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In general relativity it is difficult to work with the concept of a classical phenomenological spring model
since it involves action at a distance. We propose a toy relativistic model exhibiting oscillatory behavior and
investigate its motion in selected gravitational fields. The simple model can be used to study the behavior of
extended objects falling freely in a background gravitational field. Unlike previous glider-type models, the
present system only involves local interaction, avoiding thus the pitfalls of superluminal motion. Moreover,
it locally satisfies energy-momentum conservation.
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I. INTRODUCTION

Geodesic motion has been a very useful tool to probe the
properties of solutions to Einstein equations since the very
beginning of general relativity [1], including the famous
GR tests—the precession of the perihelion of Mercury and
deflection of light by the Sun. Geodesics deal with point
masses, which, however, are only an idealization of real
bodies of finite dimensions. It is thus of interest to describe
trajectories of finite objects that necessarily deform along
their paths since rigid bodies are forbidden by the special
theory of relativity [2]. It is well known from the classical
Newtonian theory that such bodies show nontrivial effects,
such as the long-term changes of the Moon’s orbit due to its
tidal deformations and transfer of Earth’s rotational energy
into Moon’s orbital energy, pushing it ever farther away
from the Earth [3]. The question is whether there are some
analogous, purely relativistic effects not present in the
Newtonian case that would perhaps appear in the strong
gravitational regime near compact objects. We thus study
the motion of nonpoint masses on the background of a
Schwarzschild black hole, which is closely related to the
so-called swimming and swinging effects [4–8] reported
previously, whereby an object is able to actively change its
course through spacetime by altering its shape periodically.
In a previous paper [9] we inspected the feasibility of a

test “glider” consisting of two massive point particles
connected by a massless rod and falling radially in
Schwarzschild spacetime while the rod coordinate length
varies in a predefined periodic manner. The particular
model in question followed a previous work [10], which
showed the presence of a “swimming” effect whereby the
glider fell more slowly than a point mass starting its radial

fall with the same initial conditions. We were interested in a
curious apparent divergence occurring for low oscillation
frequencies. Although this feature is obviously interesting
from the observational point of view, previous papers did
not comment on it. We explained the low-frequency
“divergence” as a projection of the plotted line from a
3D space to a 2D space combined with the fact the model is
no longer tenable from the point of view of physics as one
of the ends of the dumbbell touches the null cone and
requires an infinite amount of energy to adhere to the
prescribed deformation curve. We further found a similar
divergence for high frequencies which was again due to the
dumbbell reaching the speed of light.
We further investigated the energy required for the glider

to adhere to the prescribed deformation curve and we came
to the conclusion that it becomes infinite as the glider
approaches the horizon or the center in the relativistic and
Newtonian cases, respectively. The unsettling fact that the
work exerted by the dumbbell engine diverges, together
with the upper limit on admissible frequencies due to
superluminal motion imply it is arguable that one should
not use the implicitly troublesome model with a predefined
dumbbell deformation. Most decisively, the model predicts
a non-vanishing displacement of the glider even in (anti-)de
Sitter spacetime, contradicting thus the results of Dixon’s
theory [11–13] as pointed out in [14–16]. The intuitive
argument here is that due to the high symmetry of the
spacetime, there is no preferred direction in the spacetime
in which the path would deviate from a geodesic. For a
detailed discussion, we refer the reader to the references
above. We thus need to resort to a physically more explicit
system such as a spring in the Newtonian case. In such a
case we control the energy of the system as a whole but its
specific length at each moment is also influenced by its
position relative to the gravitational field. From the point of
view of physics, this seems to be a more plausible approach
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to the problem. It is however difficult to find a general
relativistic analogue of a dumbbell with its endpoints
following Hooke’s law [17] since it necessarily involves
nonlocal interaction and we thus chose to employ a discrete
model capturing some of the properties of the spring.
The main advantage of the model presented here consists

in the fact that unlike in the previous glider systems, all
interactions taking place within the system are purely local,
removing thus the “spooky action at a distance” [18], which
renders unphysical all glider models with a prescribed length
variation. We investigate a discrete system consisting of
point masses that decay and merge, interacting via the
exchange of momentum during their mutual collisions and
otherwise followinggeodesics—themodelwas devisedbyT.
Ledvinka, see [19]. The systemstarts as a single point particle
decaying in two steps into a collection of particles that recede
from one another, collide, and later come back together to
ultimately merge into a single point particle again.
The central question to ask remains the same: do we still

get some sort of a swimming effect even with our improved
model that fixes the problems mentioned above? How does
the toy model compare to a reference point particle with the
same initial conditions—does it end up farther away from
or closer to a Schwarzschild black hole after completing
one full stroke? Let us point out that although the value of
this relative radial shift depends on coordinates, its sign is
gauge-invariant since in Schwarzschild geometry, the dis-
tance from the center can be defined geometrically. We
further emphasize that our results do not contradict the
universality of free fall since geodesic motion only applies
to point test particles while our model is a system of
interacting particles.
The paper is organized as follows: Sec. II summarizes

the basic interactions between point particles following
radial geodesics along a preferred direction in selected
spacetimes. In Sec. III, we introduce a system of colliding
and decaying particles that we use as a discrete model of a
spring. Section IV confirms that the discrete spring model
passes the test of motion in a maximally symmetric
spacetime, namely in (anti) de Sitter. The final Sec. V
then explores what happens when we use the discrete
spring model in Schwarzschild and compares the trajectory
of our non-point spring model to that of a reference particle.

II. KINEMATICS OF THE DECAY AND MERGER
OF TEST PARTICLES

Our system consists of two kinds of particles: ones of a
positive rest mass and ones of a negative rest mass. The latter
mediate nongravitational attraction enabling the discrete
“spring” to contract. These exotic particles purely serve us
to mimic the springy behavior—we do not propose they be
observed outside of our system. In fact, this loosely corre-
sponds to the effective collective behavior in some complex
systems, see, e.g., [20–24]. The negative-mass particles only
interact with partners of positive mass. All the constituents

follow a geodesic until they either decay or collide with
another particle. We will only consider simple two-body
decays and mergers. In this section, we will discuss the
kinematics of these processes in a general 1þ 1 spacetime
with a diagonalmetric such as the radial part of Schwarzschild
or (anti-)de Sitter spacetime, or the symmetry axis of the
Kerr solution. The symmetry of these spacetimes ensures that
the system remains within the chosen subspace during its
entire motion. In Schwarzschild, it is possible to derive a
closed-form expression for radial geodesics and approach
thus the problem analytically, which we used to check our
numerical code.
Let us start by discussing a decay of a parent particle of

mass M into two particles of masses m1 and m2. Let us
denote μi ≔ mi=M. We require the decay to be special with
the product particles moving along the same radial coor-
dinate line and thus they must respect the following simple
four-momentum conservation relation

dt
dτ

¼ μ1
dt1
dτ1

þ μ2
dt2
dτ2

; ð1Þ

dr
dτ

¼ μ1
dr1
dτ1

þ μ2
dr2
dτ2

: ð2Þ

Here, the coordinates without a subscript correspond to
the decaying particle and the coordinates with a subscript
correspond to the two product particles, t is the timelike
coordinate and r is the spacelike coordinate.
In our numerics, we typically described the decays and

mergers using t as the independent variable thanks to the
relation between coordinate- and four-velocity components

dr
dτ

¼ dr
dt

dt
dτ

; ð3Þ

since this way it was easier to check whether the relevant
particles indeed met. The final relation we need is the
normalization of four-velocity components

dt
dτ

¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gtt − grrðdrdtÞ2

q : ð4Þ

We thus derive the following equation for the spatial
component of the four-velocity for one of the product
particles

4μ21grr

�
dr1
dτ1

�
2

− 2ðμ21 − μ22 þ 1Þ
�
2μ1grr

dr
dτ

�
dr1
dτ1

− ðμ21 − μ22 þ 1Þ2 þ 4μ21 þ 4μ21grr

�
dr
dτ

�
2

¼ 0; ð5Þ

while the expression for the other product just requires us to
exchange the indices. This is a quadratic equation for the
sought four-velocity component, which has two solutions
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in general because the product particle can go left or right.
The temporal component of the four-velocity can then be
expressed from the normalization (4) again. Subsequently,
we calculate the radial four-velocity component for the
second particle from (1). If necessary, one can express
product coordinate velocities by inverting (3). The above
equations apply to all decays occurring in the studied
system.
The collision process is analogous. We now know the

parameters of the two colliding particles and want to find
the four-velocity and mass of the single product particle.
We again use the conservation of the total four-momentum
(1)—which we now read right to left—and normalization
(4) which determine the three parameters of the resulting
particle and the mass of the emergent particle as a bonus.

III. THE DISCRETE SPRING

We now apply the kinematic equations given above. We
begin with a single, momentarily static particle that splits
into two particles of equal masses moving radially in
opposite directions at initial velocities u0 corresponding
to the energy of the primary decay. The pair move freely on
geodesics until they decay, too. In the model, the decay
occurs after the particles exist for a specific value of proper
time τ0. For this part of the process we will, therefore, use
the proper time of each particle as the independent
parameter.
We will integrate the radial geodesic equations for the

chosen period of the proper time for both particles τ0. This
parameter corresponds to the decay rate for the particles
and it determines the elastic properties of the corresponding
spring but we will treat it as a free parameter. Afterwards
both particles decay into a particle of a higher mass and
an exotic particle with a negative mass. Note that this decay
happens at different coordinate times for the lower and
upper particles. We consider the masses of the new
products or, more specifically, their ratios to the mass of
the second decaying particle μ1, μ2 as free parameters. The
velocity components of the products are calculated using
(5) and (4). We have to use particles with negative rest
masses because by colliding with the other particles, they
effectively pull their nonexotic partners back together. A
system involving only particles with positive rest masses
would always push some of the involved particles farther
apart but our goal is to fuse the particles back into a
single product so that we can evaluate its position shift,
δr ≔ rspring − rref , which is the difference at the same
coordinate time between the final positions of the now
collapsed and pointlike spring and the reference particle
with the same initial conditions.
After the 1st generation product particles decay, all four

2nd generation product particles follow geodesics again.
With an appropriate choice of masses, the exotic particle
moves very fast toward the other pair, passing on its way
through the other exotic particle. As it reaches the other

standard particle, they collide and recombine. This process
further pulls the nonexotic particle back. The four-velocity
of the product is given by the conservation of the total four-
momentum again. Finally, we have the two particles, which
are now moving toward one another, collide, at which point
we stop the integration and read off the final shift, δr.
The entire process representing one oscillation period or
“stroke” of the “spring” is sketched in Fig. 1. Although the
process can be repeated, we are only interested in the shift
after one stroke—the qualitative results after multiple
strokes are the same.
There are in total four parameters of the model: the initial

velocity of the first pair of particles u0, their decay time τ0,
and the two relative masses of the products μ1, μ2. One
could also include the initial position and velocity of the
primary decaying particle among the parameters but we
will only consider one set of initial conditions for now,
identical to the initial conditions of the reference particle
and the original glider model [10]. The calculation of
the decay is “safer” in the sense that the products are

FIG. 1. A schematic diagram of the discrete spring model with
time pointing upwards and the center located to the left. The
original particle is dropped from rest at an initial distance rini
from the center and it is shown at the bottom of the diagram as it
decays into two intermediate particles flying in opposite direc-
tions for an interval of their proper time τ0 after which they decay
again, both releasing a standard particle with a positive mass and
an interaction particle with a negative mass. Choosing the
parameters of the system judiciously, the interaction particles
fly in the direction opposite to their parent particles, hitting the
other end of the “spring” after some time and bringing it back to
finally collide and merge to produce the final standard particle at
a distance rfin. This process constitutes one full “stroke” of the toy
model after which we compare it to a reference point particle,
calculating the final relative shift δr ≔ rspring − rref . Trajectories
of positive-mass particles are shown using blue arrows, while
negative-mass particles have orange arrows. Decays are depicted
as stars, collisions as circles. Between their encounters, all
particles move on geodesics.
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automatically subluminal. The product of a merger can be
superluminal for an invalid choice of the parameters and
one has to check for this manually. We would like to
compare the results of our model to the glider model,
which attains a maximum body length δl ¼ 5 × 10−3M in
Schwarzschild. We can approximately fix the correspond-
ing quantity by setting u0 ¼ δl=2τ0.
The masses μ1, μ2 have to be chosen appropriately

because if the negative mass of the exotic particle is not
high enough, the decay and recombination processes will
not be able to pull the particles back together. We chose
μ1 ¼ 3=2 and μ2 ¼ −2=5 so that the part of the motion
from the exotic decay until the final merger happens very
fast in comparison with the rest of the process. This allows
us to easily control the total duration of the process because
it is approximately equal to τ0. This choice effectively
restricts us to a single positive value of the asymmetry
parameter α of the glider model from [10]. In this case
the glider model predicts the largest swimming effect,
i.e., a positive shift δr where in the end of the process, the
glider is farther away from the center than the reference
particle.
To be able to compare our results to [10], we need

to plot the position shift δr as a function of ω, the
characteristic frequency of the system. Since the
whole process takes coordinate timeΔt, which is a function
of the free parameters described above, we choose
ω ≔ 1=Δt and plot the position shift as a function of this
parameter.

IV. PINBALL SPRING MODEL IN (ANTI-)DE
SITTER UNIVERSE

As mentioned in the Introduction, an extended body
cannot deviate from geodesic motion in maximally sym-
metric spacetimes since Dixon’s theory [11–13] predicts a
vanishing displacement of a suitably defined center of mass
of the system. In our case, the reference geodesic coincides
necessarily with the trajectory of a free test particle with the
same initial conditions, because our model starts as a single
particle. It is therefore a good test for any model of an
extended body and for the numerical software to try to
obtain this net zero position shift in (anti-)de Sitter
spacetime. The main purpose of this computation is to
check our numerical calculations and estimate the computa-
tional error.
We used Wolfram Mathematica to integrate the equa-

tions of motion and to compute the position shifts. A
nonvanishing position shift is due to either a numerical
error or an error in the code, which could also mean a
biased integration method implemented in the software. We
tried several methods and chose the one that consistently
showed the smallest displacement. We verified that increas-
ing the precision of the method indeed decreased the final
value of the shift we obtained.

We first chose our length scale characterizing the
initial position of the spring and its maximum length:
L ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30000jΛjp

. In the de Sitter case, the cosmological
event horizon is then located at rH ¼ 300L. We began by
calculating the shifts for the glider model to be able to
compare them to the spring model, see Fig. 2, and then we
proceeded to the discrete spring model. The initial position
of both the spring and the reference point particle is
R0 ¼ 120L (this was the same as for the glider). They
start their motion from rest and thus the first two decay
products have the same initial velocities but in opposite
directions. We have to make sure that none of the involved
particles goes through the center of the coordinate system
r ¼ 0 where the description breaks down due to the nature
of the coordinate system. This means that the process must
not take too much coordinate time and the particles must
not move away from one another too fast. With our choice
of the mass ratios the process takes a very short time from
the exotic decay until the end which allows us to easily
control the total duration of the process through τ0 while
keeping u0 ¼ δl=2τ0 with the maximal length set to
δl ¼ 5 × 10−3L.
The resulting position shift is presented in Figs. 3 and 4.

We can see that the values are many orders of magnitude
smaller than those for the glider model (see Fig. 2 again)
and for the Schwarzschild case (see Fig. 5 below) and they
are rather random, which indicates they are due to numeri-
cal errors as is to be expected. These values can be used as a
rough estimate of numerical errors in the Schwarzschild
case below.

V. PINBALL SPRING MODEL IN
SCHWARZSCHILD SPACETIME

We now follow the same steps for the spring model
falling freely in the field of a Schwarzschild black hole.

FIG. 2. Position shifts for the unphysical glider model of [10] in
de Sitter (lower curve) and anti de Sitter universe (upper curve).
The glider systematically falls more slowly than the reference
particle in the direction of the universal expansion due to the
cosmological constant, contradicting Dixon’s theory.
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We choose its initial position to be R0 ¼ 120M, consis-
tently with the original glider model of [9,10] to be able to
compare our calculation with the previous results. With our
choice of parameters, the particles move away from one
another for a long time and then shrink back to a single
point very rapidly so that, based on the previous glider
model, we might hope for the spring to perhaps fall more

slowly than the reference particle. One can indeed see in
Fig. 5 that there is a non vanishing shift even in the present
discrete spring model, which is allowed by Dixon‘s theory.
However, contrary to the predictions of the glider model,
the shift is always negative (the spring falls faster than the
reference point particle) and has a similar frequency
dependence as the glider model in the Newtonian field.
Moreover, it vanishes for large frequencies, which means
the alleged swimming effect does not occur. We still get the
low-frequency divergence, which is due to a geometric
effect explained in [9]. We do not observe any other
divergence of the shifts unlike for the glider model [9]
since all particles follow timelike geodesics now and they
do not approach the speed of light.

FIG. 3. Position shifts as a function of frequency for the discrete
spring model in de Sitter universe, see main text for the definition
of the scale L. In an exact calculation, these position shifts are to
vanish according to Dixon’s theory. We show the range of
frequencies ωL ∈ ½0; 1� as in Fig. 2 and, in the inset, a detail
of the situation for ωL ∈ ½0; 0.07� to be compared to the
Schwarzschild case of Fig. 5 below. The largest values in the
region ωL ∈ ½0.2; 1� are three to four orders of magnitude smaller
than the peaks below ωL ≈ 0.04. The shifts seem random across
the plotted range, including also negative values for lower
frequencies, and they appear to be a remnant of our set of initial
conditions and the numerical calculation. The plot indicates there
is indeed no systematic nonzero shift in de Sitter spacetime.

FIG. 4. Position shifts calculated for the discrete spring model
in anti–de Sitter universe. We again include frequencies ωL ∈
½0; 1� and a blow-up of the lowest frequencies. The resulting
values are of a magnitude comparable to the de Sitter case,
showing a similar random pattern so that we conclude there is no
overall shift as expected.

FIG. 5. Position shifts for the discrete spring model falling
toward a Schwarzschild black hole. The resulting values are
always negative so that the spring falls faster than the reference
particle unlike the glider of [10].

FIG. 6. The same plot of position shifts in Schwarzschild but
for much higher frequencies. Since we can only change ω
indirectly by varying the decay time τ0 we can achieve just a
limited range of frequencies. This is because although the entire
process of stretching and shrinking of the “spring” takes ever
shorter proper times, the total coordinate time is longer due to
time dilation since the required velocities are higher to keep the
maximum length of the spring constant.
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However, the set of achievable frequencies ω is bounded
from both sides. We cannot access an arbitrarily small ω
because if the time of decay τ0 is too large, the particles fall
too close to the event horizon (or possibly dive under it
before decaying). The tidal forces then tug on the particles
so strongly apart that their decays and recombinations
cannot pull them back together. On the other hand, if
we choose the time decay τ0 too small then the initial
component of the four-velocity is very large since we need
to keep u0 ¼ δl=2τ0 fixed. This means that the time-
dilation effect becomes very significant. Although it takes
the particles only a short period of the proper time to decay,
the process takes much longer in terms of the coordinate
time. This explains why there is a maximum ω if the other
parameters of our model are fixed, see Fig. 6.

VI. CONCLUSIONS

With the model discussed in the present paper, we cannot
get into trouble with causality and energy divergence
described in [9] because the model simply prevents
accessing unphysical frequencies. Since the position shift
is always negative, our results contradict those of the glider
model. Moreover, spring position shifts are smaller than the
results for the glider model (these can be compared since
we use the same Schwarzschild coordinate system). We
should like to mention again that although our results are
evaluated using coordinate distance, the main result is the
sign of the displacement, which is coordinate independent.
We note that in effect, we only used one value of the
asymmetry parameter because controlling the frequency is
rather simple in this model if we want to achieve a slow
expansion and a fast contraction of the spring, which
corresponded to positive position shifts in the glider model.
The situation would be much more complicated if we
wanted to controlωwhile also having the spring stretch fast
and shrink slowly.
Our toy model does not require superluminal exchange

of information among the different parts of the extended
body. The predictions are thus more credible than the
results of the glider model. The system requires some fine-
tuning: all the particles need to follow radial paths to keep
the model as simple as possible. Its parameters are chosen
in such a way that we would be able to compare our results
with the previous papers on the glider model [7,8,10].

Ultimately, the model did not reproduce the positive
values of the position shifts from the glider model in the
high-frequency region and we are thus led to conclude that
a general relativistic swimming effect of this kind seems
unlikely. In fact, the discrete spring model does deviate
from a geodesic but, alas, it goes in the wrong direction so
that we should rather refer to it as “diving” or “drowning”.
We note that if we wanted to construct a Newtonian analog
of the discrete spring, we would need to add more
information about the decays since energy is not conserved
unlike in general relativity where local energy conservation
follows from the four-momentum conservation.
In this paper we discussed the motion of a passive model

that simply follows the tug of gravity on its component
parts. As such, it is unlikely to be able to swim against the
tide so that our results in Schwarzschild spacetime are not
surprising. Let us point out that once we fix the 4
parameters defining our model, as discussed toward the
end of Sec. III, we have no freedom to change the
properties of the single final particle. Note also that its
rest mass generally differs from that of the initial particle
due to the decays and mergers involved: in our case, it was
always higher than the initial mass and thus, in this respect,
our model is unlike an active swimmer that we would
expect to draw energy from some internal storage and use it
to counter the fall. In the present paper we attempted to
reproduce a situation from previous literature—but with a
physically plausible model. We succeeded but the model
always fell faster than the reference geodetic particle. Based
on this observation, we investigated a wider range of values
within the parameter space defining our model but, so far,
none of these combinations produced qualitatively different
results. In our future work, we plan to further modify our
model in such a way as to allow a loss of rest mass and
perhaps even swimming.
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