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Unified spectral approach for quasinormal modes of Lee-Wick black holes
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In this paper, we undertake a comprehensive examination of quasinormal modes linked to Lee-Wick
black holes, delving into scalar, electromagnetic, and gravitational perturbations using the spectral method.
Such black holes can display a rich structure of horizons, and our analysis considers all the representative
scenarios, including extremal and nonextremal situations. In particular, we show that purely imaginary
quasinormal modes emerge for extremal and near-extremal configurations, suggesting a rapid return to

equilibrium without oscillation.

DOI: 10.1103/PhysRevD.110.084032

I. INTRODUCTION

The perturbative approach to quantum gravity has
attracted considerable attention in recent years thanks to
new insights into the problem of higher derivatives and the
related ghosts (see, e.g., [1] for an introduction). Several
models and mechanisms have been proposed to conciliate
renormalizability and unitarity in quantum gravity, among
which we mention the formulation of higher-derivative
gravity models with complex poles in the propagator—also
known as Lee-Wick gravity [2,3]. Simply put, the higher
derivatives in the action guarantee the improved behavior of
the propagator in the UV, making the theory super-
renormalizable [4], while the ghostlike poles occurring
in complex conjugate pairs yield a unitary S matrix [2],
similarly to the original proposal by Lee and Wick [5,6]
(see also [7-9]).

At the classical level, among the most characteristic
features of the complex poles are the oscillations displayed
by the linearized solutions [3,10,11]. Such oscillatory con-
tribution to the gravitational force in the low-energy domain
has been investigated both in theoretical and experimental
research [12—-16]. Nonetheless, higher derivatives make the
study of the exact solutions of the complete field equations
quite a challenging task. Therefore, a phenomenological
model of Lee-Wick black holes (BHs) incorporating the
effect of the oscillations was proposed in [17].

These spacetimes are defined as static and spherically
symmetric solutions of the effective field equations
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G", = 8aGT",, (1)

where G, is the Einstein tensor, G is the Newton constant,
and

T, = diag(—p, p,. Po. Po) (2)

is a model-dependent effective energy-momentum tensor
which would mimic the effect of the higher derivatives [17].
In the case of a sixth-derivative Lee-Wick gravity model
defined by the action

1
S = 16”G/d4x,/—g[R + Gm,(al + o) R,
a, >0, =2\/a; < ap <2y/ay, (3)

the corresponding effective source is given by [17-19]

M(a* + b*)? e~ sin(br)
8rmab r

; (4)

p(r) =
where M is the total mass of the source. The parameters a

and b have dimensions of the inverse length and are related
to the couplings in action through

a2:2\/a_2—a1’ b2:2\/a_2+a1‘ (5)
4(,12 4(12

They represent, respectively, the real and the imaginary part

of the Lee-Wick mass m = a + ib. Notice that the domain

of the parameters a; and a, in (3) ensures that a, b # 0

and a, b eR.
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The other components of (2) can be fixed by supple-
menting an effective equation of state and imposing that the
continuity equation V”T”D = 0 is satisfied [17,20,21]. This
procedure is analogous to the one used for the BH inspired
by noncommutative geometry [22,23] and other effective
metrics [19]. For the sake of simplicity, in this work, we
consider the equation of state p, = —p.

Various aspects of Lee-Wick BHs associated with the
smeared source (4) have been studied, such as the curvature
regularity and BH thermodynamics [17,20], the structure of
horizons and regimes for BH sizes [20], the gravitational
light deflection [24-26], precession of orbits [27] and a
rotating generalization based on the Newman-Janis algo-
rithm [28]. In particular, in [20], it was shown that the
oscillation pattern of the solution depends on the ratio
q = b/a, which also affects the possible number of
horizons and defines admissible intervals for the position
of the event horizon. The actual number of horizons is
determined by ¢ and the mass M of the effective source.

In the present work, we investigate how this rich
structure of horizons and regimes of Lee-Wick BHs affect
the quasinormal modes (QNMs) for massless scalar and
electromagnetic and gravitational perturbations. In what
concerns the latter, in our study, we assume that the
gravitational perturbations follow second-order differential
equations, as is the case in general relativity. This approach
is not incorrect, for the background geometry is obtained as
a solution of effective field equations (1) that have the same
form as Einstein equations. However, these tensor pertur-
bations cannot be used to investigate the stability of the
solutions to the Lee-Wick gravity, which follows sixth-
derivative equations of motion. The stability of solutions in
models with complex modes is an important open problem,
and this study can be regarded as a first step towards this
most interesting case.

We close this introductory section by recalling that the
Lee-Wick BHs proposed in [17,20] are not exact solutions
of the field equations of sixth-derivative gravity, but they
might reproduce some of their relevant features, e.g.,
curvature regularity and the existence of multiple and
extreme horizons. Exact solutions to the field equations
of the extended Einstein-Hilbert action, including all
possible higher-derivative terms with up to six metric
derivatives, have been studied in detail only recently,
and it was shown that all the possible vacuum solutions
admitting a Frobenius expansion around r =0 have a
bounded Kretschmann scalar Rivaﬂ [29]. Although the
particular model (3) also admits singular solutions, its
solution equivalent to Schwarzschild for general relativity
seems to be a regular metric [29]. The results available for
the moment only concern either local aspects of the
solutions or the regime of weak field [29-31], not being
conclusive to verify if the structure of horizons described in
[20] matches the one of the exact solutions. Nevertheless,
simple BH horizons and extreme horizons do occur in exact

solutions of sixth-derivative gravity [29], which is in line
with the argument that a regular and asymptotically flat
geometry must have an even number of horizons [30].

The structure of our paper is as follows: In Sec. II we
obtain the equations of motion for the scalar, electromag-
netic, and gravitational perturbations immersed in a Lee-
Wick BH background in a form suitable for the application
of the spectral method to calculate the QNMs. The
consideration is divided into two parts, one for the non-
extremal situation and another for the case of an extreme
BH. The numerical methods and results are presented in
Sec. III. Our analysis focuses on the case ¢ = 2, which is a
representative case of Lee-Wick BHs that displays various
possibilities for a number of horizons and extremal con-
figurations, but we also considered some cases with g < 1
that only have one BH regime. In particular, we show that
purely imaginary QNMs emerge for extremal and near-
extremal configurations, suggesting a rapid return to
equilibrium without oscillation. Finally, in Sec. IV we
draw our conclusions.

II. EQUATIONS OF MOTION

We consider massless fields immersed in the Lee-Wick
background associated with the effective source (4), whose
line element in units where ¢ = G = 1 reads [17,20]

ds* = —f(r)dr* + ;(—r:) + r*d9* + r’sin’ 9dg?,
9e0.7, @el0,27), (6)
where
2M
f(r):l—Tl’l(l"), (7)
M) = 1= {bf2a + (@ + b)) cos(br)
+ [@®> = b* + a(a® + b?)r]sin(br)}. (8)

The parameters a and b, defined in (5), are related to the so-
called Lee-Wick mass by m = a + ib with a, b > 0. For
this choice of the sign for the parameters a and b, we refer
to [20]. Horizons exist at those values of r where f(r) not
only vanishes but also changes signs when crossing these
points. Moreover, the case of a Schwarzschild BH is
recovered in the asymptotic regime r > 1/a. If we intro-
duce the following rescaling

)c:L a=2Ma,

M p=2Mb, 9)

then we can cast (8) in the form
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a’ + p?

o= 1- e (122 st 4

a2 _ ﬂZ aZ + ﬂZ
af p

x) sin (ﬁx)}
Finally, if we introduce the ratio ¢ = f/a as in [20], then (10) becomes

h(x)=1- e‘“"{ [1 + g (1+ qz)x] cos (agx) + 21_q [1—¢*+ a(l + ¢*)x] sin (aqx)}

and

(10)

(11)

Eq. (15) in [17]. Figure 1 illustrates the complex horizon

fla)=1- x (12) structure within the metric (6), highlighting how increasing
g leads to a greater number of zeroes in f(x), thereby

It is rewarding to observe that for ¢ = 1 = @, our results for
(11) accurately replicate the function f(x) as described by

f(x)

f(x) fix)

introducing the potential for various extreme BH configu-
rations, as detailed in Table I. Specifically, for 0 < ¢ <1

£(x)

w  |] ] fx) 4]
_3< 1

FIG. 1. Plots of f(x) as given by (12) for different values of ¢ = f/a. First row. Left panel: ¢ = 0.1, a = 6.1 (dotted line, two distinct
horizons), @ = 4.1 (dashed line, no horizons), & = 5.08671 (solid line, extreme case with two coinciding horizons at x, = 0.65978).
Central panel: ¢ = 0.5, a = 4.9 (dotted line, two distinct horizons), a = 3.0 (dashed line, no horizons), @ = 3.90504 (solid line, extreme
case with two coinciding horizons at x, = 0.72769). Right panel: ¢ = 1, a = 3.5 (dotted line, two distinct horizons), @ = 1.5 (dashed
line, no horizons), @ = 2.16496 (solid line, extreme case with two coinciding horizons at x, = 0.95306). Second row. Left panel: ¢ = 2,
a = 0.8 (dotted line, two distinct horizons), @ = 0.5 (dashed line, no horizons), a = 0.69098 (solid line, extreme case with two
coinciding horizons at x, = 1.76785). Central panel: ¢ = 2, a = 4.5 (dotted line, four distinct horizons), @ = 3.5 (dashed line, two
distinct horizons), a = 4.04733 (solid line, extreme case with two inner distinct horizons and two coinciding horizons at x, = 1.06972).
Right panel: ¢ = 2, a = 6.0 (dotted line, two distinct horizons), @ = 4.3 (dashed line, four distinct horizons), @ = 5.18635 (solid line,

two coinciding inner horizons at x, = 0.62987 and two distinct horizons. The event horizon is located at x;, = 1.04013).
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TABLE I.  Analysis of the real roots of the function f(x) given
by (12) for several values of the parameters ¢ and a. a, denotes
the corresponding value of the parameter « for an extreme Lee-
Wick BH.

and a > a, (with a, being the extreme BH threshold), a
maximum of two distinct horizons can exist, the larger of
which closely resembles the Schwarzschild scenario. This
observation will be used later on to validate the spectral
method in deriving QNMs for massless scalar, electromag-

q=p/a a Number of real roots ; e ; A :
netic, and gravitational perturbations. The dynamics shift
0.1 O<a<a 0 markedly for ¢ > 1, where distinct « values can lead to
@, = 5.08671 1 double root extreme BHs, indicating a potential significant deviation of
a=>a 2 distinct roots the numerical values of the QNMs from the Schwarzschild
0.5 O<a<a, 0 benchmark. Additionally, Fig. 1 (see the last panel in the
a, = 3.90504 1 double root second row) illustrates that horizons may merge within the
a>a, 2 distinct roots outer event horizon, a phenomenon distinctly different from
1.0 O<a<a, 0 the traditional merging of the Cauchy and event horizons
a, = 2.16496 1 double root seen in extreme BHs (refer to the first panel in the second
a>a, 2 distinct roots row). Therefore, we classify this unique scenario as an
20 O<a<a,, 0 extreme BH 'of type A. In this case, the surface gravity x
@, = 0. 69098 1 double root, type B BH does not vanish at the event horlzlon. Conversely, we define
Ay <a<a,, 2 distinet 10ots a BH of type B as one where horizon coalescence occurs at

ae‘,2 — 4.04733 2 distinct roots and the outer event horizon itself.

Ay <a< A3

1 double root, type B BH
4 distinct roots

In the present work, we focus our analysis on the QNMs
for the nonextreme and extreme cases. Considering this, it

a,3 = 5.18633 2 distinct roots and is advantageous to implement the rescaling z = x/x;, as
1 double root, type A BH  this approach effectively maps the event horizon to 1 in
a> a3 2 distinct roots both the extreme and nonextreme cases. Hence, the
coefficient function, as expressed by (12), becomes
|
h(z)

flz)=1-

XpZ

1 .
, h(z) =1- e‘”’)‘hz{ [1 + % (1+ ¢?)z| cos (ax,qz) + =—[1 — ¢* + ax;, (1 + ¢*)z] sin (axhz)}.

2q
(13)

Given that the line element (6) closely resembles that of a BH inspired by noncommutative geometry [22], the equation for a
massless Klein-Gordon field—with a time dependence expressed as e~’ and an angular component represented by
spherical harmonics—takes the form as follows [32]:

edf ¢(+1)

0 =1 [+ D) emioe

700 5 (70 222 4 02 = U ae) =

withZ =0, 1,2, ... and ¢ = 1 (massless scalar perturbation s = 0), ¢ = 0 (electromagnetic perturbation s = 1), and e = -3
(vector-type gravitational perturbation s = 2). By means of the substitution r = 2Mx,,z, the above equation can be recast in

the equivalent form

f(z)

4 dz

with f(z) as given in (13). Our analysis concentrates on
calculating the QNMs from the specified spectral problem
in (15). We denote Q as Q = Qp +iQ,;, with Q; <0
indicating time-damped perturbations. The boundary con-
ditions ensure radial fields reflect inward radiation at the
event horizon and outward at infinity, requiring us to

0, Ve(z) =41

a <f<z> ""’—f) 292 — V. (Dpare(2) =

o6+ 1
+¥] Q=Mo, (15)
zdz z

fi@ Fﬁ

closely inspect the asymptotic behavior of the solution
in (15) near the event horizon (z — 17) and at far distances
(z = +o00). For spectral method application, we adapt (15)
and its boundary conditions to a [—1, 1] interval, using
Chebyshev polynomials to express the eigenfunctions’
regular components.

084032-4
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A. The nonextreme case

This scenario examines choices of the parameter ¢ that
ensure the existence of an interval for @ where the Cauchy
and event horizons remain distinct. It encompasses extreme
BHs of type A, where horizon merging occurs within the
event horizon, the latter not undergoing any coalescence
process. For instances of g and a values that lead to the
outlined scenario, see Fig. 1 and Table I. In the present case,
f(z) exhibits a simple zero at z = 1. To establish the QNM
boundary conditions at the event horizon and at infinity, we
first need to analyze the asymptotic behavior of the radial
solution wq, as z — 17 and as 7 — +co. We can then
extract the QNM boundary conditions from this asymptotic
data. We split our analysis by examining the behavior of the
radial field in two different regions.

(1) Asymptotic behavior as z - 17: Since z =1 is a
simple zero of f(z), we can construct the represen-
tation f(z) = (z—1)g(z) where ¢ is an analytic
function at z =1 with the property that g(1) =
f'(1) # 0. Here, the prime symbol stands for differ-
entiation with respect to z. This representation
enables us to reformulate (15) in the form

*yase dyose
o +P(Z)i+Q(Z)WQfe(Z) =0, (16)

dz2 dz
N
p(z) = (z—1yglz)’
L Ax? 1
10 = 2@ = 9@
% gf/(z)_i_@ . (17)

Since p and g have poles of order one and two at
z =1, respectively, this point is a regular singular
point of (16), according to Frobenius theory [33].
Hence, we can construct solutions of the form

l//Qfe Z_lpzak Z_l (18)
k=0

The leading behavior at z = 1 is represented by the
term (z — 1), where p is determined by the indicial
equation

plp=1)+Pop+Qy=0 (19)

with

Py = linll(z -1)p(z) =1,
=

0y = lim(z = 17a(2) = (23)". 20)

084032-5

(@)

The roots of (19) are p, = £2ix,Q/f'(1) and the
correct QNM boundary condition at z = 1 reads

Vore: — (=1 Wt g=——. (21)

In order to evaluate @, we start by observing that if
we solve the equation f(1) = 0 with respect to the
exponential function, we obtain

e~ ®n = ZQ(l _xh)
Aol@. 4) cos (@xng) + Ay (. ) sin (x,q)
(22)
with
Ao(a. q) = agx, (1 + ¢*) + 24,
Ay(a,q) = ax,(1+¢*) +1—¢* (23)

Computing f’(1) and making use of (22) yields

5 Aole.)cos (@x,) + A, (@.g)sin(@x,)
Ao(@.4) <05 (ax,q) + Bo(@.q)sin (ax,)

where

By(a, q) = ax,(1 + ¢*)[a(1 4+ ¢*)(x, = 1) + 1]
+1-4° (25)

Asymptotic behavior as 7z — 4o0: We first rewrite
(15) as

dz;//;;fe +P(2) dl/;_‘;fﬁ' + 0(2)war(z) =0,
~ f'(2) _ w
P(z) = f(z)’ Q(z) = :

*(z) ’

with V.(z) defined in (15). The asymptotic behavior
of the solutions to Eq. (26) can be obtained by the
method outlined in [34]. For this purpose, we start
by observing that

(26)

e 81,02 1
00) =Y T -z +th+ O(Z—2> (27)

Moreover, at least one of the coefficients {, g, g; is
nonzero, and, therefore, a formal solution to (26) is
represented by [34]
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[Se]

() i Ax.j
Wore(2) = e* ZZ—K
k=0

jef{1.2}, (28)

where A, 4,, p; and u, are the roots of the
characteristic equations

_flijJrgl

T

22 +fod+g0=0, Wy =

A straightforward computation indicates that 1, =
+2ix,Q and p. = £2iQ. As a result, the QNM
boundary condition at spacelike infinity can be
expressed as

At this point, we can transform the radial function yo..(2)
into a new radial function ®q..(z) such that the QNM
boundary conditions are automatically implemented and
®,,.(z) is regular at z = 1 and at spacelike infinity. To this
aim, we consider the transformation

WQ&(Z) _ ZZi(lerha)Q(Z _ l)_ZixhageZith(Z_l)(DQfe(z), (31)

with & defined as in (24). After substitution of (31) into
(15), we get the following ordinary differential equation for
the radial eigenfunctions, namely

P (2) @ (2) + P1(2) P (2) + Po(2)Pare(z) =0 (32)

V/Qer:’ooZZiQeZixhgz' (30) with
|
Paf) =2 oy )
P =2l = 0@ ) - s @D +na+ (= Dz -] . (54)
Py(z) = —Q?0, (2)0_(2) + iQf (z)L(z) — 22 (z — 1)*V (2), (35)
0.(2) = ez = DIF() £ 1]~ FR(1 +x,-2). (36)
—1)? X,

L0 = 2 10 4 0,270 - £ - ke - 17 + (1= 206 (37)

Let us now introduce the transformation z = 2/(1 — y), sending the point at infinity and the event horizon to y = 1 and

y = —1, respectively. Moreover, a dot denotes differentiation with respect to the new variable y. Then, Eq. (32) becomes
$:(3)Pare (y) + S1(0)Pare(v) + So(y)Pare(y) = 0, (38)

where

2
5.0 = L ), (39)
$10) = 1@ A2 BI04 3)(1 4 23, — ) = (= )2 = S iy WED k) a0)
: (1-y)? ! ! 2(1-y) 4 ’
So(y) = Q25 (y) + iQZ (y) + Zo(y). (41)
with
5,() = BUEDE L0 14y, - y) - xall - )P ()
’ (T-y* -y ' ' ’

2,00 =L (FE2) 10+ 20 - 0700 =10+ 22 (340000 - (=000 | @)
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W Ve(y). (44)

Notice that we must also require that ®q,,(y) is regular at y = 1. As a result of the transformation introduced above, we
have

flyy = Zaz 1ty +y+e_21%/'1{% [1 — a1 +q2)] cos (Mﬂ> 4L [—(1 —)(1-y) +a(l +q2)] sin(zlailx”>},

2xp Xn -y 2q 2xp y
(45)
V.( _ (=) =) FO) +£(£ +1 46
() = ST FO) el = 3)F () + £+ D). (46)
Table II shows that the coefficients of the differential equation (38) share a common zero of order 3 aty = —1 whiley = 1is

a pole of order 2 for the coefficients S| and S,. Hence, in order to apply the spectral method, we need to multiply (38) by
(1 =y)2/(1 +y)3. As a result, we end up with the following differential equation

My (3)@are(y) + My ()P (v) + Mo(y)Pare(y) =0, (47)
where
Y
M) = (P00 MO = IAN0) N Mols) = DC0) 190 0) 4 G (49
with
B 1+2x,—y  _[1-y\? _ Sy 4
M) =0 [T (T2 | M) = (=) 9)
_ 4x; _ ) —v) = xr a1l —v)22
C0) = o~ i (1 )0+ 25 =) — il -7 (50)
_ fO) - _ 1-y 2\ 7
1) =52 (14 26,307 0) = 10) + 02 (B 40000 - (=000 | 6)
AV
CO) =T - 52
It can be easily verified with Maple that
Jlim My(y) = 0 = yiir_r;Mz(y), (53)
lilTll_Ml(y) = ix,Q, 1i£1}+M1 (y) = iQA; + Ay, (54)

TABLE II.  Classification of the points y = +1 for the relevant functions defined by (39)—(41), (45), and (46). The
abbreviations z ord n and p ord m stand for zero of order n and pole of order m, respectively.

y f) Ve(y) S>(y) S1(y) So(¥)
-1 z ord 1 z ord 1 z ord 4 zord 3 zord 3
+1 +1 z ord 2 +1 p ord 2 p ord 2

084032-7
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TABLE IIl.  Definitions of the coefficients L ;j and their corresponding behaviors at the end points of the interval
—1 <y < 1. The symbols appearing in this table have been defined in Appendix A.

(i) lim,_y+L;; Ly lim,,-L;;
(0,0) By Co Ao
0,1 Ao Ny 0
0,2) 0 M, 0
(1,0) B, C, 0
(1,1 A N, X,
1,2) 0 0 0
(2,0) B, c, A,
2,1 0 0 0
(2,2) 0 0 0
lim My(y) = A, Q% + A, lirr} My(y) = B,Q? + iQB, + B, (55)
y= y=—17

where the corresponding formulas for A, Ay, Ay, A>, By, B}, and B, can be found in Appendix A. In the final step leading
to the application of the spectral method, we recast the differential equation (47) into the following form:

Lo[®qre, Dore, Pare] + il [Pare, Pare, ParelQ + Ly [ @are, Pare, ParcQ* = 0, (56)
with
Lo[®qre, Dore, Dare] = Loo(y)Pare + Lot (y)Pare + Loo (v)Pare, (57)
Ly[®qve, Dore. Dorel = Lio(y)Pare + L1 (v)Pare + Li2(y)Pore (58)
Ly[®qpe, Dore. Porel = Lag(y)Pare + Lo (V) Pare + Lo (y) Pare- (59)

Moreover, in Table III, we have summarized the L, ; appearing in (57)—(59) and their limiting values at y = +1.

We conclude this subsection by noting that extreme type A BHs show a simple zero at the event horizon in the function
f(z) due to root coalescence occurring behind it. This characteristic enables the QNM calculations for this BH category to
be conducted similarly to those for nonextreme cases.

B. The extreme case

In this scenario characterized by @ = a,, we introduce the rescalings x = r/(2M) and & = x/x,. Hence, the gy, metric
coefficient becomes

£ =1="0 =1 e |1 05 (1 ) cos(aunad) 4o 11— a1+ )il sin (a5,
(60)
The radial part of a massless Klein-Gordon field can be expressed in the equivalent form
fe(§> d dl//Qfe o 7fe<§) €dfe f<f+ 1) _
D (™) 4 e - voan® =0 vl =T S LD o m (o)

with f, (&) as given in (60). In the case of extreme BHs of type B, f, (&) exhibits a zero of order 2 at £ = 1. This implies that
fe(1) =0 = f'(1) where the prime denotes differentiation with respect to £. This observation allows us to derive the
following functional relations

2efe [a%xe(xe B 1)(q2 + 1)2 + aexe(qz + 1) +1- q2]

s 62
% (@ + (@, + aux, +2) (62)

cos (aexeq) =

084032-8
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2ge%te

e L 63
aix,(q* + 1) (63)

sin (aexeq) =

which, in turn, plays an important role in simplifying the
forthcoming computations. In order to derive the QNM
boundary conditions at the event horizon and at infinity, we
first need to determine the asymptotic behavior of the radial

_fe)

apxp(xe — 1)(q? + 1)* + 20233 (4>

solution woy. as & = 17 and as & — +co. We can then
accurately extract the QNM boundary conditions from this
asymptotic data.

(1) Asymptotic behavior as & — 17: Taking into ac-
count that £ = 1 is a double zero of f,(¢) in the case
of extreme type B BHs, we can represent the latter in
the form f, (&) = (¢ — 1)>h(&), where h is an ana-
Iytic function at £ = 1 with the property that

+1) +2a,x,.(1

n) =12

2acx. (¢ +1) +2]

—) -2 (64)

Note that for all scenarios showcased in Fig. 1, we have 4(1) > 0. This representation enables us to reformulate (61)

in the form
dcllfjfszlf€+p(5) WQ&*“I(&)WQ&(?) =0, (65)
ERAG  Adr 1 > £(641)
T e G I G ] i = R

Because q has a fourth-order pole at £ = 1, it follows that £ = 1 qualifies as an irregular singularity, rendering
Frobenius’s theory inapplicable in this scenario. On the other hand, since for k = 1 we have

E-D"p@)=0¢-1).  (¢-

1)*2q(8) = by + 0§~ 1),

4x2Q?

hz—(]) ’ (67)

b():

with Dy # 0, then, according to [35], £ =1 is an irregular singular point of rank one. Consequently, the leading
behavior of the solutions to Eq. (65) in a neighborhood of the event horizon can be obtained using the method

outlined in [34]. To this purpose, we start by observing that, by means of the transformation 7 = (£ — 1)~!, (65)
becomes
Pwore dyare
T4 6(r) L4 D(eyare(r) = 0, (68)
dr dr
- Ce 1 - bK bl 1
with dy given by (67) and
5 AxIQ2aexi(x, — 1)(q* + 1) —aixs(q* 4+ 1) (¢ — 4x, + 1) — 20x2(q* — 3) — 4a,x,q° — 6] (70)
b Blacx.(q* +1) +2]h3(1) '
Since at least one of the coefficients ¢,, Dy, D; is nonzero, a formal solution to (65) is given by [34]
(] aK
Vane (1) =7 eh Ty =EF, (71)
k=0
where A, and u, are the roots of the characteristic equations
2 b,
AL+ Dy = ﬂi:—m- (72)
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(@)

Letus

A straightforward computation shows that

2ix,Q
h(1)

dy == (73)

ier[zaifo:(xe B 1)(q2 + ])2 - agx%(qz + 1)(q B 4xe + 1) Zaax%(qz B 3) B 4aexeq2 B 6]
3lagx.(q® + 1) + 2] (1) '

Since a radial field exhibiting solely inward radiation near the event horizon (¢ — 17) corresponds, under the
transformation 7 = (£ — 1)7!, to an outward radiating field as we approach spatial infinity (z — +oc0”), it is
necessary to choose the plus sign in the formulas above. Consequently, the correct QNM boundary condition at§ = 1
reads

Uy ==+ (74)

A
l//gfga(é — 1) exp (5 _+1> (75)

with u, and A, defined in (73) and (74).

Asymptotic behavior as £ — +o00: By means of the transformation = 1/&, we can verify that the point at infinity is
again an irregular singular point of rank 1. Therefore, the asymptotic behavior of the solutions to Eq. (65) can be
derived according to the method outlined in [34]. To this purpose, we observe that

©_ § ®_ g 8x,Q2
p(é)—zf—i—0<§—12), qa(é) = Zg_k_4292 xg +O<52> (76)
:0

With the help of (29), we find that A, = +2ix,Q and p, = £2iQ. Hence, the QNM boundary condition at spacelike
infinity can be expressed as

V/Qfeé_) 5219 21x€§2§. (77)
+

transform the radial function yq,.(£) into a new radial function @, (&) such that the QNM boundary conditions are

automatically implemented and @, () is regular at £ =1 and at spacelike infinity. To this aim, we consider the
transformation

Ware(E) = 10 (& = 1) 2R g, (&), (78)

If we rewrite it in a more compact form, namely

1

__ £lia _ 1)=2i(a-1) ix,Qn(&) — £ _ -
Ware(§) = £ (¢ — 1) g, (&), ng)=¢&-1+ h(1)(&—-1) (79)
o Xe [202)62 (xe - 1)(q + 1) ZXS(QZ + 1)<q2 - 4xe + 1) - 2(1%)6%(6]2 - 3) — 4aexeq2 - 6]

e Ol (¢ + 1)+ 221 S

and we replace it into (65), then we end up with the differential equation
PZe(é)q),g/Zfe(é) + Ple(g)q)ézt’e(g) + POe(é)(DQfe(é) =0, (81)

where
2 (g 1 2
P& = g, (52)
_ €E=D ooy 1 /

P1o(§) = E(6 = D)fe(&)y =1 Se(&) +iQf (E)xeS(E = ' (§) + &~ a] ¢ (83)
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Po(§) = =R ()R ()R +iQf . (§)R(E) = (£~ 1)*V.(&). (84)
R:(§) = xL(E = DS (§) £ x8(E = 1) + (£ - a)fe(8), (85)

8(8) = 2 2~ 1211 (O] +5EE - 1(E- a)fi(&) ~ 5 (& ~ 20 + @) (). (36)

2 2 5@
[The variable a defined in Eq. (80) should not be mistaken for the one in (5).] Let us introduce the transformation
£=2/(1 — y) mapping the point at infinity and the event horizon to y = 1 and y = —1, respectively. Furthermore, a dot
denotes differentiation with respect to the new variable y. Then, Eq. (81) becomes

S2e(y)(i)52fe(y> + Sle(Y)d)szfe()’) + S0 (v)Pare(y) =0, (87)
where
5.t =L gy (58
$.0) = 1012 20 =00 +2- a1 -0 - S 20+ B2 r . 69
SOe(y) = QzZZe(y) + iQZle(y) + ZOe(y)7 (90)
with
S(y) = B2 L) 1 -2y 42— a1 - ) 1)

(I-y*  (-y)?

X, . X, 2
210 = (143 PL 0 + 2

)1 = y)ii(y) = 20(y)]

1+y f2< ) 4 .

T 2=a(l=y)lf.()f.y) - (L 2-2a(1-y) +35 (1 -y, (92)
_ A0 +y)p

Zle(y) - (1 _y)4 Vg(y), (93)

and the requirement that ®g,.(y) is regular at y = 1. As a result of the transformation introduced above, we have

2, — 14y 2 [1[1-y 2a,q9x 1 [(1=¢*)(1-y) . (2a.qx
e T A ) D 1+ a2 edte) 2 (V79 )V 7)) 142 “Hedre
) T {Z[xe + a( +q)]cos<1_y 3 o, +a(1+¢%)| sin = ) [

(94)
(1-y)° ~ I+y, 1-y
Vely) = e =f.(y)+2(¢+1)], = + . 95
») eSO =y)f.() +£(£+ 1)) n(y) =y TR 1) (95)
Table IV shows that the coefficients of the differential equation (87) share a common zero of order 4 aty = —1 while y = 1

is a pole of order 2 for the coefficients S;,(y) and Sy, (). Hence, in order to apply the spectral method, we need to multiply
(87) by (1 —y)%/(1 +y)* As a result, we end up with the following differential equation:

M, () @are(y) + M1, (y)Pare(y) + Moo (y)Pore(y) = 0, (96)

where
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TABLE IV. Classification of the points y = =1 for the relevant functions entering in (88)—(90). The abbreviations
zord n and p ord m stand for zero of order n and pole of order m, respectively.

y fe(y) Ve(y) n(y) S0 (y) Sie(y) Soe(y)

-1 z ord 2 z ord 2 pord 1 z ord 6 z ord 4 z ord 4

+1 +1 z ord 2 p ord 1 +1 p ord 2 p ord 2
M2e0) = TR0 M) = ONL0) + Nah): M) = B 0) + 19610 + Culy) (97)

with
- () d
M) = 2 RO =30 + 2= el = Nul) = S (- Rr), 8
2 2

Couly) = e T p i)+ 2— a1 - )P, (99)

(1=y%* (1+y)

Culy) =% (152) £ 0000 + 5 (2 O = )i0) = 200)

I+y
1-y - fe») a
b 2 —a(l =Y ) f(y) = 2 = 2a(1 = y) + = (1 —y)?|, 100
2 +y)3[ (1 =fe)fe(y) ) 1=y +5(1~y) (100)
4Ve(y)
Coe(y) = - (101)
el (1-y%)?
It can be easily checked with Maple that
1
lim M,,(y) =0 = lim M2e( ), im M, (y) == ix,Q, lim M, (y) = iQA,,, (102)
y=1- y—o—17 y—=1- 2 y——1t
lif{l Mo, (y) = A2 + Ay, lim Mo, (y) = By, (103)
y—=>1" y—=- 1"

where the coefficients A;,, A,,, Ag,, B1,, and B, are given in Appendix B. Finally, in order to apply the spectral method, we
rewrite the differential equation (96) into the following form

LY [®qre. Dose. ore] + Ll [@ase. Pore. Dor] @ + LY [@re. Dave. Por @ = 0 (104)
with
(() )[(DQfev Doyre, Pore] = (() )( )Pare + L((n)( )Doe + I:E)ez) () Pare, (105)
I:(le) [@are Doye (.I.)Qfe] = Iig? (V)@ + 1:(161) ()’)d)gfe + 12(162) (Y)égfe, (106)
£g€> [@ase Pases Pare] = ig () ®qr + ﬁ(261) ()P + I:<262) () Pare- (107)

7 (e)

Moreover, in Table V, we have summarized the L;;” appearing in (105)—-(107) and their limiting values at y = £1.
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TABLE V. Definitions of the coefficients L and their
corresponding behaviors at the endpoints of the interval
—1 <y < 1. The symbols appearing in this table have been
defined in Appendix B.

(i. j) lim, LS LY lim, - L}
(O’O) BOe COe AOe
0,1) 0 No, 0
0,2) 0 M,, 0
(1,0) 0 Cy, 0
(171) Ale Nle -xe/2
(1,2) 0 0 0
(2,0) 0 Cae Age
@2.1) 0 0 0
(2,2) 0 0 0

III. NUMERICAL METHOD AND RESULTS

In order to solve the differential eigenvalue problem (56)
to determine the QNMs along with the corresponding
frequencies Q, we have to discretize the differential
operators I:j[‘] with j€{0,1,2} defined in (57)—(59).
Since our problem is posed on the finite interval [—1, 1]
without any boundary conditions, more precisely, we only
require that the QNMs be regular functions at y = +1,
then, it is natural to choose a Chebyshev-type spectral
method [36,37]. Namely, we are going to expand the
function y > ®q(y) in the form of a truncated
Chebyshev series

(108)

N
Dore(y) = Z ayTy(y).
k=0

TABLE VL

where NeN is kept as a numerical parameter,
{a; ¥y CR, and {T\(y)}Y, are the Chebyshev poly-
nomials of the first kind
Te: [-1,1] — [-1,1], y > cos(karccosy). (109)
After substituting expansion (108) into the differential
equation (56), we obtain an eigenvalue problem with
polynomial coefficients. In order to translate it into the
realm of numerical linear algebra, we employ the colloca-
tion method [37]. Specifically, rather than insisting that the
polynomial function in y is identically zero [a condition
equivalent to having polynomial solutions for the differ-
ential problem as per equation (56)], we impose a weaker
requirement. This involves ensuring that the polynomial
vanishes at (N + 1) strategically selected points. The
number N + 1 coincides exactly with the number of
unknown coefficients {a,; }?'_,. For the collocation points,
we implemented the Chebyshev roots grid [38]

ye = (110)

2k + 1)z
S<m>, kE{O,l,...,N}.

In our numerical codes, we also implemented the second
option of the Chebyshev extrema grid

k
yk:—cos<—”>, ke{0,1,...,N}. (l11)
n

The users are free to choose their favorite collocation
points. Notice that we used the roots grid in our compu-
tation, and, in any case, the theoretical performance of the

This table details the quasinormal frequencies for scalar perturbations (s = 0) in the context of a nonextreme Lee-Wick

BH, with ¢ = 0.1 and ¢ = 0.5 for different settings of the parameter a. Particularly, the fourth and sixth columns highlight scenarios
with large a values, where, as expected, the QNMs get closer to the numerical outcomes obtained by [41,42] through the continued
fraction method, specifically for a Schwarzschild BH (see third column). The fifth and seventh columns correspond to choices of the
parameter a slightly above the corresponding value of a characterizing an extreme Lee-Wick BH. The numerical values were derived
using the spectral method with 200 polynomials, which allowed us to achieve an accuracy of 200 digits. In this context, Q signifies the
dimensionless frequency, as introduced in Eq. (15). The round bracket (g, a) indicates the corresponding choice of the parameters ¢ and

Q, (0.1, 5.1)

Q, (0.5, 100)

Q, (0.5, 4.0)

a.

¢ n QSChwarzschi]d [42] Qa (01, 100)

0 0 0.1105 — 0.1049i 0.1105 — 0.1049i
1 0.0861 — 0.3481i 0.0861 — 0.3481i

1 0 0.2929 — 0.0977i 0.2929 — 0.0977i
1 0.2645 — 0.3063i 0.2645 — 0.3063i
2 0.2295 — 0.5401i 0.2295 — 0.5401i
3 0.2033 — 0.7883i 0.2033 — 0.7883i

2 0 0.4836 — 0.0968i 0.4836 — 0.0968i
1 0.4639 — 0.2956i 0.4639 — 0.2956i
2 0.4305 — 0.5086i 0.4305 — 0.5086i
3 0.3939 — 0.7381i 0.3939 — 0.7381i

0.1065 — 0.0856i
0.0441 - 0.3021i

0.2970 — 0.0794i
0.2560 — 0.2449i
0.0000 — 0.3645i
0.0000 — 0.6547i

0.4926 — 0.0789i
0.4672 — 0.2390i
0.4155 — 0.4060i
0.0000 — 0.3945i

0.1105 — 0.1049i
0.0861 —0.3481i

0.2929 — 0.0977i
0.2645 — 0.3063i
0.2295 — 0.5401i
0.2033 - 0.7883i

0.4836 — 0.0968i
0.4639 — 0.2956i
0.4305 — 0.5086i
0.3939 — 0.7381i

0.1032 — 0.0887i
0.0310 - 0.3113i

0.2871 — 0.0854i
0.2376 — 0.2597i
0.1456 — 0.4537i
0.0000 — 0.4344i

0.4769 — 0.0858i
0.4449 — 0.2580i
0.3816 — 0.4303i
0.2934 — 0.6158i
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TABLE VII. This table details the quasinormal frequencies for scalar perturbations (s = 0) in the context of a nonextreme Lee-Wick
BH, with ¢ = 1 and ¢ = 2 for different settings of the parameter a. Particularly, the third and fifth columns highlight scenarios with large
a values, where, as expected, the QNMs closely align with the numerical outcomes obtained by [41,42] through the continued fraction
method, specifically for a Schwarzschild BH (see third column in Table VI). The fourth and sixth columns correspond to choices of the
parameter « slightly above the corresponding value of « characterizing an extreme Lee-Wick BH. The seventh and eighth columns
correspond to BHs with two horizons, with a between two cases of extreme horizons of type B (see Table I). The numerical values were
derived using the spectral method with 200 polynomials, which allowed us to achieve an accuracy of 200 digits. In this context, Q
signifies the dimensionless frequency, as introduced in Eq. (15). The round bracket (g, «) indicates the corresponding choice of the
parameters g and a. The QNMs appearing in the first and third lines of the fourth column look identical to the first five digits, but they are
not the same because, for £ = 0 and # = 1, the elements in the matrix M, [see Eq. (112)] differ only beyond the first 100 digits.

£ n Q, (1, 100) Q, (1, 2.2) Q, (2, 100) Q, (2, 0.7) Q, (2, 1.0) Q, (2, 2.0)

0 0 0.1105-0.1049¢ 0.0863 —0.0917i 0.1105—-0.1049i  0.0000 — 0.0457;  0.0000 — 0.6041i  0.0000 — 3.9700i
1 0.0861—-0.3481i 0.0000 —0.1593;  0.0861 —0.3481i  0.0000 — 0.0910:  0.0000 — 1.1985;  0.0000 — 7.8641i

I 0 0.2929-0.0977i 0.0863 —0.0917i 0.2929 —0.0977i  0.1567 —0.0839;  0.0000 — 0.7402i  0.2756 — 0.1493i
1 0.2645-0.3063; 0.0000 —0.1593i 0.2645 —0.3063;  0.0000 — 0.0718;  0.0000 — 1.2862i  0.0000 — 4.3324i
2 0.2295-0.5401i  0.0000 —0.2398;  0.2295 —0.5401i  0.0000 — 0.1140:  0.0000 — 1.8453;  0.0000 — 8.0647i
3 0.2033 -0.7883i  0.0000 —0.3203;  0.2033 —0.7883;  0.0000 — 0.1567;  0.0000 — 2.4092i  0.0000 — 11.794i

2 0 04836-0.0968i 0.4226 —0.0954i 0.4836 —0.0968i  0.2763 —0.0967i  0.0000 —0.9601i  0.4729 —0.1712i
1 04639 —-0.2956i 0.3568 —0.2740i  0.4639 —0.2956i  0.0000 — 0.1037i  0.0000 — 1.4426i  0.0000 — 4.9772i
2 0.4305-0.5086i  0.0000—0.2071i  0.4305 —0.5086i  0.0000 —0.1453i  0.0000 — 1.9623;  0.0000 — 8.4428i
3 0.3939-0.7381i 0.0000 —0.2801i  0.3939 —0.7381i  0.0000 —0.1870;  0.0000 — 2.5015¢  0.0000 — 12.055

two available options

known to be absolutely

comparable [37,38].

Upon implementing the collocation method, we derive a
classical matrix-based quadratic eigenvalue problem, as
detailed in [39]

In this formulation, the square real matrices M i each of
size (N+1)x(N+1) for je{0,1,2}, represent the
spectral discretizations of the operators £§e> [-], respectively.

The problem (112) is solved numerically with the POLYEIG

function from Matlab. This polynomial eigenvalue problem
yields 2(N + 1) potential values for the parameter Q. To
discern the physical values of Q that correspond to the BH’s

(Mo + iM,Q + M,Q%)a = 0. (112) QNMs, we first overlap the root plots for various values

TABLE VIII. This table details the quasinormal frequencies for scalar perturbations (s = 0) in the context of a nonextreme Lee-Wick
BH, with ¢ = 2 for different settings of the parameter a. The choices of the parameter « are slightly above the corresponding values
characterizing extreme Lee-Wick BHs of types B (fourth column) and A (fifth column), see Table I. The numerical values were derived
using the spectral method with 300 polynomials, which allowed us to achieve an accuracy of 300 digits. In this context, Q signifies the
dimensionless frequency, as introduced in Eq. (15). The round bracket (g, @) indicates the corresponding choice of the parameters g and
a. We observe a significant deviation in the quasinormal modes compared to those of a Schwarzschild black hole, as detailed in the third
column of Table VI. Moreover, the occurrence of purely imaginary QNM:s is accentuated for @ = 4.1, i.e., close to the extremal case of
type B.

¢ n Q, (2, 3.0) Q, (2,4.1) Q, (2,52 Q, (2, 6.0 Q, (2, 10)

0 0 0.1272 - 0.1120i 0.0936 — 0.1111i 0.1083 — 0.1158i 0.1147 — 0.1053: 0.1103 — 0.1045i
1 0.0000 —9.9773i 0.0000 — 0.1452i 0.0000 — 1.3151i 0.0000 — 2.2774i 0.0000 — 1.8085i

1 0 0.3350 — 0.1015i 0.2784 — 0.1167i 0.3012 — 0.1066i 0.2988 — 0.0909i 0.2926 — 0.0977i
1 1.1452 — 0.5173i 0.0000 — 0.3247i 0.0000 — 1.4397i 0.3110 —0.3061i 0.2617 — 0.3052i
2 3.0889 — 1.0411i 0.0000 — 0.4749i 0.0000 — 2.8076i 0.0000 — 2.4410i 0.8273 — 1.8470i
3 0.0000 — 10.5563i 0.0000 — 0.6262i 0.0000 — 4.1917i 0.0000 — 4.8148i 0.0000 — 2.0058i

2 0 0.5333 — 0.0909i 0.4733 — 0.1227i 0.4975 — 0.1007i 0.4849 — 0.0847i 0.4835 - 0.0971i
1 0.8883 —0.3611i 0.0000 — 0.2202i 0.4956 — 0.3338i 0.5025 - 0.2702i 0.4618 — 0.2966i
2 1.2183 — 0.4733i 0.0000 — 0.3634i 0.0000 — 1.6304i 0.0000 — 2.7027i 0.9850 — 1.8445i
3 3.1152 — 1.0281i 0.0000 — 0.5095i 0.0000 — 2.9448i 0.0000 — 4.9950i 0.0000 — 2.2981i
4 0.0000 — 11.6212i 0.0000 — 0.6576i 0.0000 — 4.2998i 0.0000 — 7.3485i 1.3992 — 3.1071i
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TABLE IX. This table details the quasinormal frequencies for electromagnetic perturbations (s = 1) in the context of a nonextreme
Lee-Wick BH, with ¢ = 0.1 and ¢ = 0.5 for different settings of the parameter a. Particularly, the fourth and sixth columns highlight
scenarios with large a values, where, as expected, the QNMs get closer to the numerical values obtained by [41,42], specifically for a
Schwarzschild BH (see third column). The fifth and seventh columns correspond to choices of the parameter a slightly above the
corresponding value of « characterizing an extreme Lee-Wick BH. The numerical values were derived using the spectral method with
300 polynomials, which allowed us to achieve an accuracy of 300 digits. In this context, € signifies the dimensionless frequency, as

introduced in Eq. (15). The round bracket (g, @) indicates the corresponding choice of the parameters ¢ and a.

‘

S-2Schwarzschild [42]

Q, (0.1, 100)

Q, (0.1, 5.1)

Q, (0.5, 100)

Q, (0.5, 4.0)

1

A LOWN—,O WAL, NDN—RO —O| S

0.2483 — 0.0925i
0.2145 - 0.2937i

0.4576 — 0.0950i
0.4365 — 0.2907i
0.4012 - 0.50161

0.6569 — 0.0956i
0.6417 — 0.2897i
0.6138 —0.4921i
0.5779 — 0.7063i

0.8531 — 0.0959i
0.8413 — 0.2893i
0.8187 — 0.4878i
0.7877 — 0.6942i
0.7515 - 0.9102i

0.2483 — 0.0925i
0.2145 - 0.2937i

0.4576 — 0.0950i
0.4365 — 0.2907i
0.4012 - 0.5016i

0.6569 — 0.0956i
0.6417 — 0.2897i
0.6138 — 0.4921i
0.5779 - 0.7063i

0.8531 — 0.0959i
0.8413 — 0.2893i
0.8187 — 0.4878i
0.7877 — 0.6942i
0.7515 - 0.9102i

0.2587 — 0.0724i
0.2180 — 0.2237i

0.4693 — 0.0762i
0.4444 - 0.2310i
0.3935 - 0.3930i

0.6721 — 0.0774i
0.6541 — 0.2334i
0.6175 — 0.3929i
0.5610 — 0.5586i

0.8721 — 0.0779i
0.8581 — 0.2344i
0.8296 — 0.3931i
0.7860 — 0.5555i
0.0000 — 0.4260i

0.2483 —0.0925i
0.2145 - 0.2937i

0.4576 — 0.0950i
0.4365 - 0.2907i
0.4012 - 0.5016i

0.6569 — 0.0956i
0.6417 — 0.2897i
0.6138 —0.4921i
0.5779 — 0.7063i

0.8531 - 0.0959i
0.8413 — 0.2893i
0.8187 — 0.4878i
0.7877 — 0.6942i
0.7515 - 0.9102i

0.2470 — 0.0775i
0.1996 — 0.2367i

0.4524 — 0.0826i
0.4216 — 0.2490i
0.3587 — 0.4169i

0.6498 — 0.0843i
0.6270 — 0.2537i
0.5790 — 0.4234i
0.5131 - 0.5839i

0.8444 — 0.0851i
0.8264 — 0.2559i
0.7886 — 0.4277i
0.7253 — 0.5933i
0.6851 — 0.7258i

of N in Eq. (108), such as N € {200, 250,300}. We then
identify the consistent roots whose positions remain stable

across these different N values.

In order to reduce the rounding and other floating point
errors, we performed all our computations with multiple

precision arithmetic that is built in Maple and which is
brought into Matlab by the Advanpix toolbox [40]. All

numerical computations reported in this study have been

performed with 300 decimal digits accuracy. This measure
could be considered as an overkill. However, this is not at

TABLE X. This table details the quasinormal frequencies for electromagnetic perturbations (s = 1) in the context of a nonextreme
Lee-Wick BH, with ¢ = 1 and g = 2 for different settings of the parameter . Particularly, the third and fifth columns highlight scenarios
with large a values, where, as expected, the QNMs get closer to the numerical results obtained by [42] through the spectral method,
specifically for a Schwarzschild BH (see third column in Table IX). The fourth and sixth columns correspond to choices of the parameter
a slightly above the corresponding value of a characterizing an extreme Lee-Wick BH. The numerical values were derived using the
spectral method with 300 polynomials, which allowed us to achieve an accuracy of 300 digits. In this context, Q signifies
the dimensionless frequency, as introduced in Eq. (15). The round bracket (g, @) indicates the corresponding choice of the parameters ¢

Q, (1, 100)

Q, (1, 22)

Q, (2, 100)

Q, (2, 0.7)

Q, (2, 1.0)

Q, (2, 2.0)

and a.
7 n
1 0
1
2 0
1
2
3 0
1
2
3
4 0
1
2
3
4

0.2483 — 0.0925i
0.2145 - 0.2937i

0.4576 — 0.0950i
0.4365 - 0.2907i
0.4012 - 0.5016i

0.6569 — 0.0956i
0.6417 — 0.2897i
0.6138 — 0.4921i
0.5779 — 0.7063i

0.8531 — 0.0959i
0.8413 — 0.2893:
0.8187 — 0.4878i
0.7877 — 0.6942i
0.7515 - 0.9102i

0.2101 - 0.0795i
0.0000 - 0.2162i

0.3965 — 0.0896i
0.3357 — 0.2630i
0.0000 — 0.2077i

0.5760 — 0.0935i
0.5273 — 0.2838i
0.0000 — 0.2758i
0.0000 — 0.3489i

0.7523 — 0.0952i
0.7188 — 0.2900i
0.5777 — 0.3894i
0.0000 — 0.3440i
0.0000 — 0.4169i

0.2483 — 0.0925i
0.2145 - 0.2937i

0.4576 — 0.0950i
0.4365 — 0.2907i
0.4012 - 0.50161

0.6569 — 0.0956i
0.6417 — 0.2897i
0.6138 — 0.4921i
0.5779 — 0.7063i

0.8531 — 0.0959i
0.8413 —0.2893i
0.8187 — 0.4878i
0.7877 — 0.6942i
0.7515 - 0.9102i

0.1265 — 0.0650i
0.0000 — 0.0724i

0.2558 — 0.0848i
0.0000 — 0.1040i
0.0000 — 0.1458i

0.3878 — 0.0934i
0.0000 — 0.1365i
0.0000 — 0.1782i
0.0000 — 0.2200i

0.5130 — 0.0944i
0.0000 — 0.1692i
0.0000 — 0.2108i
0.0000 — 0.2525i
0.0000 — 0.2944i

0.1459 — 0.1001:
0.0000 — 0.8372i

0.3085 — 0.1315i
0.0000 — 1.0298i
0.0000 — 1.5468i

0.4949 — 0.1670i
0.0000 — 1.2883i
0.0000 — 1.7407i
0.0000 — 2.2319i

0.6625 — 0.1578i
0.4839 — 0.1895i
0.0000 — 1.5866i
0.0000 — 2.0034i
0.0000 —2.4313i

0.2186 — 0.1330i
0.0000 — 5.3549i

0.4389 — 0.1694i
0.0000 — 5.8625i
0.0000 —9.5012i

0.6247 — 0.1879i
0.8694 — 0.3265i
0.0000 — 6.6041i
0.0000 —9.9220i

0.7852 — 0.1882i
1.0667 — 0.2957i
0.0000 — 7.5728i
0.0000 — 10.4725i
0.0000 — 13.8547i
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TABLE XI. This table details the quasinormal frequencies for electromagnetic perturbations (s = 1) in the context of a nonextreme
Lee-Wick BH, with g = 2 for different settings of the parameter a. The choices of the parameter « are slightly above the corresponding
values of a, characterizing extreme Lee-Wick BHs of types A and B. The numerical values were derived using the spectral method with
300 polynomials, which allowed us to achieve an accuracy of 300 digits. In this context, Q signifies the dimensionless frequency, as
introduced in Eq. (15). The round bracket (¢, ) indicates the corresponding choice of the parameters ¢ and a. We observe a significant
deviation in the quasinormal modes compared to those of a Schwarzschild black hole, as detailed in the third column of Table IX. The
occurrence of purely imaginary QNMs is accentuated for a = 4.1, i.e., close to the extremal case of type B (see Table I).

¢ n Q, (2, 3.0) Q, (2, 4.1) Q, (2,52 Q, (2, 6.0) Q, (2, 10)
1 0 0.2831 — 0.1087i 0.2284 — 0.1052i 0.2515 — 0.1037i 0.2555 — 0.0894i 0.2480 — 0.0924
1 0.0000 — 13.3904i 0.0000 — 0.1786i 0.0000 — 1.5319i 0.0000 — 2.6360i 0.2127 — 0.2918i
2 0 0.5064 — 0.0985i 0.4432 — 0.1196i 0.4703 — 0.1015i 0.4612 — 0.0839i 0.4574 — 0.0953i
1 0.0000 — 14.1949; 0.0000 — 0.2208i 0.4635 — 0.3321i 0.4758 — 0.2724i 0.4344 — 0.2912i
2 0.0000 — 23.5519i 0.0000 — 0.3649i 0.0000 — 1.6919i 0.0000 — 2.8441i 1.0305 — 1.8319i
3 0 0.6985 — 0.0849i 0.6479 — 0.1258i 0.6735 — 0.0965i 0.6536 — 0.0817i 0.6569 — 0.0959i
1 1.0142 — 0.2717i 0.5947 — 0.3614i 0.6807 — 0.3193i 0.6731 — 0.2517i 0.6406 — 0.2913i
2 1.2669 — 0.4453i 0.0000 — 0.2691i 0.0000 — 1.9036i 0.6963 — 0.4651i 0.6074 — 0.4936i
3 0.0000 — 15.3821i 0.0000 — 0.4098i 0.0000 — 3.1935i 0.0000 — 3.1276i 0.8117 — 0.8509i
4 0 0.8791 — 0.0720i 0.8485 — 0.1297i 0.8714 — 0.0918i 0.8429 — 0.0828i 0.8533 — 0.0961i
1 1.2047 — 0.2371i 0.8066 — 0.3654i 0.8887 — 0.3090i 0.8611 — 0.2368i 0.8412 — 0.2912i
2 1.4283 — 0.4021i 0.0000 — 0.3201i 0.0000 — 2.1511i 0.8958 — 0.4353i 0.8147 — 0.4921i
3 0.0000 — 16.9437i 0.0000 — 0.4589i 0.0000 — 3.3831i 0.0000 — 3.4672i 0.9566 — 0.9548
4 0.0000 — 25.0259i 0.0000 — 0.5999i 0.0000 — 4.6903i 0.0000 — 5.6405i 1.2932 — 1.9074i

all the case. Namely, we performed comparisons with
QNMs computed in the standard double-precision float-
ing-point arithmetic (as specified in the IEEE-754-2008
standard), and the obtained spectra were highly distorted
and inaccurate beyond a few first QNMs. That is why
we decided in our study to sacrifice the speed of our
computations for the sake of the robustness of the reported
values.

Tables VI through XX present typical values of the
QNMs for Lee-Wick BHs under scalar, electromagnetic,
and gravitational perturbations based on different choices
of the parameters ¢ and a. This is the first study to report
such findings. All numerical values of the QNMs listed in
the tables have been rounded to the fifth significant digit.

The transition of the Lee-Wick BH into the Schwarzschild
metric, as a increases [see Eq. (11)], serves as a foundation for

TABLE XII. This table details the quasinormal frequencies for gravitational perturbations (s = 2) in the context of a nonextreme Lee-
Wick BH, with ¢ = 0.1 and ¢ = 0.5 for different settings of the parameter «. Particularly, the fourth and sixth columns highlight
scenarios with large a values, where, as expected, the QNMs get closer to the numerical values obtained by [41,42], specifically for a
Schwarzschild BH (see third column). The fifth and seventh columns correspond to choices of the parameter a slightly above the
corresponding value of « characterizing an extreme Lee-Wick BH. The numerical values were derived using the spectral method with
300 polynomials, which allowed us to achieve an accuracy of 300 digits. In this context, Q signifies the dimensionless frequency, as
introduced in Eq. (15). The round bracket (g, @) indicates the corresponding choice of the parameters ¢ and a.

4 n Qqchwarzschild [42] Q, (0.1, 100) Q, (0.1, 5.1) Q, (0.5, 100) Q, (0.5, 4.0)

2 0 0.3737 — 0.0890i 0.3737 — 0.0890i 0.4693 — 0.0762i 0.3737 — 0.0890i 0.3729 — 0.0698i
1 0.3467 — 0.2739i 0.3467 — 0.2739i 0.4444 — 0.2310i 0.3467 — 0.2739i 0.3508 — 0.2136i
2 0.3011 —0.4783i 0.3011 —0.4783i 0.3935 - 0.3930i 0.3011 —0.4783i 0.2987 — 0.3667i

3 0 0.5994 — 0.0927i 0.5994 — 0.0927i 0.6196 — 0.0722i 0.5994 — 0.0927i 0.5945 - 0.0784i
1 0.5826 — 0.2813i 0.5826 — 0.2813i 0.6035 — 0.2182i 0.5826 — 0.2813i 0.5746 — 0.2368i
2 0.5517 - 0.4791i 0.5517 - 0.4791i 0.5701 - 0.3692i 0.5517 - 0.4791i 0.5300 — 0.3986i
3 0.5112 —0.6903i 0.5112 —0.6903i 0.5165 — 0.5287i 0.5112 —0.6903i 0.4674 — 0.5461i

4 0 0.8092 — 0.0942i 0.8092 — 0.0942i 0.8319 — 0.0749i 0.8092 — 0.0942i 0.8019 — 0.0816i
1 0.7966 — 0.2843i 0.7966 — 0.2843i 0.8186 — 0.2256i 0.7966 — 0.2843i 0.7853 — 0.2458i
2 0.7727 - 0.4799i 0.7727 — 0.4799i 0.7915 - 0.3789i 0.7727 — 0.4799i 0.7499 — 0.4128i
3 0.7398 — 0.6839i 0.7398 — 0.6839i 0.7497 — 0.5368i 0.7398 — 0.6839i 0.6819 — 0.5749i
4 0.7015 — 0.8982i 0.7015 — 0.8982i e 0.7015 — 0.8982i 0.6586 — 0.6815i
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TABLE XIII. This table details the quasinormal frequencies for gravitational perturbations (s = 2) in the context of a nonextreme Lee-
Wick BH, with ¢ = 1 and ¢ = 2 for different settings of the parameter a. Particularly, the third and fifth columns highlight scenarios
with large a values, where, as expected, the QNMs get closer to the numerical results obtained by [42] through the spectral method,
specifically for a Schwarzschild BH (see third column in Table XII). The fourth and sixth columns correspond to choices of the
parameter « slightly above the corresponding value of a characterizing an extreme Lee-Wick BH. The numerical values were derived
using the spectral method with 300 polynomials, which allowed us to achieve an accuracy of 300 digits. In this context, € signifies the
dimensionless frequency, as introduced in Eq. (15). The round bracket (¢, a) indicates the corresponding choice of the parameters ¢
and a.

£ n Q, (1, 100) Q, (1, 2.2) Q, (2, 100) Q, (2,0.7) Q, (2, 1.0) Q, (2, 2.0)

2 0 0.3737-0.0890i 0.3120-0.0711; 0.3737 —0.0890;  0.0000 — 0.1051i  0.0000 — 0.2616i  0.3333 —0.1733i
1 03467 -0.2739i 0.2741 —0.2110i  0.3467 —0.2739;  0.0000 — 0.1476;  0.0000 — 0.3050;  0.0000 — 0.1609i
2 03011 -0.4783i 0.0000 —0.2104i 0.3011 —0.4783; 0.0000 — 0.1900;  0.0000 —1.1197i  0.0000 — 3.0197i

3 0 05994 -0.0927i 0.5165—0.0836i 0.5994 —0.0927; 0.3289 —0.0807; 0.3830 —0.1513i  0.5549 — 0.1780i
1 0.5826-0.2813i 0.4770—-0.2579i 0.5826 —0.2813;  0.0000 — 0.1372i  0.4611 —0.2066i  0.8575 — 0.3173i
2 05517-04791i 04129 —0.3623;  0.5517 —0.4791i  0.0000 — 0.1792i  0.5230 — 0.4444;  0.0000 — 0.9037i
3 0.5112-0.6903i  0.0000 - 0.2773i  0.5112-0.6903;  0.0000 — 0.2215;  0.0000 — 1.2956i  0.0000 — 3.0043i

4 0 0.8092-0.0942i 0.7059 —0.0887i 0.8092 —0.0942i 0.4680 —0.0829;  0.6092 — 0.1476i  0.7338 —0.1798i
1 0.7966 —0.2843i  0.6791 —0.2722i  0.7966 — 0.2843;  0.3365 — 0.1368;  0.4569 —0.1693;  1.0119 — 0.2769i
2 07727 -0.4799i 0.5396 —0.3500i  0.7727 —0.4799;  0.0000 — 0.1697i  0.9718 — 0.6008;  1.1544 —2.4002i
3 0.7398 —0.6839i  0.0000 —0.3450i  0.7398 —0.6839;  0.0000 — 0.2115;  0.0000 — 1.6002{  0.0000 — 7.7215i
4 0.7015-0.8982i 0.0000 —0.4183i 0.7015 —0.8982i  0.0000 — 0.2535;  0.0000 — 1.9241i  0.0000 — 11.1020:

case and the limitations of the spectral method, fewer
frequencies were calculated for larger values of a. Finally,
Tables XVIII-XX present the QNMs for extreme Lee-Wick
BHs of type A, which can be calculated using the same
formulation of the nonextreme situation, as discussed in
Sec. ITA.

An interesting feature observed in the nearly extremal
cases of type-B BHs presented in Tables VII, VIII, X, XI,
XIII, XTIV, as well as the extreme Lee-Wick BHs of type A
(referenced in Tables XVIII-XX), is the emergence of

validating our numerical method. By selecting a sufficiently
large a value, computing the QNMs, and demonstrating their
agreement with the results obtained by [41-43] for the
classical Schwarzschild BH in cases s € {0, 1,2}, we can
substantiate the accuracy of our approach. Relevant compar-
isons are detailed in the fourth column of Tables VI and VII
for s = 0, Tables IX and X for s = 1, and Tables XII and XIII
for s = 2. Moreover, Tables XV-XVII display the QNMs for
extreme Lee-Wick BHs of type B. In this case, owing to the
computational challenges associated with the extremal

TABLE XIV. This table details the quasinormal frequencies for gravitational perturbations (s = 2) in the context of a nonextreme Lee-
Wick BH, with ¢ = 2 for different settings of the parameter a. The choices of the parameter a are slightly above the corresponding
values of a, characterizing extreme Lee-Wick BHs of types A and B. The numerical values were derived using the spectral method with
300 polynomials, which allowed us to achieve an accuracy of 300 digits. In this context, € signifies the dimensionless frequency, as
introduced in Eq. (15). The round bracket (¢, @) indicates the corresponding choice of the parameters g and a. We observe a significant
deviation in the quasinormal modes compared to those of a Schwarzschild black hole, as detailed in the third column of Table XII. The
occurrence of purely imaginary QNMs is accentuated for a = 4.1, i.e., close to the extremal case of type B (see Table I).

4 n Q, (2, 3.0) Q, (2, 4.1) Q, (2,5.2) Q, (2, 6.0) Q, (2, 10)

2 0 0.4162 — 0.1054i 0.3450 - 0.1177i 0.3856 — 0.1040i 0.3841 — 0.0797i 0.3732 - 0.0891i
1 0.0000 — 0.3037i 0.2430 — 0.3123i 0.0000 — 0.5448i 0.3948 — 0.2811i 0.3445 - 0.2721i
2 0.8625 — 0.3286i 0.0000 — 0.2415i 0.0000 — 1.1197i 0.0000 — 0.6159i 0.0000 - 0.9797i

3 0 0.6370 — 0.0905i 0.5821 — 0.1254i 0.6168 — 0.0989i 0.6017 — 0.0776i 0.5993 — 0.0931i
1 0.9873 — 0.2587i 0.5294 — 0.7343i 0.6137 — 0.3236i 0.6227 — 0.2560i 0.5807 — 0.2822i
2 1.2611 —0.4071i 0.0000 — 0.2734i 0.6294 — 1.2519i 0.5234 — 1.7905i 0.5459 — 0.4773i
3 1.4146 — 0.52061 0.0000 — 0.4212i 0.0000 — 2.6788i 0.0000 — 4.6212i 0.7938 — 1.4802i

4 0 0.8330 — 0.0771i 0.7989 — 0.1301i 0.8288 — 0.0938i 0.8030 — 0.0783i 0.8093 — 0.0945i
1 1.1622 — 0.2247i 0.7484 — 0.3584i 0.8404 — 0.3127i 0.8253 —0.2399i 0.7959 — 0.2861i
2 1.3860 — 0.3747i 0.9235 — 1.2641i 1.1376 — 1.8826i 0.8521 — 0.4418i 0.7676 — 0.4824i
3 1.4751 - 0.5074i 0.0000 — 0.3218i 0.0000 — 2.6579i 1.2851 —2.4535i 1.2815 — 1.5382i
4 0.0000 —2.7199i 0.0000 — 0.4630i 0.0000 — 4.1383i 0.0000 — 4.6813i 1.1304 — 2.4081i
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TABLE XV. This table presents the quasinormal frequencies for scalar perturbations (s = 0) of the extreme Lee-Wick BH of type B
for different choices of the parameter g. The results were obtained via the spectral method, employing 300 polynomials with an accuracy
of 300 digits. Here, Q represents the dimensionless frequency as defined in Eq. (61). The numerical values of a, ; and a, , are given in
Table I.

4 n Q(g=0.1) Q(q =0.5) Qg = 1.0) Qg=20,a=a,;) w(g=2.0,a=a,,)
0 0 0.1064 — 0.0855i 0.1021 — 0.0881i 0.0855 — 0.0908i 0.0918 - 0.1113i
1 0.0440 — 0.3029i 0.0251 - 0.3102i e e
1 0 0.2971 - 0.0792i 0.2867 — 0.0833i 0.2495 — 0.0908i 0.1561 — 0.0823i 0.2765 - 0.1167i
1 0.2557 — 0.2443i 0.2345 — 0.2547i ‘e e e
2 0.1763 — 0.4328i 0.1393 — 0.4474i
3 0.0876 — 0.6562i e
2 0 0.4928 — 0.0787i 0.4769 — 0.0835i 0.4207 — 0.0936i 0.2743 — 0.0949i 0.4711 —0.1231i
1 0.4672 — 0.2383i 0.4431 - 0.2517i 0.3543 — 0.2696i e e
2 0.4150 — 0.4050i 0.3759 — 0.4215i ‘e
3 0.3370 — 0.5836i e
4 0.2495 - 0.7812i
TABLE XVI. This table presents the quasinormal frequencies for electromagnetic perturbations (s = 1) of the extreme Lee-Wick BH

of type B for different choices of the parameter g. The results were obtained via the spectral method, employing 300 polynomials with an
accuracy of 300 digits. Here, Q represents the dimensionless frequency as defined in Eq. (61). The numerical values of , ; and a, , are
given in Table I.

4 Qg =0.1) Qg =0.5) Q(g =1.0) Qg =20,a=a,,) w(qg=20,a=a,,)
1 0.2588 — 0.0721i 0.2472 — 0.0749i 0.2092 - 0.0777i 0.1257 — 0.0637i 0.2266 — 0.1045i
0.2177 — 0.2230i 0.1967 — 0.2305i cee e .
0.1373 — 0.3996i 0.0982 — 0.4080i
2 0.4695 — 0.0759i 0.4527 — 0.0802i 0.3949 — 0.0877i

0.4444 — 0.2301i
0.3930 — 0.3919i
0.3150 — 0.5672i

0.4201 — 0.2422i
0.3532 - 0.4073i

0.3336 — 0.2582i

0.2538 — 0.0831i

0.4409 - 0.1197i

OO~ O D= O| S

0.2219 — 0.7563i

TABLE XVII. This table presents the quasinormal frequencies for vector-type gravitational perturbations (s = 2) of the extreme Lee-
Wick BH of type B for different choices of the parameter g. The results were obtained via the spectral method, employing 300
polynomials with an accuracy of 300 digits. Here, Q represents the dimensionless frequency as defined in Eq. (61). The numerical values
of a,; and a,, are given in Table I.

4 Qg =0.1) Qg =0.5) Qg =1.0) Qg=20,a=a,,) Qg=20,a=a,,)
2 0.3941 — 0.0641: 0.3743 — 0.0664i 0.3111 — 0.0682i 0.1724 — 0.0537i 0.3416 — 0.1173i
0.3758 — 0.1975i 0.3511 — 0.2044i 0.2741 — 0.2047i e e
0.3337 — 0.3451i 0.2952 — 0.3549i e
0.2592 — 0.5130: 0.2159 — 0.5205:
0.1714 — 0.6899; e
3 0.6200 — 0.0718i 0.5956 — 0.0755i 0.5143 — 0.0812i 0.5790 — 0.1256i

N RNO—=O WO~ O| I

0.6037 — 0.2172i
0.5699 — 0.3677i
0.5159 - 0.5270i
0.4346 — 0.6932i
0.3719 — 0.8365i

0.5746 — 0.2286i
0.5279 — 0.3865i
0.4583 — 0.5321i

0.4760 — 0.2510i
0.4071 — 0.3544i

0.3262 — 0.0781i

0.5240 — 0.7148i
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TABLE XVIII. This table presents the quasinormal frequencies
for scalar perturbations (s = 0) of the extreme Lee-Wick BH of
type A for g =2, a, = 5.18635, and x;, = 1.04013. The results
were obtained via the spectral method, employing 300 poly-
nomials with an accuracy of 300 digits. Here, Q represents the
dimensionless frequency as defined in Eq. (61).

TABLE XX. This table presents the quasinormal frequencies
for vector-type gravitational perturbations (s = 2) of the extreme
Lee-Wick BH of type A for ¢g=2, a,=5.18635, and
x, = 1.04013. The results were obtained via the spectral method,
employing 300 polynomials with an accuracy of 300 digits. Here,
Q represents the dimensionless frequency as defined in Eq. (61).

4 n Q 4 n Q
0 0 0.1082 — 0.1159i 2 0 0.3854 — 0.1044i
1 0.0000 — 1.3000i 1 0.0000 — 0.5451i
2 0.0000 — 2.6963i 2 0.0000 — 1.1039i
3 0.0000 — 4.0843i 3 0.0000 — 2.6025i
4 0.0000 — 5.4686i 4 0.0000 — 3.9828i
3 0.0000 - 6.8508; 5 0 0.6167 — 0.0993i
1 0 0.3011 — 0.1069i 1 0.6129 — 0.3244i
1 0.0000 — 1.4239i 2 0.6293 — 1.2437i
2 0.0000 — 2.7761i 3 0.0000 — 2.6480i
3 0.0000 — 4.1443i 4 0.0000 — 4.0423i
2 0 0.4975 — 0.1011 > 0.0000 — 5.4143i
1 0.0000 — 1.6134i
2 0.0000 — 2.9125i
3 0.0000 — 4.2519i
4 0.0000 — 5.6066i  suggest a highly efficient mechanism for settling down after

purely imaginary QNMs. Since the occurrence of such
modes is accentuated as one approaches the extremal
configurations, they are expected to be present also for
extreme BHs of type B (they were not calculated in
Tables XV-XVII, however, due to the complexities
involved). The presence of QNMs with purely negative
imaginary parts is significant because these modes re-
present perturbations that decay exponentially over time
without oscillating. This is characteristic of an overdamped
system in classical mechanics, where the system returns to
equilibrium as quickly as possible without any oscillatory
behavior. In the context of BHs, this implies that any
perturbations dampen smoothly into the BH and might

TABLE XIX. This table presents the quasinormal frequencies
for electromagnetic perturbations (s = 1) of the extreme Lee-
Wick BH of type A for ¢ = 2, a, = 5.18635, and x;, = 1.04013.
The results were obtained via the spectral method, employing 300
polynomials with an accuracy of 300 digits. Here, € represents
the dimensionless frequency as defined in Eq. (61).

4 n Q

1 0 0.2513 — 0.1038i
1 0.0000 — 1.5146i
2 0.0000 — 2.9025i

2 0 0.4702 — 0.1018i
1 0.4617 — 0.3327i
2 0.0000 — 1.6737i
3 0.0000 — 3.0082i
4 0.0000 — 4.3717i

being perturbed, which can be indicative of very specific or
unique conditions at the BH’s horizon.

Moreover, these modes are similar in nature to the so-
called near-extremal frequencies detected by [44]. On the
other hand, they can be thought of as emerging from the
so-called zero-damped modes, which are represented by a
sequence of QNMs converging to a purely imaginary
number in the extremal limit [45]. It is interesting to
observe that such modes also appear in the nearly extremal
regimes of Reissner-Nordstrom [46-48], Reissner-
Nordstrom—de Sitter [45,49-51], Kerr [52-56], Kerr-
Newman BHs [57,58], and black strings [59].

IV. CONCLUSIONS AND OUTLOOK

In the present work, we extensively explored the QNMs
of Lee-Wick BHs for the first time, addressing scalar,
electromagnetic, and gravitational perturbations through a
novel application of the spectral method. The findings
underscore the versatility of the spectral method in probing
BH perturbations and its efficacy over previous method-
ologies, paving the way for further exploration and vali-
dation of theoretical predictions in the realm of BH physics
and beyond.

In our study, purely imaginary QNMs emerged in nearly
extremal Lee-Wick BHs of type B, as detailed in Tables VII,
VIII, X, XI, XIII, and XTIV, becoming more prominent closer
to the extremal configurations. Such modes also seem to
occur for extreme Lee-Wick BHs of type A; see
Tables XVIII-XX. At first sight, this result suggests that
the extremality of an inner horizon could be somehow
perceived outside the event horizon. Nevertheless, it could
also be that the regime of extreme BHs of type A is not too far
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from type B, and, for this reason, we still observe purely
imaginary QNMs. In fact, in the tables mentioned above, we
notice that these modes occur even for BH regimes in
between two extremal situations.

Purely imaginary QNMs indicate an overdamped
response to perturbations, suggesting a rapid return to
equilibrium without oscillation. Such characteristics are
similar to zero-damped modes that converge to a purely
imaginary value in extremal limits, commonly observed in
various BH regimes, including Reissner-Nordstrom, Kerr,
and Kerr-Newman, among others. This phenomenon
underscores the unique stability and damping behaviors
of Lee-Wick BHs compared to other types, highlighting
potential distinctions in horizon dynamics and stability
under perturbations. In this regard, it would be interesting
to study the stability of Lee-Wick BHs under gravitational
perturbations that follow higher-order differential equations
in consonance with the higher-derivative nature of Lee-
Wick gravity theories.

The nature of these purely imaginary QNMs might offer
insights into the thermodynamic properties of Lee-Wick BHs.
Given the relationship between QNMs and BH temperature
(as related to surface gravity), the absence of an oscillatory
component in these modes might reflect unique aspects of
energy emission or absorption processes in such BHs.

It is worth mentioning that the work of [60,61] linked
purely imaginary QNMs to horizon quantization in the
context of a Schwarzschild BH with Gauss-Bonnet cor-
rections. In their approach, the presence of such frequencies
was used to suggest discrete properties associated with the
BH horizon, particularly in terms of its area and possibly its
entropy. This line of reasoning is grounded in the broader
context of BH quantization theories, where the quantum
nature of spacetime at the BH horizon leads to a quantized

spectrum. This intriguing correlation between purely
imaginary QNMs and the quantum aspects of Lee-Wick
BHs will be pursued further in future work.

Last but not least, extending the idea of horizon
quantization to Lee-Wick BHs could help in understanding
how modifications to Einstein’s gravity (as proposed by the
Lee-Wick theories) affect the quantum aspects of BHs. This
could provide a unique testing ground for theories that
attempt to unify general relativity with quantum mechanics.
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All analytical calculations presented in this document
have been verified using the computer algebra system Maple.
For transparency and reproducibility, we have included
three Maple worksheets that correspond to the analyses
conducted in the sections devoted to the study of the QNMs
for the nonextreme and extreme cases of types A and B of a
Lee-Wick BH. The discretization of differential operators
(57)—(59) using the Chebyshev-type spectral method is
equally performed in Maple computer algebra system.
Finally, the numerical resolution of the derived quadratic
eigenvalue problem, denoted by Eq. (112), is executed in
the Matlab environment utilizing the POLYEIG function.
Access to all these resources is provided through the
following repository link, ensuring that interested parties
can freely review and utilize the computational method-
ologies employed in our study: [62].

APPENDIX A: EXPRESSIONS FOR THE LIMITS APPEARING IN TABLE III

_ay cos (2ax,q) + by sin (2ax,q) + ¢y

Ay
with
X
aj; = Eh (a3q6x2 - a3q6x%l + 30{3q4x2 - 2a2q6xi - 3a3q4x%l

3,2

N ay  cos (2ax,q) + by, sin (2ax,q) + ¢

2 4.2

+ ?q°x;, + 3’ ¢°x; — 20 q*x; — 30’ g’ X,

+ q*x, + x4 207 qPx3 — 6aqix;, — &’x; — A?q*x, + 20%x% — dagx;, + q* — a’x;, + 2ax;, — 6% + 1), (A2)

X
by, = ?h (—a*q’x; + &*q'x3 = 3a¢°x; + 3P x3 —

2,32

-8 x: + 2aq°x;, + AP qx; + 4’ P x;, — 4P qxi — daqix), + 207 qx;, — 6aqx;, +4q° —4q),

3a3q3x2 - 4a2q5x,21 + 3a3q3xi + 202 ¢ x; — a3qxf,
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c1q1 = x—2h (—a3q6x,31 + a3q6xﬁ3a3q4xz + 3a3q4x%, - azq6xh - 3a3q2xfl - 2a2q4x%l +3a° qzx%l — a2q4xh
—a&’x; — 42 @ x3 — 2aq*x;, + &x; + ?@Px), — 202x3 — 4aqix;, — gt + &Px, = 2ax, —2¢° — 1),  (A4)
1
ay = B (aq3xh + aqth +agx, + ax;, — C]2 +2q + 1)(0“13)% - aqth + agx, —ax, + q2 +2q - 1), (A5)
i’l.] = ‘I(aqth + ox;, — q2 + 1)(0“12)% + ox;, + 2)’ (A6)
1
Gl = E(q2 + 1) (a*q*x; + a*x; + 2ax, + 1). (A7)
Ag = aycos (2ax,q) + by o sin (2ax,q) + ¢y (A8)
ay o cos (2ax,q) + by gsin (2ax,q) + ¢ o
with
1
ap=—3 (g *xia’q*x, + 202 — 202 q*x), — aq’x), + a*xh + ag’x, — &’x, — aqx, + ax, —q* —2g + 1)

x (@2q*x2 — aq*x, + 202> x2207 ), + ag’x), + &’ X3 + agix, — &Px;, + agx, + ax, — ¢ +2q + 1), (A9)

bio = qlag*x, + ax, +2)(Pq*x: — a2q*x;, + 2a*¢*x3 — 202 q*x;, + &2x3 + ag’x, — a*x, +ax, — >+ 1),  (A10)

1
Clo= 3 (q2 + 1)2(a4q4x2 — 2a4q4x,31 + a4q4x%l + 2a4q2xi — 4a4q2xi + 2a4q2x%l + a4x2 + 2a3q2x2 - 2a4xz

=203 %3} + atx} + 2a°x; — A qPxt — 20°x3 + 202 qPx), + 3aPxd — 2a%x), + 2ax;, + 1), (A11)
ayo=4dap. by =4b ;. Cro =4C1. (A12)
= o 5 o) e
with

d; = q(1+ x2)(ag’x, + ax, +2), (A14)
e; = a*q*x2 — aq*x, + 202 %3 + ag’x; — 2a*qPx), + aPx + aqixy, +ax; — ¢*xi —&Px, +ax, — g +x2+ 1, (AlS5)
dy = q(ag’x;, + ax, +2), (Al6)
¢ = q*x; — a*q*x, + 202 ¢ — 207 qPx), + aPx; 4 ag’x, — a’x, + ax, — ¢* + 1. (A17)
Aoz—g(f+1). (A18)

Moreover, we have
B dy 5 cos (2ax,q) + ey, sin (2ax,q) + f22 (A19)

2 32,2 cos (2ax;,q) + &5, sin (2ax,q) + f2»

with
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dyy = x—zh (Batqx; = 3a*qdx} — 2a*qBx; + 120%¢0x; + 2a*¢Bx3 — 12a*¢Ox}, — 8a*qOx; + 18a’q*x], + 8o ¢bx]
+8a*q°x% — 18a*q*x} — 4’ ¢Ox; — 120*q*x + 120*q*x, — 4 ¢Ox3 + 240 ¢*x} — 13a%¢°x; + 120 ¢* X3
—12a*¢*x} — 12a°q*x;, + a*qx;, — 8a*q*x; + 3a*x) — 12a°q*x) + 240’ ¢*x} + 4a*qx), — 1307 ¢ x;,
+8a*q?xs — 3atx} — 12a3q2x2 + a2q4x%l - 2a4x2 — 1203 ¢%x3 + 8a’x} + 4a’qtx, + 13a2q2x2 - 36aq*x?

+2a*x? — 4a3x2 — d*¢*x} — 12aq*x;, — 4o x3 — 4> q*x;, + 13a2x2 — 24aq’x; + 6q*x;, — a’xh?

—8ag’xy, + 2q* — 4a*x;, + 12ax3 — 36¢°x;, + dax;, — 124 + 6x;, + 2), (A20)
ern = —qxp(40¢0x} — 203 q°x} — 203 ¢Ox2 + 12 ¢*x} — 6 q*x; — 603 g*x2 + 123 ¢*x} + 1302 ¢ x; — 60 ¢%x;

—a2q4x% - 6a3q2x% + 4a3xﬁ —4a’qtx;, + 26a2q2x2 - 6aq4xi — 2a3x2 — 2a2q2xﬁ —2aq*x, — 2a3x% — 8aq%x,,

+13a’x; + 12a¢%x3 — &®x3 + dag’x), — 4aPxh + 18ax — 12¢%x;, + 6ax;, — 4q*> + 12xh + 4), (A21)
fa2 = —%h (¢* + 1) (a*q*x; — a*q*x} — 2a*q*x) + da*q*x; + 2 q*x2 — dat ?x} — da*qPx) + 3atx) + 4o gPx]

+4atq?xy — 3a*x} — 2a%x; — 4a ¢*x; + 8a’x} — P q’x; + 2a*x) — 4a’x] + 5a°qPx) — da’x;,

+4a2q*x, + 130%x; — a?xi — 4o’ x;, + 12ax3, + 4ax;, + 6x), + 2), (A22)

212,2 = a3q6x2 - a3q6x% + 30{3q4x2 - Zazqﬁxﬁ - 3a3q4x,21 + a2q6xh + 3a3q2x2 — 2a2q4x% -3’ qzxﬁ + a2q4xh

+a&’x; + 202 ¢ x5 — 6aqtx;, — a’x;, — d’qPx), + 20°x3 — daq’x;, + q* — &Px), + 2ax, — 647 + 1, (A23)
&0 = —q(ag®x, + ax;, +2) - (®q*x2 — &?q*x;, + 2 ¢*x3 — 202 q*x), + &Px2 + 2aq%x), — a’xh + 2ax, — 2¢* + 2),
(A24)
Faa = —(@* + )¢ x; — P¢*x) + &’x; — &¥x} + P qPx), + 20°x] — aPx;, + 2ax;, + 1). (A25)
B, = 512,1 cos (2ax,q) + fz.l s?n (2ax,9) "‘sz.] (A26)
dy | cos (2ax,q) + &, sin (2ax,q) + fa,
with
2.2 360313 5 53 36,2 303 1 20, 3 4.4 4 3,24
dry = =14 12aq°x;, +2a°q Xy =5 adq X, + 200 q°x;, + 60’ q xh+§a q°x; —12a°q"x;, + 6aqg*x, — 120° g x;,

1 3
+ 6a3q4x% + 6a3q2x%’ — 4a4q6x%l - a4q8x%l + a4q8x2 - §a2q6xi + §a4q8xi + 4a4q6x*2 — 2a2q6xh + 6a4q6x2

3 3 1 13
- 5054)(2 + Ea“xﬁ +a*x; —atxd + Eazx,% —4a’x} + 2% + 20° X% — 7“2)‘2 + 2a*x;, — 6ax; + 18¢%x,,

3 13 13
—2ax;, — Ea“qsxi —60*q°x; + 7a2q6xz —3q*x), = 3x, + 64> — g* + 7a2q4xi +20%q*x, — 202q* x;, — 4 qOx}

1
+ 6a3q4x,31 - 6a4q2x2 - Eazqd'x% +4aqx;, + 18aq*xs + 40{4q2x2 - 9a4q4xfl +6a*q’x} + 6a4q4x?l —6a*qxs
—4a*q*x} +9atq*xs, (A27)
ey = q(4a3q6x2 — 2a3q6xf, — 2a3q6xﬁ + 12a3q4x2 - 6a3q4x2 — 6a3q4xi + 12a3q2x2 + 13a2q4x2 - 6a3q2x2
—a2q4x% - 6a3q2x% + 4a3x2 —da’q*x, + 26a2q2x*2 - 6aq4x% - 20{3x2 - 2a2q2x%l —2aq*x;, — 2a3x%

—8a%q*xh + 132%x; + 12aq’x;, — a*x; + daq*x, — 4a*x), + 18ax; — 12¢%x;, + 6ax;, —4q> + 12x, +4),  (A28)
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1
fo1 = 2 (¢* + 1)2(a4q4x2 - a4q4xﬁ - 2a4q4xi + 4a4q2x2 + 2a4q4x%l - 4a4q2x2 - 4a4q2x,31 + 3a4xi + 4a3q2x2

+4atq?xs — 3a*x} — 20%x; — 4aP ¢ x; + 8a’x} — a2 q’x; + 2a*x) — 4a’x) + 5a°¢Px) — dadx;,

+4a2q*x, + 13a%x; — a?x3 — 4o’ x;, + 12ax3 + 4ax;, + 6x), + 2), (A29)
dry =8 ;. &1 = 8by ;. Jo1 =8¢ (A30)
By — ¢~12,0 cos (2ax,q) + fz’o S%n (2ax,q) + {2,0 (A31)
da o cos (2ax;,q) + &g sin (2ax,q) + [0
with
dyo = % (®q*xi — & q*x), + 202 ¢ x; — 2a%q°x;, — ag’x), + @Px; + aq’x;, — a*x;, — agx;, + ax, — q* —2q + 1)-
x (@2q*x} — a*q*x, + 202 ¢ — 202 q*x), + ag’x, + axh® + aq*x;, — &x), + agx, + ax, — ¢* +2q + 1)
1
+ Ef(f + 1) (@®qx; — Pq®xs + 3’ q*x} — 2a2q0x3 — 3P ¢*x2 + a*qOx), + 3P Px) — 207X} — 3 gP
+aqtx), + a3x2 + 2a2q2xﬁ —6ag*x, — a3xi —a?q*x), + 2a2xi —4aq’x, + q* — o?x,,
+2ax, — 64 + 1), (A32)
€= —eq(aq’x;, + ax;, + 2)(0{2q4xi —a?q*x, + 2a2q2xﬁ —20%q%x, + azxﬁ +aq’x, — atx, +ax, —q* + 1)

1
- qu(f + 1)(ag?x), + ax, + 2)(a?q*x; — a®q*x), + 202 q* X% — 20°¢Px), + & x5, + 2aq%x), — a’x,,

+2ax), — 2¢* + 2), (A33)
fao= —% (¢* + 1) (a*q*x} = 2a*q*x) + a*q*x] + 20t Px} — 4t qPx) + 20t P x5, + ot x) + 20 ¢Px) — 20K
1
—2a3q2x%, + a4x%l + 2a3x2 - azqzx%l - 2a3xﬁ +20%q%x), + 3a2xi —2a%x), + 2ax, + 1) — 3 (> +1)*(¢ + 1)
x (@ ¢*x; — g x; + &*x3 — &x; + a2 q*x;, + 22°x; — aPxj, + 2ax;, + 1), (A34)
212,0 = 8511,17 52,0 = 8l~71,1, }2,0 = 851,1- (A35)
APPENDIX B: EXPRESSIONS FOR THE LIMITS APPEARING IN TABLE V
A, = xe[x%(xe_ ])(q2+ 1)2ag+2x521(q2+ 1)“2_2xe(q2_ 1)“6_2] (Bl)
‘o 4x.(g* + Da, +2] ’
£(¢+1) L6+ DA,
Ay = —— 7 By, =— 7 ¢ B2
Oe 16 s Oe Sxe ( )
6 n
Aze = 75 2 2 3 an:() snae 2 2 2 (B3)
6[xe(xe - 1)(q + 1) e + er(q + l)ae - er(q - 1)ae - 2}
with
ce =3x¢(x. — (P + 1) o5 =4, - 1)(x2 +3)(¢* +1)°, (B4)
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ey = 2x3(q> + 1)*[(3¢* + 11)x3 — 4(q* + 2)x2 + 3(4 — 2¢%)x, + 6(4* — 1)],

c3 = 4x3(¢* + 1)[(5¢7 + 13)x3 = 4(¢* + 1)z +3(1 = 3¢%)x, +3(¢* + 1)),

¢y = —4x2[(5¢* = 2¢2 — 15)x2 + 3(1 + 4% — ¢*)].

1= —8x,[(8x7 = 3)¢” + 3],

(BS)

(B6)

co=12(1-4x2). (B7)
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