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Abstract
Using the notion of distribution-valued tensor, we discuss the junction condi-
tions within the framework of f(Q)-gravity. We obtain the necessary and suffi-
cient conditions for two distinct solutions of the field equations to be smoothly
joined on a given separation hypersurface.

Keywords: f(Q)-gravity, junction conditions, extended theories of gravity

1. Introduction

General relativity (GR) is undoubtedly a cornerstone of modern physics. However, GR still
presents some shortcomings and inconsistencies at the astrophysical and cosmological scales,
as well as at the quantum level. In this regard, the need to explain phenomena such as dark
matter and dark energy, or to successfully integrate GR with quantum physics, has motivated
the study of several alternative theories of gravitation, nowadays known as extended theories
of gravity or modified gravity (ETG, MG) [1, 2].

Among the different ETGs developed during the last few decades, the so-called f(Q)-
gravity has recently attracted the interest of many researchers. f(Q)-gravity fits into the general
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context of metric-affine theories of gravity, where themetric and the affine connection are inde-
pendent geometrical quantities. More specifically, in f(Q)-gravity, the connection is assumed
to be torsionless and flat but not metric–compatible. The gravitational Lagrangian is a function
f(Q) of the nonmetricity scalarQ. Essentially, f(Q)-gravity generalizes symmetric teleparallel
gravity (STEGR) [3–5] just as f (R) theories do compared to GR [6, 7]. f(Q)-gravity has been
thoroughly investigated with interesting results in cosmological and astrophysical frameworks
[8–26].

In this note, we discuss the junction conditions arising from f(Q)-gravity. To the best of
the authors’ knowledge, this topic has only been partly addressed in the literature [14, 27–29],
with non-exhaustive results. The junction conditions ensure the smooth joining of two different
solutions of the field equations on a given separation hypersurface. Clearly, their broadest use
concerns astrophysical applications.

Following awell-known and consolidated approach [30–42], we analyze the junction condi-
tions for f(Q)-gravity within the framework of distribution–valued tensors [43, 44]. Borrowing
arguments and notations from [36], we deduce the necessary and sufficient conditions for two
given solutions can be smoothly joined in the distributional sense, so having a smooth trans-
ition at the level of field equations as well. Our findings are summarized into four Propositions
concerning the cases of null and non–null hypersurface separately, under two distinct assump-
tions: the request for regularity of the Riemann tensor across the separation hypersurface or
no requirement concerning the regularity of the Riemann tensor. If the separation hypersur-
face is timelike or spacelike, the necessary and sufficient conditions coincide. Instead, for null
hypersurfaces, they differ slightly. As expected, compared to GR, new conditions arise that
explicitly involve the nonmetricity tensor.

Section 2 briefly reviews some generalities about f(Q)-gravity. Section 3 discusses junc-
tion conditions. Section 4 is devoted to conclusions. Throughout the paper natural units
(c= 8πG= 1) and metric signature (−,+,+,+) are used.

2. f(Q)-gravity

LetM be a spacetime manifold endowed with a metric tensor gij and an affine connection Γijk

which is assumed to be torsion free (Sijk := Γij
k−Γji

k = 0). After introducing the nonmetricity
tensor

Qkij =∇kgij (1)

where ∇k is the covariant derivative associated with the given affine connection Γij
k, we can

decompose the affine connection itself as

Γij
k = Γ̃ij

k+Nij
k (2)

In equation (2) Γ̃ijk denotes the Levi–Civita connection induced by the metric tensor gij

Γ̃ij
k =

1
2
gkh

(
∂gjh
∂xi

+
∂gih
∂xj

−
∂gij
∂xh

)
(3)

whereas Nijk indicates the disformation tensor

Nij
k =

1
2

(
Qk

ij−Qi
k
j−Qj

k
i
)
. (4)

Making use of the two distinct traces of the nonmetricity tensor

qh = Qhi
i and Qh = Qih

i. (5)
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the nonmetricity scalar can be defined as

Q=
1
4
QhijQ

hij− 1
2
QhijQ

ijh− 1
4
qhq

h+
1
2
qhQ

h. (6)

The latter can also be expressed as

Q=−QhijP
hij (7)

after introducing the tensor

Phij =−1
4
Qh

ij+
1
4
Qij

h+
1
4
Qji

h+
1
4
qhgij−

1
4
Qhgij−

1
8
δhi qj−

1
8
δhj qi (8)

f (Q)-gravity is a metric–affine theory of gravitation whose gravitational Lagrangian is a func-
tion f (Q) of the nonmetricity scalar. More in detail, the action functional is given by

A=

ˆ [
−1

2

√
−gf(Q)+λh

kijRhkij+λh
ijSij

h+Lm

]
d4x (9)

where f(Q) is a given function of the nonmetricity scalar, Lm indicates the matter Lagrangian
density, Rhkij and Sijk are the curvature and the torsion of the dynamic connection, and λabij and
λa

ij are Lagrange multipliers. By varying with respect to the Lagrange multipliers, we obtain
the constraints

Rhkij = 0 and Sij
h = 0 (10)

which imply that the dynamic connection is flat and torsionless. Variations with respect to the
metric and the connection yield field equations of the form

2√
−g

∇h
(√

−gf ′Phij
)
+

1
2
gij f(Q)+ f ′

(
PiabQj

ab− 2Qab
iPabj

)
= Tij (11)

and

∇pλh
jip+λh

ij−
√
−gf ′Pijh =Φij

h, (12)

where the quantities

Tij :=− 2√
−g

δLm

δgij
and Φij

h :=−1
2
δLm

δΓijh
(13)

are the energy-momentum and the hypermomentum tensors, respectively. In the case the
hypermomentum is zero, the usual conservation laws

∇̃jT
ij (14)

hold, where ∇̃ denotes the Levi–Civita covariant derivative. Moreover, the constraints (10)
ensure the existence of local coordinates in which the connection coefficients are zero. The
choice of the dynamic connection is then a pure gauge. Once this choice has been made,
equation (12) are intended for the determination of the Lagrangian multipliers only. On the
other hand, Lagrangian multipliers do not enter the field equation (11), and then their determ-
ination can be omitted together with equation (12). To conclude, it is worth noticing that after
separating Levi–Civita contributions from nonmetricity ones, the field equation (11) can be
recast in the Einstein-like form

G̃ij =
1
f ′
Tij−

1
2
gij

(
f
f ′
−Q

)
− 2

f ′ ′

f ′
Phij∂hQ (15)
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where G̃ij is the Einstein tensor generated by the Levi–Civita connection of the metric gij. In
general, hereafter, we will denote by the tilde symbol all quantities associated with the Levi–
Civita connection.

3. Junction conditions

We discuss the problem of joining together, on a given hypersurfaceΣ, two different solutions(
g+ij ,Γ

+ h
ij

)
and

(
g−ij ,Γ

− h
ij

)
of the field equations (10) and (15). We imagine that Σ separates

two distinct regions M+ and M− of spacetime, where the two solutions are respectively
defined. First, we assume Σ to be either timelike or spacelike hypersurface. We will address
the case of null hypersurface after.

Borrowing ideas and notations from [36], we deal with the problem of junction conditions
in the framework of distribution–valued tensors [31–33, 43, 44]. To this end, we preliminarily
introduce a coordinate system xi, locally overlapping both M+ and M− in a neighborhood
of Σ. Also, we refer the hypersurface Σ to local coordinates yA (A= 1, . . . ,3). Moreover, we
denote by

[W] :=W
(
M+

)
|Σ −W

(
M−)

|Σ (16)

the jump across Σ of any geometric quantity W defined on both sides of the hypersurface.
After that, we need a function over spacetime whose sign allows us to distinguishM+ from

M−. The latter can be defined by considering the arc’s length s between any point p ∈M and
Σ, measured along the geodesic normal to Σ and passing through p. For such geometrical
construction, one of the two metrics needs to be chosen, for instance, g+ij . Without loss of
generality, we can suppose to have s< 0 in M−, s> 0 in M+ and s= 0 at Σ. Denoting by ni

the unit normal (with respect to the chosen metric) outgoing from Σ, the following identities
hold

dxi = ni ds, ni = ϵ
∂s
∂xi

and ni ni = ϵ (17)

where ϵ= 1 if Σ is timelike, ϵ=−1 if Σ is spacelike.
Now, introducing the Heaviside distributionΘ(s) (withΘ(0) := 1) and taking into account

the two solutions
(
g+ij ,Γ

+ h
ij

)
and

(
g−ij ,Γ

− h
ij

)
as above, we define the distribution–valued

quantities

gij =Θ(s) g+ij +(1−Θ(s)) g−ij (18a)
Γ h
ij =Θ(s)Γ+ h

ij +(1−Θ(s))Γ− h
ij . (18b)

We want to study the conditions under which the quantities (18) represent a solution of the
field equations (10) and (15) on the entire spacetime in a distributional sense. At the same time,
denoting by Γ̃+ h

ij and Γ̃− h
ij the Levi–Civita connections defined inM+ andM− respectively,

we also require that the quantity

Γ̃ h
ij =Θ(s) Γ̃+ h

ij +(1−Θ(s)) Γ̃− h
ij (19)

be the Levi–Civita connection associated with the metric (18a), and

R̃hkij =Θ(s) R̃+h
kij+(1−Θ(s)) R̃−h

kij (20)

be its Riemann tensor, i.e. the curvature tensor induced by the connection (19), still in a dis-
tributional sense. Hereafter, we will use the term Riemann tensor exclusively to indicate the
curvature tensor of the Levi–Civita connection. In equation (20), R̃+h

kij and R̃
−h
kij are then the

4
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Riemann tensors inM+ andM− respectively. Condition (20) is nothing else the requirement
of regularity across the separation hypersurface Σ for the Riemann tensor R̃hkij. For instance,
this is consistent with the interpretation of f(Q)-gravity, according to which nonmetricity gen-
erates modified Einstein equations via a suitable variational principle, but the gravitational
field continues to be represented by the Levi–Civita connection Γ̃ h

ij . By this, we mean that
the free–fall motions are the geodesics of the Levi–Civita connection, so gravitation remains
connected to the Riemann tensor R̃hkij, hence the requirement for its regularity. The above
interpretation reflects the ideas of [10, 12–14], but it should be pointed out that in literature
these aspects are still matter of debate and other points of view exist.

The first condition that must be satisfied is the consistency of (18) with the kinematic
equation (1). In this regard, inserting equations (2) and (18b) into equation (1) and separat-
ing all the contributions due to the Levi–Civita connection from those due to nonmetricity, we
get the relation

∇h gij =Θ(s)Q+
ijh+(1−Θ(s))Q−

ijh+ ϵnh [gij]δ (s) (21)

where the identities ∂s
∂xi = ϵni,

dΘ(s)
ds = δ(s),Θ2(s) = Θ(s) andΘ(s)(1−Θ(s)) = 0 have been

used. The required consistency is achieved if the term involving the Dirac δ-function vanishes.
This implies the condition

[gij] = 0 (22)

amounting to the continuity of the two metric tensors g+ij and g−ij across the hypersurface
Σ. Condition (22) also guarantees consistency of equation (18a) with the definition of the
Christoffel coefficients (3). As a matter of fact, evaluating the Christoffel coefficients of the
metric (18a), one gets

Γ̃ijh =Θ(s) Γ̃+
ijh+(1−Θ(s)) Γ̃−

ijh (23)

where the identity ∂gij
∂xk =Θ(s)

∂g+ij
∂xk +(1−Θ(s))

∂g−ij
∂xk + ϵδ(s) [gij] nk has been systematically

used together with equation (22).
Further junction conditions can be derived by requiring smooth transition across Σ at the

level of the dynamic equations (10) and (15). To see this point in detail, we start by imple-
menting equation (10), evaluated for the affine connection (18b). Making use of the identity
∂Γ h

ij

∂xk =Θ(s)
∂Γ+ h

ij

∂xk +(1−Θ(s))
∂Γ− h

ij

∂xk + ϵδ(s)
[
Γ h
ij

]
nk, we have

Rpqij =Θ(s)R+p
qij+(1−Θ(s))R−p

qij+ δ (s) Apqij = δ (s) Apqij = 0 (24)

where

Apqij := ϵ
([

Γ p
jq

]
ni −

[
Γ p
iq

]
nj
)
. (25)

The field equations for the curvature of the dynamic connection Γ h
ij are then satisfied if and

only if the tensor Apqij vanishes. In order to discuss this condition, it is convenient to separate
the Levi–Civita contributions from the nonmetricity ones. Given equation (2), we easily obtain

Apqij = Ãpqij+ Āpqij (26)

where

Ãpqij = ϵ
([

Γ̃ p
jq

]
ni −

[
Γ̃ p
iq

]
nj
)

(27)

5



Class. Quantum Grav. 41 (2024) 187001 Note

is the quantity due to the Levi–Civita connection, and

Āpqij = ϵ
([
N p
jq

]
ni −

[
N p
iq

]
nj
)

(28)

is the quantity due to nonmetricity. If in addition to this we require that the Riemann tensor
R̃pqij associated with the metric (18a) is regular on the separation hypersurface Σ as well, both

quantities Ãpqij and Ā
p
qij must vanish separately.

As for the quantity Ãpqij, its analysis is closely connected with the requirement of smooth
transition across Σ for the Einstein-like equation (15). The discussion on this point is very
similar to that given in [36] for Einstein equations in GR. Therefore, here we recall only the
main steps and outcomes for brevity, referring the reader to [36] for more details.

The jump of the partial derivatives of the metric can be expressed using a two-rank sym-
metric tensor kij on Σ, in such a way that one has[

∂gij
∂xh

]
= kij nh. (29)

Making use of (29), we obtain the expressions[
Γ̃ h
ij

]
=

1
2

(
khj ni + khi nj− kij n

h
)

(30)

by which we get the explicit representation

Ãpqij =
ϵ

2

(
kpj nq ni − kpi nq nj− kqj n

p ni + kqi n
p nj

)
. (31)

The expression (31) enables us to calculate the Einstein tensor, which is associated with the
(distribution–valued) metric tensor (18a)

G̃ij =Θ(s) G̃+
ij +(1−Θ(s)) G̃−

ij + δ (s) S̃ij (32)

where G̃+
ij and G̃−

ij are the Einstein tensors induced by the metric tensors g+ij and g−ij respect-
ively, and

S̃ij :=
ϵ

2

(
kpj ni np− kni nj− kijϵ+ kip n

p nj
)
− ϵ

2
(kst n

s nt− ϵk) gij. (33)

By construction, the tensor (33) is symmetric and tangent to the hypersurface Σ. Denoting by
EiA :=

∂xi

∂yA the components of the vectors tangent to the coordinate lines of the surface Σ, S̃ij
possesses an equivalent representation of the form

S̃AB := S̃qjE
q
AE

j
B =−1

2
kqjE

q
AE

j
B+

1
2
kpqh

pq hAB (34)

where hpq := gpq− ϵnp nq and hAB := gijEiAE
j
B are the projection operator and the inducedmet-

ric on Σ respectively. In connection with this, after introducing the extrinsic curvature

KAB :=
(
∇̃i nj

)
EjAE

i
B (35)

we have the identity

S̃AB :=−ϵ([KAB]− [K] hAB) (36)

where [K] := [KAB] hAB. The conclusion follows that the vanishing of the term S̃ij amounts
to the vanishing of the jump of the extrinsic curvature. A smooth transition across Σ of the
Einstein-like equations (15) implies then that

[KAB] =
ϵ

2
kijE

i
AE

j
B = 0. (37)

6
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In addition to removing the δ-function term from the left-hand side of the Einstein-like
equations, condition (37) ensures that Ãpqij = 0 as well. This can be verified by evaluating
the tensor (31) on the tensor products of the elements of the basis {ni,EiA}. In such a circum-
stance, the Riemann tensor generated by the metric (18a) is nonsingular at Σ. Moreover, if
condition (37) holds, the vanishing of tensor (26) reduces to the vanishing of (28), thus([

N p
jq

]
ni −

[
N p
iq

]
nj
)
= 0. (38)

Furthermore, denoting by

T̄ij :=
1
f ′
Tij−

1
2
gij

(
f
f ′
−Q

)
− 2

f ′ ′

f ′
Phij∂hQ (39)

the effective energy-momentum tensor on the right-hand side of (15), we have the identity

Θ(s) G̃+
ij +(1−Θ(s)) G̃−

ij =Θ(s) T̄+ij +(1−Θ(s)) T̄−ij (40)

where the left hand side of (40) is just the distribution–valued Einstein tensor induced by
the metric (18a) when condition (22) and (37) hold. Consistency with the distributional
approach would require that the right-hand side of equation (40) coincide with the analog-
ous term calculated starting from the distributional solution and in particular from Phij =
Θ(s)P+h

ij+(1−Θ(s))P−h
ij and Q=Θ(s)Q+ +(1−Θ(s))Q−. In order for this request to

be satisfied, the following conditions have to hold(
f ′ ′
)+
|Σ = 0 ∪ P+h

ijnh|Σ = 0 ∪ [Q] = 0. (41)

This is because the δ-function term which arises on the right-hand side of the field
equations (15), and which has to be zero, is of the form

δ (s)ϵ

(
−2

f ′ ′

f ′

)+

P+h
ijnh [Q] . (42)

It is worth noticing that the term (42) follows from defining the Heaviside function at zero as
Θ(0) = 1. By defining Θ(0) = 0, we would get a similar expression but involving quantities
evaluated on M−. On the other hand, when discussing junction conditions, other authors are
used to adopting a not-defined Heaviside function at zero. If we followed this convention, the
singular term arising from the effective energy-momentum tensor (39) would be of the form

−2ϵ

{
Θ(s)

(
f ′ ′

f ′

)+

P+h
ij+(1−Θ(s))

(
f ′ ′

f ′

)−

P−h
ij

}
nh [Q]δ (s) (43)

and it would not be well defined as a distribution-valued tensor due to the presence of the
productsΘδ. Therefore, it would be ambiguous to set the term (43) equal to zerowhen the latter
is not well defined. This ambiguity is easily overcome by defining the Heaviside function at
zero. Furthermore, defining the Heaviside function at zero allows us to give full meaning to the
term (42), which is interpretable as the energy-momentum tensor of the thin shell separating
M+ from M− when conditions (41) are not met.

Summarizing all the obtained results, we may state the following

Proposition 3.1. Given a timelike or spacelike hypersurface Σ, requirements (22), (37), (38)
and (41) are necessary and sufficient conditions for the quantities (18) to be well-posed solu-
tions of the field equations (10) and (15) in the distributional sense, and for the Riemann tensor
induced by metric (18a) to be nonsingular on the separation hypersurface Σ.

7
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As a further remark, it is worth noticing that the absence of the δ-function term in the
Einstein equations (32) allows us to recast them in the equivalent form

Θ(s) R̃+
ij +(1−Θ(s)) R̃−

ij =Θ(s)

(
T̄+ij −

1
2
T̄+ g+ij

)
+(1−Θ(s))

(
T̄−ij −

1
2
T̄− g−ij

)
(44)

R̃ij denoting the Ricci tensor and T̄ := T̄ijgij the usual trace. Additionally, by saturating (38)
with his n

j (where his := δis− ϵni ns) we get necessary conditions[
N h
sk

]
=
[
N h
ik

]
ni ns ϵ ⇒

[
N h
sk

]
hsi =

[
N h
ks

]
hsi = 0 (45)

to be satisfied by the jump of the disformation tensor.
We carried out the previous discussion under the requirement that also the Riemann tensor

R̃hkij be regular on the separation hypersurface. This condition is very strong and leads to find-
ings very similar to those of GR. Actually, we can study junction conditions even without
adopting such an assumption. Indeed, making use of the previous calculations, it is easily seen
that the vanishing of the δ-term arising in the Einstein–like equations (15) yields the set of
equations

[KAB]− [K] hAB = 2

(
f ′ ′

f ′

)+

P+h
ijnhE

i
AE

j
B [Q] (46a)(

f ′ ′

f ′

)+

P+h
ijnhn

inj [Q] = 0,

(
f ′ ′

f ′

)+

P+h
ijnhE

i
An

j [Q] = 0 (46b)

where we used the fact that the tensor S̃ij is tangent to the hypersurface Σ and where now the
two sides of equation (46a) are not forced to be separately zero. In particular, equation (46a)
can be recast in the equivalent form

[KAB] = 2

(
f ′ ′

f ′

)+

P+h
ijnh [Q]

(
EiAE

j
B−

1
2
hijhAB

)
(47)

which expresses the jump of the extrinsic curvature in terms of contributions due to nonmet-
ricity and the function f(Q). After that, the field equations (10) impose the vanishing of the
tensor (25) which generates the equations[

Γ̃ p
jq

]
ni −

[
Γ̃ p
iq

]
nj =−

[
N p
jq

]
ni +

[
N p
iq

]
nj (48)

relating the jumps of the Levi–Civita connection to the jumps of the disformation tensor. Once
again, we can summarize our findings by the following

Proposition 3.2. Given a timelike or spacelike hypersurface Σ, requirements (46b), (47)
and (48) are necessary and sufficient conditions for the quantities (18) to be well–posed solu-
tions of the field equations (10) and (15) in the distributional sense.

Thus, when the regularity requirement for the Riemann tensor is removed, we obtain junc-
tion conditions where Levi–Civita contributions are coupled to nonmetricity ones. In particu-
lar, equation (47) implies that the jump of the extrinsic curvature is related to the jump of the
nonmetricity scalar together with the values of the second derivative f ′′ and the tensor Phij at
Σ. In addition, equation (48) shows that the jumps of the Levi–Civita connection are related
to the jumps of the disformation tensor. The above are relevant differences compared to the
case in which the regularity of the Riemann tensor is imposed.

8
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We discuss now the case in which Σ is a null hypersurface, described by an equation of the
form Φ(xi) = 0. Borrowing again from [36], in such a circumstance the normal vector ni can
be expressed as

ni = α−1∂iΦ (49)

where α is a suitable non–zero function on Σ. Without loss of generality, we can suppose that
M+ and M− correspond to the domains where Φ is positive and negative, respectively. We
refer Σ to local coordinates (λ,yA), A= 1,2, in such a way that ni = ∂xi

∂λ and niEiA = 0, with

EiA :=
∂xi

∂yA . The matching on Σ of two solutions of the field equations is given by

gij =Θ(Φ) g+ij +(1−Θ(Φ)) g−ij , (50a)

Γ h
ij =Θ(Φ)Γ+ h

ij +(1−Θ(Φ))Γ− h
ij . (50b)

By repeating similar reasoning as in previous timelike or spacelike cases, the kinematic
equation (1) yields again the continuity condition for the metric tensor, [gij] = 0. To proceed
further, we need to introduce a transverse vector field Ni on Σ, satisfying the requirements
Nini =−1, NiNi = 0, NiEiA = 0 and complementing {ni,EiA} to a basis of TΣM. After that, we
also introduce the transverse metric

hij = gij+ niNj+ njNi. (51)

The curvature tensor of the connection (50b) is of the form

Rpqij = δ (Φ)
(
Ãpqij+ Āpqij

)
(52)

with

Ãpqij = α
([

Γ̃ p
jq

]
ni −

[
Γ̃ p
iq

]
nj
)

and Āpqij = α
([
N p
jq

]
ni −

[
N p
iq

]
nj
)
. (53)

Once again, we analyze the two contributions (53) separately. As for the term Ãpqij, the con-
tinuity across Σ implies that the derivatives of the metric tensor may have discontinuities only
along the transverse direction, comparedwith the other directions given by the vectors {ni,EiA}.
So we can infer the existence of a tensor field γij on Σ, such that

γij =−
[
∂gij
∂xs

]
Ns ⇐⇒

[
∂gij
∂xs

]
= γijns. (54)

In view of equation (54), the jump of the Christoffel symbols can be expressed as[
Γ̃ h
ij

]
=

1
2

(
γhj ni + γhi nj− γij n

h
)
. (55)

Replacing (55) in the first of (53), we get the representation

Ãpqij =
α

2

(
γpjnqni − γpinqnj− γjqn

pni + γiqn
pnj

)
(56)

and then the identity

Ãij−
1
2
Ãgij =

α

2

(
γihn

hnj+ γjhn
hni − γhhninj− γhkn

hnkgij
)
. (57)

Tensor (57) is the term responsible for the presence of the δ-function singularity in the Einstein
tensor generated by the distribution-valued metric (50a). Therefore, a smooth transition across
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the hypersurface Σ at the level of the Einstein-like equations needs the following identity to
hold on to the separation hypersurface Σ

Ãij−
1
2
Ãgij = α

(
−2

f ′ ′

f ′

)+

P+h
ijnh [Q] . (58)

If we require that the Riemann tensor, induced by (18a), is smooth across Σ and that the
same holds for the corresponding Einstein tensor, both sides of equation (58) have to vanish
separately. In particular, tensor (57) can be decomposed as

Ãij−
1
2
Ãgij =

α

2

{
−γhkn

hnkhij+ γshn
h
(
hsjni + hsinj

)
− γhkh

hkninj
}
. (59)

The conclusion follows that the vanishing of (57) amounts to the vanishing of the projections

γhkn
hnk = 0, γshn

hhsj = 0, γhkh
hk = 0. (60)

The quantities in equation (60) are connected with the jump of the transverse curvature, defined
as the projection onΣ of the covariant derivative ∇̃iNj. Indeed, givenCλλ := (∇̃iNj)ninj,Cij :=
(∇̃sNt)hsih

t
j, Ciλ := (∇̃sNt)hsin

t and Cλ i := (∇̃sNt)htin
s we have

[Cλλ] =−1
2
γhkn

hnk, [Cij] = [Cji] =−1
2
γhkh

h
i h

k
j , [Ciλ] = [Cλ i] =−1

2
γshn

hhsi . (61)

Clearly, the vanishing of the quantities (61), namely

[Cλλ] = 0, [Cij] = [Cji] = 0, [Ciλ] = [Cλ i] = 0 (62)

ensures that conditions (60) are satisfied. Moreover, whenever conditions (62) are satisfied,
the tensor (56) is null. Again, this can be verified by evaluating tensor (56) on all the possible
tensor products of the basis {Ni,ni,EiA}. The above discussion is summarized by the following

Proposition 3.3. If the separation hypersurface Σ is null, equations (22), (38), (41) and
(60) are necessary conditions for the quantities (50) to be distributional solutions of the
field equations and the corresponding Riemann tensor to be smooth across Σ. Instead,
equations (22), (38), (41) and (62) are sufficient conditions.

As above, we can discuss the junction conditions without imposing any regularity on the
Riemann tensor R̃hkij in the case of null hypersurface too. In such a circumstance, the junction
conditions which must be met come from equations (48) and (58). In particular, making use of
the projection operator induced by the transversemetric (51), equation (58) can be decomposed
in the equivalent form

[Cλλ]hij =−2

(
f ′ ′

f ′

)+

P+h
tsnhh

t
ih
s
j [Q] ⇒ [Cλλ] =−

(
f ′ ′

f ′

)+

P+h
tsnhh

ts [Q] (63a)

[Cjλ] =−2

(
f ′ ′

f ′

)+

P+h
tsnhN

thsj [Q] , [Cij]h
ij =−2

(
f ′ ′

f ′

)+

P+h
tsnhN

tNs [Q] (63b)

(
f ′ ′

f ′

)+

P+h
tsnhn

thsj [Q] = 0,

(
f ′ ′

f ′

)+

P+h
tsnhn

tns [Q] = 0,

(
f ′ ′

f ′

)+

P+h
tsnhN

tns [Q] = 0.

(63c)

We can again summarize our results by stating the following

10
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Proposition 3.4. If the separation hypersurface Σ is null, equations (48), (63a), (63b)
and (63c) are necessary and sufficient conditions for the quantities (50) to be distributional
solutions of the field equations without any singularity across Σ.

Even in the case of null hypersurface, by omitting the regularity of the Riemann tensor, we
obtain some junction conditions where Levi–Civita and nonmetricity contributions are coupled
(see equations (63a) and (63b)).

To conclude, we give the junction conditions for the Lagrangian multipliers appearing in
equation (12). According to the usual procedure, the Lagrangian multipliers could be joined
by setting

λh
jip =Θλ+ jip

h +(1−Θ)λ− jip
h (64)

λh
ij =Θλ+ ij

h +(1−Θ)λ− ij
h . (65)

Inserting equations (64) and (65) into equation (12), we would get a distributional equation
where a singular δ-term proportional to

np
[
λh

jip
]

(66)

would appear. The Lagrange multipliers are used to implement a constrained variational prob-
lem in an extrinsic way, namely, by working on the entire space of connections without requir-
ing that the deformations of the admissible connections are flat and torsionless. In particular,
the constraints on the curvature tensor are non–holonomic (they concern the first–order jet of
the connection) and are imposed via a vakonomic variational principle [45]. As often happens
in these cases, the Lagrange multipliers do not appear to be directly connected to any physical
or geometrically relevant quantity. This, together with the fact that Lagrange multipliers do not
enter the Einstein–like equations (11), shows that their junction does not influence the other
junction conditions unless a singularity is present in the hypermomentum tensor. As there is
no evidence that singularity exists in standard matter models, we can conclude that the junc-
tions (64) and (65) are not physically relevant. Clearly, the joining of the Lagrange multipliers
might still be required if the regularity of equation (12) across the hypersurface Σ were neces-
sary for alternative matter models or ulterior motives. In such a circumstance, the vanishing of
the term (66) should be added to the other junction conditions.

4. Conclusion

Within the framework of distribution–valued tensors, we discussed the junction conditions for
f(Q)-gravity. f(Q)-gravity is a metric–affine theory where, in addition to the metric, further
geometric degrees of freedom appear, given by the nonmetricity tensor.

As in any metric-affine theory, also in f(Q)-gravity, it is necessary to decide on free–fall
motions: do the geodesics of the Levi–Civita connection describe them, or are they geomet-
rized by the autoparallel curves of the dynamic connection?

In the first hypothesis, gravity necessarily remains described by the Riemann tensor, i.e. by
the curvature of the Levi–Civita connection. In contrast, nonmetricity is responsible for modi-
fying Einstein’s equations, possibly accounting for the dark components of the Universe.
Clearly, in this scenario, the junction conditionsmust also include the regularity of the Riemann
tensor across the separation hypersurface in addition to the regularity of the joined solutions
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and the field equations, which are assumed as distribution-valued quantities. In this circum-
stance, the analysis of the junction conditions is very similar to that which is usually carried
out in GR, with results that incorporate and extend those of GR. In fact, on the one hand, we
found the same conditions on the jumps of the metric and the extrinsic curvature (or transverse
curvature when the separation hypersurface is null) that are valid in GR (theymust be zero). On
the other hand, we obtained new conditions that involve the jumps of the disformation tensor
as well as the second derivative of the function f(Q) and the tensor Phij at Σ, and the jump
of the nonmetricity scalar. The relevant point is that the conditions on metric and extrinsic
(transverse) curvature on the one hand and those on quantities related to nonmetricity on the
other are decoupled.

Nonetheless, junction conditions in f (Q)-gravity can also be studied by removing the
requirement for regularity of the Riemann tensor. This could correspond to the scenario in
which the free-fall motions no longer correspond to the geodesics of the Levi–Civita connec-
tion and gravity is no longer related to the Riemann tensor. Therefore, the regularity of the
Riemann tensor would no longer be strictly necessary. In this case, we derived junction con-
ditions that differ markedly from those that apply in GR. In particular, this is true for the jump
of the extrinsic curvature (transverse curvature for null hypersurfaces), which now is related
to the jump of the nonmetricity scalar together with the values of the second derivative f ′′ and
the tensor Phij at Σ. Moreover, the jumps of the Levi–Civita connection result are related to
the jumps of the disformation tensor. In general, by removing the regularity of the Riemann
tensor from the junction requirements, we got junction conditions where Levi–Civita con-
tributions are coupled to nonmetricity ones. This represents the most remarkable difference
compared to the case where the Riemann tensor is imposed to be regular. However, it is worth
noticing that when the function f(Q) is linear, or the jump of the nonmetricity scalar is zero,
junction conditions are seen to coincide with those of the first analysis, independently of the
requirements imposed on the Riemann tensor. The first circumstance is expected because, for
f(Q) linear, we recover symmetric teleparallel gravity, which is equivalent to GR, at least at
the level of Einstein equations. Instead, the condition [Q] = 0 makes a large number of the
obtained junction conditions automatically satisfied and brings the analysis back under the
regularity assumption for the Riemann tensor.

Junction conditions find their natural application at the astrophysics level, where usually
internal and external solutions to given astrophysical objects must be joined. Therefore, the
findings of this note can be useful in the study of astrophysical models within the f(Q)-gravity.
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