
 

Cylindrical spacetimes due to radial magnetic fields
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We continue our previous study of cylindrically symmetric, static electrovacuum spacetimes generated
by a magnetic field, involving optionally the cosmological constant, and investigate several classes of exact
solutions. These spacetimes are due to magnetic fields that are perpendicular to the axis of symmetry.
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I. INTRODUCTION

Electromagnetic fields play an important role not only in
astrophysics (they are prominent in neutron stars and affect
entire galaxies) and cosmology (where the primordial fields
give rise to the observed intergalactic magnetic fields) but
also in mathematical general relativity. Indeed, one of the
first exact nonvacuum solutions of Einstein equations was
the Reissner-Nordström spacetime featuring a black hole
endowed with both mass and electric charge. Another of the
many interesting exact solutions of Einstein-Maxwell
equations is the Bonnor-Melvin universe [1,2] that, unlike
the Reissner-Nordström solution, is cylindrically symmet-
ric. It describes the gravitational field generated by an axial
magnetic field permeating the whole spacetime and it can
be thought of as due to azimuthal current on the surface of a
coaxial cylinder enveloping part of the spacetime.
Although cylindrical symmetry requires objects of infinite

extension and thus is not of direct interest in astrophysics, it
still plays an important role in the collapse of rotating objects
that can produce spindlelike structures (see, e.g., [3,4])
approximated in their vicinity by cylindrical symmetry.
On a bigger scale, one has the cosmic strings, which might
have arisen due to phase transitions in the early universe and
which are locally cylindrically symmetric, see [5]. Another
reason for imposing cylindrical symmetry is that it is
generally difficult to find exact solutions of Einstein equa-
tions—enforcing any symmetry on the gravitational field
reduces them to a more tractable system and any exact
solution provides us with an insight into what might be
relevant in a more realistic situation. In this paper, we thus
study several exact solutions of Einstein-Maxwell equations
closely related to the Bonnor-Melvin solution through their
symmetry and the presence of the electromagnetic field. One
cannot simply apply the hoop conjecture [6,7] to an infinite
object and, indeed, we often end up with naked singularities
although we also discuss solutions featuring a singularity

covered by a horizon. Our solutions are not asymptotically
flat—they cannot be since they are translationally invariant
along their axis. We thus look at their behavior along the
radial cylindrical coordinate instead. One is of a finite proper
extent and the rest is asymptotically either Minkowski, de
Sitter, or anti–de Sitter according to the value of the
cosmological constant, which we generally include in our
calculations.
The paper consists of several sections: we first set the stage

by defining our coordinate system and the general formof the
metric with the corresponding Einstein-Maxwell equations.
At this point we still assume amagnetic field alignedwith the
symmetry axis. In Sec. III we examine the case with a
vanishing cosmological constant, concluding that, apart from
the Bonnor-Melvin case, it leads us to a spacetime with a
magnetic field perpendicular to the axis and we discuss its
properties. We thus continue with Sec. IV giving the set of
Einstein-Maxwell equations describing spacetimes with a
radial magnetic field. Secs. V, VI, and VII then study
solutions with a homogeneous magnetic field and an inho-
mogeneous magnetic field with and without the cosmologi-
cal constant, respectively. We conclude with some open
questions and summarize our results.

II. THE SETTING

Following our previous paper [8], where we generalized
the Bonnor-Melvin solution to yield a homogeneous
magnetic field and include the cosmological constant,
and the solutions allowing a variation of the magnetic
field [9,10], which we found independently in [11], we
write the metric of a general static, cylindrically symmetric
spacetime as

ds2 ¼ − expAðrÞdt2 þ dr2 þ expBðrÞdz2 þ expCðrÞdφ2;

ð1Þ

where r ∈ IRþ is the proper radial distance, t; z ∈ IR are
temporal and azimuthal coordinates, and φ ∈ ½0; 2πÞ mea-
sures the angle around the axis of symmetry but we give it
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the dimension of length for the metric to be consistent. We
are looking for a self-consistent solution generated by a
magnetic field aligned with the axis of symmetry

F ¼ HðrÞdr ∧ dφ; ð2Þ

yielding

FμνFμν ¼ 2H2e−C≕ 2f2; ð3Þ

where we defined a new quantity, fðrÞ. Einstein-Maxwell
equations can then be reduced to the form

f000f0 − 2ðf00Þ2 þ f00
�
6fðΛ − f2Þ þ ðf0Þ2

f

�

þ ðf0Þ2ð11f2 − 9ΛÞ − 4f2ðΛ − f2Þ2 ¼ 0; ð4Þ

with primes denoting derivatives with respect to the radial
coordinate, r, while the metric functions are obtained by
integration and read

A0 ¼ −
f0

f
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
f00

f
− 7

�
f0

f

�
2

− 4ðΛ − f2Þ
s

; ð5Þ

B0 ¼ −
f0

f
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
f00

f
− 7

�
f0

f

�
2

− 4ðΛ − f2Þ
s

; ð6Þ

C0 ¼ −2
f00

f0
þ 4

f0

f
þ 4

f
f0
ðΛ − f2Þ: ð7Þ

Since (4) does not involve the independent variable, we can
reduce the order of the equation to obtain

wẅ − _w2 þ
�
w
f
− 6fðf2 − ΛÞ

�
_w

− 8ðf2 − ΛÞ2f2 þ 2wð11f2 − 9ΛÞ ¼ 0; ð8Þ

with dots denoting derivatives with respect to f and
wðfÞ ≔ ½dfðrÞ=dr�2. We now explore the solutions of
the above set of equations.

III. THE OTHER NONCOSMOLOGICAL
SOLUTION

Let us begin by reexamining the noncosmological case.
We set Λ ¼ 0 and solve (8) to obtain an exact solution of
the form

w ¼ −4f4 þ 4αf3; ð9Þ

which is different from the Bonnor-Melvin metric with
w ¼ −4f4 þ γf7=2 [1,2], see the discussion in [11]. Since
w ¼ ðf0Þ2, we can separate variables to find

f ¼ α

1þ α2r2
: ð10Þ

This solves Einstein equations but there is a problem with
the square root in (5) and (6) since it is taken from a
negative number as

4
f00

f
− 7

�
f0

f

�
2

þ 4f2 ¼ −
4α2

1þ α2r2
< 0; ð11Þ

so that we end up with a complex metric. To work around
this, we take α to be imaginary and factor the imaginary
unit out, α → iα. This yields a real metric

ds2 ¼ ð1 − α2r2Þ expð2 arcsin αrÞdt2 þ dr2

− ð1 − α2r2Þ expð−2 arcsin αrÞdz2 þ dφ2

1 − α2r2
;

ð12Þ
but, instead, we get an imaginary f through (10)—it
corresponds to the components of the Maxwell tensor with
Frφ ¼ f ffiffiffiffiffiffiffigφφ

p ¼ iα=ð1 − α2r2Þ3=2. It then suggests itself to
use a Wick rotation φ → it, t → φ, z → iz to return to real
values and correct metric signature

ds2 ¼ −
dt2

1 − α2r2
þ dr2 þ ð1 − α2r2Þ

× ½expð−2 arcsin αrÞdz2 þ expð2 arcsin αrÞdφ2�:
ð13Þ

The Maxwell field becomes real and purely electric with
Ftr ¼ α=ð1 − α2r2Þ3=2 and At ¼ −αr=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2r2

p
, which is

no longer axial and becomes radial instead. Using the dual
rotation, we finally obtain a purely magnetic field

Fzφ ¼ α; Aφ ¼ αz: ð14Þ
This exact solution is a special case of (3.16) in [12]. Let

us now investigate its properties in more detail. The
coordinate r ranges from −1=jαj to 1=jαj with the
Kretschmann scalar

K ¼ 8α4ð4α4r4 þ 2α2r2 þ 1Þ
ðα2r2 − 1Þ4 ð15Þ

diverging at the end points of the interval, which thus are
physical singularities of the spacetime. Likewise, the
Maxwell invariant reads

FμνFμν ¼ 2α2

ð1 − α2r2Þ2 : ð16Þ

It is apparent from the plot of the azimuthal metric
coefficient gφφ, see Fig. 1, that αr ¼ �1 are axes where
the circumference of hoops around them vanishes. A better
picture is that of the globe with standard geographic
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coordinates—latitude (r) and longitude (φ). At the poles
the proper length along the axis vanishes as well so that
they resemble points rather than lines. In view of the fact
that this is an electrovacuum solution, its source must reside
within the two point singularities so that the magnetic field
is analogous to that of two opposite magnetic monopoles.
The corresponding Penrose diagram is presented in Fig. 2.

The solution only has the three obvious Killing vector
fields corresponding to the staticity and cylindrical sym-
metry. It is further invariant under the exchange r ↔ −r,
z ↔ φ. Applying r ↔ −r, α ↔ −α or exchanging φ ↔ z,
the metric remains unchanged while the magnetic field
changes sign. The spacetime is type I everywhere apart from
r ¼ 0, where it is typeO, andαr ¼ �1=

ffiffiffiffiffi
10

p
, where it is type

D. The flat space limit is achieved simply by taking α → 0.
Using Cartesian-like coordinates with r2 ¼ x2 þ y2,

we have

Fzx ¼ −
αy
r2

¼ −By; Fzy ¼
αx
r2

¼ Bx: ð17Þ

This implies

B⃗ ¼ α
e⃗r
r
;

which shows the magnetic field is cylindrically radial.
Transforming metric (13) to a new radial coordinate with

1 − α2r2≕ cos2ðαρÞ and αρ ∈ ½−π=2; π=2� (the end points
are the two singular axes), we find

ds2 ¼ −
dt2

cos2ðαρÞ þ cos2ðαρÞdρ2

þ cos2ðαρÞ½e−2αρdz2 þ e2αρdφ2�; ð18Þ
with still

Fzφ ¼ α: ð19Þ
Let us look at the motion of test particles in the

gravitational and electromagnetic fields due to (18). For
uncharged particles following general geodesics, we can
derive an effective potential

VðρÞ ≔ −
1

2gρρ

�
δ −

E2

gtt
−
Z2

gzz
−

L2

gφφ

�
; ð20Þ

with gαβ covariant metric coefficients, E, Z, L constants of
motion due to the Killing vector fields ∂=∂t, ∂=∂z, ∂=∂φ,
and δ ¼ −1, 0 for massive particles and photons, respec-
tively. The above potential governs geodetic motion
through

1

2
_ρ2 ¼ −VðρÞ; ð21Þ

so that there are radial turning points for geodetic particles
where VðρÞ ¼ 0. Apart from radial null geodesics, the
potential diverges at αρ ¼ �π=2 and, consequently, only
radially moving photons can reach the singularities while all
massive particles are pushed away from the singularities,
which thus act repulsively, similarly to, e.g., the Kerr-
Newman-(anti–)de Sitter solution [13]. Moreover, all timelike
radial geodesics oscillate through ρ ¼ 0. For massive

FIG. 1. Metric components (13) as functions of the radial
coordinate.

FIG. 2. Conformal diagram of the spacetime due to the metric
(13). Each point represents a cylindrical surface. The singularities
located at αr� ¼ �1 and indicated by wavy lines are in fact
pointlike as their proper length along the z axis vanishes. Lines of
constant r are solid and lines of constant t are dotted.
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particles, circular orbits in the planes perpendicular to
the axis can only occur for a finite range of radii,
αρ ∈ ð0; arctanð1=2ÞÞ. The lower end point of the interval
yields a static massive particle (this applies even to charged
particles) while the upper endpoint corresponds to circular
photonic geodesics.Massive particles can also spiral along the
cylinder located at ρ ¼ 0 (its circumference is finite). All these
paths are stable under radial perturbations.
It is of interest that we lose some of the symmetry for

charged particles: particles moving originally within planes
perpendicular to the axes with _φ ≠ 0 are pushed along the
axes. Consequently, there are no circular electrogeodesics.
Purely radial motion can be integrated analytically but the
resulting formulas are rather unwieldy. We no longer have
the integral of motion Z originally due to the Killing field
∂=∂z since the electromagnetic four potential contains z
and charged particles even exhibit chaotic motion for
certain initial conditions unlike in the original Bonnor-
Melvin spacetime.
The gravitational and magnetic fields (18) and (19) can

be thought of as due to infinitely thin cylindrical shells of
charged matter aligned with the axes. We studied the case
where we replace part of the spacetime (13) by either
Minkowski or the standard Bonnor-Melvin solution. We
can always find such a combination of parameters that the
resulting 3D induced energy-momentum tensor can be
interpreted as due to four counterspiralling streams of
massive and charged particles. However, we cannot cut
out both axes at the same time in this way and the ensuing
spacetime thus always contains a singularity.

IV. SELF-GRAVITATING RADIAL
MAGNETIC FIELD

Inspired by our previous considerations, we now return
to the original system (1) but endowed with a radial
magnetic field

F ¼ HðrÞ expBðrÞ
2

dz ∧ dφ; ð22Þ

yielding

FμνFμν ¼ 2H2e−C≕ 2f2; ð23Þ

where we again introduced fðrÞ, while we still find
⋆FμνFμν ¼ 0. Einstein-Maxwell equations now read

2ðB00 þC00ÞþðB0Þ2þðC0Þ2þB0C0 þ4Λþ4f2¼0; ð24Þ

2ðA00 þC00ÞþðA0Þ2þðC0Þ2þA0C0 þ4Λ−4f2¼0; ð25Þ

2ðA00 þB00ÞþðA0Þ2þðB0Þ2þA0B0 þ4Λ−4f2¼0; ð26Þ

A0B0 þ A0C0 þ B0C0 þ 4Λþ 4f2 ¼ 0: ð27Þ

Proceeding along the lines of the axial case, we differentiate
(27), multiply it by 2, and subtract from itA0 (24) +B0 (25) +
C0 (26) to obtain

16ff0 þ 4f2ð−Aþ Bþ CÞ0
− ðAþ Bþ CÞ0ð4Λþ A0B0 þ A0C0 þ B0C0Þ ¼ 0; ð28Þ

where we substitute for the last bracket from (27) to yield

2f0 þ fðBþ CÞ0 ¼ 0; ð29Þ

which can be integrated to yield

e
BþC
2 f ¼ const: ð30Þ

V. “HOMOGENEOUS” SOLUTION WITH Λ < 0

Following our previous work [8], we start with the
“homogeneous” case f ¼ const:, which yields immediately
B and C constant and

f2 ¼ −Λ > 0; ð31Þ

with a negative cosmological constant. The only remaining
Einstein equation reads

2A00 þ A02 þ 8Λ ¼ 0; ð32Þ

so that

A ¼ 2 log

�
α cosh

ffiffiffiffiffiffiffiffiffiffi
−2Λ

p
ðr − RÞ

�
: ð33Þ

Rescaling t and z and shifting r, this translates into

ds2 ¼ −cosh2ð
ffiffiffiffiffiffiffiffiffiffi
−2Λ

p
rÞdt2 þ dr2 þ dz2 þ σ2dφ2; ð34Þ

generally with conicity due to the presence of σ, while the
magnetic field reads

HðrÞ ¼ σ
ffiffiffiffiffiffiffi
−Λ

p
; Fzφ ¼ σ

ffiffiffiffiffiffiffi
−Λ

p
; Aφ ¼ σ

ffiffiffiffiffiffiffi
−Λ

p
z:

ð35Þ

This is in fact an AdS2 × IR2 space, or the “exceptional
electrovacuum type D Kundt metric with cosmological
constant” investigated by Plebański and Hacyan [14], see
also [15]. It is completely analogous to the homogeneous
axial solution we have discussed previously in [8], and it
describes an electromagnetic field held together entirely by
its own gravity. See Fig. 3 for the corresponding Penrose
diagram.
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VI. “INHOMOGENEOUS” SYMMETRIC
SOLUTION WITH A NONVANISHING Λ

To deal with the nonhomogeneous case, we first assume
a symmetric metric with B ¼ C to simplify Einstein
equations (24)–(27). In analogy with our previous work
[11], we find

ds2 ¼ −
γf

7
2 þ 4f4 − 4

3
Λf2

f3
dt2 þ df2

γf
7
2 þ 4f4 − 4

3
Λf2

þ 1

f
ðdz2 þ β2dφ2Þ; ð36Þ

while the magnetic field reads

HðfÞ ¼ β
ffiffiffi
f

p
; Fzφ ¼ β; Aφ ¼ βz: ð37Þ

The units of the coordinates and variables appearing in
(36) are ½f� ¼ m−1, ½t� ¼ m3=2, ½z� ¼ ½φ� ¼ m1=2 with ½γ� ¼
m−1=2, ½β� ¼ 1, ½Λ� ¼ m−2. Unlike with an axial magnetic
field, the coordinate f now admits the range f ∈ ð0;∞Þ
with sgnðgttÞ ¼ −sgnðgffÞ and the required þ2 signature
of the metric (36) thus admits both signs of gff, reminiscent
of the spherical black-hole solutions of the Reissner-
Nordström-(anti–)de Sitter family. Changing f → 1=r2

and rescaling time, we obtain

ds2 ¼ −MðrÞdt2 þ dr2

MðrÞ þ r2ðdz2 þ β2dφ2Þ ð38Þ

with the same Maxwell field and

MðrÞ ¼ 1

r2
þ Γ

r
−
Λ
3
r2; ð39Þ

where Γ ≔ γ=4 and ½r� ¼ m1=2. The metric coincides with
(2.3) of [16] where the authors only discuss a negative
cosmological constant but, in fact, both signs of Λ are
admissible. Let us explore its properties in more detail.
The spacetime has an axis at r ¼ 0 where the circum-

ferential radius of hoops r; z; t ¼ const: vanishes. The axis
is conicity free and at a finite proper distance from any
point. The Kretschmann scalar

K ¼ 12Γ2

r6
þ 48Γ

r7
þ 56

r8
þ 8

3
Λ2 ð40Þ

diverges at the axis which thus represents a singular source
generating the magnetic field and splitting the admissible
range of r into positive and negative values—each range
corresponds to an independent spacetime. However, r
always occurs squared in (38) apart from Γ=r so that we
can restrict ourselves to r > 0 and both signs of Γ.

FIG. 3. Conformal diagram of the homogeneous spacetime
(34). Each point represents a cylindrical surface (or a planar one,
depending on the definition of the coordinate φ). Solid and dotted
lines represent constant r and t, respectively.

FIG. 4. A Penrose diagram for the metric (38) with Λ > 0.
There is always a single cosmological horizon located at rH.
Wavy, solid, and dotted lines represent singularities and lines of
constant r and t, respectively.
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The solution is a warped product of a 2D black-hole
spacetime (see, e.g., [17]) and IR2 and it is type D apart from
the hypersurface r ¼ −2=Γ (for a negative Γ) where it is
type O. The magnetic field FμνFμν ¼ 2=r4 vanishes in the
asymptotic region r → ∞ where the solution approaches
(anti–)de Sitter according to the sign of the cosmological
constant.
The roots of the master function M determine the

positions of horizons—we convert M to a single fraction
and examine its numerator 3þ 3Γr − Λr4, which has a
single extremum. For Λ > 0, there is thus always a single
root corresponding to the cosmological horizon. ForΛ < 0,
there are either none or two horizons or a single degenerate
horizon if Γ > Γdeg, Γ < Γdeg, and Γ ¼ Γdeg, respectively,
with Γdeg ≔ −4=3ð−ΛÞ1=4. This critical value thus sepa-
rates spacetimes with an inner and an outer black-string
horizons from those with a naked singularity. It yields a
special case where the master function has a single double
root at r ¼ ð−ΛÞ−1=4. It is of interest that this solution

extends for the entire range f ¼ 1=r2 ∈ ð0;∞Þ and it is
thus different from the homogeneous solution (34), which
only admits this particular value of f ¼ ffiffiffiffiffiffiffi

−Λ
p

. The proper
radial distance to the root is infinite while the circum-
ferential radius is finite. The root corresponds to a degen-
erate horizon separating the asymptotic region r → ∞ from
the axis at r ¼ 0.
In Figs. 4 and 5, we present Penrose diagrams for all

possible causal structures of the spacetime.

VII. “INHOMOGENEOUS” SYMMETRIC
SOLUTION WITH A VANISHING Λ

We now turn our attention to the limiting case of (38)
when Λ → 0, which we obtain simply by setting Λ ¼ 0
in (39). The form of the metric does not change with the
master function now simply reading

MðrÞ ¼ 1

r2
þ Γ

r
; ð41Þ

(a) (b) (c)

FIG. 5. Penrose diagrams for the metric (38) with Λ < 0. Each point again represents a cylindrical surface and the wavy lines are
singularities. Solid and dotted lines stand for lines of constant r and t, respectively. Depending on the parameters of the solution, we can
have two horizons, one double horizon or no horizons at all. (a) A naked singularity with Γ > Γdeg. (b) The degenerate case featuring a
double horizon at rH , with Γ ¼ Γdeg. To obtain a geodesically complete spacetime, we attach additional copies of this basic block at the
top and bottom of the block along the horizon rH . (c) The most general case with inner and outer black-string horizons at r1 and r2,
respectively, with Γ < Γdeg. Again, to get a full spacetime, we add copies of the basic block at the top and bottom along r2.
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but the spacetime’s properties have changed considerably.
We now haveMðrÞ → 0 for r → ∞ but the metric does not
tend to the Minkowski flat metric since the Riemann tensor
does not vanish. Both Maxwell and Kretschmann scalars
vanish at radial infinity and they only diverge at r ¼ 0,
which is thus still the location of a singular axis of a
vanishing proper length. The possible horizon structure is
also modified: we now have no horizons for Γ ≥ 0 and the
spacetime is static everywhere, and there is exactly one
horizon for Γ < 0 located at r ¼ −1=Γ, see Fig. 6 for the
corresponding Penrose diagrams.
The spacetime is again type D almost everywhere except

for r ¼ −2=Γ (for a negative Γ) where it becomes type O,
which further sets it apart from the solution (13) discussed
above. However, it is not the singularity-free Bonnor-
Melvin solution either since the axis is always singular
here. There still are four Killing vector fields. The solution
is a special case of (3.14) in [12] and of (27) in [18; there is
a typo in relation (31)].

The case of Λ ¼ Γ ¼ 0 is also interesting: the metric is
conformastatic

ds2 ¼ −
dt2

r2
þ r2ðdr2 þ dz2 þ β2dφ2Þ; ð42Þ

and we still keep our magnetic field. There are no horizons
and no new Killing vectors appear. The spacetime is type D
everywhere. It is a special case of (3.15) in [12] with
q ¼ 1, b ¼ 0.

VIII. FINAL CONSIDERATIONS
AND CONCLUSIONS

Let us briefly visit the most general case of B ≠ C
regarding the system (24)–(27). It turns out that the
equations still can be separated similarly to the axial case
to produce a single third-order equation for f

(a) (b)

FIG. 6. Penrose diagrams for the metric (38) with (41), i.e.,Λ ¼ 0. Each point again represents a cylindrical surface, the wavy lines are
singularities, solid lines represent constant r and dotted lines constant t. (a) A single black-string horizon with Γ < 0 located at
rH ¼ −1=Γ. (b) A naked singularity with Γ ≥ 0.
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f000f0 − 2ðf00Þ2 þ f00
�
6fðΛþ f2Þ þ ðf0Þ2

f

�

− ðf0Þ2ð11f2 þ 9ΛÞ − 4f2ðΛþ f2Þ2 ¼ 0: ð43Þ

After solving this equation we use f to find the metric
functions from the following expressions

A0 ¼ −2
f00

f0
þ 4

f0

f
þ 4

f
f0
ðΛþ f2Þ; ð44Þ

B0 ¼ −
f0

f
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
f00

f
− 7

�
f0

f

�
2

− 4ðΛþ f2Þ
s

; ð45Þ

C0 ¼ −
f0

f
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
f00

f
− 7

�
f0

f

�
2

− 4ðΛþ f2Þ
s

: ð46Þ

If the square root in (45) and (46) vanishes, we obtain the
previous, symmetric solution. Since (43) does not involve
the independent variable, we can reduce the order of the
equation by one similarly to (8) to obtain

wẅ − _w2 þ
�
w
f
þ 6fðf2 þ ΛÞ

�
_w

− 8ðf2 þ ΛÞ2f2 − 2wð11f2 þ 9ΛÞ ¼ 0; ð47Þ

with dots denoting derivatives with respect to f now and
wðfÞ ≔ ½dfðrÞ=dr�2. Unfortunately, we have so far
not been able to solve the above equations analytically.
They seem to require a numerical approach, which thus
goes beyond the methods we preferred in the present text.
We stress that the spacetimes resulting as solutions of
both the above equation and (8) are not included in [12]
since its authors consider either the cosmological con-
stant, or an electromagnetic field but never the two
together.
In this paper we studied a system of Einstein-Maxwell

equations describing the gravitational and magnetic fields
of a cylindrically symmetric static system where the
magnetic field is perpendicular to the axis of symmetry.
We explored in detail the properties of several classes of
solutions both with and without a cosmological constant
and pointed out a possible way forward by reducing the set
of Einstein-Maxwell equations to a single, second-order
nonlinear differential equation.
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