations for the spin-induced corrections to the adiabatic evolution of an inspiral. Finally,
through their numerical integration, we find the gravitational-wave phase shift between an inspiral of a
spinning and a nonspinning body.
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I. INTRODUCTION

Extreme mass ratio inspirals (EMRIs) are promising
sources for future space-based gravitational-wave (GW)
detectors such as the Laser Interferometer Space Antenna
(LISA) [1,2]. These systems consist of a primary super-
massive black hole and a secondary, much lighter compact
object such as a neutron star or a black hole. In an EMRI,
the mass ratio q ¼ μ=M of the secondary mass μ and the
primary mass M is expected to lie between 10−7 and 10−4.
Because of the gravitational radiation reaction, the secon-
dary object is slowly inspiraling into the primary while it
radiates gravitational waves. The detection of EMRIs will
provide the opportunity to study strong gravitational fields
around supermassive black holes lying at the center of
galaxies and to test general relativity.
The millihertz GW bandwidth that EMRIs are emitting is

expected to be rich in GW sources. To overcome the fact
that signals from various sources will overlap during their
detection by LISA, matched filtering is planned to be
employed; i.e., the detected signal will be compared with a
large number of GW templates covering the estimated
parameter space [1]. The use of templates will not only
allow the detection of EMRI signals, but it will also be
employed for the parameter estimation of these systems. To
get these estimations adequately enough, we need to
generate waveform templates whose phases are accurate
up to fractions of radians.
To achieve such accuracy, a series of techniques can be

employed. The backbone of them is that the system is

treated as the motion of a secondary object in the back-
ground spacetime of the primary object. Hence, to model
the GW phase, we need first to find the trajectory of the
secondary zμ. The secondary is perturbing the background
spacetime, and the gravitational self-force drives the
secondary away from the trajectory which it would follow
without this perturbation.1 To find this self-force, pertur-
bation theory is used. Namely, the exact metric is expanded
in the terms of the mass ratio as

gexactμν ¼ gμν þ hð1Þμν þ hð2Þμν þOðq3Þ; ð1Þ

where gμν is the background metric, which in our case is the

Kerr one, hð1Þμν ¼ OðqÞ is the first-order perturbation, and

hð2Þμν ¼ OðqÞ2 is the second-order perturbation. hðnÞμν are
found by expanding the Einstein equations in the mass ratio
with the source constructed from the secondary body and
solving order by order [3,4]. The parts of the metric
perturbation are then used to construct the first- and
second-order self-force:

D2zμ

dτ2
¼ qfμð1Þ þ q2fμð2Þ þOðσ3Þ; ð2Þ

1This unperturbed trajectory is a geodesic orbit for a non-
spinning secondary, while, for a spinning secondary, the trajec-
tory can be provided by the Mathisson-Papapetrou-Dixon
equations.
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where τ is the proper time and fμð1Þ is constructed from hð1Þμν

and the secondary’s spin-curvature coupling, while fμð2Þ is

constructed from hð2Þμν [4–6].
Because the radiation reaction is of the order OðqÞ, its

effects act on a much larger timescale than is the orbital
timescale. Actually, the secondary makes Oðq−1Þ cycles
around the primary due to the radiation reaction, before it
plunges into the primary. Thanks to this timescale differ-
ence, we can use the so-called two-timescale approxima-
tion [7]. In this approximation, the coordinates are
transformed to anglelike variables qμ, which can be
expanded in the mass ratio as2

qμðtÞ ¼
1

q
qð0Þμ ðqtÞ þ qð1Þμ ðqtÞ þOðqÞ; ð3Þ

where t is the evolution parameter. The first term qð0Þμ ðqtÞ is
called the adiabatic term and can be calculated only from the
time-averaged dissipative part of the first-order self-force.

The second term qð1Þμ ðqtÞ, which is called the first-order
postadiabatic term, is constructed from the oscillating
dissipative and conservative parts of the first-order self-force,
the averaged dissipative part of the second-order self-force,
and the contribution from the spin of the secondary body.
These angle variables are directly related to the phases of the
GW. The adiabatic term for generic orbits around a Kerr
black hole was calculated only recently [8–11], and, so far,
the postadiabatic term with the first-order self-force was
calculated for a spinning secondary only for quasicircular
orbits in the Schwarzschild spacetime [12] and for a non-
spinning secondary for equatorial orbits in theSchwarzschild
[13] andKerr [14] spacetime, while the full first- and second-
order self-force for quasicircular orbits in the Schwarzschild
spacetime was calculated in Ref. [15].
The error in the adiabatic term must be less than the mass

ratio to obtain subradian precision. It has been proven for a
nonspinning secondary [16,17], but also for a spinning
secondary [18], that the time-averaged dissipative part of
the self-force can be reconstructed from the time-averaged
energy and angular momentum fluxes calculated at infinity
and at the horizon of the primary black hole. Therefore, for
the calculations in the adiabatic order, we do not need to
calculate the perturbation hð1Þμν in the vicinity of the
secondary body, but we need only to find the aforemen-
tioned GW fluxes. These fluxes were calculated for generic
orbits of nonspinning bodies around a Kerr black hole in
Ref. [19], for circular orbits of spinning bodies around a
Schwarzschild and a Kerr black hole in Refs. [18,20–24],
and, finally, for eccentric equatorial orbits of spinning
particles around a Kerr black hole [25].

A postadiabatic term is of the order of radians and, thus,
cannot be neglected. Hence, since the spin of the secondary
contributes to the postadiabatic term, we have to take it into
account. In the case of compact objects, like black holes
and neutron stars, a pole-dipole approximation is consid-
ered to be sufficient, and all the higher multipoles of the
body can be ignored. The scalars describing a pole-dipole
secondary are its mass μ and the measure of its spin S. In
the EMRI framework, instead of S we can gain more
insight about the contribution of the secondary spin by
defining its dimensionless counterpart σ ¼ S=ðμMÞ. For
example, if we consider the secondary black hole as an
extreme Kerr black hole, we have that S ¼ μ2 leading
to σ ¼ q, which suggests that σ is of the order of the
mass ratio, i.e., σ ≲ q ≪ 1. This fact, actually, allows us
to ignore all the terms with higher powers in σ and focus
on the linearized in spin contributions to the inspiral.3

Additionally, it is easier to fill the parameter space with
precomputed EMRI waveform templates by linearizing in
spin, since the spin contribution appears in this case as σ
times a coefficient independent of the exact value of the
spin. This implies that we avoid the calculation of each
quantity for several values of the spin. Moreover, there is
evidence [27,28] suggesting that the pole-dipole approxi-
mation breaks down for higher than the quadratic order
in spin.
Hence, this work focuses on the influence of the

secondary spin on the evolution of an inspiral moving
on the equatorial plane of a Kerr black hole, when the
calculations are restricted to the linear order in spin. Having
confined our study on the equatorial plane of a Kerr black
hole allows us to parametrize the orbital evolution by the
energy E and the z component of the angular momentum Jz
of the system. The energy and the angular momentum
fluxes, which reach infinity and the horizon, were already
derived in Ref. [25]. In this work, we linearize these fluxes
to calculate the adiabatic inspiral and the linear in spin part
of the GW phase, i.e., the phase shift between the adiabatic
inspiral of a spinning secondary and a nonspinning sec-
ondary. In particular, this phase shift δΦμ can be found by
linearizing in spin of the phase, i.e.,

Φμ ¼
1

q
Φð0Þ

μ þ σ

q
δΦμ þOðσ2=qÞ: ð4Þ

Note that in this work we neglect the other postadiabatic
terms, the evolution of the primary mass and its spin due to
the absorption of the GWs through the horizon as well as
the evolution of the spin magnitude σ.
The rest of this paper is organized as follows. Section II

describes the dynamics of a spinning body in a Kerr

2In fact, the expansion contains also a term proportional to
q−1=2 caused by the orbital resonances, but here we neglect it for
simplicity.

3This reasoning holds away from the resonances, since the
resonances are governed by the OðS2Þ [26], which implies a
contribution to the phase of order of radians.
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spacetime and introduces the orbital variables linearized in
the spin of the secondary. Section III focuses on GW fluxes
from spinning bodies moving on eccentric equatorial orbits
around a Kerr black hole with these fluxes linearized in
spin. Section IV presents the equations driving the adia-
batic evolution of the orbital parameters and the phases. By
linearization in spin, this section provides the equations
governing the phase shifts. Section V first discusses the
numerical methods and then provides the respective results.
Finally, Sec. VI summarizes the main findings of our work.

A. Notation

In this work, we use geometrized units where
c ¼ G ¼ 1. A partial derivative is denoted with a comma
as Uμ;ν ¼ ∂νUμ, whereas a covariant derivative is denoted
by a semicolon as Uμ;ν ¼ ∇νUμ. The Riemann tensor is
defined as Rμ

νκλ ¼ Γμ
νλ;κ − Γμ

νκ;λ þ Γμ
ρκΓρ

νλ − Γμ
ρλΓρ

νκ,
and the signature of the metric is ð−;þ;þ;þÞ. For
convenience, we use some quantities in their dimensionless
form, which is denoted by a hat. A list with these quantities
and their dimensionless counterparts can be found in
Appendix A.

II. MOTION OF A SPINNING PARTICLE

Following Mathisson’s gravitational skeleton approach
[29,30] and truncating the expansion up to the second term,
the stress-energy tensor of a spinning test body in a curved
spacetime can be written as

Tμν ¼ 1ffiffiffiffiffiffi−gp
�
PðμvνÞ

vt
δ3 −∇α

�
SαðμvνÞ

vt
δ3
��

; ð5Þ

where Pμ is the four-momentum, vμ ¼ dxμ=dτ is the four-
velocity, Sαβ is the spin tensor, δ3 ≡ δ3ðxi − xipðtÞÞ is the
Dirac delta function located at the particle position xipðtÞ
parametrized by the coordinate time t, and g is the
determinant of the metric. In this so-called pole-dipole
approximation, the stress-energy tensor consists of a
monopole (first term) and a dipole (second term).
Applying the stress-energy conservation law Tμν

;ν ¼ 0
on the stress-energy tensor (5), the Mathisson-Papapetrou-
Dixon (MPD) equations [30–32]

DPμ

dτ
¼ −

1

2
Rμ

νρσvνSρσ; ð6aÞ

DSμν

dτ
¼ Pμvν − Pνvμ ð6bÞ

can be derived, where Rμ
νρσ is the Riemann tensor and τ is

the proper time.
The MPD system of equations is underdetermined,

because for the 14 independent components ðxμ; Pμ; SμνÞ
only ten independent equations are available. This

ambiguity is related to the freedom we have to choose
the center of mass of the spinning body. Thus, additional
conditions must be imposed to fix the center of mass and
close the system. One such condition is the Tulczyjew-
Dixon spin supplementary condition (TD SSC) [33,34]

SμνPμ ¼ 0; ð7Þ

which introduces three independent constraints to the
system. The fourth constraint comes from the fact we have
chosen the proper time as the evolution parameter in Eq. (6)
and, hence,

vμvμ ¼ −1: ð8Þ

Note that, in order to follow the evolution of the body, we
actually track the worldline along the center of the mass,
which is the reason why a spinning body is often called a
spinning particle. We will use both terms interchangeably
throughout the rest of the paper.
Under the TD SSC, the mass of the spinning particle with

respect to the four-momentum

μ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−PμPμ

p ð9Þ

and the magnitude of the particle’s spin

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
SμνSμν

2

r
ð10Þ

are conserved along the trajectory. Often, it is convenient to
use the dimensionless spin parameter σ

σ ¼ S
μM

; ð11Þ

instead of the spin magnitude S and the spin four-vector

Sμ ¼ −
1

2
ϵμνρσuνSρσ ð12Þ

instead of the spin tensor, where uμ ¼ Pμ=μ. It can be
checked then that the spin magnitude can be expressed
as S ¼ ffiffiffiffiffiffiffiffiffiffi

SμSμ
p

.
Thanks to the TD SSC, it is possible to derive a relation

between the four-momentum and the four-velocity [35]:

vμ ¼ m
μ

�
uμ þ 2SμνRνρκλuρSκλ

4μ2 þ RαβγδSαβSγδ

�
; ð13Þ

wherem≡ −pμvμ is the rest mass with respect to the four-
velocity. The value of this mass is not conserved under TD
SSC; however, it is constrained by Eq. (8).
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A. Motion on a Kerr background

We are interested in the motion of a spinning particle in
Kerr spacetime background. This spacetime describes a
spinning black hole at vacuum. The nonzero components of
the Kerr metric in Boyer-Lindquist (BL) coordinates

ds2¼gttdt2þ2gtϕdtdϕþgϕϕdϕ2þgrrdr2þgθθdθ2 ð14Þ

read

gtt ¼ −
�
1 −

2Mr
Σ

�
;

gtϕ ¼ −
2aMr sin2 θ

Σ
;

gϕϕ ¼ ðϖ4 − a2Δ sin2 θÞ sin2 θ
Σ

;

grr ¼
Σ
Δ
;

gθθ ¼ Σ ð15Þ

with

Σ ¼ r2 þ a2 cos2 θ;

Δ ¼ ϖ2 − 2Mr;

ϖ2 ¼ r2 þ a2; ð16Þ

where M is the mass of the black hole and a is the Kerr
parameter.
The outer horizon of a Kerr black hole is located at

rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
, and the spacetime is equipped with

two killing vectors, one timelike ξμðtÞ ¼ δμt and one space-

like ξμðϕÞ ¼ δμϕ. The existence of these Killing vectors

provides the conservation of two additional quantities,
namely, of the energy measured at infinity:

E ¼ −Pt þ
1

2
gtμ;νSμν ð17Þ

and of the total angular momentum projected onto the
symmetry axis of the black hole measured at infinity:

Jz ¼ Pϕ −
1

2
gϕμ;νSμν: ð18Þ

B. Equatorial motion

In our work, we focus on the equatorial motion; hence,
vθ ¼ 0. It can be shown that in this case the particle stays in
the equatorial plane [25], and it holds that pθ ¼ 0 and

Sμ ¼ −rSδθμ: ð19Þ

Bounded equatorial orbits can be characterized by their
semilatus rectum p and their eccentricity e, which are
defined as

p ¼ 2r̂1r̂2
r̂1 þ r̂2

; e ¼ r̂2 − r̂1
r̂1 þ r̂2

; ð20Þ

where r̂1 is the pericenter and r̂2 is the apocenter. For the
orbital description, we introduce dimensionless counter-
parts of the involved quantities (for details, see Table I).
The radial coordinate of the particle periodically oscil-

lates between r̂1 and r̂2. Because of this fact, we can change
the parametrization of the trajectory from proper time τ to
the anglelike relativistic anomaly χ defined as

r̂ ¼ p
1þ e cosðχ þ χ0Þ

; ð21Þ

where χ0 determines the initial radial position. For χ þ
χ0 ¼ 0 and 2π the particle is at the pericenter, and for χ þ
χ0 ¼ π the particle is at the apocenter. The equations of
motion for t and ϕ in this so-called Darwin parametrization
then read

dt̂
dχ

¼ Vt

�
p

1þ e cosðχ þ χ0Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2

p2Jðχ þ χ0Þ

s
; ð22aÞ

dϕ
dχ

¼ Vϕ

�
p

1þ e cosðχ þ χ0Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2

p2Jðχ þ χ0Þ

s
; ð22bÞ

where the functions Vt, Vϕ, and J can be found in
Appendix B.
By integrating over χ, the functions t̂ðχÞ and ϕðχÞ read

t̂ðχÞ ¼
Z

χ

0

dt̂
dχ

ðχ0Þdχ0; ð23aÞ

ϕðχÞ ¼ ϕ0 þ
Z

χ

0

dϕ
dχ

ðχ0Þdχ0; ð23bÞ

respectively, where we set the initial time tð0Þ ¼ 0.
Since it is possible to express the energy and the angular

momentum as Êðp; e; σÞ and Ĵzðp; e; σÞ, i.e., as functions
of p, e, and σ4 [25] (see Appendix B), to uniquely identify a
trajectory, one needs four parameters p, e, χ0, and ϕ0.
However, many quantities are independent of the initial
angles χ0 and ϕ0. Therefore, we can define a fiducial
trajectory with χ0 ¼ 0 and ϕ0 ¼ 0. The coordinates of this
trajectory as well as all the quantities calculated from it are

denoted with a check mark as ˇ̂tðχÞ, ˇ̂rðχÞ, and ϕ̌ðχÞ. After the
substitution χ ¼ v − χ0, Eq. (23a) can be written as

4They also depend on the Kerr parameter a, but we will treat it
only as a parameter.
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t̂ðχÞ ¼
Z

χþχ0

χ0

dˇ̂t
dχ

ðvÞdv ¼ ˇ̂tðχ þ χ0Þ − ˇ̂tðχ0Þ; ð24Þ

where dˇ̂t=dχ comes from Eq. (22a) when χ0 ¼ 0. An
analogous relation holds for ϕðχÞ, and, therefore, a general
trajectory can be expressed using a fiducial trajectory as

t̂ðχÞ ¼ ˇ̂tðχ þ χ0Þ − ˇ̂tðχ0Þ; ð25aÞ

r̂ðχÞ ¼ ˇ̂rðχ þ χ0Þ; ð25bÞ

ϕðχÞ ¼ ϕ0 þ ϕ̌ðχ þ χ0Þ − ϕ̌ðχ0Þ: ð25cÞ

Trajectory-dependent quantities such as the frequencies or
the GW fluxes, which are independent of χ0 and ϕ0, can be
calculated using the fiducial trajectory.
The radial period, i.e., the time between two successive

passages through the pericenter, can be expressed as

T̂r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

p

Z
2π

0

Vt

�
p

1þ e cos χ

�
1ffiffiffiffiffiffiffiffiffi
JðχÞp dχ

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

p

Z
π

0

Vt

�
p

1þ e cos χ

�
1ffiffiffiffiffiffiffiffiffi
JðχÞp dχ; ð26Þ

where we can integrate from 0 to π, because the integrand is
even around π. Similarly, the accumulated phase of the
azimuthal coordinate can be written as

Δϕ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

p

Z
π

0

Vϕ

�
p

1þ e cos χ

�
1ffiffiffiffiffiffiffiffiffi
JðχÞp dχ: ð27Þ

The frequencies with respect to the BL time can be then
calculated as

Ω̂r ¼
2π

T̂r
; ð28aÞ

Ω̂ϕ ¼ Δϕ
T̂r

: ð28bÞ

C. Linearization in the secondary spin

Because of the fact that the dimensionless spin σ is of the
same order as the mass ratio q, i.e., σ ≪ 1, it is reasonable
to linearize the expressions for the frequencies (28) in σ to
obtain

Ω̂iðp; e; σÞ ¼ Ω̂ðgÞ
i ðp; eÞ þ σδΩ̂iðp; eÞ þOðσ2Þ; ð29aÞ

where i ¼ r;ϕ and

Ω̂ðgÞ
i ðp; eÞ ¼ Ω̂ðp; e; σ ¼ 0Þ; ð29bÞ

δΩ̂iðp; eÞ ¼
�∂Ω̂i

∂σ
�

σ¼0

: ð29cÞ

Note that the index (g) in the above quantities refers to a
geodesic orbit, i.e., for σ ¼ 0.
However, for the calculation of GW fluxes, it is

convenient to linearize the quantities, such as energy and
angular momentum fluxes, with respect to a reference
geodesic with the same orbital frequencies (see Sec. III A).
In other words, we must linearize the functions para-
metrized by the frequencies, i.e., fðpðΩ̂i; σÞ; eðΩ̂i; σÞ; σÞ.
For this, one must find the linear part of the functions

pðΩ̂i; σÞ ¼ pðgÞðΩ̂iÞ þ σδpðΩ̂iÞ þOðσ2Þ; ð30aÞ

eðΩ̂i; σÞ ¼ eðgÞðΩ̂iÞ þ σδeðΩ̂iÞ þOðσ2Þ; ð30bÞ

where δp and δe correspond to the change of the orbital
parameters after a geodesic with frequencies Ω̂i is per-
turbed by a secondary spin σ while keeping the frequencies
same. Because the relations pðΩi; σÞ and eðΩi; σÞ are not
known, we cannot simply take the derivative of pðΩi; σÞ
and eðΩi; σÞ with respect to σ to find δpðΩiÞ and δeðΩiÞ;
instead, we have to use the derivatives of the implicit
functions

Ω̂r ¼ Ω̂rðpðΩ̂r; Ω̂ϕ; σÞ; eðΩ̂r; Ω̂ϕ; σÞ; σÞ; ð31aÞ

Ω̂ϕ ¼ Ω̂ϕðpðΩ̂r; Ω̂ϕ; σÞ; eðΩ̂r; Ω̂ϕ; σÞ; σÞ ð31bÞ

with respect to σ to find them. In these functions, the lhs is
constant and the rhs are functions defined in Eqs. (28).
After differentiating them with respect to σ, substituting
σ ¼ 0, and solving for δp ¼ ∂p=∂σ and δe ¼ ∂e=∂σ, we
obtain

δp ¼
∂Ω̂ðgÞ

ϕ

∂e δΩ̂r − ∂Ω̂ðgÞ
r∂e δΩ̂ϕ

jJðΩ̂iÞj
; ð32aÞ

δe ¼
−

∂Ω̂ðgÞ
ϕ

∂p δΩ̂r þ ∂Ω̂ðgÞ
r∂p δΩ̂ϕ

jJðΩ̂iÞj
; ð32bÞ

where all the derivatives are evaluated at σ ¼ 0 and the
determinant of the Jacobian matrix is

jJðΩ̂iÞj ¼
∂Ω̂ðgÞ

r

∂p
∂Ω̂ðgÞ

ϕ

∂e −
∂Ω̂ðgÞ

r

∂e
∂Ω̂ðgÞ

ϕ

∂p : ð33Þ

Since δpðp; eÞ and δeðp; eÞ were derived through the
above procedure, they are functions of p and e.
Actually, they can be interpreted as shifts of p and e when
a geodesic originally with semilatus rectum p and
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eccentricity e is perturbed by a spin σ, while keeping the
frequencies constant. Explicit formulas for the calculation
of δp, δe, and the derivatives of Ωi can be found in a
Mathematica notebook in the Supplemental Material [36].
As was proven in Ref. [37] for the Schwarzschild

spacetime and in Ref. [38] for the Kerr spacetime, bound
geodesics cannot be uniquely parametrized by the frequen-
cies ΩðgÞ

i and there exists a region of the parameter space
near the separatrix with pairs of orbits with identical
frequencies Ωr and Ωϕ. This implies that there exists a
curve in the p–e plane separating these pairs, on which the
determinant (33) is zero. Therefore, quantities linearized
with respect to a geodesic with the same frequencies cannot
be calculated on this curve.
The constants of motion Ê and Ĵz from Eqs. (B1) and

(B2) are functions of p, e, and σ; hence, the linear part in σ
with respect to a geodesic with the same frequencies can be
found using the chain rule as

δÊ
���
Ωi

¼ ∂Ê
∂σ
����
σ¼0

þ ∂ÊðgÞ

∂p δpþ ∂ÊðgÞ

∂e δe; ð34aÞ

δĴz
���
Ωi

¼ ∂Ĵz
∂σ
����
σ¼0

þ ∂ĴðgÞz

∂p δpþ ∂ĴðgÞz

∂e δe; ð34bÞ

where δp and δe come from Eqs. (32) and the subscript Ωi
denotes that the quantity is linearized with respect to a
geodesic with the same frequencies. We have, thus,
introduced the operator δfjΩi

acting on a function
fðp; e; σÞ as

δf
���
Ωi

¼ ∂f
∂σ
����
σ¼0

þ ∂fðgÞ
∂p δpþ ∂fðgÞ

∂e δe: ð35Þ

Using the above linearized quantities, the coordinate
functions ðt̂ðχÞ; r̂ðχÞ;ϕðχÞÞ can be linearized as well. When
an equatorial geodesic parametrized by χ with frequencies
Ω̂i is perturbed by a spin σ, the change of the coordinate
time and the azimuthal coordinate can be described as

t̂ðχÞ ¼ t̂ðgÞðχÞ þ σδt̂jΩi
ðχÞ þOðσ2Þ; ð36aÞ

ϕðχÞ ¼ ϕðgÞðtÞ þ σδϕjΩi
ðχÞ þOðσ2Þ; ð36bÞ

respectively, where t̂ðgÞðχÞ and ϕðgÞðχÞ are calculated from
Eqs. (22) for σ ¼ 0 and equations for δt̂jΩi

ðχÞ and δϕjΩi
ðχÞ

are derived by linearizing Eqs. (22) in σ with respect to a
geodesic with the same frequencies, i.e.,

dδt̂
dχ

¼ ∂
∂σ
�
dt̂
dχ

�����
σ¼0

þ ∂
∂p
�
dt̂ðgÞ

dχ

�
δpþ ∂

∂e
�
dt̂ðgÞ

dχ

�
δe;

ð37aÞ

dδϕ
dχ

¼ ∂
∂σ
�
dϕ
dχ

�����
σ¼0

þ ∂
∂p
�
dϕðgÞ

dχ

�
δpþ ∂

∂e
�
dϕðgÞ

dχ

�
δe:

ð37bÞ

For the fiducial trajectory, the initial conditions can be
chosen such that the linear corrections δt and δϕ are zero

at the pericenter, namely, δˇ̂tð0Þ ¼ 0 ¼ δϕ̌ð0Þ. Thanks to the
frequency matching, it holds that δˇ̂tð2πÞ ¼ 0 ¼ δϕ̌ð2πÞ,
because the radial period and accumulated phase in ϕ are
the same for both the perturbed and the unperturbed
trajectory. This can be seen in Fig. 1, where we plot the
evolution of t̂ðχÞ for a geodesic orbit (σ ¼ 0) with p ¼ 10,
e ¼ 0.8, and for a trajectory of a spinning particle with
σ ¼ 0.5, which frequencies were matched to the same as
the frequencies of the geodesic orbit.
The linear correction to the radial coordinate can be

calculated as

δr̂ðχÞ ¼ ∂r̂
∂p δpþ ∂r̂

∂e δe

¼ δp
1þ e cos χ

−
pδe cos χ

ð1þ e cos χÞ2 : ð37cÞ

FIG. 1. Top: the evolution of t̂ðgÞðχÞ for a geodesic orbit with
â ¼ 0, Ω̂r ¼ 0.00577033, and Ω̂ϕ ¼ 0.00942436, which corre-
sponds to pðgÞ ¼ 10, eðgÞ ¼ 0.8, and tðχÞ for a trajectory of a
spinning particle with σ ¼ 0.5 and the same frequencies as the
geodesic orbit, which corresponds to p ¼ 8.6538 and
e ¼ 0.831688. Bottom: difference δt̂ðχÞ ¼ ðt̂ðχÞ − t̂ðgÞðχÞÞ=σ.
We can see that if the initial difference is t̂ð0Þ − t̂ðgÞð0Þ ¼ 0,
then at the end of the period t̂ð2πÞ − t̂ðgÞð2πÞ ¼ 0 as well. The
spin value has been chosen to be unphysically large to make the
difference visible.
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III. GRAVITATIONAL-WAVE FLUXES

For the calculation of the GW fluxes, we use Teukolsky
formalism where the GWs are treated as perturbations of
the background spacetime. To obtain the GW fluxes to
infinity and to the horizon, we calculate perturbation of the
Weyl curvature scalar

Ψ4 ¼ −Cαβγδnαm̄βnγm̄δ; ð38Þ

where Cαβγδ is the Weyl tensor and

nμ ¼ 1

2Σ
ðϖ2;−Δ; 0; aÞ; ð39Þ

m̄μ ¼ −
1ffiffiffi
2

p
ζ
ðia sin θ; 0;−1; i csc θÞ ð40Þ

are two legs of the Kinnersley null tetrad with

ζ ¼ r − ia cos θ:

The Weyl scalar is related to the gravitational radiation at
infinity as

Ψ4ðr → ∞Þ ¼ 1

2

d2h
dt2

; ð41Þ

where h ¼ hþ − ih× is the strain, which is defined as hμν ¼
hþeþμν þ h×e×μν with the metric perturbation hμν and polari-
zation tensors eþ;×

μν . The Weyl scalar Ψ4 encodes the
gravitational radiation emitted to infinity; however, by
using the Teukolsky-Starobinsky identities, it is possible
to infer from Ψ4 the fluxes at the horizon as well.
Teukolsky in Ref. [39] introduced the master equation

for the field in the form5

sOsψðt; r; θ;ϕÞ ¼ 4πΣT; ð42Þ

where sO is a second-order partial differential operator and
T is a source term calculated as a certain differential
operator acting on projections of the stress-energy tensor
(the interested reader is referred to Ref. [39] for more
details). In the case of GWs, the calculated quantity from
Eq. (42) is −2ψ ¼ ζ4Ψ4.
In this paper, we use frequency domain solutions of the

Teukolsky equation (TE), for which the field is written
using Fourier modes

−2ψ ¼
X∞
l;m

1

2π

Z
∞

−∞
dωψ lmωðrÞ−2Saωlm ðθÞe−iωtþimϕ: ð43Þ

Having done that, Eq. (42) can be separated into two
ordinary differential equations: one for the radial part
ψ lmωðrÞ and one for the angular part −2S

aω
lm ðθÞ, which is

called the spin-weighted spheroidal harmonic.
The asymptotic behavior of the radial part at infinity and

at the horizon can be written as [9]

ψ lmωðrÞ ≈ Cþ
lmωr

3eiωr
�
; r → ∞; ð44aÞ

ψ lmωðrÞ ≈ C−
lmωΔe−ikHr

�
; r → rþ; ð44bÞ

respectively, where kH ¼ ω −mΩH is the frequency at the
horizon, ΩH ¼ a=ð2MrþÞ is the horizon’s angular velocity,
and r� is the tortoise coordinate defined as dr�=dr ¼ ϖ2=Δ.
The amplitudes C�

lmω can be calculated using Green
function formalism as

C�
lmω ¼

Z
∞

−∞
dteiωt−imϕpðtÞI�lmωðrpðtÞ; θpðtÞÞ ð45Þ

with

I�lmωðr; θÞ ¼
1

W

�
A0 − ðA1 þ B1Þ

d
dr

þ ðA2 þ B2Þ
d2

dr2
− B3

d3

dr3

�
R∓
lmωðrÞ; ð46Þ

where R�
lmωðrÞ are homogeneous solutions of the radial

equation satisfying boundary conditions at infinity “þ” or
at the horizon “−,” respectively, W is the invariant
Wronskian, and Ai and Bi are functions of the orbital
quantities. These quantities can be found in Appendix B
in Ref. [25].
After we confine the particle trajectory into the equato-

rial plane, it can be shown that, thanks to the periodicity of
the radial motion, the frequency spectrum is discrete, and
the amplitudes can be written as a sum over individual n
modes:

C�
lmω ¼

X∞
n¼−∞

C�
lmnδðω − ωmnÞ ð47Þ

with frequencies

ωmn ¼ mΩϕ þ nΩr; ð48Þ

where n is an integer.
After reparametrization of the orbit with χ, the partial

amplitudes can be calculated as

C�
lmn ¼ Ωr

Z
π

0

dχ
X
Dr¼�

dt
dχ

I�lmnðrpðχÞ; π=2; DrÞ

× expðiDrφmnðχÞÞ; ð49Þ
5In this section, the coordinates ðt; r; θ;ϕÞ denote an event in

the spacetime in which the field is measured, while the trajectory
of the particle is denoted by ðtp; rp; θp;ϕpÞ.
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where I�lmn ¼ I�lmωmn
, φmnðχÞ ¼ ωmntpðχÞ −mϕpðχÞ, and

Dr is the sign of the radial velocity.
After Eqs. (25) are substituted into the above equation

and the integration variable χ → χ − χ0 is changed, the
partial amplitudes from an equatorial orbit with χ0 ≠ 0,
ϕ0 ≠ 0 can be expressed using partial amplitudes from the
fiducial trajectory Č�

lmn and a phase factor as

C�
lmn ¼ eiξmnČ�

lmn; ð50Þ

where the phase factor reads

ξmn ¼ −ωmnťpðχ0Þ þmðϕ̌pðχ0Þ − ϕ0Þ: ð51Þ

This factor agrees with Eq. (3.19) in Ref. [9] for equatorial
motion.
From Eqs. (41), (43), and (44a), the strain at infinity can

be expressed as

h ¼ −
2

r

X
lmn

Cþ
lmn

ω2
mn

Saωmn
lm ðθÞe−iωmnðt−r�Þþimϕ: ð52Þ

The effective stress energy of a GW can be reconstructed
from the strain. From it, the orbit-averaged energy and
angular momentum fluxes to the future null infinity J þ can
be derived as

hFEJ þi ¼
X∞
l¼2

Xl
m¼−l

X∞
n¼−∞

j ˇ̂C þ
lmnj

2

4πω̂2
mn

; ð53aÞ

hF JzJ þi ¼
X∞
l¼2

Xl
m¼−l

X∞
n¼−∞

mj ˇ̂C þ
lmnj

2

4πω̂3
mn

; ð53bÞ

respectively, where the brackets denote averaging over the
radial period. Similar relations can be derived for the fluxes
through the future horizon Hþ:

hFEHþi ¼
X∞
l¼2

Xl
m¼−l

X∞
n¼−∞

αlmn
j ˇ̂C −

lmnj
2

4πω̂2
mn

; ð53cÞ

hF JzHþi ¼
X∞
l¼2

Xl
m¼−l

X∞
n¼−∞

αlmn
mj ˇ̂C −

lmnj
2

4πω̂3
mn

; ð53dÞ

where αlmn ¼ αlmωmn
can be found in Ref. [25]. These

fluxes are defined from the dimensionless quantities in
accordance with Ref. [25]. Note that, thanks to the absolute
value of the partial amplitudes in Eqs. (53), the phase
correction in Eq. (50) is canceled and, thus, the averaged
fluxes can be computed from the fiducial trajectory.

A. Linearization in the secondary spin

The partial amplitudes C�
lmn calculated above depend on

p, e, and σ, but, since the formula contains the dependence
on the frequenciesΩiðp; e; σÞ, the partial amplitudes can be
written as C�

lmnðp; e;Ωiðp; e; σÞ; σÞ. In this form, they can
be linearized in σ as

C�
lmnðp; e; σÞ ¼ CðgÞ�

lmn ðp; eÞ þ σδC�
lmnjp;eðp; eÞ þOðσ2Þ;

ð54Þ

where

δC�
lmn

���
p;e

ðp; eÞ ¼ ∂C�
lmn

∂σ
����
σ¼0

þ ∂CðgÞ�
lmn

∂Ωi

∂Ωi

∂σ ; ð55Þ

in which we use the convention that all repeated indices are
summed over and jp;e denotes that the quantity is calculated
with respect to reference geodesic with fixed p and e. The
partial amplitudes C�

lmn depend on the frequencies Ωi,
since the functions giving it, like the homogeneous sol-
utions R�

lmωðrÞ and Saωlm ðθÞ, depend on ωmn. Thus, for the
calculation of δC�

lmnjp;eðp; eÞ, one needs the derivatives
of RlmωðrÞ and Saωlm ðθÞ with respect to ω. To find these
derivatives, the radial and angular TE must be differentiated
with respect to ω, and then this system of equation must be
solved. Rather than developing a code for finding these
derivatives, we were able to achieve our goal by calculating
slightly different quantities, for which the ω derivative of
the homogeneous solutions is not needed. In this alternative
procedure, we can use the TE solver implemented in the
Black Hole Perturbation Toolkit. In particular, we calculate
the linear part of the partial amplitudes with respect to
a reference geodesic with the same frequencies. Formally,
the dependence of the partial amplitudes on Ωi can be
written as C�

lmnðpðΩi; σÞ; eðΩi; σÞ;Ωi; σÞ, which can be
linearized as

C�
lmnðΩi; σÞ ¼ CðgÞ�

lmn ðΩiÞ þ σδC�
lmnjΩi

ðΩiÞ þOðσ2Þ; ð56Þ

where

δC�
lmn

���
Ωi

ðΩiÞ ¼
∂C�

lmn

∂σ
����
σ¼0

þ ∂CðgÞ�
lmn

∂p δpþ ∂CðgÞ�
lmn

∂e δe ð57Þ

and δp and δe are defined in Eqs. (32). All the above
derivatives are calculated for σ ¼ 0, i.e., for a geodesic, and

we can use the fact that Ωi ¼ ΩðgÞ
i ðp; eÞ to obtain these

linear parts as functions of p and e.
The linearized expression for δC�

lmnðp; eÞ from Eqs. (49)
and (57) reads
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δC�
lmnjΩi

¼ Ωr

Z
π

0

dχ
X
Dr

expðiDrφmnðχÞÞ

× ðδĨ�lmnjΩi
þ Ĩ�lmniDrδφmnðχÞÞ; ð58Þ

where Ĩ�lmn ¼ dt=dχI�lmn and

δφmnðχÞ ¼ ωmnδtðχÞ −mδϕðχÞ: ð59Þ

FromEqs. (53),we can find the linear inσ part of the fluxes
F ðΩi; σÞ ¼ F ðgÞðΩiÞ þ σδF ðΩiÞ þOðσ2Þ, whereF stands
for FEJ þ

, FEHþ
, F JzJ þ

, and F JzHþ
. The result is

δFCIþ;Hþ
���
Ωi

¼
X
lmn

ðRefδĈ�
lmnjΩi

gRefĈ ðgÞ�
lmn g

þ ImfδĈ�
lmnjΩi

gImfĈ ðgÞ�
lmn gÞ

β̂�Clmn

2πω̂3
mn

; ð60Þ

where C stands for E or Jz and β̂þElmn ¼ ω̂mn, β̂
þ
Jzlmn ¼ m,

β̂−Elmn ¼ αlmnω̂mn, and β−Jzlmn ¼ αlmnm. All the linear parts
above arewith respect to geodesicwith the same frequencies.
When the geodesic fluxes and their linear corrections are

calculated on a grid in the p–e plane, it is possible to find
the linear part δF jp;e from δF jΩi

and the derivatives ofF ðgÞ

with respect to p and e. Namely,

δF jp;e ¼ δF jΩi
−
dF ðgÞ

dp
δp −

dF ðgÞ

de
δe; ð61Þ

where δF jΩi
is computed using Eq. (60), δp and δe are

from Eqs. (32), and the derivatives with respect to p and e
are understood as

dF ðgÞ

dp; e
¼ ∂F ðgÞ

∂p; e þ ∂F ðgÞ

∂Ω̂i

∂Ω̂i

∂p; e ; ð62Þ

although, in our scheme, they are directly calculated
numerically on the grid in the p–e plane.
Let us now prove that Eq. (61) holds. The linear part

δF jΩi
reads

δF jΩi
¼ ∂F

∂σ
����
σ¼0

þ ∂F ðgÞ

∂p δpþ ∂F ðgÞ

∂e δe; ð63Þ

since Ω̂iðp; e; σÞ. Replacing the above along with the total
derivatives with respect to p and e [Eq. (62)] into Eq. (61)
reduces Eq. (61) to

δF jp;e ¼
∂F
∂σ
����
σ¼0

−
∂F ðgÞ

∂Ω̂i

�∂Ω̂ðgÞ
i

∂p δpþ ∂Ω̂ðgÞ
i

∂e δe
�
: ð64Þ

By substituting Eqs. (32) into the latter, it can be proven
that the term in brackets equals to −∂Ω̂i=∂σ, and we, thus,
obtain

δF jp;e ¼
∂F
∂σ
����
σ¼0

þ ∂F ðgÞ

∂Ω̂i

∂Ω̂i

∂σ ; ð65Þ

which is the definition of δF jp;e similar to Eq. (55).
Note that, though the linear part δF jΩi

is singular for
some points on the p–e plane due to a vanishing jJðΩiÞj
[Eq. (33)], the linear part δF jp;e is regular in the whole
parameter space for which the semilatus rectum p is larger
than the separatrix one ps. This is caused by the cancella-
tion of the diverging terms in δF jΩi

, δp, and δe in Eq. (61).
However, due to numerical errors arising in the calculation
of dF ðgÞ=dp; e, the result is not reliable near these
diverging points and the error may be high.

IV. ADIABATIC EVOLUTION OF THE ORBITS

During an equatorial inspiral, the orbital parameters p
and e are slowly evolving due to gravitational radiation
reaction. Using the adiabatic approximation in the frame-
work of the two-timescale approximation, thanks to the
balance law, the evolution of an inspiral can be calculated
from the energy and angular momentum fluxes to infinity
and to the horizon [18]. In particular, the evolution of the
constants of motion is related to the averaged fluxes as

h _̂Ei≡
�
dÊ
dt̂

�
¼ −qðhFEIþi þ hFEHþiÞ; ð66aÞ

h _̂Jzi≡
�
dĴz
dt̂

�
¼ −qðhF JzIþi þ hF JzHþiÞ: ð66bÞ

Using the chain rule, the derivatives of E and Jz can be
calculated from the derivatives of p and e as

 
dÊ
dt̂

dĴz
dt̂

!
¼
 ∂Ê

∂p
∂Ê
∂e

∂Ĵz∂p
∂Ĵz∂e

! 
dp
dt̂
de
dt̂

!
: ð67Þ

By inverting the Jacobian matrix, we obtain the equations
for _p and _e in the form

dp
dt̂

¼
∂Ĵz∂e

_̂E − ∂Ê
∂e

_̂Jz
jJðÊ;ĴzÞj

≡ _pðpðt̂Þ; eðt̂Þ; σÞ; ð68aÞ

de
dt̂

¼
− ∂Ĵz∂p

_̂Eþ ∂Ê
∂p

_̂Jz
jJðÊ;ĴzÞj

≡ _eðpðt̂Þ; eðt̂Þ; σÞ; ð68bÞ

respectively, where we have omitted the angle brackets for
simplicity and where the Jacobian determinant is

jJðÊ;ĴzÞj ¼
∂Ê
∂p

∂Ĵz
∂e −

∂Ê
∂e

∂Ĵz
∂p : ð69Þ
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Thanks to Eq. (68), the evolution of p and e can be
computed using the fluxes which, in fact, depend on p
and e.
Once we have the evolution of pðt̂Þ and eðt̂Þ, the

waveform at infinity can be computed from Eq. (52) as [4]

r̂hðûÞ ¼
X
lmn

ÂlmnðûÞSâω̂lmðpðûÞ;eðûÞÞ
lm ðθÞe−iΦmnðûÞþimϕ; ð70Þ

where û ¼ t̂ − r̂� is the retarded coordinate and the
amplitudes and phases read, respectively,

ÂlmnðûÞ ¼ −2q
Ĉþ
lmnðpðûÞ; eðûÞÞ

ω̂2
mnðpðûÞ; eðûÞÞ

; ð71Þ

ΦmnðûÞ ¼
Z

û

0

ω̂lmðpðû0Þ; eðû0ÞÞdû0: ð72Þ

From Eq. (48), the phase can be written as Φmn ¼
mΦϕ þ nΦr, where the particular phases

ΦiðûÞ ¼
Z

û

0

Ω̂iðpðû0Þ; eðû0ÞÞdû0 ð73Þ

can be calculated separately. The partial amplitudes
Cþ
lmnðpðûÞ; eðûÞÞ can be calculated from the fiducial partial

amplitude Čþ
lmn and the phase factor ξmnðpðûÞ; eðûÞÞ,

which evolves over time. This correction changes slowly
and remains at the order of unity [9].
Note that the above amplitudes (71) and phases (72) are

part of the two-timescale expansion in the first-order
perturbation theory [4]. However, with modifications, this
scheme can be used even in the calculations of second-
order perturbations [40].

A. Linearization in the secondary spin

The evolution equations (68) of p and e depend on p, e,
and σ. Therefore, the evolution can be linearized in σ as

pðt̂; σÞ ¼ pðgÞðt̂Þ þ σδpðt̂Þ þOðσ2Þ; ð74aÞ

eðt̂; σÞ ¼ eðgÞðt̂Þ þ σδeðt̂Þ þOðσ2Þ; ð74bÞ

where pðgÞðt̂Þ and eðgÞðt̂Þ describe inspirals with a non-
spinning secondary and δpðt̂Þ and δeðt̂Þ are corrections to
the evolution due to the secondary spin.6

Functions pðgÞðt̂Þ and eðgÞðt̂Þ are calculated from
Eqs. (68) for σ ¼ 0:

dpðgÞ

dt̂
¼ _pðpðgÞðt̂Þ; eðgÞðt̂Þ; 0Þ; ð75aÞ

deðgÞ

dt̂
¼ _eðpðgÞðt̂Þ; eðgÞðt̂Þ; 0Þ; ð75bÞ

and δpðtÞ and δeðtÞ are calculated from the linear part of
Eqs. (68):

dδp
dt̂

¼ d _p
dσ

����
σ¼0

≡ δ _pðpðgÞðt̂Þ; eðgÞðt̂Þ; δpðt̂Þ; δeðt̂ÞÞ; ð76aÞ

dδe
dt̂

¼ d_e
dσ

����
σ¼0

≡ δ_eðpðgÞðt̂Þ; eðgÞðt̂Þ; δpðt̂Þ; δeðt̂ÞÞ; ð76bÞ

where the total derivatives are defined as

df
dσ

����
σ¼0

¼ ∂f
∂σ
����
σ¼0

þ ∂fðgÞ
∂p δpþ ∂fðgÞ

∂e δe: ð77Þ

More explicit formulas can be found in Appendix C.
The linear parts of _̂E and _̂Jz inEqs. (76) are calculated from

the linearized fluxeswith respect to geodesicwith the samep
and e, i.e., from δF jp;e, which is computed from Eq. (61).
This equation as well as Eqs. (76) contains derivatives of the
geodesic fluxes F ðgÞ with respect to p and e which must be
calculated numerically.
After we expand the phase in the secondary spin as

Φiðû; σÞ ¼ ΦðgÞ
i ðûÞ þ σδΦiðûÞ þOðσ2Þ; ð78Þ

we get the leading adiabatic term ΦðgÞ
i , which is Oðq−1Þ,

and the linear in spin term together with the spin value
σδΦi, which is Oðσ=qÞ ¼ Oð1Þ. Since for LISA data
analysis the GW phase is needed with precision to fractions
of radians, apart from the former dominant term, also the
latter term must be included. In this work, we call σδΦi a
phase shift. The linear in spin term can be calculated by the
linearization of Eq. (73) as

δΦi ¼
Z

û

0

�∂Ω̂i

∂σ
����
σ¼0

þ ∂Ω̂ðgÞ
i

∂p δpðû0Þ þ ∂Ω̂ðgÞ
i

∂e δeðû0Þ
�
dû0;

ð79Þ
where the derivatives of Ωi are evaluated at pðgÞðû0Þ
and eðgÞðû0Þ.
The evolution of the phase factor ξmnðpðûÞ; eðûÞÞ also

changes when the secondary spin is included. The linear in
spin part of the phase factor,

δξmn ¼
∂ξmn

∂σ
����
σ¼0

þ ∂ξmn

∂p δpþ ∂ξmn

∂e δe; ð80Þ

evaluated at pðgÞðûÞ and eðgÞðûÞ contributes to the phase as
σδξmn ≪ 1. This contribution is of the same order as the

6Note that these quantities are different from the quantities in
Eqs. (32), which denote the change in the orbital parameters
when a geodesic is perturbed with secondary spin while keeping
the frequencies constant.
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second postadiabatic term and can be neglected in
the framework of a first-order postadiabatic analysis.
Note, however, when the inspiral approaches the separatrix,
our approximation fails because δp and δe diverge (see
Sec. V B), and a different scheme must be employed.

V. NUMERICAL IMPLEMENTATION
AND RESULTS

In this section, we discuss how we implemented the
results from the previous sections in order to calculate an
inspiral of a spinning particle into a Kerr black hole in the
linearized in spin approximation. Moreover, we present the
phase shifts σδΦi between the phase of an inspiral with a
spinning secondary and an inspiral with a nonspinning
secondary. All the calculations were done in Mathematica
and we have used the Black Hole Perturbation Toolkit
(BHPT) [41].

A. Implementation

Let us now discuss our approach to the numerical
calculations of the adiabatic inspirals and of the phase
shift in steps.
(1) For given p and e, we calculate conservative trajec-

tories; i.e., we find Ê, Ĵz, Ω̂i, ˇ̂tðχÞ, ˇ̂rðχÞ, and ϕ̌ðχÞ;
(2) we find the linear in σ parts of the trajectory, i.e., δp,

δe, δÊ, δĴz, δt̂ðχÞ, δr̂ðχÞ, and δϕðχÞ;
(3) we compute the partial amplitudes ĈðgÞ�

lmn and δĈ�
lmn

over a range of l, m, and n;
(4) we repeat steps 1–3 for many points in the p–e

plane, and then we interpolate the total energy and
angular momentum fluxes;

(5) we calculate the evolution of pðgÞðt̂Þ, eðgÞðt̂Þ, δpðt̂Þ,
and δeðt̂Þ for given initial parameters using the
interpolated fluxes;

(6) using pðgÞðt̂Þ, eðgÞðt̂Þ, δpðt̂Þ, and δeðt̂Þ, we find the
linear parts of the phases δΦi.

The above steps are described in detail in the following
sections.

1. Trajectories

Before we calculate the amplitudes Ĉ�
lmn, we have to

precompute the orbital quantities. For given â, p, and e, we
calculate the geodesic quantities Ω̂i, Ê, Ĵz, ˇ̂tðχÞ, ˇ̂rðχÞ, and
ϕ̌ðχÞ and the linear corrections due to the secondary spin
with respect to this geodesic for the same frequencies. In
particular, we obtain δp and δe from Eqs. (32), δÊ and δĴz
we get from Eqs. (34), and, finally, δt̂ðχÞ, δr̂ðχÞ, and δϕ̂ðχÞ
are calculated from Eqs. (37). Moreover, the geodesic
quantities ťðχÞ and ϕ̌ðχÞ are calculated through the
BHPT, which uses the discrete cosine transform (DCT)
[42]. This method numerically transforms the integrand in
Eqs. (23) into a series of cosines which is trivial to
integrate. Actually, the linear in spin part of the trajectory,

i.e., δtðχÞ and δϕðχÞ, is derived by employing DCT on 50
points obtained from Eqs. (37). With this number of points,
the error is less than 10−6 for all the calculated orbital
configurations; however, note that this error is much lower
for orbits far from the separatrix and for orbits with lower
eccentricity.

2. Gravitational-wave fluxes

The obtained orbital parameters can now be used for the
calculation of the partial amplitudes. The description of
how to calculate the nonlinearized in spin amplitudes ˇ̂C �

lmn
can be found in Ref. [25]. In this work, we discuss the
procedure allowing us to calculate the geodesic partial

amplitude ˇ̂C ðgÞ�
lmn from Eq. (49) for σ ¼ 0 and the linear in

spin part δĈ�
lmnjΩi

according to Eq. (58). In particular, the
integral in Eq. (58) is evaluated using the midpoint rule,
which should have exponential convergence [42], while for
the calculation of the homogeneous solutions R�

lmω and Saωlm
the BHPT has been employed. More details about the
calculation of the partial amplitudes and tests of their
validity can be found in Appendix D.
To obtain an adequately accurate energy or angular

momentum flux, we need to calculate the amplitudes
F l;m;n for a range of l, m, and n values. Thanks to the
symmetry

F l;m;n ¼ F l;−m;−n; ð81Þ

ω̂m;n ¼ −ω̂−m;−n; ð82Þ

we decided to calculate only the modes with ω̂mn > 0, and
the total sum F can be found as double of the sum of
calculated modes.7 The structure of the summation is

F ¼ 2
Xmmax

m¼mmin

Fm; ð83aÞ

Fm ¼
Xlmax

l¼lmin

F lm; ð83bÞ

F lm ¼
Xnmax

n¼nmin

F lmn; ð83cÞ

where mmin ¼ −5, lmin ¼ maxf2; jmjg, and mmax, lmax,
nmin, and nmax are chosen dynamically according to a
given accuracy ϵ, i.e., the maximal allowed error. This error
for the geodesic fluxes should be lower than the mass ratio;
otherwise, it will be larger than the contribution from the

7All formulas in this subsection are valid for both the fluxes F
and their linear parts δF . We demonstrate the formulas withF for
brevity.
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postadiabatic terms, notably the secondary spin. In our
calculations, we set the accuracy of the geodesic fluxes to
ϵ ¼ 10−6 and the accuracy of the linear corrections to the
fluxes to ϵ ¼ 10−3.
Our first step in our computation scheme is to calculate

the modes withm ¼ l ¼ 2, ⌈ −mΩ̂ϕ=Ω̂r⌉ ≤ n ≤ 20, where
the lower bound corresponds to the mode with minimal n,
for which ω̂mn > 0. In all the cases we treated, the mode
with maximal flux maxl;m;nF lmn lays in this range. Then
we continue the summation in n until the stopping con-
dition for nmax is reached. This stopping condition is that
the magnitude of three successive modes drops below
ðϵ=10Þ maxF lmn. This condition must be satisfied for three
consecutive modes, because the modes are not monotonic
in n, as has been reported already in other papers [9,19].
At this point, we have obtained the dominant F l¼2;m¼2

mode. Similarly, we calculate the other F l;m¼2 modes until
the stopping condition for lmax, i.e., F lmaxm < ϵF 2;2, is
satisfied. The magnitude of F lm drops quickly with l, and
usually for given m no more than four l modes are needed.
In this way, we obtain the dominantFm¼2 mode. After that,
we calculate other mmodes. For highm, modes with low n
can be neglected. Therefore, we start the sum over n at
n0 ¼ b10me2c, which is close to the maximal value ofF lmn
for given l and m as we found empirically. Then we
increase n until the stopping condition for nmax is satisfied.
Finally, we decrease n until the condition for nmin is
satisfied or until we reach n ¼ ⌈ −mΩ̂ϕ=Ω̂r⌉.
The above procedure is repeated for other values of m.

The stopping condition for mmax is

Fmmax

1 − Fmmax
=Fmmax−1

<
ϵ

2

Xmmax

m¼mmin

Fm: ð84Þ

If we assume that for high m the modes Fm decrease
exponentially, the lhs of Eq. (84) corresponds to the terms
neglected by the truncation of the sum over m at mmax. For
orbits with low p around a Kerr black hole with â ¼ 0.9,
the number of m modes required for an accuracy ϵ ¼ 10−6

is very high, so we truncate the sum at mmax ¼ 25
consciously knowing that we lose in accuracy.
The amplitudes were calculated in Mathematica using

extended precision. For lower â, l, and m, the input
parameters are given to 48 places. However, for modes
with higher ω̂ and â, the calculation returns a wrong result
due to the loss of precision during the calculation of R�

lmn.
Therefore, we check if the result lays orders of magnitudes
away from the Newtonian amplitudes for circular orbits in
Eq. (B3) in Ref. [23], and, when it does, we repeat the
calculation with higher precision. The maximal precision is
112 places for higher â, l, m, and n and lower p.
The calculation of individual modes with low eccentric-

ity and n takes around one second, but for high

eccentricities and n the computation time can be up to
tens of seconds. All the modes in one grid point are
calculated in around 1 h (1 day) for lower (higher)
eccentricity. The calculation of the whole grid takes
hundreds of CPU hours.

3. Interpolation in the p�e plane

Because of the high computational cost, instead of
calculating the fluxes during the evolution of the orbital
parameters, they are precalculated on a grid in the p–e
plane and then interpolated. The grid is chosen to reflect the
behavior near the separatrix and to avoid some problematic
regions. Actually, this grid is not in the p and e coordinates,
but in a new set of variables x and y which are obtained
after several transformations from p and e.
The first transformation reads

Ũ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − r̂ISCOÞ2 − ðpsðeÞ − r̂ISCOÞ2

q
; ð85Þ

V ¼ e2; ð86Þ

where psðeÞ is the location of the separatrix. The purpose of
this transformation is to make the quantities and their
derivatives finite for circular orbits, i.e., for e ¼ 0. Namely,
since the fluxes depend only on even powers of e, their
derivative with respect to e vanishes for e ¼ 0. The inverse
relation of Eq. (85) reads

p ¼ r̂ISCO þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ũ2 þ ðpsð

ffiffiffiffi
V

p
Þ − r̂ISCOÞ2

q
: ð87Þ

Next, we transform from Ũ to

U ¼ c

logð1þ c=ŨÞ ð88Þ

to regularize the quantities near the separatrix. c is a
parameter controlling the grid density near the separatrix.
For higher c, the grid points are more dense near the
separatrix, while for c → 0 it holds that U → Ũ. We have
chosen the value c ¼ 25 in our calculations. The asymp-
totic behavior of these transformations is
(1) U → p, when p → ∞, and
(2) U → −1= logðp − psÞ, when p → ps,

which is proportional to the behavior of the radial fre-
quency Ω̂r near the separatrix [38,43].
We made one additional transformation to avoid two

areas with high eccentricity: (a) an area with high p, for
which the total time of the inspiral is very long, and (b) an
area close to the separatrix, for which the inspiral must
start with very high eccentricity. This transformation to
x ∈ ð0; 1Þ, y ∈ ð0; 1Þ is given by
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U ¼ ðU11 −U10 þU00 −U01Þxyþ ðU10 −U00Þx
þ ðU01 −U00ÞyþU00; ð89Þ

V ¼ ðV11 − V01Þxyþ ðV01 − V00Þy; ð90Þ

where the parameters Uxy and Vxy are chosen according to
the boundaries described in the following paragraph.
The GW fluxes were calculated on a grid in Chebyshev

nodes in the x, y coordinates. We used 15 grid points in
both directions. The boundaries were chosen for each value
of â separately. In all â cases, the coordinates of the lower
left corners are ðp; eÞ ¼ ðr̂ISCOðâÞ þ 0.15; 0Þ. For â ¼ 0,

the upper left corner is at ðpsð0.6Þ þ 0.1; 0.6Þ and at
ðpsð0.5Þ þ 0.1; 0.5Þ for â ¼ 0.5, 0.9. The lower right
corner is located at (40,0) or (30,0) for â ¼ 0 or
â ¼ 0.5, 0.9, respectively. The coordinates of the upper
right corner are (20,0.8) for â ¼ 0, (15,0.8) for â ¼ 0.5 and
(15,0.75) for â ¼ 0.9. These grids are depicted in Fig. 2.
On the grid, we interpolated the total energy and angular

momentum fluxes FEðgÞ and F JzðgÞ with their linear in
spin counterparts δFE and δF Jz , respectively, the time
derivatives of the orbital parameters _pðgÞ and _eðgÞ, and the
derivatives of _p and _e with respect to σ, p, and e for the
calculation of δ _p and δ_e using Eq. (76). Each function was
divided by the following normalization factors to regularize
the behavior near the separatrix, for high p and for low e:

NFE ¼ 32

5
p−5ð1 − e2Þ3=2

�
1þ 73

24
e2 þ 37

96
e4
�
; ð91aÞ

NF Jz ¼ 32

5
p−7=2ð1 − e2Þ3=2

�
1þ 7

8
e2
�
; ð91bÞ

NδFE ¼ −
25

4
p−3=2NFE

p2

Ũ2
; ð91cÞ

NδF Jz ¼ −
25

4
p−3=2NF Jz

p2

Ũ2
; ð91dÞ

N _pðgÞ ¼ 8

5
p−3ð1 − e2Þ3=2ð8þ 7e2Þ p

2

Ũ2
; ð91eÞ

N _eðgÞ ¼
1

15
ep−4ð1 − e2Þ3=2ð304þ 121e2Þ p

2

Ũ2
; ð91fÞ

N∂σ _p ¼ 1

Ũ4
ð1 − e2Þ3=2; ð91gÞ

N∂σ _e ¼ e
1

pŨ4
ð1 − e2Þ3=2; ð91hÞ

N∂p _p ¼ p

Ũ4
ð1 − e2Þ3=2; ð91iÞ

N∂e _p ¼ e
p2

Ũ4
; ð91jÞ

N∂p _e ¼ e
1

Ũ4
ð1 − e2Þ3=2; ð91kÞ

N∂e _e ¼
p

Ũ4
: ð91lÞ

The behavior of NFE and NF Jz comes from Ref. [44],
where they derived the fluxes from a Keplerian orbit, which
represents the large p limit. On the other hand, the behavior
of NδFE and NδF Jz for large p is derived from the post-
Newtonian GW fluxes of spinning particles on circular
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FIG. 2. Grids for the interpolation in p–e plane. The grid points
are at Chebyshev nodes in x − y plane.
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equatorial orbits [45]. The accuracy of the interpolation is
discussed in Appendix E.

4. Evolution of the orbital parameters

Using the interpolated functions obtained in the previous
section multiplied by the normalization factors allows the
calculation of the evolution of the geodesic orbital param-
eters pðgÞðt̂Þ and eðgÞðt̂Þ and the respective corrections δpðt̂Þ
and δeðt̂Þ. For given initial parameters pðgÞ

0 and eðgÞ0 , we
numerically solved Eqs. (75) in Mathematica using the
7=8th-order Runge-Kutta method with adaptive step size.
The calculation was terminated when the orbital parameters
reached the boundary at x ¼ 0.
These results were then used to evolve Eqs. (76) for

given initial conditions δpðgÞ
0 and δeðgÞ0 . These initial

conditions specify the trajectory of a spinning particle,

which is then compared with the geodesic starting at pðgÞ
0

and eðgÞ0 . The case δp0 ¼ 0 ¼ δe0 corresponds to a trajec-
tory of a spinning particle compared with a geodesic which

starts at the same pðgÞ
0 and eðgÞ0 .

However, δp0 and δe0 can be chosen such that we
compare a trajectory of a spinning particle with a geodesic
with the same initial orbital frequencies Ω̂r and Ω̂ϕ. In this
case, we set δp0 and δe0 to

δp0 ¼ δpðpðgÞ
0 ; eðgÞ0 Þ; ð92aÞ

δe0 ¼ δeðpðgÞ
0 ; eðgÞ0 Þ; ð92bÞ

respectively, where the functions δp and δe have been
defined in Eq. (32).
We have also calculated the case where the trajectory of

a spinning particle is compared with a geodesic with the
same initial eccentricity e and azimuthal frequency Ω̂ϕ.
This choice was used in previous works [24,46] when
calculating quasicircular inspirals. In this case, we set

δp0 ¼ −
∂Ω̂ϕ

∂σ
∂Ω̂ϕ

∂p
; ð93aÞ

δe0 ¼ 0 ð93bÞ

evaluated at pðgÞ
0 , eðgÞ0 , and σ ¼ 0.

5. Evolution of the phase shifts

After the calculation of the orbital parameters, we calcu-
lated the linear parts of the phases δΦi using Eq. (79)with the
default solver NDSolve in Mathematica. The results were
compared with nonlinearized inspiral to verify them. Details
are given in Appendix F.

B. Results

1. Matched eccentricity and azimuthal frequency

When the phase shift δΦϕ is calculated for circular
orbits, the phase from an inspiral with a nonspinning
secondary is compared with an inspiral with a spinning
secondary which has the same initial azimuthal frequency
Ωϕ and initial eccentricity e ¼ 0 as the inspiral with a
nonspinning secondary. Obviously, the radial frequency Ωr
is not relevant for circular orbits; in fact, the partial
amplitudes C0

lmn vanish for n ≠ 0, and only the modes
with frequency mΩϕ remain. However, we can extend this
approach to the calculation of the phase shift from eccentric
inspirals by choosing properly the initial conditions as
given in Eq. (93). The corresponding numerical examples
are given in Fig. 3, which shows the phase shift δΦ2;0 for
the dominant m ¼ 2 mode. Figure 3 is consistent with
Fig. 2 from Ref. [46] and Fig. 3 from Ref. [24]. Note that,
since we examine the phase at constant distance from the
central black hole, i.e., at constant r̂, we can use t as the
time variable instead of u.
When the initial azimuthal frequency and eccentricity are

properly matched, the phase shift δΦϕ grows as t̂2, whereas
δΦr grows as t̂ for low t̂, as can be seen in Fig. 4. The reason
for this behavior is that the initial value for

δΩ̂i ¼
∂Ω̂i

∂σ
����
σ¼0

þ ∂Ω̂ðgÞ
i

∂p δpþ ∂Ω̂ðgÞ
i

∂e δe; ð94Þ

which appears in the integral (79), is zero for δΩ̂ϕ, but it is
nonzero for δΩ̂r. Thus, the phase shift δΦr grows linearly in
t̂ after the integration for low t̂.
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FIG. 3. The phase shift qδΦm ¼ qmδΦϕ of the dominant m ¼
2 mode for properly matched initial azimuthal frequency Ωϕ and
eccentricity e. The inspirals of a spinning particle with μ ¼
30 M⊙ into a Kerr black hole with M ¼ 106 M⊙, â ¼ 0.9, start

from pðgÞ
0 ¼ 10.1.
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2. Matched frequencies

Since for eccentric orbits both frequencies are observ-
able, we prefer to match the initial frequencies according to
Eqs. (92) than as discussed in Sec. V B 1. For this initial
setting, both δΦϕ and δΦr grow as t̂2 for low t, as can be
seen in Fig. 4. In the numerical example given in Fig. 5, we
have calculated the inspiral providing the evolution ofpðgÞðt̂Þ
and eðgÞðt̂Þ for initial semilatus rectum pðgÞ

0 ¼ 12 and differ-
ent initial eccentricities. The respective phase shifts for
â ¼ 0, â ¼ 0.5, and â ¼ 0.9 are shown in Figs. 6–8. The
linear in spin part of the azimuthal phase δΦϕ is increasing
and is positive as opposed to the casewithmatched initialΩϕ

and e in Sec. V B 1, where it is negative (see Fig. 3). The
linear part of the radial phase δΦr is increasing and positive
for the majority of the inspiral; however, right before the
trajectory reaches the separatrix, δΦr starts to decrease. Both

FIG. 4. Phase shifts qδΦi for different initial conditions. The
inspirals are around a Kerr black hole with â ¼ 0.9 and start at

pðgÞ
0 ¼ 10.1 and eðgÞ0 ¼ 0.2. For matched Ωϕ and e, δΦϕ grows as

t̂2 and δΦr grows as t̂ for low t, while for matchedΩr andΩϕ both
δΦr and δΦϕ grow as t̂2.
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FIG. 5. Adiabatic evolution of pðgÞ and eðgÞ for â ¼ 0 (solid
line), â ¼ 0.5 (dashed line), and â ¼ 0.9 (dotted line), while the
respective black lines denote the separatrices, where the evolution
ends.

FIG. 6. The azimuthal (top) and the radial (bottom) phase shift
for orbits around a Schwarzschild black hole with initial semi-
latus rectum pðgÞ

0 ¼ 12 and different initial eccentricities. This
plot shows the phase shift when the particle has spin σ ¼ q, i.e.,
the secondary corresponds to an extremal Kerr black hole.
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FIG. 7. The same as Fig. 6, but for a Kerr black hole with
â ¼ 0.5.
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δΦϕ and δΦr diverge when the trajectory is approaching the
separatrix, because both the linearization in spin and the two-
scale approximation break at the separatrix.
In Ref. [47], where they compared eccentric equatorial

inspirals of spinning particles into a Schwarzschild black
hole using the osculating geodesics method, they found
initial parameters for which the difference Δϕ ¼ ϕσ¼q −
ϕσ¼0 between the azimuthal coordinates ϕσ¼q of a spinning

body and ϕσ¼0 of a nonspinning body changes its sign
during the inspiral (Fig. 2 in Ref. [47]). However, that work
included only the MPD force into the equations of motion
and did not take into account the correction to the self-force
caused by the body’s spin. We have calculated the phase
shift qδΦϕ, which should correspond to Δϕ when the
particle passes the pericenter, for the same initial param-
eters as Ref. [47] and found no change in the sign of Δϕ
(see Fig. 9). However, note that we have not included the
conservative and oscillating dissipative parts of the self-
force, and, thus, these results are not directly comparable.
Also, the accumulated phase shift is higher in our Fig. 9,
where the secondary’s spin contribution is incorporated
to the fluxes, than in Fig. 2 in Ref. [47], where this
contribution has not been taken into account.
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FIG. 8. The same as Fig. 6, but for a Kerr black hole with
â ¼ 0.9.
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FIG. 9. The phase shift for inspirals around a Schwarzschild
black hole with initial eccentricity eðgÞ0 ¼ 0.75 and σ ¼ q. The
horizontal axis corresponds to the number of passages through
the pericenter.
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FIG. 10. The maximal radial phase shift max qδΦr for different
initial eccentricities, mass ratios, and Kerr parameters. The mass
of the central black hole is M ¼ 106 M⊙, and the duration of the
inspirals is 1 yr. This phase shift corresponds to a particle with
spin σ ¼ q.
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To systematically probe the parameter space, we have
calculated the inspirals for various initial parameters, and
for each inspiral we have found the maximum of the radial
phase shift maxqδΦr.

8 Then we have plotted this maxi-

mum against the initial eccentricity eðgÞ0 and the mass ratio
q, assuming that the duration of the inspiral is 1 yr while the
mass of the central black hole is M ¼ 106 M⊙. At each

point in the q − eðgÞ0 plane, the inspirals start at different

initial semilatus rectum pðgÞ
0 . The calculation was repeated

for â ¼ 0, 0.5, 0.9, and the results are shown in Fig. 10. We
can see that for a higher mass ratio the maximal phase shift

is higher, which corresponds to higher pðgÞ
0 . For higher â,

the maximal phase shift is almost independent of the initial
eccentricity, but, to find the degeneracies in the parameter
space and to assess the detectability of the initial eccen-
tricity or the secondary spin, proper analysis must be done,
which is out of the scope of the present technical work.

VI. CONCLUSIONS

We studied the influence of the spin σ of a secondary
body on the phase of a GW from an EMRI moving on the
equatorial plane of a Kerr black hole. Thanks to the fact that
the spin σ is of the same order as the mass ratio q, we
worked in the linear order in σ, neglecting higher-order
terms. We emphasize that our results are not sufficient for
the generation of the waveform templates for the detection,
since they must be accurately and rapidly generated in the
whole parameter space. The purpose of this work is to
provide the technical background needed to calculate the
secondary’s spin contributions to the waveform.
The first step to achieve our goal was to derive the linear

in σ parts of the orbital parameters p and e, constants of
motion E and Jz, and the coordinate functions tðχÞ, rðχÞ,
and ϕðχÞ in the Darwin parametrization. The linearization
was done with respect to a reference geodesic with the same
frequencies Ωr and Ωϕ. Then we used these quantities to
linearize the GW fluxes to infinity and through the horizon.
We provided the linear parts δFE and δF Jz of the total
energy and angular momentum flux using the Teukolsky
formalism in the frequency domain. Again, we calculated
the linear part with respect to a geodesic with the same
frequencies. We also found the relation between the latter
type of linearization and the linearization with respect to a
geodesic with the same orbital parameters p and e.
The fluxes were calculated on a grid in the p–e plane and

interpolated, since the calculation at one point is computa-
tionally expensive. Once we have calculated the energy and
angular momentum fluxes linearized in σ, we derived the
evolution equations for the orbital parameters pðgÞðtÞ and
eðgÞðtÞ for a nonspinning secondary and for corrections due

to the spin δpðtÞ and δeðtÞ. After that, we have evolved
these quantities numerically. From the evolution of the
orbital parameters and their corrections, we then con-
structed the evolution of the phase shifts δΦrðtÞ and
δΦϕðtÞ, which is the difference between the GW phase
from an inspiral with a spinning and a nonspinning
secondary. We tested the results against nonlinearized
evolution obtained from the fluxes, that were derived in
Ref. [25]. We found that the error of the phase shifts, i.e.,
the relative difference between linearized and nonlinearized
phase shifts, is around 10−3.
The phase shifts were computed using two different

types of initial conditions. First, we set the initial conditions
such that we compared inspirals with a spinning and a
nonspinning secondary which start with the same azimuthal
frequency Ωϕ and eccentricity e. This was done to validate
the results against quasicircular inspirals. We have found
the expected behavior where the azimuthal phase shift
grows as t2 for low t and the radial phase shift grows as t.
After that, we set the initial condition such that we compare
inspirals with the same initial radial frequency Ωr and
azimuthal frequencyΩϕ. We found that the azimuthal phase
shift is positive, as opposed to the previous choice of initial
condition, and that the radial phase shift is positive and
increasing up to a point before it reaches the separatrix,
where it becomes decreasing. Both the azimuthal and radial
phase shift diverge when the inspiral reaches the separatrix,
and, thus, a different method must be employed for the
waveform generation near the plunge in the future.
To systematically probe the parameter space and find the

general behavior of the phase shifts, we calculated the
maximal value of the radial phase shift for different initial
eccentricities, mass ratios, and Kerr parameters while fixing
the masses of the bodies and the observation time. We
found that the maximal radial phase shift grows with the
mass ratio and the Kerr parameter and almost does not
depend on the eccentricity.
In the future, this work can be extended to off-equatorial

orbits with precessing spin, which is significantly more
complex since the equations of motion are not separable,
even in the linear in spin order [48]. We are also planing to
generate the waveforms using the FastEMRIWaveforms
package [11] to find the degeneracies in the parameter
space and to assess the detectability, since in Ref. [49] it
was claimed that for quasicircular orbits the secondary spin
should not be detectable, while in Ref. [50] it was claimed
that effects of spin-induced quadrupolar deformation,
which are of Oðσ2Þ, are strong enough for the detection.
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APPENDIX A: LIST OF DIMENSIONLESS
QUANTITIES

In this work, we define some quantities in their dimen-
sionless form. However, since we use these quantities often
in both full and dimensionless form, we present the
respective relations in Table I.
Note that some quantities such as x or the fluxes F have

been defined solely as dimensionless; quantities derived
from others, e.g., by linearization in σ, have the same
relation between their dimensionless and full form as the
original quantities.

APPENDIX B: ECCENTRIC EQUATORIAL
ORBITS OF SPINNING PARTICLES

This appendix briefs some formulas describing the
motion of spinning particles on bound eccentric equatorial
orbits around a Kerr black hole. Details regarding these
formulas can be found in Refs. [25,51].
Bound equatorial orbits of a spinning particle moving

around a Kerr black hole can be parametrized by the
eccentricity e and the semilatus rectum p. This para-
metrization is in one-to-one correspondence to the para-
metrization with respect to the energy Ê and the z
component of total angular momentum Ĵz. The expressions
of Ê and Ĵz as functions of p and e read

Ê2 ¼ κρþ 2ϵσ̃ − 2sgnðĴzÞσ̃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ κζ

p
ρ2 þ 4ησ̃

; ðB1Þ

Ĵz ¼
ϵρ − 2κη − sgnðĴzÞρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ κζ

p
ðρ2 þ 4ησ̃ÞÊ ; ðB2Þ

respectively, where the coefficients

κ ¼ d1h2 − d2h1;

ϵ ¼ d1g2 − d2g1;

ρ ¼ f1h2 − f2h1;

η ¼ f1g2 − f2g1;

σ̃ ¼ g1h2 − g2h1;

ζ ¼ d1f2 − d2f1

are calculated from the functions

fðr̂Þ ¼ â2ðr̂þ 2Þr̂þ r̂4

þ σ

�
â2σ
r̂2

þ 2â2ðâþ σÞ
r̂

þ 6â r̂−ðr̂ − 2Þr̂σ
�
;

gðr̂Þ ¼ 2â r̂þσ

�
âσ
r̂2

þ âð2âþ σÞ
r̂

− ðr̂ − 3Þr̂
�
;

hðr̂Þ ¼ Δ̂ −
�
âþ σ

r̂

�
2

;

dðr̂Þ ¼ Δ̂ðr̂3 − σ2Þ2
r̂4

at the pericenter f1 ¼ fðp=ð1þ eÞÞ and at the apocenter
f2 ¼ fðp=ð1 − eÞÞ, etc.
The trajectories in Darwin parametrization can then be

calculated from the evolution equations (22) with

Vt ¼ â

�
1þ 3σ2

r̂Σσ

�
xþϖ2

Δ
Pσ; ðB3Þ

Vϕ ¼
�
1þ 3σ2

r̂Σσ

�
xþ â

Δ̂
Pσ; ðB4Þ

Pσ ¼ ΣσÊ −
�
âþ σ

r̂

�
x; ðB5Þ

Σσ ¼ r̂2
�
1 −

σ2

r̂3

�
; ðB6Þ

x ¼ Ĵz − ðâþ σÞÊ; ðB7Þ

and

TABLE I. List of dimensionless quantities.

σ ¼ S=ðμMÞ Secondary spin
t̂ ¼ t=M BL time
r̂ ¼ r=M BL radial coordinate
Ê ¼ E=μ Energy

Ĵz ¼ Jz=ðμMÞ Angular momentum
â ¼ a=M Kerr parameter
T̂r ¼ Tr=M Radial period

Ω̂r ¼ ΩrM Radial BL frequency

Ω̂ϕ ¼ ΩϕM Azimuthal BL frequency
ω̂ ¼ ωM Frequency
Ĉ�
lmn ¼ C�

lmnM
2=μ Partial amplitudes

Â�
lmn ¼ A�

lmn=M Waveform amplitudes
û ¼ u=M Retarded coordinate
Δ̂ ¼ Δ=M2

ϖ̂2 ¼ ϖ2=M2
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JðχÞ ¼
X6
k¼0

ð1þ e cos χÞk
Xk
l¼0

jðpÞl jðeÞk−l
ð1 − e2Þk−lpl ðB8Þ

with

jðpÞ0 ¼ 1 − Ê2;

jðpÞ1 ¼ −2;

jðpÞ2 ¼ â2 þ 2â Ê xþ x2;

jðpÞ3 ¼ −2ðð1 − Ê2Þσ2 − Êσxþ x2Þ;
jðpÞ4 ¼ 4σ2;

jðpÞ5 ¼ −2âσðâσ þ xðÊσ þ xÞÞ;
jðpÞ6 ¼ σ2ðð1 − Ê2Þσ2 − 2Êσx − x2Þ

and

jðeÞ0 ¼ 1;

jðeÞ1 ¼ 2;

jðeÞ2 ¼ e2 þ 3;

jðeÞ3 ¼ 4ðe2 þ 1Þ;
jðeÞ4 ¼ e4 þ 10e2 þ 5;

jðeÞ5 ¼ 2ðe2 þ 3Þð3e2 þ 1Þ;
jðeÞ6 ¼ e6 þ 21e4 þ 35e2 þ 7:

APPENDIX C: LINEARIZED EVOLUTION OF
THE ORBITAL PARAMETERS

In this appendix, we provide formulas for the evolution
of the corrections δp and δe in Sec. IVA. The evolution of
the linear parts δp and δe is governed by Eqs. (76) where
the functions δ _p and δ_e are, respectively,

δ _p ¼ ∂ _p
∂σ
����
σ¼0

þ ∂ _pðgÞ

∂p δpþ ∂ _pðgÞ

∂e δe; ðC1Þ

δ_e ¼ ∂ _e
∂σ
����
σ¼0

þ ∂ _eðgÞ
∂p δpþ ∂ _eðgÞ

∂e δe: ðC2Þ

After substitution from Eqs. (68), the σ derivatives read

∂ _p
∂σ ¼

∂2Ĵz∂e∂σ
_̂Eþ ∂Ĵz∂e δ

_̂E − ∂2Ê
∂e∂σ

_̂Jz − ∂Ê
∂e δ

_̂Jz
jJðÊ;ĴzÞj

−
∂Ĵz∂e

_̂E − ∂Ê
∂e

_̂Jz
jJðÊ;ĴzÞj2

∂jJðÊ;ĴzÞj
∂σ ; ðC3Þ

∂ _e
∂σ ¼

− ∂2Ĵz∂p∂σ
_̂E − ∂Ĵz∂p δ

_̂Eþ ∂2Ê
∂p∂σ

_̂Jz þ ∂Ê
∂p δ

_̂Jz
jJðÊ;ĴzÞj

−
− ∂Ĵz∂p

_̂Eþ ∂Ê
∂p

_̂Jz
jJðÊ;ĴzÞj2

∂jJðÊ;ĴzÞj
∂σ ; ðC4Þ

∂jJj
∂σ ¼ ∂2Ê

∂p∂σ
∂Ĵz
∂e þ ∂Ê

∂p
∂2Ĵz
∂e∂σ−

∂2Ê
∂e∂σ

∂Ĵz
∂p −

∂Ê
∂e

∂2Ĵz
∂p∂σ ; ðC5Þ

where δ _E and δ _Jz are given by the linear parts of the fluxes

δ _̂E ¼ −qδFEjp;e; ðC6Þ

δ _̂Jz ¼ −qδF Jz jp;e: ðC7Þ

The derivatives of _p and _e with respect to p and e are
calculated similarly, while the derivatives of the constants
of motion with respect to p, e, and σ can be calculated from
Eqs. (B1) and (B2). The exact formulas of the latter are not
presented here, because, even if they are straightforward to
calculate, they have long complex forms. Interested readers
can find them in the Supplemental Material [36].

APPENDIX D: LINEARIZED PARTIAL
AMPLITUDES

Here, we give more details about the calculation of the
linearized in spin partial amplitudes δC�

lmn [Eq. (58)]. The
linear part of I�lmn from Eq. (46) reads

dI�lmn

dσ
¼ 1

W

�
δA0− ðδA1þδB0−A0δrÞ

d
dr

þðδA2þδB2−A1δrÞ
d2

dr2
− ðδB3−A2δrÞ

d3

dr3

�
R∓
lmω;

ðD1Þ

where the coefficients δAi and δBi are calculated by the
linearization in spin of the expressions in Eqs. (B1)–(B3)
and (B9)–(B11) in Appendix B in Ref. [25]. Particularly,
the linear part of A0

abi is calculated as

δA0
abi ¼ ðδC0

ab − δCσ
abÞfðiÞab þ C0ðgÞ

ab
dfðiÞab
dr

δr; ðD2Þ

and the calculation of δAtϕ
abi, δAr

abi, and δBi is trivial,
because these functions are proportional to σ.
The linear parts of the partial amplitudes δC�

lmn are
calculated simultaneously with the geodesic amplitudes

C�ðgÞ
lmn . We have tested the results against nonlinearized

partial amplitudes C�
lmn by comparing them with numerical

σ derivatives of C�
lmn with respect to a reference geodesic

with the same frequencies. To find the orbital parameters of
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a trajectory of a spinning particle with the same frequencies
as those of a geodesic with pðgÞ and eðgÞ, we numerically
calculated p� and e� satisfying

Ωiðp�; e�;�σÞ ¼ ΩðgÞ
i ðpðgÞ; eðgÞÞ: ðD3Þ

Then we numerically calculated the derivative

δC�Num
lmn ¼ C�

lmnðpþ; eþ; σÞ − C�
lmnðp−; e−;−σÞ

2σ
ðD4Þ

and the relative difference

����1 − δC�Num
lmn

δC�
lmn

����: ðD5Þ

If the calculation of δC�
lmn from Eq. (58) is correct, then the

relative difference equals the relative truncation error of
second-order finite difference formula andbehaves asOðσ2Þ.
We have calculated the relative difference for two orbits,

namely, with pðgÞ ¼ 12, eðgÞ ¼ 0.6 and pðgÞ ¼ 4, eðgÞ ¼ 0.4
for â ¼ 0.9 and for two modes with l ¼ 2, m ¼ 2, n ¼ 0
and l ¼ 11, m ¼ 10, n ¼ 36. The results are plotted in
Fig. 11. We can see that for sufficiently small σ the relative
error tends to zero and, therefore, the linear parts δC�

lmn are
correct.

APPENDIX E: ACCURACY OF THE
INTERPOLATION

In this appendix, we discus the interpolation error
originated when interpolating the fluxes and other quan-
tities in the p–e plane in Sec. VA 3.
We use global interpolation on the Chebyshev nodes.

The advantage of this method is that the convergence is
exponential and the interpolation error is bounded and
uniform. The disadvantage is that the convergence is slow,
when the function is not analytical, and the errors in the
evaluation at individual points spread across the whole
domain.
The interpolation error of the Chebyshev interpolation

can be easily estimated. Namely, when a function f is
expanded into the Chebyshev polynomials as

fðx; yÞ ¼
Ximax

i¼1

Xjmax

j¼1

cijTiðxÞTjðyÞ; ðE1Þ

where TiðxÞ are Chebyshev polynomials and cij are the
coefficients, then the error can be estimated as

max
i¼imax∨j¼jmax

jcijj: ðE2Þ

Using this approach, we have found that the relative error of
the interpolated geodesic fluxes F ðgÞ is around 10−4, the
relative error of _pðgÞ and _eðgÞ is around 10−5, and the relative
error of the derivatives of _p and _e is between 10−3 and 10−2.
Since the functions δ _p and δ_e are calculated from these
derivatives, their precision is also between 10−3 and 10−2.
To verify the geodesic energy flux to infinity for the

Schwarzschild black hole, we compared the data with 9PN
series [41]. Figure 12 shows both relative difference
between the PN series and the interpolated function and

FIG. 11. The relative truncation errors (D5) for â ¼ 0.9,
pðgÞ ¼ 12, and eðgÞ ¼ 0.6 (top) and â ¼ 0.9, pðgÞ ¼ 4, and eðgÞ ¼
0.4 (bottom). These errors tend to zero for sufficiently small σ,
and the calculation of δC�

lmn is, therefore, correct.

FIG. 12. The relative error of the interpolated energy flux to
infinity compared to a 9PN series (purple), the relative error at
individual grid points (green), and the relative error of the 9PN
series deducted from the last term (red). We can see that the
relative interpolation error is around 10−4. In the area near the
separatrix or with high eccentricity, the 9PN series loses accuracy.
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the value of the flux at individual points. It also shows the
error of the PN series estimated by its last term. We can see
that the interpolation error is dominant for higher p and
lower e, and its value is around 10−4. The error of the fluxes
at individual grid points is between 10−8 and 10−7, but the
error of the PN series grows with decreasing p and
increasing e, and, therefore, the fluxes near the separatrix
cannot be verified using the PN series.

APPENDIX F: ACCURACY OF THE PHASE
SHIFTS

In this appendix, we compare the linearized phase shifts
δΦiðtÞ obtained in Sec. IVAwith the phases computed using
nonlinearized formula (73). The purpose of this section is to
test the validity and accuracy of the calculation.
First, we have computed the nonlinearized fluxes on a grid

in the p–e plane for σ ¼ 10−3 and â ¼ 0. The grid is similar
to the grid for â ¼ 0 in Fig. 2, but the separatrix is located at
different position fulfilling psðσÞ ¼ 6þ 2eþOðσÞ, i.e.,
around 10−3 away from the geodetic separatrix. The calcu-
lation of the nonlinearized fluxes was equivalent to the
calculation of linearized fluxes in Sec. VA. Because the
numerical error in the nonlinearized fluxes is around 10−4,
we have chosen such a high value of σ to prevent the loss of
the spin contribution in the noise. Note that we tested the
linearized results against only the aforementioned value of
the spin in the nonlinearized case, because the calculation of
the fluxes on the whole grid is computationally expensive.
We have computed the evolution of the orbital param-

eters pðtÞ and eðtÞ using Eqs. (68), and from pðtÞ and eðtÞ
we calculated the phases (73). The initial orbital parameters
p0 and e0 were chosen to match the initial frequencies of a

geodesic with initial parameters pðgÞ
0 and eðgÞ0 . Similarly, we

have calculated the phase for σ ¼ 0. We have compared the
phase shift

ΔΦi ¼
ΦiðσÞ −Φiðσ ¼ 0Þ

σ
ðF1Þ

with the linear part of the phase δΦi as

����1 − δΦi

ΔΦi

����: ðF2Þ

This relative difference is plotted in Fig. 13 for

initial semilatus rectum pðgÞ
0 ¼ 12 and different initial

eccentricities eðgÞ0 . We can see that the relative difference is
below 5 × 10−3 for the majority of the inspiral. Before the
particle reaches the separatrix, the relative difference
diverges, because the linearization in σ breaks here.
This is caused by the fact that the linear parts δpðtÞ
and δeðtÞ diverge here and the functions as _pðpðgÞðtÞ þ
σδpðtÞ; eðgÞðtÞ þ σδeðtÞ; σÞ cannot be linearized. The rel-
ative difference diverges also for t ¼ 0, because both δΦi
and ΔΦi are close to zero; i.e., we divide two very small
inaccurate quantities.
Since the quantityΔΦi is nonlinearized, it containsOðσÞ

contribution to the phase which should be around 10−3.
However, since the accuracy of the nonlinearized calcu-
lations is around 10−3, the relative difference shows this
numerical error.
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FIG. 13. The relative difference between the nonlinearized
phase shift ΔΦi and the linearized phase shift δΦi for i ¼ ϕ
(top) and i ¼ r (bottom). It can be seen that the relative difference
is below 5 × 10−3 for the majority of the inspiral. At the end of
the inspiral, the relative difference grows rapidly, because the
linearization in σ breaks. The black dots show points where δΦr
changes from an increasing to a decreasing function of t and it has
maximal value. The error at these points is below 5 × 10−3.
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