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Nonsingular horizonless ultracompact objects provide a simple resolution to the black holes singularity
problem. It has been shown that, if these objects are compact enough to exhibit the presence of the light ring
required to mimic the phenomenology of general relativity black holes, they must have at least one
additional light ring. The stability of the inner light ring has been proven under the assumptions of Einstein
equations and the validity of the null energy condition. Since this can have important repercussions on the
instability of a horizonless ultracompact object and the existence of the latter requires some modified
gravitational dynamics and/or exotic matter, it is desirable to obtain a model-independent proof of the
stability of the additional light ring. In this paper, we prove the stability of the inner light ring without any
assumption on the dynamics of the theory, while assuming that the outer light ring has the same properties
as the Kerr light ring. Given the stringent observational constraints on the geometry at the outer light ring
scale, our result now rests solely on geometric considerations and applies to any theory of gravity with any
matter content that cannot be ruled out by observations.
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I. INTRODUCTION

Black holes represent both one of the biggest successes
of general relativity and one of its longstanding challenges.
While observational tests coming from the LIGO/Virgo
[1–4], the EHT [5,6], and the GRAVITY [7] collaborations
provide remarkable confirmations of the prediction of the
theory, it is well known that general relativity also predicts
its own limitations. A series of fundamental results teach us
that physically realistic initial conditions will unavoidably
produce a singular black hole spacetime [8–10]. However, a
singularity is nothing but a region missing from the
spacetime that cannot be described by general relativity.
Therefore, at least close to the singularity, we need to
introduce new physics and we expect that singularities will
not be produced once these effects are taken into account.
Among the possible classes of nonsingular spacetimes

[11–13] that can mimic the phenomenology of black holes,
horizonless ultracompact objects (UCOs) are characterized
by the absence of any horizon [14–20] which makes it
possible for deviations from to black hole spacetimes to be
in principle observable. In particular, while the geometry is
weakly constrained at the horizon scale, tests at the light
ring (LR) scale are very precise [21–30]. Therefore, UCOs
do not need to have an horizon, but must possess a LR
which closely approximates the LR of Kerr black holes in
order to pass the observational requirements.
In Ref. [31] it was proved that an axisymmetric and

stationary UCO that is compact enough to have at least one
LR must contain at least one extra LR. Furthermore, the
nature of the light rings is not arbitrary. Reference [31] also

proves that at least one LR must be stable. This result is
obtained either restricting to a spherically symmetric space-
time or with the use of the null convergence condition
(which in general relativity is equivalent to the null energy
condition). This is a crucial result in the understanding of the
physics of UCOs as there is evidence that the presence of a
stable LR leads to a nonlinear instability of the UCO due to
the piling up of perturbation at the minimum of the effective
potential [32]. Thiswas explicitly shown for somemodels of
boson stars [32], but the slowdecay of the linear perturbation
hints that the instability might be universal [33–35] (see,
however [36]).
However, the assumptions on the dynamics of the theory

are an important restriction on the applicability of the result
in [31]. Gravitational collapse in general relativity leads to
the formation of Kerr black holes. Therefore, the creation of
UCOs requires either new physics or exotic matter. The
effects of such modifications cannot be negligible at the
scale of the inner LR as theKerr geometry does not possess a
stable LR. Furthermore, we know that the null energy
condition can be easily violated by quantum fields [37].
Therefore, it is definitely preferable to avoid any assumption
on the physics at the inner LR scale.
In this paper, we show that the conditions on the

dynamics of the theory can be substituted by geometrical
assumptions at the scale of the standard LR. In other words,
we show that sny axisymmetric UCO invariant under
simultaneous reflections ðt;ϕÞ → ð−t;−ϕÞ that has a LR
which mimics the LR of a Kerr black hole must possess at
least one stable LR for each rotation sense.
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The requirement that the LR “mimics” the LR of a Kerr
black hole will be made precise later on. This generaliza-
tion vastly increases the regime of applicability of the
result, making it valid for any theory of gravity regardless
of the matter content being considered. Of course, the
requirement that the outer1 LRmust mimic the property of a
Kerr black hole can rule out some specific modifications of
gravity. However, the main point is that all the assumptions
are kinematical and at the scale of the outer LR. Therefore,
a violation of the assumptions of this investigation would
lead to observational features.

II. PROPERTIES OF THE EFFECTIVE
POTENTIAL

Let us start by showing some properties of the effective
potential that we are going to use later in the paper. We
consider a UCO described by a stationary and axisym-
metric solution. We consider the coordinates ðt; r; θ;ϕÞ, the
symmetries of the geometry imply that ∂t and ∂ϕ are Killing
vectors, so all the metric components are functions of r and
θ only. If we solely consider spacetimes invariant under
the transformation ðt;ϕÞ → ð−t;−ϕÞ to describe rotating
objects around the axis of symmetry, the most generic line
element we can write is (see e.g. [38])

ds2¼ gttdt2þgrrdr2þgθθdθ2þ2gtϕdtdϕþgϕϕdϕ2: ð1Þ

The absence of horizon implies g2tϕ − gttgϕϕ > 0.
Furthermore, we require gϕϕ > 0 to avoid the presence
of closed timelike curves. Light-rings are defined as regions
in which particles moving along null geodesics only have
momenta along t and ϕ. Their positions can be found
studying the Hamiltonian for a free massless particle

H ¼ gμνpμpν ¼ grrp2
r þ gθθp2

θ þ Vðr; θÞ ¼ 0: ð2Þ

Where the potential V is

V ¼ 1

g2tϕ − gttgϕϕ
ðE2gtt þ 2EΦgtϕ þΦ2gϕϕÞ: ð3Þ

in which E ≔ −pt and Φ ≔ pϕ are constants of motion.
Equation (2) and Hamilton’s equations

ṗμ ¼−∂μH¼−
�
∂μðgrrp2

rÞþ∂μðgθθp2
θÞþ∂μVðr;θÞ

� ð4Þ

imply that the conditions for the light rings pr ¼ pθ ¼
ṗμ ¼ 0 are equivalent to

Vðr; θÞ ¼ 0; and ∂μVðr; θÞ ¼ 0: ð5Þ

Working directly with this potential is problematic as it also
depends on the constants of motion of the test particle.
However, it is possible to introduce two functions that only
depends on geometrical quantities and whose extrema and
saddle points coincide with the LRs but that [31]. To this
end, we need to consider the potential functions2

H�ðr; θÞ ¼ �
−gtϕ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2tϕ − gttgϕϕ

q
gϕϕ

: ð6Þ

The þð−Þ subscript corresponds to the potential function
for co(counter)-rotating geodesics. The absence of a trap-
ping horizon implies the quantity in the square root is
always positive. In spacetimes that contain a horizon, the
effective potential would not be well defined within the
trapped region. This is why the theorem does not hold if
there is a trapping horizon (see also [39,40]). LRs corre-
spond to the points for which the gradient of either one of
the potential functions vanishes [41]

∇Hþðr; θÞ ¼ 0 or ∇H−ðr; θÞ ¼ 0: ð7Þ

Furthermore, at a light ring [31],

∂
2
μV ¼ 2Φ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2tϕ − gttgϕϕ
q ∂

2
μH�: ð8Þ

Therefore, both the positions and the stability of the LRs
can be studied by looking at the effective potentials H�.
Boundary and asymptotic behavior.—We now need to

specify the asymptotic behavior of H�ðr; θÞ.
(i) For very large values of the coordinate r, we need to

recover asymptotic flatness for which gtt → −1,
gtϕ → 0 and gϕϕ → r2 sin2 θ. Leading to

H�ðr; θÞ⟶r→∞ 1

r sin θ
: ð9Þ

(ii) Next, we study the behavior near the axis θ ¼ 0 and
θ ¼ π. In this limit, the absence of coordinate
singularities implies that the ratio between the length
C of a circumference around the axis and its proper
radius must be equal to 2π in the limit of vanishing
proper radius. Denoting by ρ the proper distance
from the axis, this ratio is given by

2π¼ lim
ρ→0

C
ρ
¼ lim

ρ→0

1

ρ

Z
2π

0

ffiffiffiffiffiffiffi
gϕϕ

p
dϕ¼ 2π

ffiffiffiffiffiffiffigϕϕ
p
ρ

: ð10Þ
1In spacetimes that are not spherically symmetric, it might be

not possible to define an outer and inner LR. In most physically
relevant scenarios this distinction should be very clear. If that is
not the case, the “outer” LR is, by definition, the one that mimics
the properties of LRs in Kerr spacetime.

2Note that this definition differs for a � overall sign from the
definition given in, e.g., [31]. This choice is not crucial, but it
simplifies some signs later on.
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Which implies

lim
ρ→0

gϕϕ ¼ ρ2: ð11Þ

Furthermore, to avoid curvature singularities, gtϕ
must vanish at least as fast as gϕϕ [39]. We can now
take the limit of the potential functions (6)

lim
θ→0

H�ðr; θÞ ¼ lim
θ→π

H�ðr; θÞ ¼ þ∞: ð12Þ

(iii) Finally, we need to determine the behavior near the
origin r ¼ 0. Because we are not considering worm-
hole-like objects,3 the proper radius goes to zero
near r ¼ 0. Proceeding with similar arguments to the
ones that lead to Eq. (12), it is possible to prove that

lim
r→0

H� ¼ þ∞: ð13Þ

Therefore, regularity conditions and asymptotic flatness fix
the potential functions asymptotically and near the boun-
dary of their domain of definition. This observation will be
very relevant later.

III. PROOF THAT LRS COME IN PAIRS

Let us start by reviewing the analysis of Ref. [31] which
we will then generalize.
The proof of the theorem makes use of the Brouwer

degree of a map (see e.g. [43]) that can be defined as
follows. Consider two compact, connected, and orientable
manifolds X, Y of equal dimension and a smooth map
f∶X → Y. Let y0 ∈Y be a regular value such that the
set f−1ðy0Þ ¼ fxng has a finite number of points, with
xn ∈X, such that fðxnÞ ¼ y0, and the Jacobian
Jn ¼ detð∂f=∂xnÞ ≠ 0. The Brouwer degree of f with
respect to y0 can be defined as

deg f ≔
X
n

signðJnÞ: ð14Þ

To mention the crucial property of the Brouwer degree
we need to recall that an homotopy among function
f; g∶X → Y is a map

G∶ X × ½0; 1� → Y: ð15Þ

such that

Gðx;0Þ¼ fðxÞ; Gðx;1Þ¼ gðxÞ: ð16Þ

The Brouwer degree of a map is invariant under homo-
topies for which y0 ∉ Gð∂X; tÞ, i.e., invariant under

continuous deformations for which there is never any
boundary point whose image is equal to y0. In particular,
this is always satisfied for transformations that do not
change the map at the boundary (provided that y0 is not
in the image of the boundary for the map under
consideration).
While all this discussion may seem very abstract, it

becomes clear once we specify it for our setup. We apply
the invariance of the Brouwer degree considering as map
either one of the vectors fields v� with components

vi� ¼ ∂
iH�; i∈fr;θg: ð17Þ

These vector fields map the 2-dimensional compact subset
X of the fr; θg plane to a 2-dimensional space Y. The LRs
are the points of X which are mapped into the origin of Y.
We choose y0 to coincide with the origin of Y. Therefore,
the points fxng correspond to the LRs. To ensure that the
Brouwer degree is a topological invariant we need to show
that at no point during the continuous transformation there
is a LR at the boundary of X. This is very easy to do. In fact,
Eqs. (9), (12), and (13) show that the asymptotic values of
the potentials functions and their derivatives are fully
determined by regularity conditions and observational
constraints. Therefore, it is enough to make X large enough
to ensure that the potential functions cannot have a LR at
the boundary of X and any allowed potential function can
be continuously transformed into each other without
changing the Brouwer degree.
The invariant Brouwer degrees of these maps are then

deg v� ¼
X
n

sign
�
det ð∂i∂jH�ðxnÞÞ

�
: ð18Þ

So we can see that, for these specific maps, the determinant
of the Jacobian is equal to the Hessian of the effective
potential. Let us remind that the sign of the Hessian is
positive for an extremum (either maximum or minimum)
and negative for a saddle point. Since the Brouwer degree is
zero for spacetimes that are not compact enough to admit a
LR and is invariant under smooth deformations of the
effective potential, it follows that the Brouwer degree must
also be zero for any UCO admitting LRs. Therefore, the
result of this theorem, which was proved in [31], is that
there is an equal number of saddle points and extrema of the
effective potential.
Reference [31] then shows that

Gμνpμpν ¼ ∂i∂
iV; ð19Þ

where Gμν is the Einstein tensor and pμ is a null vector
field. If we assume general relativity and the null energy
condition we obtain

Gμνpμpν ¼ Tμνpμpν > 0: ð20Þ
3See [42] for a recent analysis of ultracompact traversable

wormholes.

NATURE OF INNER LIGHT RINGS PHYS. REV. D 110, 084026 (2024)

084026-3



Therefore, these assumptions on the dynamics of the
gravitational theory and the matter content lead to the
condition that the trace of the Hessian matrix must be
positive. This implies that the extremum of the potential
cannot be a maximum and it must be a minimum.
We shall now prove the same result without any

information regarding the dynamics of the theory.

IV. KINEMATICAL PROOF THAT
THE INNER LR IS A LOCAL MINIMUM

We are now ready to extend the result of the previous
section by showing that the inner LR must be a minimum of
the effective potential if we restrict our attention to the
geometries in which the outer LR is with a good approxi-
mation similar to the Kerr LR. In other words, rather than
making any assumptions regarding the exotic physics that
must be non-negligible at the inner LR scale, we impose
constraints at the outer LR based on observational
evidence.
We require that the LR that mimics the Kerr LR is a

saddle point of the effective potential that correspond to a
minimum along the angular direction and a maximum
along the radial direction. Failure to meet this property
would have strong observational implications.
The property (12) of the effective potential implies the

existence, for every r, of at least one local minimum
θ̄ ¼ θ̄ðrÞ in the angular direction such that

∂

∂θ
H�ðr; θÞ

���
θ¼θ̄

¼ 0: ð21Þ

This does not imply that θ̄ is part of a LR as generically the
radial derivative will not vanish. The condition of the
vanishing gradient of H� (7) is now

∂

∂r
H�ðr; θ̄Þ ¼ 0: ð22Þ

We can define a curve γ (see Fig. 1) that passes through
the position of the outer LR and follows the locus of points
in which Eq. (21) is satisfied

γ∶r ↦ ðr; θ̄ðrÞÞ ð23Þ

In the following we assume that γ has no bifurcation point.
If there are bifurcation points, we just need to repeat the
argument for all the branches of the curve.
The directional derivative along γ, is the total derivative

with respect to r, given by

d
dr

H�
�
r; θ̄ðrÞ� ¼ ∂rH

�
r; θ̄ðrÞ�þ ∂θH

�
r; θ̄ðrÞ� dθ̄

dr
¼ ∂rH

�ðr; θ̄ðrÞ�: ð24Þ

Therefore, the LRs are at the points ðr; θ̄Þ for which

d
dr

H�
�
r; θ̄ðrÞ� ¼ 0: ð25Þ

We can consider the same theorem used in the previous
section, but now v� is a 1-dimensional map between the
points on γ and the 1-dimensional space spanned by
v� ¼ dH�=dr. Therefore, the conservation of the
Brouwer degree of this map implies

X
n

d
dr

d
dr

H�
�
rn; θ̄ðrnÞ

� ¼ 0: ð26Þ

This shows that there are as many maxima and minima
along the direction given by γ. In general, some of these
maxima and minima correspond to the extrema of the
2-dimensional effective potential, while others correspond
to saddle points.
To study the stability of the LRs we now consider the

second derivative along γ. A very straightforward compu-
tation gives

d2

dr2
H�

�
r; θ̄ðrÞ� ¼ ∂

2
rH�

�
r; θ̄ðrÞ�

þ 2∂r∂θH�
�
r; θ̄ðrÞ� dθ̄

dr

þ ∂
2
θH�ðr; θ̄ðrÞÞ

�
dθ̄
dr

�
2

; ð27Þ

where we have omitted terms that vanish due to Eq. (21).
We now assume that this quantity is negative. This must be
try the outer LR to mimic the LR of a black hole in general
relativity. In fact, for a Kerr black hole θ̄ is independent

FIG. 1. The figure shows the curve γ (red line) for a specific
choice of the potential Hðr; θÞ ¼ r3þ1

10þðr=2Þ4 ð 1
sin θÞ2. This function

has correct boundary behavior, but it is otherwise arbitrary and it
is chosen for purely illustrative purposes. The LRs correspond to
the two black dots. The outer one is a maximum along γ and a
saddle point in the 2-dimensional space ðr; θÞ, while the inner one
is a minimum both along gamma and for the 2-dimensional
potential.
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of r. This can be explicitly checked, and it is a consequence
of the fact that the geodesics equations are separable in
the r, θ coordinates. Therefore, at the outer LR, where
the geometry must mimic very closely Kerr spacetime, we
have dθ̄=dr ≈ 0. Furthermore, for a Kerr black hole the LRs
are saddle points of the effective potential and are maxima
in the radial direction. Thus ∂

2
rH�ðr; θ̄ðrÞÞ < 0, which

imply

d2

dr2
H�ðrþ; θ̄ðrþÞÞ < 0; ð28Þ

where rþ denotes the radius of the outer LR. We assume
that this inequality holds also for the UCO. Its violation
would lead to observational effects.
Let us now consider the most natural case illustrated in

Fig. 1 in which the UCO possesses only 2 LRs. The
conservation of the Brouwer degree implies that in total
there is an equal number of minima and maxima along γ
and, by construction, the outer LR lies on gamma.
Furthermore, Eq. (28) implies that the outer LR is a
maximum along γ. So, the inner LR must be a minimum
along gamma. We also know that from the point of view of
the 2-dimension potential the outer LRs is a saddle point.
Therefore the inner one must be an extremum and hence it
is a minimum as it is a minimum along gamma. Let us now
show that even allowing for the presence of more than 2
LRs it is possible to show the presence of a stable LR,
modulo adding an extra assumption on the potential at the
outer LR scale.
Let us assume that, as is the case for the Kerr geometry,

the outer LR is a global minimum in the θ direction for
fixed r

H�ðrþ; θ̄ðrþÞÞ ≤ H�ðrþ; θÞ ∀ θ∈ ð0; πÞ: ð29Þ

With this assumption, the presence of a stable LR is almost
trivial as the boundaries r ¼ 0, θ ¼ f0; πg and r ¼ rþ
create a potential barrier inside which there should be a
minimum. We can find the position of the minimum
following the curve γ until the first local minimum along
γ (which must exist as proved previously) whose coordinate
we can call ðr−; θ̄ðr−ÞÞ. The value of the effective potential
at that point is necessarily lower than its value at the outer
LR as the derivative along γ as we have moved from a local
maximum to a local minimum (along gamma) without ever
changing the sign of the derivative. If this is a minimum of
the effective potential we have reached the stable LR.
Otherwise, it is a saddle point and there must be a direction
along which H� decreases. We can move along that
direction and follow the path along which the gradient is
negative and maximum in modulus. Given the potential is
bounded from below, we have either to approach asymp-
totic infinity or a local minimum. The first possibility must
be ruled out as we always moved in the direction of

decreasing values of the potential. Therefore, starting from
ðr−; θ̄ðr−ÞÞ it is not possible to reach values greater than
rþ as

H�
�
r−; θ̄ðr−Þ

�
<H�

�
rþ; θ̄ðrþÞ

�
≤H�ðrþ;θÞ ∀ θ: ð30Þ

This concludes the theorem and proves that there exists at
least one stable LR.No restriction regarding the dynamics or
the matter content was necessary. Furthermore, we did not
need to make any assumptions regarding the inner LR.
Instead, we assumed that the UCOs mimic Kerr black holes
at the outer LR scale. In particular, the simplest scenario in
which there are only two LRs per rotation direction requires
the property Eq. (28). In case there aremultiple LRs, we also
need to assume the property (29). Crucially, we do not
assume anything at the scale of the inner LR.

V. DISCUSSION

In this paper we have proved the following
Theorem. If an axisymmetric UCO is invariant under

simultaneous reflections ðt;ϕÞ → ð−t;−ϕÞ and it has LR
that correspond to a minimum along the angular direction
and a maximum along the radial direction such that
Eqs. (28) and (29) are satisfied, then there must exist at
least one stable LR for each rotation sense.
In practice, this result shows that axisymmetric objects

compact enough to support a LR and that do not exhibit
large deviations from general relativity at the outer LR scale
must necessarily possess an additional stable LR. This
reinforces the results of Ref. [31] in which it was necessary
to use the Einstein equations and the null energy condition
to prove the stability of the inner LR. The proof is now
completely geometrical and it applies to any modified
theory of gravity irrespective of the matter content.
Of course, the null energy condition assumed in [31] has

a more clear physical interpretation than the geometrical
assumptions in this manuscript. However, we do not need
exotic matter to violate the null energy condition as that can
be done by semiclassical gravity [37]. Furthermore,
assumptions at the inner LR can be impossible to test as
current observations are not able to detect the presence of
extra LRs. In converse, all the assumptions of the theorem
proved here are kinematical and at the scale of the outer LR.
Therefore, while they have a less clear physical interpre-
tation, these assumptions can be tested observationally.
Therefore, this work does not supersede but rather comple-
ment the results of Ref. [31] as both analysis have their
strengths.
It is fascinating that it is possible to infer the eventual

existence of an inner LR, which would be placed deep
inside the strong gravity region where the properties of the
geometry cannot yet be probed, with observations at the
outer LR scale that can be tested with high precision.
To get rid of the inner LR and the instability associated

with it, one possibility would be to consider regular black
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holes rather than UCOs. However, regular black holes
are unstable due to the presence of mass inflation
instability [44–49]. While it is possible to construct
regular black holes geometries that are free from mass
inflation and hence classically stable [50,51], these geom-
etries might suffer from semiclassical instabilities [52,53].
This does not necessarily imply that it is impossible to

construct viable nonsingular alternatives to black holes.
First of all, there is a question regarding the timescales of
the instabilities. While the instability at the inner horizon is
expected to be very fast [44,46–49], the LR instability is a
nonlinear process and so the timescale associated to the LR
instability is model dependent and possibly long.
More exotic black holes mimickers, such as wormhole-

like objects, are also possible [54–56]. There are no known
instabilities associated with these spacetimes. However,
further studies are still needed to address the viability of
such solutions and it is unclear how these objects can form
as a result of gravitational collapse [11,12,47].
In conclusion, there are still numerous open issues in the

quest for viable classes of black hole mimickers. This paper

highlights and strongly reinforces one of them. While some
may perceive this as problematic, it can alternatively be
viewed as a promising aspect. With the inherent challenges
of observational exploration deeper than the outer LR,
lessons from theoretical analyses aimed at addressing
consistency issues, integrated by lessons from observa-
tions, can effectively help us navigate the plethora of
nonsingular models, ultimately enriching our understand-
ing of the nature of black holes.
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