

View

Online


Export
Citation

RESEARCH ARTICLE |  AUGUST 08 2024

Radiation in the black hole–plasma system: Propagation in
equatorial plane 
Vladimír Balek   ; Barbora Bezděková  ; Jiří Bičák 

J. Math. Phys. 65, 082501 (2024)
https://doi.org/10.1063/5.0200901

Articles You May Be Interested In

Toroidal LNRF‐velocity profiles in thick accretion discs orbiting rapidly rotating Kerr black holes

AIP Conference Proceedings (November 2006)

Formulating the equation of relativistic mass accretion rate for extreme Kerr black holes with accretion disk
on the equatorial plane

AIP Conf. Proc. (May 2020)

Relativistic mass rates of accreted matter with accretion discs in the equatorial plane of slowly rotating
neutron stars

AIP Conf. Proc. (May 2023)

 28 February 2025 18:34:06

https://pubs.aip.org/aip/jmp/article/65/8/082501/3307232/Radiation-in-the-black-hole-plasma-system
https://pubs.aip.org/aip/jmp/article/65/8/082501/3307232/Radiation-in-the-black-hole-plasma-system?pdfCoverIconEvent=cite
javascript:;
https://orcid.org/0000-0002-1715-3105
javascript:;
https://orcid.org/0000-0002-8599-4483
javascript:;
https://orcid.org/0000-0001-7938-7815
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0200901&domain=pdf&date_stamp=2024-08-08
https://doi.org/10.1063/5.0200901
https://pubs.aip.org/aip/acp/article/861/1/778/666706/Toroidal-LNRF-velocity-profiles-in-thick-accretion
https://pubs.aip.org/aip/acp/article/2234/1/040027/605184/Formulating-the-equation-of-relativistic-mass
https://pubs.aip.org/aip/acp/article/2748/1/020063/2892727/Relativistic-mass-rates-of-accreted-matter-with
https://e-11492.adzerk.net/r?e=_dXRtX3NvdXJjZT1wZGYtZG93bmxvYWRzJnV0bV9tZWRpdW09ZGlzcGxheSZ1dG1fY2FtcGFpZ249am1wX3N0X29wZW5fZm9yX3N1YnNfUERGXzIwMjUifQ&s=9rYuhx8hh7-ScMJr2nVqB1cRC5s


Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

Radiation in the black hole–plasma system:
Propagation in equatorial plane

Cite as: J. Math. Phys. 65, 082501 (2024); doi: 10.1063/5.0200901
Submitted: 29 January 2024 • Accepted: 16 July 2024 •
Published Online: 8 August 2024

Vladimír Balek,1,a) Barbora Bezděková,2 and Jiří Bičák2,b)
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ABSTRACT
Effect of cold plasma on the form of rays propagating in the equatorial plane of a rotating black hole is investigated. Two kinds of regions
in the radius–impact parameter plane allowed for the rays are constructed: for radiation with a given frequency at infinity and for radi-
ation with a given “telescope frequency” seen by a local observer. The form of allowed regions for locally nonrotating observers as well
as observers falling freely from infinity is established. The allowed regions contain rays which directly reach the horizon, or there exists a
“neck” connecting the forbidden regions such that the rays coming from infinity cannot reach the horizon. In case we considered a set of
observers at various radii instead of the neck we find two different regions – from one the rays reach the horizon and not infinity and from
the other one they reach infinity, but not the horizon. The results are analyzed by analytical methods and illustrated by figures constructed
numerically.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0200901

I. INTRODUCTION
It is widely acknowledged that in 1911 Albert Einstein, in his best known paper written during his Prague stay, addressed the

question of the influence of gravity on light (“Über den Einfluß der Schwerkraft auf die Ausbreitung des Lichtes”) and suggested that
the bending of rays moving close to the Sun should be observable. Less is known that Einstein had derived the lens equation, pred-
icated the double images and the magnifications in the year 1912, as documented in his notebook written during his visit of Berlin
from Prague.1 As a consequence of many significant developments in both theory and observations, the effects of gravity on the light
propagation have become subject of numerous studies. For very comprehensive reviews on gravitational lensing, see, for example,
Refs. 2–5.

In the following we do not address directly gravitational lensing, rather, we turn to more general question about the existence of allowed
regions for rays propagating in the gravitational field of a rotating (Kerr) black hole which is surrounded by a cold plasma.

Let us first mention works on light rays in the fields of black holes in vacuum. The pioneering study of the allowed regions for both
photons and free massive particles around a Kerr black hole in the equatorial plane were done many years ago by De Felice.6 He determined
and analyzed the turning points in terms of impact parameter, and constructed also diagrams corresponding to various particle energies and
black hole angular momenta. Allowed regions in lensing problems around a Kerr black hole in vacuum were more recently discussed, e.g., by
Vazquez and Esteban7 and Gralla and Lupsasca.8 The values of impact (“critical”) parameter for which circular light rays exist were derived
by Iyer and Hansen.9 Their paper also includes the study of ray deflection angles, proving that there is the light bending asymmetry due to
hole’s rotation.

For related works on the photon escape cones from black hole’s vicinity, see Refs. 10–12 and a new comprehensive review by Ogasawara
and Igata.13

Only recently the light ray trajectories in Kerr spacetime were studied assuming also the presence of a medium in the spacetime (see, e.g.,
Refs. 14–16 and references therein).
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In the present paper, we study the allowed regions for rays in cold plasma in the vicinity of a Kerr black hole. Our basic parameters to
characterize the rays are the impact parameter at infinity and the frequency of radiation. In case of the frequency we distinguish two physically
distinct situations: either the frequency ω is fixed at infinity, or we consider a given “telescope frequency” ω0 which is fixed by the requirement
that it is measured by a given observer located outside the horizon.

Unlike in the study of De Felice,6 we investigate the turning points for rays around a Kerr black hole surrounded by a refractive and dis-
persive medium in geometrical optics approximation by using the elegant Hamiltonian formalism by Synge.17 This formalism was employed
in developing the radiation transfer theory in refractive and dispersive media in curved spacetimes by Bičák and Hadrava,18 for example, and
it has been used recently in a number of studies to describe ray behavior in refractive and dispersive media in the vicinity of black holes. The
focus is usually on gravitational lensing, on black hole shadow etc. Let us mention just few examples. In the series of papers by Bisnovatyi-
Kogan and Tsupko, e.g., Refs. 19–22, the authors found the deflection angle formulas in dispersive media around a Schwarzschild black hole.
The form of the shadow of a Kerr black hole surrounded by plasma was derived by Perlick and Tsupko14 and further investigated by Chowd-
huri and Bhattacharyya.16 Fathi et al.15 used the separability condition for the Hamilton-Jacobi equation from Ref. 14, assumed some simple
ansatz for the radial and longitudinal dependence of plasma frequency, and calculated the light rays analytically in terms of elliptic integrals.
More generally, separability of the Hamilton–Jacobi equation and shadow in axially symmetric spacetimes with plasma was recently analyzed
in Ref. 23.

The dispersion of light rays around a Kerr black hole caused by the presence of a plasma with a power distributed density was studied by
Kimpson et al.24 Sárený and Balek25 investigated light rays in several models of plasma in the vicinity of a Kerr black hole.

In our work, we employ the distribution of nonsingular isothermal sphere26 for plasma. The distribution of a (non)singular isothermal
sphere lies somewhere between exponential and power-law distributions used as density models for spiral and elliptical galaxies, respectively.27

It is frequently used in the description of gravitational lensing by galaxies or clusters of galaxies.28 In such studies, the inhomogeneity para-
meter in the plasma distribution is by many orders of magnitude greater than the size of a typical black hole in the center of galaxy. We will be
interested in the effect of plasma on the propagation of radiation in close proximity of the black hole, therefore we will suppose the parameter
to be of the same order as the radius of the horizon. Note that in an accretion disc consisting of hot plasma,29 the distribution of plasma in
the outer region, where the radiative transfer of energy is dominated by free-free transitions, is similar to the distibution inside a nonsingular
sphere far from the black hole (density of plasma is proportional to r−2 in the nonsingular sphere, and approximately proportional to r−15/8

in the disc).
In the following section the Hamiltonian method for rays in a curved spacetime with a (non-gravitating) medium described by a space-

time dependent and frequency dependent index of refraction n is introduced. The medium is then considered to be a cold non-magnetic
plasma characterized by the electron density Ne and plasma frequency ωpl. In order to determine regions to which the light rays can prop-
agate, we have to make sure that (i) the Hamilton equations are satisfied, and (ii) the constraint of the vanishing Hamiltonian is fulfilled.
The latter condition guarantees that the index of refraction remains real along any given ray. The conditions are specified in the Kerr metric.
The frequency of the radiation as seen by a general observer is expressed, in particular for the observers locally non-rotating (LNRF) and for
observers freely falling from the rest from infinity.

In Sec. III allowed regions for the radiation with the fixed frequency as measured at infinity are analyzed in detail in analytic terms,
and specific examples are constructed numerically. First the vacuum case is considered, then plasma is added. As could be anticipated, the
forbidden regions are larger than in vacuum. This is well seen in the diagrams showing the radial coordinate a ray can reach when having
given impact parameter and frequency at infinity. Frequency can, of course, be negative as seen at infinity if a ray is close to the horizon and
cannot reach infinity. We pay a particular attention to the formation of “necks” in the radius and impact parameters plane which connect
forbidden regions.

In Sec. IV a detailed analysis is devoted to the illustration of the allowed regions when a ray should reach a given LNRF observer with a
given frequency ω0. In Appendixes A–D we give more detailed discussion of the formation of the neck in both cases when ω or ω0 are fixed,
we investigate the allowed regions far/near to infinity, and provide the analysis of the allowed regions when LNRF observer’s position and the
impact parameter are given.

In Sec. V and Appendix E the allowed regions are analyzed for observers freely falling from the rest at infinity. Again, both analytical and
graphical and numerical results are presented. We give detailed explanations of the results by combining both analytical considerations and
number of figures constructed numerically. One can concentrate primarily on the introductions to each section and on the figure captions if
one does not wish to follow detailed “analytical” argumentations.

We use the system of units c = G = 1 and the signature of the metric (− + ++).

II. ALLOWED REGIONS FOR RADIATION IN A MEDIUM IN KERR SPACETIME
Consider an electromagnetic wave propagating in a refractive and dispersive medium with refractive index n in flat spacetime. Denote

the frequency and the wave vector of the wave in the rest frame of the medium by ωm and km, respectively. The dispersion relation in this
frame, ∣km∣ = nωm, can be rewritten in a Lorentz invariant form as

k2
− (n2

− 1)ω2
m = 0, ω m = −k ⋅ um, (1)

where kμ is the wave 4-vector and uμ
m is the 4-velocity of the medium. The equation stays valid, with the replacement ημν → gμν, for radia-

tion propagating in an inhomogeneous medium around a gravitating body in a curved spacetime, provided the wavelength of the radiation
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λ is much smaller than the typical scale l on which gravitational field and the properties of the medium are varying (geometrical optics
approximation). In this limit, radiation propagates along rays, the paths in the spacetime given by the Hamiltonian of the form17

H = −
1
2
[k2
− (n2

− 1)ω2
m]. (2)

The Hamiltonian is subject to the constraint H = 0. Rays can be viewed as worldlines of light signals, configurations of electromagnetic field
localized in a volume extended over many λ’s, but still small in comparison with l.

The refractive index of a cold non-magnetic plasma can be expressed in terms of plasma frequency ωpl, which in turn is given by electron
number density Ne,

n2
= 1 −

ω2
pl

ω2
m

, ω2
pl =

e2

ε0m e
N e. (3)

The resulting dispersion relation is
k2
+ ω2

pl = 0. (4)

The Hamiltonian, H = − 1
2(k

2
+ ω2

pl), corresponds to a “particle” with variable mass m∝ ωpl. If we identify momentum pμ canonically conju-
gated with spacetime coordinates xμ with the covariant components of the wave 4-vector, pμ = kμ, the 4-velocity of the light signal will be ẋ μ

= kμ, where the dot denotes differentiation with respect to the parameter of the ray. Note, however, that the physical momentum differs from
kμ; in particular, for a single photon we have pμ

phys = h̵kμ and mphys = hωpl.
Since the Hamiltonian for rays in cold plasma does not contain the frequency ωm = −k ⋅ um, the propagation of light signals is not

affected by the motion of plasma. Still, frequency ωm enters the condition determining where the radiation can in principle be observed: the
rays can penetrate only regions in which n is real, i.e., the inequality ωm ≥ ωpl is satisfied. We would need to add this condition to the theory if
the form of the rays would be given just by Hamilton equations. However, the theory contains, apart from Hamilton equations, an additional
constraint that the Hamiltonian, of which we know from the equations only that it is conserved, is to be zero. As a consequence, the light
signals have ω m = (k2

m + ω2
pl)

1/2, so the condition ωm ≥ ωpl is fulfilled automatically.
Consider Kerr metric in Boyer–Lindquist coordinates (x0, x1, x2, x3

) = (t, r, θ, ϕ) and suppose the space outside the horizon is filled
with plasma with the same symmetries as are those of the metric. The system has mirror symmetry with respect to the equatorial plane
(θ = π/2), which makes it possible for rays to lie entirely in that plane. Metric tensor restricted to the equatorial plane is block diagonal,

gμν =
⎛

⎝

gAB 0

0 g11

⎞

⎠
, where A, B = 0, 3, so k2

= gABkAkB + g11 ṙ 2 and we can rewrite the dispersion relation (4) as

ṙ 2
= −g11

(gABkAkB + ω2
pl). (5)

The covariant t- and ϕ-components of the wave 4-vector can be written as k0 = −ω and k3 = ωb, where ω and b are frequency and impact
parameter, respectively, measured by distant observers (assuming the rays can reach them). For the given values of ω and b, the signal can
arrive at the given radius r only if the rhs of (5) is non-negative, the zero value corresponding either to a turning point or to a circular orbit.

Kerr metric depends on two parameters: the black hole mass M and the Kerr parameter a (angular momentum per unit mass). If we
put M = 1, denote u = r−1 and introduce functions f = 1 − 2u, 𝒜 = 1 + a2u2

+ 2a2u3 and 𝒟 = 1 − 2u + a2u2, the metric in the equatorial plane
becomes

ds2
= − f dt2

− 4ar−1dtdϕ +𝒜r2dϕ2
+𝒟−1dr2.

Note that functions f , 𝒜 and 𝒟 satisfy the identity f 𝒜 + 4a2u4
= 𝒟. By inserting for gAB, k0 and k3, we obtain (denoting by superscript “○”

the vacuum case)

gABkAkB = −ω2 F̊
𝒟r2 , F̊ = 𝒜r2

− 4ar−1b − f b2.

If we plug this into Eq. (5) and use g11
= 𝒟, we find

ṙ 2
= ω2Fr−2, where in plasma F = F̊ −𝒟r2 ω2

pl

ω2 . (6)

Light signals can propagate only in the regions in the (r, b)-plane with F ≥ 0; they have turning points (ṙ = 0) at F = 0 and revolve around the
black hole on a circular orbit if, in addition to F = 0, F also satisfies F′ = 0 (prime denoting differentiation with respect to r).

We are interested in regions in the (r, b)-plane accessible to rays in the equatorial plane of Kerr black hole surrounded by plasma with
the given electron number density Ne. We consider two situations: (i) the light signal propagating along the ray has a fixed frequency ω at
infinity, or (ii) it has a fixed “telescope frequency” ω0 seen by an observer with given 4-velocity uμ

obs at the given radius r0. In the latter case the
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spectrum of the light arriving at the observer, be it from distant sources (stars) or from a source close to the horizon, is supposed to spread
across all frequencies ω, so that among the components of the light there is always one whose frequency in the observer’s frame is ω0. For
plasma, we will employ the model of a nonsingular isothermal sphere used, for example, in Refs. 28 and 30, in which N e ∝ (r2

+ r2
c)
−1. In the

problem with fixed “telescope frequency” we will consider first an observer at rest with respect to a given locally nonrotating frame (LNRF),
and then an observer falling freely from rest at infinity.

The 4-velocity of a particle moving in the equatorial plane is uμ
= Γ(1, v, 0, Ω), where v and Ω are radial and angular coordinate velocities,

v = dr/dt and Ω = dϕ/dt; Γ = dt/dτ is the conversion factor between the time of distant observers t and the proper time τ of the particle. Let Ω
and Γ be the angular velocity and the Lorentz factor of LNRF, Ω = 2au3

/𝒜, Γ = (𝒜/𝒟)1/2, and v̂ and Γ̂ be the (coordinate) radial velocity and
the Lorentz factor of a particle falling freely from the rest at infinity, v̂ = − 𝒟

√
α/𝒜, where α = 𝒜 −𝒟 = 2u(1 + a2u2

), and Γ̂ = 𝒜/𝒟. (This
follows from separated geodesic equations – see Ref. 31 for a detailed discussion, including the integration in this case.) Using this notation,
we have vobs = 0, Ωobs = Ω0 and Γobs = Γ0 (index 0 refers to the radius r0) for a locally nonrotating observer, and vobs = v̂0, Ωobs = Ω0, and Γobs
= Γ̂0 for a freely falling observer.

The frequency seen by an observer with the 4-velocity uμ
obs is ω0 = −k ⋅ uobs = ωΓobs(1 −𝒟−1

0 vobsη0 −Ωobsb), where η is the rescaled radial
velocity of light, η = ṙ ph/ω = ±

√
Fu (index “ph” stands for “photon”). For the locally nonrotating observer this yields

ω0 = ωΓ0(1 −Ω0b), (7)

and for the freely falling observer (ξ = 𝒟−1 v̂ = −
√

α/𝒜) we obtain

ω0 = ωΓ̂0(1 − ξ0η0 −Ω0b). (8)

III. RADIATION WITH FIXED ω

Consider first radiation in vacuum. The boundaries of allowed regions are given by the solutions to the quadratic equation F̊ = 0, which
can be expressed in two equivalent forms,

b̊± =
1
f
(−2ar−1

±
√
𝒟r) =

𝒜r2

2ar−1
±
√
𝒟r

. (9)

Functions b̊± coincide at the horizon, b̊± = b h = Ω−1
h at r = r h = 1 +

√

1 − a2 (the larger root of 𝒟 = 0), and approach asymptotes at the angles
±45○ to the r axis far from the horizon, b̊± ∼ ±r for r ≫ 1. From the first expression in (9) we can see that the b̊− root is falling to −∞ and
rising to +∞ as we approach the radius r = 2 (static limit) from the left and right, respectively. From the second expression in (9), on the other
hand, it is seen that the b̊+ root stays finite at r = 2. As seen in Fig. 1, there are two distinct regions in the (r, b)-diagram forbidden for the rays
(regions where F̊ < 0): the “upper corner” above b̊+ at r > 2 and between b̊+ and b̊− at r < 2, and the “lower corner” under b̊− at r > 2. Outside
the corners there are two regions accessible for rays, region 𝒪̊ I between the corners at r > 2 and below the upper corner at r < 2, and region
𝒪̊ II left to the upper corner at r < 2. Photon orbits are located at the lowest point of the upper corner (corotating orbit) and at the highest
point of the lower corner (counter-rotating orbit).

Frequency of radiation seen by an observer with vobs = 0 is ωobs = ωΓobs(1 −Ωobsb). This frequency is necessarily >0, hence we can
determine the sign of ω at any given point in the (r, b)-plane by analyzing the interval of possible values of the angular velocity Ωobs. Denote
by Ω± angular velocities of co- and counter-rotating light signals in vacuum, kept on a path close to a circle with an arbitrary given radius
by a system of mirrors tangential to the circle and placed at equal distances from each other. The signals have, in the limit when the number
of mirrors goes to infinity, b = b̊±, and their 4-velocity squared is u2

ph = −ωṫ ph + κϕ̇ ph ∝ −1 + bΩ ph = 0. Thus, b̊± are just inverses to Ω±; b̊±
= Ω−1

± . The value of Ωobs falls between Ω−0 and Ω+0, therefore, b/b̊−0 < Ωobsb < b/b̊+0 for b > 0 and Ωobsb < b/b̊−0 for b < 0. As a result, we
have different signs of ω in different allowed regions: light signals have ω > 0 in region 𝒪̊ I and ω < 0 in region 𝒪̊ II. The radiation with ω < 0 is
a special case of a “particle” with a negative energy – a necessary ingredient of the Penrose process (see, e.g., Ref. 32, Sec. 33.7).

Now let us add plasma to the picture. Consider radiation with a fixed frequency ω at infinity, positive in region 𝒪̊ I and negative in
region 𝒪̊ II. The function defining the boundaries of the allowed regions is now shifted, F = F̊ −𝒟r2ζ2, where ζ = ωpl/ω. Equation F = 0 is
again quadratic, and its solutions b± can be written in the form of the first expression in (9) with 𝒟→ (1 − f ζ2

)𝒟 [Eq. (A1)]. We can see that
functions b± have the same asymptotes at r ≫ 1 as functions b̊±, b± ∼ ±r, and that the asymptote of function b−, with b− falling to −∞ to the
right of it and rising to +∞ to the left of it, lies at r = 2 just like that of function b̊−. However, the similarity between functions b̊− and b± ends
there: b±, when compared to b̊±, are pulled towards each other or entirely vanish at r > 2, and are pushed away from each other at r < 2. As
a result, both forbidden regions expand, and there may even appear a neck between them, so that no ray, regardless of its impact parameter,
can pass from black hole to distant observers or vice versa. The formation of the neck is discussed in Appendix A.

As the forbidden regions expand, allowed regions shrink: instead of regions 𝒪̊ I and 𝒪̊ II in vacuum we have smaller regions 𝒪 I and 𝒪 II
contained within them. The former region is divided into two parts in the presence of a neck, 𝒪 IA on the lower left of the neck and 𝒪 IB on its
right. Since 𝒪 I and 𝒪 II lie inside 𝒪̊ I and 𝒪̊ II, we have ω > 0 in the former region and ω < 0 in the latter one.
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FIG. 1. Allowed regions for rays in vacuum. Kerr parameter is a = 0.8 and radius of the horizon is rh = 1.6. Shaded areas bounded by the lines b̊+ and b̊− (“corners”) are
forbidden, free areas 𝒪̊ I and 𝒪̊ II outside them are allowed. The thin vertical line at r = 2 is the asymptote of the inner boundary of forbidden regions.

FIG. 2. Allowed regions for rays in plasma with fixed frequency ω at infinity. In addition to a = 0.8 we have rc = 1, r ref = 1.8 (the reference circle lies halfway between the
horizon and the static limit) and q = 1, 3.5 in the left and right panel, respectively. Shaded areas are forbidden, free areas outside them, regions 𝒪 I and 𝒪 II in the left panel
and regions 𝒪 IA, 𝒪 IB and 𝒪 II in the right panel, are allowed. For comparison, the boundaries of forbidden regions in vacuum are shown, too, depicted by lighter lines inside
the shaded regions. The vertical line, located at the static limit just like in vacuum, is the asymptote of the inner boundary of the forbidden regions, separated from each other
in the left panel and connected by a neck in the right panel. Radiation has ω > 0 in region 𝒪 I, divided into regions 𝒪 IA and 𝒪 IB in the right panel, and ω < 0 in region 𝒪 II.

Function ζ is proportional to ωpl, hence to
√

N e, so, for our choice of plasma distribution, to (r2
+ r2

c)
−1/2. To fix the coefficient of

proportionality, we choose some radius rref close to rh and some frequency ratio q = ωpl,ref/∣ω∣, and write ζ = ±q
√
ℛ, where ℛ = N e/N e,ref

= (r2
ref + r2

c)/(r2
+ r2

c); the signs + and − refer to region 𝒪 I and 𝒪 II, respectively.
Allowed regions for radiation with fixed ω are shown in Fig. 2. As expected, forbidden regions in plasma are larger as compared with

those in vacuum. In the right panel q exceeds qcrit defined in Appendix A, therefore forbidden regions are connected by a neck.
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IV. RADIATION WITH FIXED ω0: LNRF OBSERVERS
Consider a LNRF observer at r = r0, with the telescope adjusted to frequency ω0. Then, we can use Eq. (7) to express ζ = ωpl/ω in terms

of ω0. In this way we obtain

ζ = ±qΓ0(1 −Ω0b)
√
ℛ, (10)

where q is the ratio of the plasma frequency on observer’s orbit to the absolute value of the telescope frequency, q = ωpl,0/∣ω0∣, ℛ is the electron
density ratio for rref = r0, ℛ = N e/N e0 = (r2

0 + r2
c)/(r2

+ r2
c), and the sign in front of q equals the relative sign of ω and ω0. (For the possibility

of ω0 < 0, see below.) In what follows we assume that q is independent of r0 so that observers set on different orbits have different telescope
frequencies, the less the larger the radius of the orbit; in such a way they are able to see the effect of plasma on the propagation of radiation
even at r ≫ 1, where plasma is thin. If plasma is locally nonrotating, we have ωm0 = ω0 and the condition of real-valuedness of n implies
that no ray can reach the observer unless q < 1. However, since n is real in the regions where F ≥ 0 regardless of how the plasma moves, the
constraint on q has to be satisfied in general case as well [as seen also from Eq. (D1), where there appears 1 − q2 under the square root].

If we insert into F = F̊ −𝒟r2ζ2 from (10), we see that F is quadratic in b just as in the case with fixed ω, when ζ = const; however, all three
coefficients in expression F = k + 2lb +mb2 now become shifted, not just k [Eq. (B1)]. This manifests itself in the behavior of functions b±
solving equation F = 0. In particular, the shift in m implies that the asymptotics of b± at r ≫ 1 is modified to b± ∼ ±Cr, where C < 1, and that
the radius ra of the asymptote of function b− shifts from ra = 2 to ra < 2. In Appendix B we show that C increases from 0 to 1 and ra increases
from rh to 2, as the radius of observer’s orbit r0 increases from rh to∞. We also discuss there the case when the function diverging at ra is b+
rather than b−.

Forbidden regions in the (r, b)-plane may be connected by a neck just as in the case with fixed ω. The neck is formed in an interval of
r where Δ = l2

− km < 0 (the discriminant of equation F = 0 is negative). As shown in Appendix C, the neck is there for r0 ∼ rh as well as for
r0 ≫ 1, but it disappears in some interval ρ0A < r0 < ρ0B. The band connecting forbidden regions shrinks to a point at some radius r = ρA, as
r0 approaches the value ρ0A from the left, and at some radius r = ρB > ρA, as r0 approaches the value ρ0B from the right. The values of the radii
(ρ0A, ρA) and (ρ0B, ρB) are discussed in Appendix C.

With ω0 fixed, we can either restrict to the rays that actually reach the observer, or to consider also “ghost rays” that bounce on their way
back to the observer, but have such frequency ω and impact parameter b that their frequency measured by the observer, provided they reach
them, would have just the desired value. In the latter case we obtain allowed regions 𝒪 I and 𝒪 II similar in form to those in the problem with
fixed ω. The frequency ω0, however, must be taken with minus sign for some “ghost rays,” depending on the value of b when compared to the
limit impact parameter blim = Ω−1

0 . By (7), ω0 ∝ ω(1 − b/blim), and since ω > 0 in 𝒪 I and ω < 0 in 𝒪 II, we need to put ω0 < 0 in the upper part
of 𝒪 I, where b > blim, as well as in the lower part of 𝒪 II, where b < blim.

Allowed regions for radiation with fixed ω0 are shown in Fig. 2. The areas bounded by thick lines are allowed regions for rays that
eventually reach the observer, either directly or after bouncing back. The remaining free areas outside the shaded corners, or shaded strip in
the case with a neck, are allowed regions for “ghost rays” that never arrive at the observer.

In the left panel, r0 is in the interval (ρ0A, ρ0B), therefore the corners are separated from each other and rays can propagate freely from
infinity to the horizon and back within free band F . Outside F there are allowed regions bounded from one side: if r0 is less than the radius
at which b+ has minimum, as in the figure, rays can reach the observer from the regions G I+, G I− adjacent to F and (not seen in the figure)
region G II separated from F , all bounded from outside. In the right panel, r0 lies outside the interval (ρ0A, ρ0B), hence the corners merge and
rays accessible to the observer are restricted to regions G IA and G II bounded from outside for r0 < ρ0A (left part of the panel) and region G IB
bounded from inside for r0 > ρ0B (right part of the panel). In the case with r0 < ρ0A, we have q < qrev, with qrev defined in Appendix B; hence,
the asymptote at r = ra is approached by function b−.

Rays accessible to the LNRF observers, who are orbiting the black hole at different radii r0, occupy regions 𝒪 I and 𝒪 II in the (r0, b)-plane,
similar in form to regions 𝒪 I and 𝒪 II in the problem with fixed ω and q < qcrit (left panel of Fig. 2), with the boundaries B± given by equation
F(r = r0) = 0. As shown in Appendix D, functions B± are given by the second expression in (9), with r replaced by r0 and with the function
under the square root rescaled as 𝒟0 → 𝒟0/(1 − q2

) [Eq. (D1)].
In the allowed regions in (r0, b)-plane there are two rays with the telescope frequency passing through each point, one directed towards

the black hole (with ṙ ph,0 < 0) and one directed away from it (with ṙ ph,0 > 0). Let us single out two distinct parts of the allowed regions by the
behavior of rays extended backwards in time, region 𝒪 h in which at least one of the rays starts at the horizon and region 𝒪 i in which at least
one of the rays starts at infinity (in the sense of limit) – see Fig. 4. Denote, furthermore, by 𝒪 h+ i the intersection of 𝒪 h and 𝒪 i and by 𝒪′h and
𝒪′i the parts of 𝒪 h and 𝒪 i outside of 𝒪 h+ i. Region 𝒪 h+ i consists of rays from the free bands in the (r, b)-plane, like band F in the left panel of
Fig. 3, while regions 𝒪′h and 𝒪′i are composed of rays from allowed regions bounded from one side, like regions G I+ and G I− in the left panel
of Fig. 3 and regions G IA, G II and G IB in the right panel of Fig. 3. If we denote by B+ the upper limit of F (minimum of b+) and by B− the
lower limit of F (maximum of b− for r > ra), we can define 𝒪 h+ i as a region in the (r0, b)-plane bounded from above by the line B+ and from
below by the line B−. Note that the boundaries actually do not belong to 𝒪 h+ i, since for rays with b = B± the access to the observer is free
from one side only; when arriving from the other side, the rays do not get past the peak of the forbidden corner standing in their way. Since
the radii R±, where b+ has minimum and b− has maximum, depend continuously on the radius r0, and since R± > r0 at r0 = ρ0A and R± < r0
at r0 = ρ0B, r0 eventually passes through R+ as well as R− as it rises from ρ0A to ρ0B. As a result, lines B± touch lines B± in some points P±,
dividing the boundary of region 𝒪 h+ i into two segments where regions 𝒪′h and 𝒪′i are attached to region 𝒪 h+ i, 𝒪′h from the left and 𝒪′i from
the right. The position of points P± as well as the behavior of functions B±, B± in their vicinity are discussed in Appendix D.
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FIG. 3. Allowed regions for rays in plasma with fixed frequency ω0 seen by a LNRF observer. In addition to a = 0.8 and rc = 1 we have q = 2/3 and r0 = 1.8, 1.65 and 7.25
in the left panel, left part of the right panel and right part of the right panel, respectively. Shaded areas are forbidden regions in an extended theory with “ghost rays,” thin
lines inside them indicate where the forbidden regions lie in vacuum, solid vertical line is the asymptote of the inner boundary of forbidden regions and dotted horizontal line
represents blim, the value of b dividing regions with “ghost rays” in the upper part of the diagrams into two parts with different sign of ω0: in order that ω has the right sign, ω0
needs to be <0 above blim for r > 2 and under blim for r < 2 and b > bh. Position of the observer is marked by a bullet on the r axis, dashed lines depict rays at the moment
of arriving at the observer and areas within the thick lines, regions F , G I+ and G I− in the left panel and G IA, G II and G IB in the right panel, are allowed regions for rays
reaching the observer. Region G II in the left panel and line blim in the right part of the right panel did not make it into the diagram since they lie too high, the former at b > 25.7
and the latter at b = 276.5.

Allowed regions for rays seen by LNRF observers at various distances from the black hole are shown in Fig. 4.
Region 𝒪 h, consisting of 𝒪 h+ i in the center of 𝒪 I, region 𝒪′h− adjacent to it and region 𝒪′h+ = 𝒪 II disconnected from both of them, is

shown in the left panel. Region 𝒪 i, composed of regions 𝒪 h+ i and 𝒪′i, is displayed in the right panel. The Kerr parameter is less than critical,
a < acrit, where acrit is defined in Appendix D, therefore the point P+ is shifted to the left of the static limit. The boundary of region 𝒪 h+ i is
not horizontal at points P± as it may appear from the figure; instead, as discussed in Appendix D, it is slightly inclined downwards at P+ and
upwards at P−.

V. RADIATION WITH FIXED ω0: FREELY FALLING OBSERVERS
As seen from Eq. (8), the ratio ζ = ωpl/ω for an observer falling freely from rest at infinity can be written as

ζ = qΓ̂0(1 − ξ0η0 −Ω0b)
√
ℛ. (11)

The expression is applicable only to rays that can reach the observer, otherwise the parameter η0 = ±
√

F0u0 is purely imaginary. Thus, the
frequency ω0 is necessarily positive; unlike in the case of locally nonrotating observer, there exist no, “ghost rays” with ω0 = −∣ω0∣. As a result,
parameter q can be defined just as q = ωpl,0/ω0 and no ± is needed in Eq. (11).

Function F = Fu2 satisfies the identity F0 = η2
0, which can be written as a quadratic equation for η0: K0 + 2L0η0 +M0η2

0 = 0. We can
define allowed regions 𝒪 I and 𝒪 II in the (r0, b)-plane by the condition F0 ≥ 0 just as for the LNRF observers, however, now this inequality
is not saturated at the boundaries of 𝒪 I and 𝒪 II. Therefore, if we want to determine the shape of these regions, we need to start from the
requirement that equation F0 = η2

0 has real solution, i.e., from the inequality δ0 = L2
0 − K0M0 ≥ 0. As shown in Appendix E, this leads to the

boundaries B̃± which are given by the same expression as the boundaries B± in the problem with LNRF observers, just with q replaced by q̃ NR

= qΓ0/[1 + q2
(Γ2

0 − 1)]
1/2

. If we choose q as a function of r0 so that q̃ NR = const, regions 𝒪 I and 𝒪 II will have the same shape for freely falling
observers as for locally nonrotating ones.

We have again, as in the problem with LNRF observers, two rays at each point of regions 𝒪 I and 𝒪 II; however, the rays now have rescaled
radial velocities η(±)0 = (−L0 ±

√
δ0)/M0 which do not differ just by sign. They can even have the same sign: η(−)0 is negative in the whole

region 𝒪 I, including its boundaries, but η(+)0 is positive in a smaller region, passing through zero at lines B± where K0 = 0. In region 𝒪 II, on
the other hand, η(+)0 is positive everywhere and η(−)0 is negative outside the line B−. However, ṙ ph,0 has sign different from η0 in region 𝒪 II,
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FIG. 4. Allowed regions in the (r0, b) plane for radiation seen by LNRF observers. Parameters a, rc and q are the same as in Fig. 3. Shaded areas are forbidden for rays
seen by the observer at the given radius r0, thin lines inside them are boundaries of the forbidden regions in vacuum [they look the same in the (r0, b) plane as in the (r , b)
plane, since the form of rays in vacuum does not depend on ω], solid vertical line is the asymptote of the inner boundary of forbidden regions, region 𝒪 h+ i in the central part
of the diagrams consists of rays that can reach observers from the horizon as well as from infinity, regions 𝒪′h± in the left panel and region 𝒪′i in the right panel are composed
of rays that can reach observers from one side only, either from the horizon (regions 𝒪′h±) or and from infinity (region 𝒪′i ), and points P± divide the boundary of 𝒪 h+ i into
segments adjacent to these regions. Rays that can come to the local observers from the horizon form the region 𝒪 h to the left of the thick line in the left panel, and rays that
can arrive at the local observers from infinity comprise the region 𝒪 i to the right of the thick line in the right panel.

since it equals ωη0 and ω < 0 there. Let us call rays with velocities η(+)0 in region 𝒪 I and η(−)0 in region 𝒪 II “rays of class I,” and rays with the
other velocities “rays of class II.” As suggested by the discussion of the signs of η(±)0 , the rays of class II, as well the rays of class I, lying between
the lines B̃± and B±, are directed towards the horizon, while the remaining rays of class I are directed away from it.

Should we define regions 𝒪 h and 𝒪 i as before, we would have diagrams containing the rays of both classes I and II, with region 𝒪 h+ i
divided into three zones, each with rays of different behavior.

We will consider the two classes separately, extending the definition of regions 𝒪 h and 𝒪 i by using rays prolonged in both directions in
time: the ray will be supposed to belong to region 𝒪 h if it has, when maximally extended, either starting or ending point on the horizon, and
to region 𝒪 i, respectively, if it has either starting or ending point at infinity.

Allowed regions for rays seen by freely falling observers at various distances from black hole are depicted in Fig. 5. In the left panel we
show the behavior of rays of class I, in the right panel – of class II. Regions 𝒪 h and 𝒪 i are displayed both in the same diagram, marked by
continuous and intermittent thick line, respectively. In Appendix E we explain how we determined those regions without having an explicit
expression for the boundaries of forbidden regions in the (r, b)-plane. If we return to the original definition of regions 𝒪 h and 𝒪 i, the whole
region 𝒪 h+ i in the right panel, as well as the part of region 𝒪 h+ i lying between the lines B̃± and B± in the left panel, will pass to region 𝒪′i,
while the rest of region 𝒪 h+ i in the left panel will become a part of region 𝒪′h.

Since the rays with limit impact parameters B̃± have nonzero rescaled radial velocities η̃0 = −L0/M0, they do not bounce back as they
arrive at the observer; instead, rays coming from infinity bounce back after they pass by the observer and rays coming from the horizon
bounce back before that (as both have radial velocity ˜̇r ph,0 = ωη̃0 < 0). In addition, there are also rays which, rather than bouncing back,
proceed directly from infinity to the horizon. These rays form arcs PA+PB+ and PA−PB−, marked by the black segments of thick lines in Fig. 5.
Similarly as the points P+ and P− in case of LNRF observers, arcs PA+PB+ and PA−PB− divide the boundary of region 𝒪 h+ i into segments
where it borders on regions 𝒪′h and 𝒪′i.

For rays of class I, allowed region 𝒪 I between line B̃+ and the lower line B̃− contains a smaller region 𝒪′I between line B+ and the lower
line B−, where rays do bounce back when arriving at the observer. (As explained in Appendix E, in order that the latter region extends to
the horizon as in Fig. 5, q̃ NR needs to be <1/

√
2.) At lines B±, region 𝒪 h+ i shrinks to a point. Thus, it is composed of two triangles and a

central part, attached to the boundaries of region 𝒪′I at some points Q
±

, just as in the problem with LNRF observers region 𝒪 h+ i touched the
boundaries of region 𝒪 I at points P±. For rays of class II, region 𝒪 h+ i is considerably wider than for rays of class I; it also does not stop at a
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FIG. 5. Allowed regions in the (r0, b) plane for radiation seen by freely falling observers from rest at infinity. Parameter a is the same as in Figs. 1–4, parameter rc is the
same as in Figs. 2–4 and parameter q̃ NR coincides with q used in Fig. 4. Allowed regions for rays of class I (with radial velocity η(+)0 ) and of class II (with radial velocity

η(−)0 ) are shown in the left and right panel, respectively. The meaning of shaded areas, thin lines inside them and solid vertical line is the same as in Fig. 4, a new feature

are only lines B± (dashed lines in the left panel), where velocity η(+)0 changes its sign. Thick lines mark, as in Fig. 4, regions 𝒪 h and 𝒪 i; both are now drawn in the same
diagram, boundary of 𝒪 h as continuous (“put on the top”) and boundary of 𝒪 i as intermittent (“lying under it”). For rays of class I, region 𝒪 h contains, in addition to region
𝒪 h+ i, regions 𝒪′h± to the left of 𝒪 h+ i, and region 𝒪 i contains region 𝒪′i to the right of 𝒪 h+ i, just as in Fig. 4; for rays of class II, region 𝒪 h+ i extends all the way down to
the horizon and region 𝒪′h− is divided into regions 𝒪′h−+ and 𝒪′h−−, adjacent to 𝒪 h+ i from above and from below, respectively. Points P±, where region 𝒪 h+ i has touched
forbidden regions in the problem with LNRF observers, are stretched into finite segments, the same for rays of both classes (arcs PA+PB+ and PA−PB− marked by thick
black line). For rays of class I, broken arcs PA+PA− and PB+PB−, forming together the boundary of 𝒪 h+ i, merge at the points Q± lying on the lines B±.

finite distance from the horizon, but extends all the way down. The shape of allowed regions for rays of both classes I and II is discussed in
more detail in Appendix E.

VI. CONCLUSIONS
Using the Hamiltonian approach for tracing rays in curved spacetime possibly filled with dispersive and refractive medium, we studied

their behavior in the Kerr metric. We restricted to equatorial plane and focused on comparing the form of the regions accessible to rays in
vacuum case with the case when the black hole is surrounded by cold plasma. We assumed that plasma has distribution of an isothermal
nonsingular sphere with inhomogeneity parameter comparable with the size of the black hole and with the density large enough to affect the
propagation of radiation substantially.

In the presence of plasma, forbidden regions in the radius–impact parameter plane, the (r, b)-plane, become larger than in vacuum. They
can even develop a neck preventing rays from passing from infinity to the horizon and back. To understand these effects, note that the plasma
is acting on a ray repulsively if its density decreases with radius. Thus, rays are less bent in plasma than in vacuum, and since extremal values
of b at given r correspond to rays tangent to the circle with radius r, plasma necessarily makes these values less in absolute value in case the
rays are coming from infinity. (If such a ray is straightened, it needs to enter gravitational field closer to the radial line parallel to it, in order
to get to the same distance from the source.) The neck connecting forbidden regions is formed when the repulsive effect is large enough to
cause signals coming from infinity to bounce back, even if they have impact parameter b close to zero. As for signals coming from the horizon,
it might seem that since they are dragged away from the black hole by plasma, no matter how small the repulsive effect is near the horizon,
they necessarily escape from the black hole. However, in the expression for radial acceleration of a light signal there appears, in addition to a
centrifugal acceleration proportional to b2, the term (with plus sign) proportional to ṙ 2. Since that term is less in the presence of plasma than
in vacuum, the effect of gravity is enhanced by the presence of plasma, and if the plasma is dense enough, signals coming from the horizon
bounce back.

We considered also observers located at various radii r0, equipped with telescopes with a given frequency ω0, and constructed allowed
regions for rays with that frequency. LNRF observers were supposed to have frequency ω0 proportional to the local plasma frequency, while
for freely falling observers we added an extra factor rising to infinity as the observer’s Lorentzian factor Γ0, as the horizon is approached.
Frequency of light signals with the extremal values of b blue-shifts by a factor of order Γ0 as we pass from the LNRF to the freely falling frame,
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hence it needs to be finite in the LNRF, just like the telescope frequency with LNRF observers. The frequency is blue-shifted despite the fact
that the observer is moving away from the source, because of the transversal Doppler effect. However, rays coming from infinity can reach
the horizon only if their impact parameter is separated by a finite gap from the maximum b in the region with positive frequency at infinity ω;
and with such b, rays with the velocity directed to the black hole are redshifted rather than blueshifted by the transition from the LNRF to the
observer’s frame. Their redshift is quite substantial, of order Γ−1

0 , so that their frequency in the LNRF is of the same order of magnitude as the
Lorentzian factor Γ̂0 = Γ2

0 of a freely falling observer.
In the diagrams with multiple observers we constructed regions in which at least one of the two rays passing through each point of

the diagram started at the horizon (region 𝒪 h) or at infinity (region 𝒪 i). The setting with freely falling observers is more general than that
with LNRF observers, since the rays seen by them are independent of each other. For LNRF observers, the rays are related by a simultaneous
change of sign of coordinates t and ϕ; thus, they are mirror images of each other with respect to the radial line drawn through the point of
observation, while their velocities are mirror images of each other with respect to the tangential line drawn through that point. As a result, the
starting point of each ray, obtained by extending it maximally backwards in time, coincides with the ending point of the other ray, obtained by
extending it maximally forwards in time, provided it passed by the observer without being detected. For freely falling observers the two rays
are not mirror images of each other, since the radial motion of the observer breaks the symmetry with respect to the tangential line. Thus, we
have two classes of rays that are not related by symmetry, one containing a subclass of rays directed away from the black hole and the other
consisting entirely of rays directed towards the black hole. By extending the rays in both directions in time we obtain a separate diagram for
each class. The diagrams look quite different from the one constructed with LNRF observers: the intersection of regions 𝒪 h and 𝒪 i is a narrow
strip with ragged boundary, located close to the horizon, for rays of the first class, and a wide band with smooth boundary, reaching far from
the horizon on one side and adjacent to the horizon on the other side, for rays of the second class.

Regions 𝒪 h and 𝒪 i arise in the diagrams with multiple observers because of the presence of plasma; they reflect the fact that if the plasma
is sufficiently dense, there may appear necks in the diagrams with one observer. No such regions exist for rays in vacuum, whose form does not
depend on frequency. Thus, the shape of regions 𝒪 h and 𝒪 i may be regarded as a visualization of the interplay between strong gravitational
field and plasma as an example of a refractive and dispersive medium, as they act on radiation propagating through them.

The analysis can be extended outside the equatorial plane if the plasma has electron density depending on the coordinates r and θ in such
a way that we have, in addition to the constants of motion ω and b, also the constant of motion K (Carter constant), just like in vacuum. In Ref.
14 the shape of the shadow of a black hole is calculated for three plasma distributions of the desired form, and for an observer who sees the
photons of principal null congruences moving radially towards the black hole or away from it. The shadow is determined for radiation with
fixed frequency at infinity ω, but the calculation can be easily modified to the case with fixed telescope frequency ω0, we just need to multiply
the terms coming from ω2

pl in the equations for spherical rays by Q2, where Q is defined in terms of observer’s angular velocity Ω̃0 and Lorentz
factor Γ̃0 as Q = Γ̃0(1 − Ω̃0b). We have found that the region around the black hole where there exist spherical rays (photon region) as well as
the black hole shadow shrink substantially as we pass from radiation with fixed ω to radiation with fixed ω0.
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APPENDIX A: FORMATION OF NECK IN THE CASE WITH FIXED ω

For radiation with fixed frequency ω, let us find the condition for the formation of a neck between forbidden regions. Functions b± in
the case with fixed ω are

b± =
1
f
(−2au ±

√
Δ), Δ = (1 − q2 f ℛ)𝒟r2. (A1)
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As mentioned in Sec. III, this is just the first expression in (9) with 𝒟 multiplied by 1 − f ζ2 (since ζ2
= q2ℛ). Function ℛ̂ = f ℛ

appearing in the definition of Δ can be written as

ℛ̂∝ (1 − 2u)u2
/(1 + r2

cu2
).

The function is positive for 0 < u < 1/2, it vanishes at both u = 0 and u = 1/2, and its derivative, dℛ̂/du∝ 1 − 3u − r2
cu3, decreases monoton-

ically with u, crossing zero at some uC < 1/2. Thus, ℛ̂ has the maximum at rC = u−1
C > 2. Denote q crit = ℛ̂

−1/2
C . For q = qcrit, the curves b+ and

b− merge at rC; in fact, they develop spikes directed against each other, whose tips touch at rC. The reason is that in the vicinity of r = rC the
function Δ is proportional to δ2, where δ = r − rC, so that functions b± assume the form b± = A + Bδ ± C∣δ∣, and as a result, have spike-like
minimum and maximum at δ = 0. For q > qcrit, Δ becomes negative in some interval (rA, rB) containing rC, the larger the greater the value of
q; therefore, the two regions inaccessible for rays become connected by a neck that extends from rA to rB. For the parameters used in Fig. 2
we have rC = 3.104, which yields ℛ̂C = 0.1418 and qcrit = 2.656. Note that the interval (rA, rB) lies entirely above r = 2 for any q > qcrit, since
Δ = (1 + ∣ f ∣ζ2

)𝒟r2
> 0 for r < 2. For q = 3.5 (the value used in the right panel of Fig. 2), the neck extends from rA = 2.268 to rB = 5.727.

APPENDIX B: ALLOWED REGIONS FAR FROM THE HORIZON AND CLOSE TO IT IN THE CASE WITH FIXED ω0

For radiation with fixed frequency ω0 seen by a LNRF observer, function F determining allowed regions has the form F = k + 2lb +mb2,
where coefficients k, l, m can be expressed in terms of function Q = qΓ0

√
𝒟Rr as

k = 𝒜r2
−Q2, l = −2au +Q2Ω0, m = − f −Q2Ω2

0. (B1)

Solutions to equation F = 0 are b± = −(l ±
√

Δ)/m, where Δ = l2
− km.

For r ≫ 1, Q approaches the value Q
∞
= qΓ0r0+, where r+ = (r2

+ r2
c)

1/2; hence, F can be written as F ≐ r2
+ 2Q2

∞Ω0b − (1 +Q2
∞Ω2

0)b
2

and the solutions to the equation F = 0 in the leading order in r are b± = ±Cr, where C = (1 +Q2
∞Ω2

0)
−1/2. Since C < 1, the wedge-like band

between the forbidden regions narrows down if we fix ω0 instead of ω.
In order to determine the behavior of constant C as a function of r0, let us express constant q̂ = Q∞Ω0 appearing in the definition of C as

q̂∝ r0+u3
0/
√
𝒜0𝒟0 = r0+/(

√
r0A0D0),

where A = 𝒜r3
= r3
+ a2r + 2a2 and D = 𝒟r2

= r2
− 2r + a2. The expression for q̂ can be written as a product of functions r+/r,

√
r/A and

1/
√

D, evaluated at r = r0; and since function r+/r obviously decreases with r for all r > 0, while functions A/r and D can be shown to increase
with r for r > rh, constant q̂ decreases and constant C = (1 + q̂ 2

)
−1/2 increases as r0 goes from rh to∞. The former constant decreases from

∞ to 0 for r0 increasing from rh to∞, hence, the latter constant increases from 0 to 1. For the parameters used in Fig. 3 we have C = 0.681
(left panel) and 0.9997 (right part of the right panel).

Consider now the radius ra at which either b− or b+ has an asymptote. The value of ra is given by the equation ma = − fa −Q2
aΩ2

0 = 0, i.e.,
fa = −q̂ 2Da/r2

a+ (since Q = Q∞
√

D/r+). Function f is negative only for r < 2 so that the asymptote lies necessarily there; and since it is located
at r = 2 in case with fixed ω, the inner borderline of forbidden regions, or region in case with a neck, shifts towards rh as we fix ω0 instead of
ω.

Function − f falls from a positive value to 0 as r rises from rh to 2, while function D/r2
+ can be shown to rise from 0 to a positive value.

Thus, the asymptote is the closer to the static limit the smaller the value of q̂; and since q̂ falls from ∞ to 0 as r0 rises from rh to ∞, the
asymptote shifts with increasing r0 from rh to 2. For the parameters used in Fig. 3 we have ra = 1.836 (left panel) and 1.691 (the left part of
right panel).

For radiation with fixed ω we had ra = 2 and the divergent function was b−, just as in case without plasma. Now we have ra < 2 and the
divergent function may be b+, too: it is b− if la < 0 and b+ if la > 0. In the latter case, forbidden regions are necessarily connected with a neck
and the way their boundary approaches the asymptote at r = ra is reversed as compared with the former case: function b+ is falling to−∞ to the
left of the asymptote and rising to +∞ to the right. Let us write la = −2aua − fa/Ω0 ∝ λa − 1, where λ = − f /(2aΩ0u) = A0(2 − r)/(4a2

). As r
rises from rh to 2, λ falls linearly from λh = A0rh−/(4a2

) to 0, where rh− is the radius of the inner horizon, r h− = 1 −
√

1 − a2 (the smaller root
of 𝒟 = 0). It can be easily proven that λh > 1, so that λ > 1 below some radius r1 > rh; explicitly, r1 = rh + rh−(1 − 1/λh). For the parameters
used in the left part of the right panel of Fig. 3 we have r1 = 1.625 < ra = 1.691; thus, the function diverging at ra is b−. Note that in order that
the diverging function is b+, the parameter q needs to satisfy q > q rev = (Γ0Ω0)

−1√
− f1/(D1ℛ1) (“rev” stands for “reversed”). In our case qrev

= 1.421, so that q < qrev.

APPENDIX C: FORMATION OF NECK IN CASE WITH FIXED ω0

In the case radiation has fixed frequency ω0 with respect to a LNRF observer, the discriminant of equation F = 0 is

Δ = (1 − q2Γ2
0 f+ℛ)𝒟r2, f+ = f + 4ar−1Ω0 −𝒜r2Ω2

0. (C1)
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If forbidden regions in the (r, b)-plane are connected by a neck, the radii rA and rB, where the inner edge of the neck is farthest from the
horizon and the outer edge is closest to it, are given by the equation X = 0, where X = 1 − q2Γ2

0 f+ℛ is the extra factor by which Δ differs from
Δ̊ = 𝒟r2 [see Eq. (C1)]. While in case with fixed ω the neck forms only for large enough q, now it can exist for arbitrary q, provided r0 lies
outside a certain interval (ρ0A, ρ0B). To see that, consider asymptotics of X for r0 ∼ rh and r0 ≫ 1.

Close to the horizon, at ε = r − rh ≪ 1, we have 𝒟≐ 2
√

1 − a2u2
hε ≡ u2

hε̂, and the value of function 𝒜 at the horizon is 𝒜 h = 4u2
h. Thus, if

the observer is shifted with respect to the horizon by ε0 ≪ 1, their Γ-factor is Γ0 ≐ (𝒜 h/𝒟0)
1/2
≐ 2ε̂−1/2

0 ; furthermore, for the angular velocity
of the observer we have Ω0 ≐Ω h =

1
2 au h. As seen from these expressions, function X reduces close to the horizon to X ≐ 1 − 4q2ε̂−1

0 f+, where
r f+ = r − 2 + 4aΩ0(1 − 1

4 a−1AΩ0)≐ r − 2 + 2a2u h(1 − 1
8 uhA)≐ [1 − 1

4 a2
(3 + a2u2

h)]ε ≡ Cε. (We have used the fact that if r0 as well as r are
∼ rh, then ℛ≐ 1.) As a result, for ε0 ≪ 1 there exists a neck in the (r, b)-plane with the inner edge bent away from the horizon up to εA

= 1
4 q−2
(r h/C)ε̂0. If we denote α =

√

1 − a2, we have ε̂0 = 2αε0 and 4r2
hC = (4 − 3a2

)r2
h − a4

= 2αr3
h (as seen by writing rh as 1 + α); hence, εA

= q−2ε0. Note that from the expansion of F up to the first order in ε it follows that the asymptote of b− is shifted with respect to the horizon by
the same value, εa = q−2ε0. Thus, if we want to check that εA > εa (the point where b− merges with b+ lies beyond the asymptote of either b−
or b+), we need to proceed to the next-to-leading order in ε0.

In the opposite limit, when r0 ≫ 1, we have Γ0 ≐ 1 and Ω0 = O(u3
0); if, moreover, r ∼ r0, we have also f+ ≐ 1 and ℛ≐ r2

0u2. Thus, the
asymptotics of function X far from the horizon is X ≐ 1 − q2r2

0u2; and, consequently, there exists a neck in the (r, b)-plane with the outer edge
bent towards the horizon down to rB = qr0.

The values of r0 for which the neck shrinks to a point, along with the values of r where the point is located, are given by equations X = X′

= 0. The first equation is just q2Γ2
0 f+ℛ = 1, while the second equation can be written as a cubic equation for u = r−1,

( f+ℛ)′ ∝ (1 − aΩ0)
2u(3 + r2

cu2
) − (r2

c − a2
)Ω2

0 − 1 = 0.

If we express u as function of Ω0 by Cardano’s formula and solve equation X = 0 with this u inserted into it numerically, we obtain two pairs
of values (r0, r). For the parameters used in Fig. 4 these values are (ρ0A, ρA) = (1.726, 2.176) and (ρ0B, ρB) = (6.769, 3.080). As seen from
our analysis of the limit cases r0 ∼ rh and r0 ≫ 1, forbidden regions develop a neck for r0 < ρ0A as well as for r0 > ρ0B; hence, for r0 from the
interval (ρ0A, ρ0B) they are necessarily separated by a free band. Moreover, the fact that the interval (ρA, ρB) lies entirely inside the interval
(ρ0A, ρ0B) suggests that the inequalities εA = q−2ε0 > ε0 and rB = qr0 < r0, obtained in the limits r0 ∼ rh and r0 ≫ 1, stay valid all the way from
r0 = rh up to r0 = ρ0A and from r0 =∞ down to r0 = ρ0B. This is easily verified numerically, because equation X = 0 is cubic in r, therefore we
can once again use Cardano’s formula to express its solutions, radii rA and rB, analytically as functions of r0.

APPENDIX D: CONSTRUCTING ALLOWED REGIONS IN THE (r 0,b )-PLANE

Let us find functions B± = b±(r0) for a LNRF observer. Define F = Fu2
= F̊ −𝒟ζ2, where F̊ = F̊u2

= 𝒜 − 4au3b − f u2b2 and ζ is given
by Eq. (10). If we rewrite F̊ as F̊ = 𝒜(1 −Ωb)2

−𝒟u2b2
/𝒜, we obtain F̊0 = 𝒜0κ2

0 −𝒟0u2
0b2
/𝒜0, where κ0 = 1 −Ω0b. [The expression for F̊

which we have started from follows immediately from the identity f 𝒜 + 4a2u4
= 𝒟, but it can also be obtained by rewriting the 2D metric

as ds2
2 = −𝒟dt2

/𝒜 +𝒜r2dϕ̃ 2, where dϕ̃ = dϕ −Ωdt, and by regarding the formula F̊ = −ω−2𝒟g̃ ABk̃Ak̃B with k̃A = ω(−1 +Ωb, b).] Since ζ2
0

= q2Γ2
0κ2

0 = q2𝒜0κ2
0/𝒟0, we find F0 = (1 − q2

)𝒜0κ2
0 −𝒟0u2

0b2
/𝒜0 ∝ F̊0(𝒟0 → 𝒟0/(1 − q2

)), and by putting this expression equal to zero we
obtain

B± =
𝒜0r2

0

2ar−1
0 ±

√

𝒟0/(1 − q2
)r0

. (D1)

Functions B± have the asymptotics B± = ±
√

1 − q2r0 for r0 ≫ 1. Furthermore, the asymptotics of F0 for b→ ±∞ is F0

= [(1 − q2
)𝒜0Ω2

0 −𝒟0u0
2
/𝒜0]b2

∝ [1 − q2
−𝒟0r4

0/(4a2
)]b2; hence, the radius r0a at which function B− has an asymptote is given by

√
𝒟0ar2

0a/(2a) =
√

1 − q2. For the parameters used in Fig. 4 we have r0a = 1.874.
For any given r0 from the interval (ρ0A, ρ0B) we can find the impact parameters B± at the lowest point of the upper forbidden corner and

at the highest point of the lower forbidden corner in the (r, b)-plane, and by repeating this procedure for a sequence of nearby r0’s covering
the interval (ρ0A, ρ0B) we can construct the lines B± in the (r0, b)-plane. The line B− lies under the line B+ inside the interval (ρ0A, ρ0B) and
merges with it at the end points of the interval; therefore, the two lines form a loop in the (r0, b)-plane. In region 𝒪 h+ i inside the loop, rays
can reach observers from both sides, from the horizon as well as from infinity, while at the boundary of 𝒪 h+ i (the line ∂𝒪 h+ i composed of
B+ and B−) the rays arrive at the observers from one side only, either from the horizon or from infinity. Let us discuss the position of the
points P± separating the two parts of the ∂𝒪 h+ i with opposite directions of the incoming light, and the behavior of the lines B± and B± in
their neighborhood.

As r0 rises from ρ0A to ρ0B, the radii R+ and R−, at which function b+ has minimum (radius R+) and function b− has maximum (radius
R−), change from ρA to ρB: the radius R+ first rises and then falls, while the radius R− first falls and then rises. Since ρA > ρ0A and ρB < ρ0B, both
radii necessarily equal r0 at some point, the radius R+ at r0 = R0+ and the radius R− at r0 = R0−. By the definition of points P±, the radii R0± are
the values of the radius r0 at which these points are located in the (r0, b)-plane. Obviously, functions B+(r0) and B+(r0) coincide at r0 = R0+,
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and functions B−(r0) and B−(r0) coincide at r0 = R0−. The radii r = R± are given by equation ∂rb±(r0, r) = 0 or, equivalently, by equation
∂rF(r0, r, b)∣ b=b±(r0 ,r) = 0. Thus, for radii r0 = R0± we have equation ∂rF(r0, r0, b)∣ b=B±(r0)

= 0. To put this into a compact form, introduce new
variables x = fb + 2au and y = 1 −Ω0b and write functions F and ∂rF as fF = D − x2

− fQ2y2 and ∂r( f F)∝ 1
2 μ − (x − 1

2 a)2
− 1

2 f Q̂ 2y2, where
Q2
= q2Γ2

0Dℛ, μ = 1
2( f D′r2

+ a2
) = r3

− 3r2
+ 2r + 1

2 a2 and Q̂ 2
= 1

2 r2
( f Q2

)
′
= q2Γ2

0νℛ, ν = r3
− 2r2

+ a2
− f Dr3

/r2
+. By combining equations

F(r0, r0, b) = 0 (definition of B±) and ∂rF(r0, r0, b) = 0, we obtain

Φ± ≡
1
2

μ0 − (X± −
1
2

a)2
−

1
2

ν0(1 − X2
±/D0) = 0, (D2)

where X± = x0(B±) = f0B± + 2au0. The desired radii are found by solving equations Φ± = 0 for r0; for the parameters used in Fig. 4 the radii
are R0+ = 1.965 and R0− = 3.593.

Points P± are not just common points of lines B± and B±; they are points of the tangency of those lines. This is clear from the very fact
that there is just one common point for each pair of lines, but it can be seen also from the behavior of functions B±(r0) and B±(r0) close to
R0±. Consider functions with index +. Since B+(r0) is the minimum of function b+(r0, r), there must hold B+ > B+ in the neighborhood of
R0+; however, this can be satisfied for r0 > R0+ only if dB+/dr0 ≥ dB+/dr0 at R0+, and for r0 < R0+ only if dB+/dr0 ≤ dB+/dr0 at R0+. Thus,
the derivatives of B+ and B+ coincide at R0+.

Equation Φ± = 0 has, in addition to solutions r0 = R0± depending on parameters a, rc and q, also solution r0 = 2 valid for all values of
parameters. Indeed, for r0 = 2 we have μ0 =

1
2 a2, X± = a and D0 = a2, so that Φ± = 1

4 a2
− (a − 1

2 a)2
= 0. However, this does not mean that

the radii R± merge with r0 twice, once at the static limit, provided it falls into the interval (ρ0A, ρ0B), and once outside it. The reason is that
the coefficient of proportionality in the expression for ∂rF contains factor f −2, so that the equation to be solved is actually f −2

0 Φ± = 0; and
since for r0 ∼ 2 it holds f0 = ε0/2 and Φ± = O(ε2

0), where ε0 = r0 − 2, the equation is in the generic case not solved by r0 = 2. If we introduce

constants k± = (p ∓ 1)/(p ± 1), where p = 1/
√

1 − q2, and denote l = 2/r+(2) = 2/(4 + r2
c)

1/2, we can write the coefficients in Φ± = K±ε2
0 as

K± = −(1 +
1
2

a2
)[2(1 +

1
2

a2
)a−2q−2

− l2
−

1
2
]k± +

3
2
+

1
8

a2.

The coefficients are both ∝ −a−2 for a ∼ 0, and as a rises to 1, K− stays negative, while K+ crosses 0 at some acrit < 1, provided q is not too
close to 1. If parameters rc and q are such as in Fig. 4, rc = 1 and q = 2/3, the critical value of a is acrit = 0.784. From the behavior of functions
Φ± at r0 = rh and r0 ≫ 1 it follows that they cross 0 at r0 > 2 if they touch the r0 axis from below at r0 = 2, and at r0 < 2 if they touch the r0
axis from above. Thus, R0− > 2 for all a’s and R0+ > 2 for a < acrit, but R0+ < 2 for a > acrit. The value of a used in Fig. 4 is a bit greater than
acrit, that is why point P+ is shifted a bit to the left of r0 = 2.

The derivatives of B± and B± at r0 = R0± are proportional to the function

(∂r0 F)0 = −2Q2
0Yy, Y = [(r0 − a2u2

0)r0/A0 − (r0 − 1)/D0 + r0/r2
0+]y + 2a(3r2

0 + a2
)b/A2

0,

evaluated at b = B±. The derivatives seem to be zero in Fig. 4, but in fact they are only almost zero. To see this, compare the radii R0± to the
radii R̂0± at which Y = 0: for the parameters used in Fig. 4 it holds R̂0+ = 1.944 and R̂0− = 3.580; hence, R̂0+ is close to R0+ and R̂0− is close
to R0−. By combining the expression for (∂r0 F)0 given above with the formula ∂bF0 = −2(x0 −Q2

0Ω0y), we find that dB/dr0 = −0.0794 at r0
= R0+ and dB/dr0 = 0.0074 at r0 = R0−.

APPENDIX E: ALLOWED REGIONS FOR FREELY FALLING OBSERVERS

We are interested in allowed regions in the (r0, b)-plane for rays seen by freely falling observers. Function F = Fu2 determining these
regions has again, as in the problem with LNRF observers analyzed in Appendix D, the form F = F̊ −𝒟ζ2; however, ζ is now given by
Eq. (11). Let us write the additional term appearing in F due to the presence of plasma as 𝒟ζ2

= γ(κ0 − ξ0η0)
2, where κ0 = 1 −Ω0b and γ

= q2Γ̂2
0𝒟ℛ. (If we wrote function F for a LNRF observer as quadratic polynomial in b, in the coefficients there would appear instead of

function Q2, function Q2
= Q2u2

= q2Γ2
0𝒟ℛ. Since γ is obtained from this function by replacing Γ0 → Γ̂0, we can write it as γ = Q̂ 2.) To

make formulas describing radiation seen by the two classes of observers more similar to each other, define an “effective LNRF parameter” q NR
= qΓ̂0/Γ0 = qΓ0; then, γ = q2

NRΓ2
0𝒟R and γ0 = q2

NR𝒜0.
A new feature of the theory in the case with freely falling observers is the identity F0 = η2

0. The difference between the two sides of the
equation can be written as the polynomial K0 + 2L0η0 +M0η2

0, where

K0 = − F̊0 + γ0κ2
0, L0 = −γ0ξ0κ0, M0 = 1 + γ0ξ2

0. (E1)

The polynomial has two roots η(±)0 = (−L0 ±
√

δ0)/M0, where δ0 = L2
0 − K0M0. Note that the coefficient in front of η2

0 can be written as M0

= 1 + q2
NR(1 − Γ−2

0 ).

J. Math. Phys. 65, 082501 (2024); doi: 10.1063/5.0200901 65, 082501-13

Published under an exclusive license by AIP Publishing

 28 February 2025 18:34:06

https://pubs.aip.org/aip/jmp


Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

By plugging expressions for K0, L0, M0 into the definition of δ0 we find δ0 =M0 F̊0 − γ0κ2
0. If we define a “modified effective LNRF

parameter” q̃ NR =M−1/2
0 q NR and introduce functions γ̃ = q̃2

NRΓ2
0𝒟R and F̃ NR = F̊ − γ̃κ2

0, we can write δ0 ∝ F̃ NR,0; thus, rays can reach the
observer at r = r0 with the desired frequency only if F̃ NR,0 ≥ 0. From the analysis of allowed regions in the (r0, b)-plane for LNRF observers
(see Appendix D) we know that parameter q̃ NR must be <1 in order that there exists a non-empty class of rays that arrive at the observer with
the desired frequency, and the rays must have b from the interval(s) delimited by functions B̃± = B±(q→ q̃ NR) [see Eq. (D1)], in order that
they fall into that class. Which rays are allowed depends on whether r0 is greater or less than radius r̃0a at which function B̃− has an asymptote:
for r0 > r̃0a the rays must have B̃− < b < B̃+, while for r0 < r̃0a they need to have either b < B̃+ or b > B̃−. Thus, similarly to the problem with
LNRF observers, there are two distinct allowed regions in the (r0, b)-plane: region 𝒪 I extended over all r0’s, with B̃− < b < B̃+ for r0 > r̃0a and
b < B̃+ for r0 < r̃0a; and region 𝒪 II extended over the interval r0 < r̃0a only, with b > B̃−.

At the boundaries of regions 𝒪 I and 𝒪 II rays do not have turning points as in the problem with LNRF observers; instead, they have a
nonzero rescaled radial velocity η0 there, η0 < 0 at ∂𝒪 I and η0 > 0 at ∂𝒪 II. Inside regions 𝒪 I and 𝒪 II we have two values of η0 assigned to each
point, one (η(−)0 in 𝒪 I and η(+)0 in 𝒪 II) with the same sign as η0 at the boundary of the region and another (η(+)0 in 𝒪 I and η(−)0 in 𝒪 II) with
opposite sign in a smaller region. In the latter case, the sign of η0 changes at lines B± given by equation F NR,0 = 0, where F NR = F̊ − γκ2

0.
As r0 decreases from ∞ to rh, Γ0 increases from 1 to ∞, and as a result, q̃ NR increases for the given q < 1 from q to 1 (since q̃ NR

= q NR/[1 + q2
NR(1 − Γ−2

0 )]
1/2
= q/[(1 − q2

)Γ−2
0 + q2

]
1/2

). If the value of q is fixed, the form of regions 𝒪 I and 𝒪 II changes substantially in the
vicinity of the horizon in comparison with what we have obtained for LNRF observers: rather than merge at b = bh on the horizon, the regions
become separated by a gap between b h± = b h/[1 ± (1 − q2

)
−1/2qb h]. For the parameters used in Fig. 5, bh+ = 1.045 and bh− = −2.188. (Thus,

the gap lays entirely under the merging point at bh = 4.) If we want to preserve the form of regions 𝒪 I and 𝒪 II as they look in the problem
with LNRF observers, we need to fix q̃ NR rather than q; for r0 decreasing from∞ to rh we will then have q decreasing from q̃ NR to 0 (since
q = q̃ NR/[(1 − q̃ 2

NR)Γ2
0 + q̃ 2

NR]
1/2

). Note that qNR increases with decreasing r0 from q̃ NR to q̃ NR/(1 − q̃ 2
NR)

1/2, which is >1 if q̃ NR > 1/
√

2. For
such q̃ NR the constant qNR surpasses 1 at some r0,lim > rh, which means that functions B± are defined only for r0 ≥ r0,lim – there is no change
of sign of η0 between rh and r0,lim. For the value q̃ NR = 2/3 used in Fig. 5, functions B± are defined for all values of r0.

We want to determine the lines dividing the (r0, b)-plane into regions 𝒪 h+ i, 𝒪′h and 𝒪′i. For LNRF observers, we did it by computing
functions B±, equal for each r0 to the value of b at the lowest point of the upper forbidden corner and at the highest point of the lower
forbidden corner in the (r, b)-plane. Calculation of B± was straightforward, since equation F(r, r0, b) = 0 for the boundaries of the corners,
lines b±(r, r0), was quadratic, and hence could be solved analytically. Now we have two classes of rays with different values of η0 – class I with
η0 = η(+)0 and class II with η0 = η(−)0 , so we have also two functions F ,

F (±) =F(η0 = η(±)0 ) = F̊ − γ̃(M−1
0 N0κ2

0 + ξ2
0 F̊0 ∓ 2ξ0M−1/2

0 F̃ 1/2
NR,0κ0), (E2)

where N0 = 1 − γ0ξ2
0 = 1 − q2

NR(1 − Γ−2
0 ). Values of b satisfying equations F (±) = 0 are now solutions to quartic equation F (+)F (−) = 0.

Even though there exists analytical solution in this case, too, it is not too practical to determine functions B± from it. Instead, we can compute
B± for both η(+)0 and η(−)0 by looking for the values of b for which the minimum of F (+) and F (−) crosses zero (which may or may not
happen for given r0).

The lines we are searching for were, in the problem with LNRF observers, just two parts of the boundary of region 𝒪 h+ i, separated by
points P±. Now they are still parts of that boundary, but they are separated by finite segments of lines B̃± rather than by points lying on them.
At the endpoints of these segments, points PA+ and PB+ on the line B̃+ and points PA− and PB− on the line B̃−, there are rays whose value of b
is either maximum (in points PA+, PB+) or minimum (in points PA−, PB−) among all rays coming to the observer with the desired frequency.
Rays in points PA± arrive from and rays in points PB± head for the peak of the forbidden region in the (r, b)-plane. Thus, radial coordinates
of the peaks, radii RA± and RB±, differ from radial coordinates of the observers, radii R0A± and R0B±: radii RA± are greater than R0A± and radii
RB± are less than R0B±. For the parameters used in Fig. 5, we have (R0A+, RA+) = (1.708, 1.900), (R0B+, RB+) = (2.405, 1.919), (R0A−, RA−)

= (2.859, 3.644) and (R0B−, RB−) = (4.548, 3.624).
Line B(+)

+
lying on the border of the upper part of region 𝒪(+)h+ i, adjacent to the arc PA+PB+, line B(+)

−
forming the boundary of the lower

part of region 𝒪(+)h+ i, adjacent to the arc PA−PB−, as well as lines B(−)
±

demarcating region 𝒪(−)h+ i, are all tangent to the boundaries of region 𝒪 I,
lines B(±)

+
to B̃+ and lines B(±)

−
to B̃−, just as in the problem with LNRF observers lines B± were tangent to lines B±. To see why, consider

lines in the vicinity of point PB+. In the vertical band of the diagram for rays of class I, where the boundary of region 𝒪 h+ i crosses the lines
r0 = const three times, we have, in addition to forbidden corner, a separate forbidden region in (r, b)-plane bounded from both sides in the
form of a slant cigar. Rays with b = B̃+ on the right of the point PB+, at r0 > R0B+, bounce back from the lower edge of a forbidden corner after
passing by the observer, while those on the left of the point PB+, at r0 < R0B+, hit the upper edge of a forbidden cigar. This leads, just as in the
problem with LNRF observers, to inequalities dB+/dr0 ≥ dB+(−)/dr0 for r0 → R+0B+ and dB+/dr0 ≤ dB(+)

+
/dr0 for r0 → R−0B+. The difference

is that now for r0 passing through R0B+ from values >R0B+, forbidden corner first shrinks to a point and then stretches to a forbidden cigar,
while before, as r0 passed through R0+, forbidden corner just shifted to the left without changing its form. However, numerical calculation
suggests that the transformation from a corner to a cigar, even though it seems discontinuous, is smooth enough to preserve the value of
dB/dr0.
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In the problem with freely falling observers, regions 𝒪 h+ i for rays of classes I and II look significantly different, each in its own
way, from region 𝒪 h+ i in the problem with LNRF observers. It is not only that, as we just discussed, they are attached to forbidden
regions at finite segments of their boundaries rather than touching them at a single point; region 𝒪 h+ i also shrinks to a point at a pair
of points Q

±
lying on the lines B± for rays of class I, and it is attached to the horizon in a finite interval of values of b for rays of

class II.
As seen in Fig. 5, the boundary of 𝒪(−)h+ i consists of two parts, broken arcs PA+PA− and PB+PB− intersecting at points Q

±
. The intersection

at Q
−

has the form of a “straight cross,” the cross at Q
+

is “inclined” (the detailed numerics shows that in fact the arc PB+PB− at Q
+

is first
deflected slightly to the left and only then turns sharply to the right). In the vicinity of point Q

−
there are two forbidden regions in the (r, b)-

plane, a cigar and an upper corner in a finite height above it, and as r0 passes through the radial coordinate of point Q
−

, rQ− = 3.494, the cigar
shrinks to a point and then stretches again, leaning to the other side than before. To the right of point Q

+
, there is a cigar and a lower corner

which approach each other as r0 passes through the radial coordinate of point Q
+

, rQ+ = 2.159, and at r0 < rQ+ only the corner remains. Since
the left boundary of the central part of region 𝒪(+)h+ i turns to the right under the point Q

+
, minimum radii (r0, r) in that region are just ρ(+)0A

= ρ(+)A = rQ+. For maximum radii numerical calculation yields (ρ(+)0B , ρ(+)B ) = (3.966, 3.161).
The endpoints of the interval of b where region 𝒪(−)h+ i is attached to the horizon coincide with impact parameters b̊ ph± of photon orbits

in vacuum. To see that, express additional term in F due to the presence of plasma as ΔF = −k2
0𝒟ℛ, where k0 = q NRΓ0κ̃0 and κ̃0 = κ0 − ξ0η0,

write the factor κ̃0 for rays of class II as κ̃0 = κ0 − ξ0(−L0 −
√

δ0)/M0 = [κ0 + ξ0(M0 F̃ NR,0)
1/2
]/M0, insert into the expression under the

square root F̃ NR,0 = F̊0 − γ̃0κ2
0 = (1 − q̃2

NR)𝒜0κ2
0 −𝒟0u2

0b2
/𝒜0 (this is just the expression for F0 obtained at the beginning of Appendix D,

with q replaced by q̃ NR) and take the limit r0 → rh. It holds ξ h = −𝒜
−1/2
h , M h = 1 + q2

NR = 1/(1 − q̃ 2
NR, h)

1/2 (since q NR, h = (q0Γ0)(r0 → r h)

= q̃ NR/(1 − q̃ 2
NR)

1/2) and F̃ NR, h = (1 − q̃2
NR)𝒜 h, so that κ̃ h ∝ κ h − ∣κ h∣ = 0 (since κh > 0 for b = b̊ ph±). Thus, for ε0 = r0/rh ≪ 1 we have

κ̃0 = O(ε0), and since Γ0 = O(ε−1/2
0 ), we have also k0 = O(ε1/2

0 ) and kh = 0. We see that function F(r, r0, b) reduces to F̊(r, b) at r0 = rh;
therefore, functions B±(r0), defined by equations F(r, r0, b) = ∂r F(r, r0, b) = 0, reduce to b̊ ph± at r0 = rh. For Kerr parameter a = 0.8 used in
Fig. 5, this yields extreme values of b for rays seen by an observer on the horizon (in the sense of limit) (B h+, B h−) = (3.237,−6.662). Finally,
since region 𝒪(−)h+ i is adjacent to the horizon, the radii from which radiation has access to the black hole are bounded only from above: for the
parameters used in Fig. 5, maximum radii (r0, r) are (ρ(−)0B , ρ(−)B ) = (11.378, 3.067).
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