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We revise the work of Scholtz, Flandera, and Giirlebeck [Phys. Rev. D 96, 064024 (2017)]. We cast the
Kerr metric explicitly in the form suitable for the framework of isolated horizons. We proceed in a
geometrical fashion and are capable to provide the results in a compact closed manner, without any
unevaluated integrals. We also discuss the uniqueness and drawbacks of this construction. We suggest a
new vector field to generate the null geodesic foliation.
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I. INTRODUCTION

The concept of weakly isolated horizons (WIH) has been
developed at the beginning of this millennia by Ashtekar
et al. [1-4] in order to tackle the notion of a black hole in
equilibrium state possibly surrounded by matter or radiation.
Later on this concept was upgraded to notion of dynamical
horizons [5] where even the general dynamical processes are
taken into the account in full general relativity.

This formalism was used in [6] to evolve the solution
from the initial data in a near-horizon expansion using the
Newman-Penrose (NP) formalism [7,8].

The rotating Kerr black hole—one of the most astro-
physically relevant solution of the vacuum Einstein field
equations—was discovered in 1963 [9]. Recent historical
reviews can be found in [10,11]. There exists a plethora of
interesting coordinate systems for the Kerr black hole and it
is worth to investigate them on their own. Let us mention
some of the most important

(i) Kerr-Schild form [9,12] in which it has been found,

(ii) Boyer-Lindquist (BL) coordinates [13] which are
one of the most suitable for interpretation and,
simultaneously, the equations governing test fields
are proven to be separable in these coordinates [14].

(iii) Eddington-Finkelstein coordinates [9] which are
regular on the horizon,

(iv) Kruskal coordinates which reveals the full structure
of the spacetime using the maximal analytical
extension of the coordinates [13],

(v) Doran coordinates [15] are adapted to family of
time-like observers with zero angular momentum
which are freely falling to the black hole,

(vi) Bondi-like coordinates which are propagated from
the null infinity [16].
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At the same time the Kerr black hole itself is an excellent
example of space-time containing a WIH. An attempt to
cast it in this framework has been done in [17] in the
recent years.

In this paper we will revise the work [17] which is
difficult to follow and contains some implicit, uneval-
uated integrals; and, rather surprisingly, not a single
picture of new coordinates is presented. Using a slightly
different approach, we are able to evaluate all the
integrals and derive simple results. In [17] the authors
prescribe what the final vector field generating the null
congruence should be and then they applied four suc-
cessive transformations (boost, null rotation, spin, null
rotation) on the Kinnersley tetrad to align the tetrad with
this vector field. At each step they evaluated the NP spin
coefficients and solve lot of equations in order to make
some of he NP spin coefficients vanishing. Instead of this
we simply construct a tetrad based directly on the final
vector field, using the Killing-Yano tensor, and make just
one null rotation so that the tetrad is parallely propagated.
We also discuss the uniqueness of this construction and
its drawbacks.

In the end, we reveal so many disadvantages of the null
congruence chosen in [16,17] that we suggest a completely
new congruence which is well behaved. Alas, this one is
much more difficult to treat analytically.

The paper is organized as follows: we briefly introduce
the concept of isolated horizons (IH) in Sec. II and
recapitulate the Kerr solution in Sec. III. In the Sec. IV
we develop the parallely propagated null tetrad with the
help of Killing—Yano tensors. The explicit formulas for the
elliptic integral introduced in this section are postponed to
Appendix B. The null coordinates adapted to this tetrad are
then introduced in Sec. V and their affine parametrization in
the following Sec. VI. The final form of the tetrad in these
coordinates is contained in Sec. VII. In Sec. VIII we discuss
the (non)uniqueness of this construction and propose an

© 2024 American Physical Society


https://orcid.org/0000-0002-0278-7009
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.084029&domain=pdf&date_stamp=2024-04-15
https://doi.org/10.1103/PhysRevD.96.064024
https://doi.org/10.1103/PhysRevD.109.084029
https://doi.org/10.1103/PhysRevD.109.084029
https://doi.org/10.1103/PhysRevD.109.084029
https://doi.org/10.1103/PhysRevD.109.084029

DAVID KOFRON

PHYS. REV. D 109, 084029 (2024)

alternative solution. In Sec. IX we shortly compare these
coordinates with the Bondi coordinates.

II. ISOLATED HORIZONS

We follow the construction presented in [6,17]," details
can be found in [4].

On the manifold M the nonexpanding horizon H C M is
defined as a null hypersurface with following properties

(i) the topology of H is R x S2.

(ii) the expansion of any null normal /4 is vanishing.

(iii) equations of motion are satisfied on H and the

projection of stress energy tensor T, on any future
pointing null normal [ is causal (a consequence of
dominant energy condition).

It is not possible to define a unique induced covariant
derivative on a general null hypersurface, since the induced
metric is degenerate. However, the existence of additional
conditions (namely the vanishing expansion of null nor-
mals) on the nonexpanding horizon allows us to define a
preferred connection D, on the tangent bundle 7H as

XD, Y = X4V,Y?, forany X*,Y‘€TH, (1)
where V,, is connection on TM compatible with the metric
g, and the relation operator “=" means that the equality
holds on H.

This covariant derivative implies the existence of a
rotational 1-form @ which is defined by

DI =w, IV (2)

The null normal I can be rescaled by an arbitrary
nonvanishing function. In order to get rid of this ambiguity
we define the weakly isolated horizon as a nonexpanding
horizon H together with the equivalence class of null
normals [I] = {cl,c €R, ¢ # 0} (the remaining freedom is
scaling by constant) and restrict to the class for which a
representative element I € [[] satisfies

[£1. D] 1" =0, (3)

where L is the Lie derivative. This condition is equivalent
to Lyw, = 0.

The weakly isolated horizons are physically identical to
nonexpanding horizons. The selection of the proper equiv-
alence class of null normals [I], given by Eq. (3) allowed to
formulate zeroth law of thermodynamics [which is equiv-
alent to Eq. (3)] for isolated horizons and give a physical
meaning for the rotational 1-form @, see Refs. [3,6].

Choosing a particular null generator I of a WIH (7, [I])
we can (nonuniquely) complete the full NP tetrad
(I,n,m,m) so that m,im € TH and n is transversal to H.

'We had to adjust a sign on either I or n since we are using
different signature of the metric.

Having the NP tetrad we can demonstrate the signifi-
cance of rotational 1-form. It has been proven in [4] that

do =Im(¥,)e, (4)

where € is a volume element of cross sections of H and ¥,
is the standard projection of Weyl tensor.

Our primary goal is to set up a coordinate system adapted
to the isolated horizon and NP formalism (an analog of
Bondi system).

The null generator / gives rise to a preferred foliation S,
of H by topological spheres by imposing Dv =1V v = 1.
On the spherical cut S, of H angular coordinates 2, ¢*
are introduced and they are propagated on H along the
null generators, i.e. we have D&’ =0 for i = (2,3). The
vectors m,m are Lie dragged along the horizon as
£1m” = Ellha =0.

Finally, the null tetrad defined on the horizon is parallely
propagated outward in the transversal direction defined
by n. This null geodetic congruence is affinely parame-
trized by s. Starting from a point on the horizon (v, {2, &?)
every point at least in the vicinity of H should be assigned
coordinates (v, s, ¢?,&3) by this procedure (for the eternal
Kerr black hole we want to construct a global coordinate
system; for more complicated solutions the construction of
the coordinates is not guaranteed globally).

Thus we look for a coordinate system (v, s, ®, ®)? and a
null tetrad such that the metric

8ap = 2l(anb) - 2m(amb)9 (5)

is reconstructed from a NP tetrad in the form

[=0,+Ud, + X% + X*05, (6)
n=a,, (7)
m= Qo + % + £%05,. (8)

satisfying following conditions on the horizon: (a) vector /
is generator of the horizon, (b) vectors m, m are tangent to
the horizon, (c) the vector field n is transversal to the
horizon, geodetic, affinely parametrized and twist-free. The
whole tetrad is parallely propagated along n.

In NP formalism these conditions translates to the
following conditions on the NP scalars

p=Kk=0c=ec—-€=0, (10)

ZWQ coined a particular names to ¢, namely ¢ = ® and
8=
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and
U=Xx9=x®=Q=0, (11)
which hold on the horizon H only.

III. KERR BLACK HOLE

The standard form of the Kerr metric in BL coordinates
[13] reads

A z
ds? = -5 (dt — asin’0dg)* + Kdr2 +2d6?

sin%0

((a®> + r?)dg — adt)?, (12)
with the definitions
A(r)=r*=2Mr+a* = (r—r,)(r—r,), (13)
p(r,0) =r—iacos, (14)
X(r,0) = pp = r* + a*cos?0. (15)

The parameters have the following meaning: M is the mass
of the black hole, Ma is its angular momentum, r), is the
position of outer black hole horizon whereas r,, is the
position of inner black hole horizon. We will use all of these
parameters (r,, r,,, M, a) although only two of them are
independent.

The Kerr metric is endowed by two Killing vector fields,
namely, the one associated with stationarity € = 0, and the
one associated with axial symmetry # = 9,,. It is advanta-
geous to introduce also a quantity

Y(r,0) = — n-n=AZ+2Mr(r* +a*). (16)

sin%6

The Kinnersley NP’ tetrad (i,ﬁz,n:l,ﬁ), introduced
in [18], which is adapted to the principal null directions
of the Weyl tensor reads as follows

~ 1
I=——[(r*+a*o, + Ad, + ad,),
J5al07 )0+ 49, + ao))
1
i=——[r*+a*o,— Ao, + ad,],
T35 |7 + )9, = 49, + ao
1
m=———> _asinf00;,+ 0y +icscHa,). 17
5545000, +0 o (17)
The appropriate spin coefficients are enlisted in
Appendix A.

*Notice the boost given by /2 in contrast to the standard
textbook form. The Kinnersley tetrad is denoted by tilde in this
work.

The Kerr metric posses not only two Killing vector
fields but also a principal Killing—Yano tensor [19,20]
which provides additional hidden symmetry. The principal
Killing-Yano tensor expanded in the Kinnersley tetrad is
given by

Fap = =2ir iy, + 2acos 01 ity (18)
and its dual is also a Killing-Yano tensor, namely
by, = 211 ity + 2ia cos O,y (19)

From now on, we use the following shortcuts, to make
the formulas visually more compact

¥ = 2(r,0) = r* + a?, Y:=7Y(r,z/2). (20)

z
2

Using the four independent constants of motion we can
write a general geodesic congruence as follows

1] (Z(Z9gE —aL
uzi[(—O( OA “ )+a(L—asin29E)>0,

e,/ (SE —aL)? = (K —xr)Ad,

+€g \/K +ka*cos’6 — csc?0 (L — asin’*0 E) 0y

a(ZOE—aL)) 5

+ <csc26 (L — asin®0E)? + A 4 .21

The parameters E (energy), L (angular momentum) and K
(Carter’s constant) are constants along a single geodesic.
They can be functions of (r, 8), however, they have to obey

u’V,E =0, u’V,L =0, u'V,K =0, (22)
for u being the geodesic congruence.

Let us note that Doran coordinates are adapted to the
geodetic congruence u with the constants chosen as
k=—-1,L=0,E=—-1,¢, =1 and are independent on
the value of ¢4 (since the 6 component vanishes).

IV. THE PARALLELY PROPAGATED NP TETRAD

In order to obtain a suitable null foliation of the Kerr
spacetime we look for a twist-free null geodesic congru-
ence, which penetrates horizon and can reach the null
infinity. To cover the regions close to the axis, the angular
momentum has to be zero (as can be seen from the 6
component of u). One of the possibilities4 is to demand

E=-1, L =0,

k=0, K =a* (23)

*The choice €9 = 1 was discussed in [17] and we will cover it
in Appendix C.
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€, =1, €9 = —1, (24)
which also ensures the mirror symmetry with respect to
the equator.

The vector u, given in Eq. (21), with constants of motion
given by Egs. (23)—(24) then becomes the first vector of our
NP tetrad

2aMr

%). (9

-1 /7
n :E<Zat_ Tz 0, +acost 0y +

since
n‘V,nt = 0. (26)

Such a geodetic congruence is generated by null rays
passing through the horizon and reaching the null infinity.
We may introduce angular coordinates ® and ® which will
be constant along these null rays, namely

© = 2arctan [tanh " (r, 0)], (27)

® = ¢+ 2aM r*du, (28)

INONEED)
where
I'*(r,0) = arctanh [tan <§> n gl’o(r)} . (29)

Here we introduced the integral 7, (and also Z, for further
reference) as

(30)

Io(r>:[:@du,
Zy(r) = /r: —_Tu;u)du.

These integrals are explicitly given in terms of elliptic
integrals—see Appendix B for particular formulas.
Thus, we have

(31)

n*V,0(r,0) =0, n‘V,®(r,0) =0, (32)

The inverse of the relations (27)—(28), i.e., how € and ¢
change along the null ray defined by ® = const and
® = const, read

6 = 2 arctan [tanh '~ (r, ©)], (33)

p=0-2aM [ — " _dqu, (34)

0 Au) [ Te(u)

where

'~ (r,®) = arctanh (tan %) - gIO(r). (35)

The program of the construction of the tetrad and

coordinate system is now straightforward

(1) Employing the Killing—Yano tensors we complete
the NP tetrad’ to get (ji =n,l s, m). See the
explicit construction below in Egs. (36)—(39).

(2) We perform null rotation around n, so that the all the
vectors are parallely propagated along n and, more-
over, on the horizon / coincides with its generator, to
obtain (n,l, i1, m). This is done in Egs. (57)—(62).

(3) If desired, we may perform final rotation in riz — in
plane (using functions of ® coordinate, such that the
parallel transport of the new vector is not violated)
and thus obtain (r,l,m,m).

(4) Finally, we perform the coordinate transformation to
the coordinates of the isolated horizon formalism,
see Secs. V, VL.

A well known fact is that the principal Killing-Yano

tensor can be used to produce a parallely transported vector
along the geodesic congruence given by n

1
e’ = fren, (36)

which is space-like in our case. We can complete the tetrad
by the following two vectors:

1
e(h)b = Ehbc ne, (37)

|
e’ =—

a

(fPefCan’ +ff*n®). (38)

From these we can construct a null tetrad as

(n,l,m,m): n,e(3),ﬁ(e(f)+le(h)),ﬁ(e(f)—le(h)) ,

(39)
which explicitly reads as follows
n = Eq.(25), (40)
;1 (Zrasios Vi
2 a’A a2
cos X+ A
- 0 9, |, 41
PRI q’) (“41)

>The dots over the vectors does not represent derivatives. We
choose them instead of indices (1) and (2) which would spoil the
equations.
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| [@*sin20A +i%g, /s iz,

T 5 — %05
" V2p 2aA oa T
cot9A+i,/T%
+ sinf 9, ++0¢ (42)

The Weyl scalars in this tetrad have the following form

0.5.0.7— |2, (43)

gp_z 1 3d%\ _
4a®>’ 72" T4 p?

(Wo. W1, W, Y3, W) = —<

where 7, is the only nonvanishing Weyl projection in the
Kinnersley tetrad (17), which is adapted to principal null
directions of the Weyl tensor.

The appropriate spin coefficients are as follows

. —Zycosf+ iarsin’0

, 44
V2a’p (44
v=0, (45)
_ 12_ iacosQ'—rcos29 0] (46)
16a°p sin @ 5/ Ts
. 1 j - 2 )
i= L |4a iacos 6?. rcos 26 b ’ (47)
8p- sin @ NG
2
1 cos20 0, Tz
p=—>1|-2 - Z |, 48
P =82 Y T, (48)
2
1 cos20 0, Y:
ji=-—1-2 2 4
Foas | T Sine T L | (49)
2
i (50)
T=———,
2a
" (s1)
==,
2a
- (52)
V2a’
a=0, (53)

ia?cosOsin O + s

, (54)

é pr—
2a%p

7 =0, (55)
where we defined a shortcut

b= —SiaTg cos O

+a’(2Ma* + 2a’r — 12M7r* + c0s209,Ys).  (56)

Notice that, at this stage, the limit a — 0 does not exist
for the tetrad (m, i,rh,ﬁz). However, the limit will be
recovered once the final tetrad is constructed.

The vector n is already fixed, we thus perform a null
rotation about it to get a new tetrad, namely

(n,1,i,in) = (n,l+ Ein + Ent +EEn.ni + En,in + En).
(57)

Imposing the condition of parallel transport of vector
along n, i.e., demanding

n*V,m =0, (58)

leads to a first order partial differential equation for E. Its
real and imaginary parts are as follows

(— Y:0,+a cosﬁdg) Re(E) =0, (59)

(z - fza\/? 9, +V2a? cos¢9(39>lm(E) —0. (60)

We may try to solve for E in a separated form E(r,0) =
E.(r) + Eg(0). The general separable solution reads

r —asin9+12+
V2a

E=i"t
where F is an arbitrary complex function of I'*(r, ) which
is defined in Eq. (29).

If n and r (and thus also m) are parallely transported
along n then, inevitably, also the last vector [ is parallely
transported.

This freedom in the choice of F allows us to fix / in such
a way that on the horizon it coincides with the generator
of the horizon. The parallely transported tetrad is given by
the function

F(I'"), (61)

E:L(irp—asing—i-fz

—sec2I'" + i tanh 21“*) .
a

(62)
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The Weyl scalars in this tetrad are related to
nonvanishing projection {7, of the Weyl tensor
Kinnersley tetrad as follows

. 3 (2a2E? + p*\? _
yo=—7|——") ¥,

4 ap
. 32a°E? + p*E
Vi =—5——53 V2

2 p?
. 16a°E> 4 p? _
Yy = 3 p2 Vo,
) 3a%E _
Y3 =——5 ¥,

p

3a% _
Yo=——75¥>

p

the only
onto the

(63)

(64)

(65)

(66)

(67)

At this point we need to investigate the behavior of the
Weyl scalars (and of the null tetrad itself) in the limit

a — 0. Careful calculations show that

Fz—iéé—%—k@(a),
and thus
jro = O(a?),
yr, = Ola),
W2 = Wala—o + Ola),
3 = O(a),
Wy = O(a?).

(68)

(69)
(70)
(71)
(72)
(73)

73

The NP spin coefficients of the tetrad (n,l, 1, m) are
given by standard transformation rules (see Refs. [7,8]

for details).

The last, optional, step is to perform a rotation in 7z — in

plane

(n,l,m,m) = (n,l,e%m, e”""m),

(74)

so that e, = —i(m — m)/+/2 has only ¢ and ¢ components

on the horizon. This can be done with

a—arctan<a008®> —@—z.
rp 2

(75)

This way we also reconstruct the nonrotating limit

limm = limm,

a—0 a—0

(76)

and the Weyl scalars are affected in a trivial way.

V. NULL COORDINATES

Following [16,17], we define ingoing null coordinates
(v, r,0, D) by the relations

ri/ T%(”)
t:—v—/ du + asin(r, ©),

) (77)

r=r, (78)
0 = 2arctan [tanh '~ (r, ®)], (79)
du, (80)

¢ @l / A(u)y /Ts(u)

where 0(r, ®) entering (77) is defined in Eq. (79). In this
coordinates the vector n takes the form®

Y:(r)

2

—00, 4
"=0%t S0 6(r )

0,400¢ +00gp.  (81)

VI. AFFINELY PARAMETRIZED NULL
GEODESICS

The geodesic on Kerr background has been shown to
be separable in Mino time [21]. Yet, we need an affine
parameter, not a Mino time. It may seem hopeless to
evaluate the integral which enters the definition of an affine
parameter for the null ray given by n

B r%(u,0(u, ®)) ;
s(r,@)—/rp 7T%(u) du,

(82)

but we found that the integral can be analytically calculated
and the result is

s(r,®) = a[sin® — tanh '~ (r, ®)] + Z»(r)

=a[sin® —sinO(r,®)] + Z,(r), (83)
where we use the function Z, which has been defined
in Eq. (31).

The very last step would have been to invert this relation
to get r = r(s,®) in order to be able to explicitly express
the final expressions in terms of v, s, ®, ® (let us remind
that along a particular given ray ® is constant). Alas, we
were unable to proceed in this direction.

In order to eliminate the axial component of the
vector [ on the horizon, we also perform a final

We did not want to rename all the coordinates and we thus
write the vanishing components explicitly. Compare the form of n
given in Eq. (25) and Eq. (81).
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coordinate transformation to coordinates (v,s,®,®)
defined by

v=u, (84)

s =s(r,0), (85)

0 =0, (86)
a

=0 , 87

a+r Y (87)

where a/(a® + r3) is the angular velocity of the horizon.
The coordinate s is now the affine parameter along the null
geodesics given by n.

The newly constructed coordinates (s, ®) are visualized
in Fig. 1. The coordinates ® and @ coincide on the outer
horizon.

The null geodesic vector field n is singular near the axis
(has nonvanishing 6 component). This has some unpleasant
consequences, as the presence of caustics.

From the definition of the transformation 8 = 0(r, ®) we
can see that the range of variable ® is r-dependent

© € (By(r). m = By(r)), (88)

©y(r) = 2arctan tanh <% al'o(r)>, (89)

and some regions below the horizon are not covered at all.
It is peculiar that the expansion, i.e., an invariant
quantity, of null geodetic congruence n,
1 (dYs(r)

cos 260
G),,—Vna—2< dr _acos9>’ (50)

is divergent close to the axis (as visualized in Fig. 1).

FIG. 1. Red lines represent projection of integral lines of n (i.e.
lines of constant ®) in BL coordinates meanwhile the light blue
lines are equipotentials of constant affine parameter s(r, #). The
thick blue half-circle is black hole horizon r = r s axis of rotation
is vertical. The black line denotes vanishing expansion of the
congruence n. Calculations are done in BL coordinates, which are

later identified with polar coordinates (R = rsiné, z = rcos6).

VIL. FINAL TETRAD AND COORDINATE SYSTEM

In the coordinates constructed in the last section we can
write down the final tetrad

[=0,+Ud, +X%g + X®04, (91)
n = o, (92)
i = Q0 + 90 + £%04, (93)

where the functions U,X®, X® Q & & are given as
follows

- - E i Xo(r)Z
U(r,®) = E(r,0)E(r,0) + cos*® + (r,29) : Er, 6) [Zo(r)Z(r8)_ a(cos?® —cos?d) tanf | +c.c.|, (94)
2a V2p(r,0) ay/Ys(r)

XO(r,@) =<{ —+ E(_r, 6) Zo(r) +itanf | +c.c.| pcos®, (95)

a  |V2p(r.0) \ | [Ts(r)

. r E(r,0) 2
X®(r,0)=-——~2 — +cotf | +c.c.|, 96
. ®) 2Ma | \/2p(r.0) Ts(r) %6)
Q(r,®) = E(r,0) + ! Z0(r)2(r,0) _ a(cos’® — cos’d) tan d |, (97)

ay/Ys(r)
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0(r.0) = icos® Yo(r) iang |, (98
5 ( ) \/25(1", 9) T%<r) + 1ta ( )
N | ir?
C(r. @) = cotd |, (99
&(r, @) 7300) T%(”)jt t (99)

where we implicitly assume r=r(s,®) and also
0=06(r,0) =0(r(s,0),0). We also introduced

1
= (r,0) = Efabf“b = r? — a*cos®0. (100)

The following identities were used during the simplifi-
cation process

0 5.0 = V) (101
os"" ) T E(r0(r,0))”
QS(r, 0)= 2r.60r9)) (102)
ar Ta(r)
2
0 cos?® — cos?d(r, ®)
%s(r, ®)=ua p— , (103)
Ye(r) 2 2
0 B 5 cos*® —cos*0(r,0)
0 O e e UM
0 _cosf(r,®)
%Q(r, 0) = T o0s® (105)

Also, we can simplify the form of the null rotation E,
given in Eq. (62), as

Iy(r) +r,—asin@
a

E(r,0) = % (—e—l@ + i

The null rotation parameter E has the following relation to s

). (106)

E(r.0) - is(r,@) +rp+iacos®‘
V2a

In the coordinates (v,s,@,&)) the metric takes the
following form

(107)

G 1 9.0 g v®
1 0 O 0
8w = : (108)
gor 0 geo Yo
Joo 0 9s0 Yoo

where

4M2rpA — r,,sin%0 (4M2r1,(rp =2r)+7Y(r,0))

Jov = 4M2rp2(r, 0) ’
(109)
- e TR
goo = ~ 2% (24 L) (112)
Jod = ;jz—i;%mze, (113)
95 = — ;r((: Z)) sin? 6. (114)

As has been discussed in a paragraph after the Eq. (83),
the inversion of the explicit relation s = s(r,®) is not
analytically possible. Therefore, also the above stated
metric functions contains implicitly defined coordinates.

VIII. UNIQUENESS

First of all we notice that for an arbitrary choice of
constants E, K, €,, €y (the defining parameters of the vector
field n), we can complete the tetrad in such a way, that
I, m,in are tangent to the horizon (on the horizon) and start
evolving from the horizon. But these coordinate systems
suffer the same disadvantages (and, actually, are even
“worse”: not defined everywhere, not having mirror sym-
metry with respect to the equatorial).

In order to find a field which is defined everywhere and
is regular around the axis we need to investigate the twist-
free geodesic congruence in a more general setting.

The vector field u given by Eq. (21) is a geodesic
congruence if
u*V,E(r,0)=0,

u’V,L(r,0)=0, u*V,K(r,0)=0.

(115)
Specializing for null geodesic, the twist-free condition
nEVyng =0 (116)

leads to
L = const x E, (117)

and subsequently thus vanishing angular momentum
L = 0, since we need n to be defined close to the axis.
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Then the energy E can be scaled to a constant and we
need to solve the equation for the Carter’s constant

€r K.r

VES;

If this equation is satisfied, r is geodesic and twist-free.
So far the only explicitly known solutions to this partial

differential equation are K = const and we need to over-
come this complication. Notice that

LY
— KA VK — a*E*sin®0

=0. (118)

K(r,0) = a*E? sin® 0
everywhere does not lead to a geodetic vector field.

Let us define the initial values for n on the horizon and
then evolve the geodesic equations. A natural choice for the
Carter’s constant on the horizon is

K = a’E?sin 6, (119)
since it makes the 6 component of the field n vanishing.

In the following we need to work in null coordinates

given by
(12—|—r2
=u-— dr, 120
t=u / NG r (120)
a
={— 121
p=q /A(r)dr (121)

—&,0/R(ro)o,(z) + 1R (ry)(p,(z)

Introducing
R(r,0) = E*33(r) — K(r,0)A(r), (122)
S(r,0) = K(r,0) — a®E? sin? 0, (123)

we thus look for an integral lines of the field

L] (20\/RT + E (2% — d’sin®0 A)
)

A %

IME R
+ e, VRO, + €,V/S 0y + a+€’fa¢> (124)

with the initial values for the vector field n on the horizon

1 24in2
= 6y 0, +2Mr,0
n 25(r,.60) (a sin“0 0, + 2Mr ,0,
Fm2(r,,0p)
09, L0 0, ), 125
+00%+ <a + 2aM ) q’) (125)
where we already set £ = —1 and €, = 1. We shall see later

that there is no dependence on €.

Using the recent developments in analytical treating of
geodesics within the Kerr spacetime [22,23] (and following
the notation of [23]) we can write the explicit solution in
terms of the Weierstrass g function as

=53 R"(r9)) + 35 R(ro)R" (ry)

Hz) = ro+ , (126)
2(pr(2) =34 R"(rg))* = ﬁR(rO)R(@(ro)
(2 = o + g9/ G o) 9(2) +5 G (o) (99(2) — 31 G" (o)) + 27 G(1o) G" (o) (127)
= 4o ,
2(g0(2) — ﬂGN(ﬂo)) - @G(ﬂo)cw (ko)
|
where z is a Mino time and the angular variable has been 0 _ L 2
reparametrize such that u = cos@. Therefore, also G is 92 = 12(K 16aK + 16a°), (131)
reparametrized S from Eq. (123) and is of the form
1
= K —2a)(K?* +32aK — 32 132
G = (1)K (1) (128) =56 K 720 U4 32k =320, (132
The complete form of the Weierstrass functions g, (z) and %= 4. (133)
po(z) where the Weierstrass invariants g,, g3 (which are
given in terms of roots of R or G) is as follows , K*M?
B=9h-—y (134)
0-(2) = p(z: 95 85), (129)
Let us emphasize, that K(r, 9) varies as a field over the
00(2) = p(z: 65, 43).- (130) manifold, but it is constant along every single geodesic.

The Weierstrass invariants expressed in terms of black hole
parameters and the Carter constant read

In the Eqgs. (126)—(127) we will start from the horizon,
thus ry = r,, and we will consider 6, being constant along
the geodesic as the new coordinate ®. Second new
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FIG. 2. The integral lines of n and equipotentials of affine
parameter in BL coordinates for €, = 1 emanating from the
horizon with initial conditions given by Eq. (124). The geodesics,
i.e. lines of constant O, are slightly bent which can be difficult to
observe by naked eye, therefore we included lines of constant 6 as
green dashed lines (with half density of lines). The explanation of
structures is the same as in Fig. 1.

coordinate will be the Mino time z. Taking the initial
conditions into the account, the expression for y(z) greatly
simplifies and we can explicitly write 6(z) = arccos u(z).
Thus we can turn a solution to the geodesic equation into
the coordinate transformation as follows

r(z,0) = Eq. (126) withr, = r (135)

pe

642 sin © sin 20
0(z,®) = arccos | cos® + N a Sln2 sin .
a*(3 + 5c08%0) + 240y (z)

(136)

These geodesics are visualized in the Fig. 2. Now it is
straightforward to perform the change of variables given by
coordinate transformation (135)—(136) in the partial differ-
ential equation for the Carter’s constant K given by
Eq. (118) and check directly that

K(z,0) = a®sin’ @, (137)
is a valid solution. The value of K differs just slightly from
the a®sin? @. In the Fig. 3 we plot the value of expression

K(r(z,0),0(z,0)) — a*sin* 0

to visualize these small differences. We can see that there is
no difference neither on the axes nor the equatorial.

The coordinates are constructed such that

(i) on the horizon we have ® = 6,

FIG.3. Thevalueof AK = K(r(z,0),0(z,0)) — a* sin> @ above
the horizon (small half-circle in the middle) in BL coordinates. The
red line is a rotational axis (z), the black line depicts the equatorial
plane, in the green direction the function value is plotted. The exact
values have no particular meaning. The yellow line is one particular
geodesic with ® = /4 for which the function is in greater detail in
Fig. 4. The blue line is a black hole horizon.

(i) the axes and equatorial plane are generated by
geodesics,

(iii) the expansion is positive and bounded (the explicit
formula is exceedingly long for presentation),

(iv) the vector field n is smooth.

The Mino time z is given by

(138)

r 1
z2(r) = €,[p Wdr’.

The geodesic leaving horizon at z = 0 reach infinity in
finite Mino time z,, which can be evaluated in terms of
elliptic integrals as follows

(razr)=ra)y | =e
. V(i =r3)(ra—rs) r—r
9o = arcsin[ V. IWRTTE) gy
V=TT = Ty

The detailed factorization of polynomial R(r) is given in
Appendix D.

In principle it may be feasible to write down the
complete solution of the geodesic equations

t = t(ty,2,0), (141)
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AK
0.15

0.10

0.05
r

009 5 10 15 20 25 20 a5
FIG. 4. The vertical axis represents the value of AK =
K(r(z,9),0(z,0)) — a®sin? @ for one particular geodesic from
Fig. 3. The values of the black hole are r, = 2,r, =1 and
® = /4. On the horizontal axis is the BL coordinate r.

r=r(z,0), (142)
0 =0(z.0), (143)
» = 9(9o,2.0), (144)

in terms of the Weierstrass g functions, see Ref. [23]. Alas,
to proceed further with the explicit coordinate transforma-
tion to coordinates ty,z, 0, @, and solving the parallel
transport equations seems to be too complicated.

But we advocate that this vector field n is the best one
for construction of a null foliation of the Kerr spacetime
generated by nontwisting congruence. It is, in some sense,
unique, since it does not depend on the choice of .

IX. COMPARISON WITH BONDI COORDINATES

The coordinates (v,s,®,®) were called “Bond-like”
in [17]. It is difficult to judge whether such a designation is
correct or not since the rigorous definition of the “likeness”
has not been provided.

In the original Bondi-Sachs formalism the coordinate
system is based upon a congruence of null geodesics
emanating from a spatial spherical cross section of a
chosen world tube. The null coordinate labels the cross
sections and the angular coordinates are the introduced on
such a cross section (and stay constant along the rays). The
radial distance is then a parameter along a particular ray.
The metric is then of the form

1%4
ds? = ——e¥du? — 2¢¥dudr
r

+ r?hyp(dx? — UAdu)(dxB — UBdu), (145)
with h,p being the metric on topological spheres, such
that deth,p = detg,p, Where g,p is metric on a sphere.
The coordinate r is called a luminosity distance since a
surface u = const and r = const has a surface 477>,

A version of Bondi-Sachs approach, which fits more
appropriately to NP formalism, is affine-null metric for-
mulation provided by Sachs and Winicour [24], where the
affine parameter along the null rays is used instead of the
luminosity distance. A simple transformation

0,A(u, r,x*) = e*, (146)

leads to the metric in the form

ds? = =(V — gagWAWE) du? — 2dudi — 29, WAdu dx®
+ gan dxAde, (147)

with g4p = r*hup and deth,p = detq,p, Where g,p is
metric on a round sphere. Now, r, V, W4 as well as h, 5 are
functions of (u, 4, x*).

The null geodetic congruence is given by

ny = 0y, (148)
and the expansion of this vector field
l1oddetg
®”W :Van%, = —ETABZL‘-T?,VJ. (149)

Clearly, the coordinate system of formalism of isolated
horizon is a member of affine-null metric formulation. It is
moreover endowed with a particular parallely propagated
null tetrad.

X. CONCLUSIONS

We explicitly constructed a parallely propagated null
tetrad and an appropriate coordinate system of Kerr metric,
following the existing work on the formulation of Kerr
solution in the formalism of isolated horizons. We provided
a physical interpretation and showed that these coordinate
systems are not well behaved (not covering the whole
space-time, the vector field n being irregular on the axis
with diverging expansion).

Demanding the regularity of the vector field n we
found a well behaved geodetic congruence in terms of the
Weierstrass o functions. We suggest that this is the proper
nontwisting null geodetic field. Alas, the coordinate
transformation is extremely difficult to treat analytically
and we were able neither to cast the Kerr metric in
coordinates adapted to this congruence neither to con-
struct a parallely propagated tetrad in the sense of isolated
horizons.
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APPENDIX A: NP QUANTITIES
OF KERR BLACK HOLE

The nonzero NP spin coefficients corresponding to the
tetrad (17) are
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B i asin@ . —-1A
T=——F, =
V2 PP SN
. —iasin@ -11
T=——F="", = —,
V2 2 V2p
5 — 1 r—M B 1 cotd
Y =H N N
a=7-p. (A1)
and the only nonzero Weyl scalar reads
. M
Y2 =—-"-3. (A2)
p

APPENDIX B: THE EXPLICIT FORM OF
INTEGRAL Z; AND 7,

The integrals Z, and Z, have been introduced in
Egs. (30)-(31) as

Io(r):/r: _Tlg(u)du
Iz(r):/r:\/%du

In order to evaluate these (in terms of elliptic integral) we
need to factorize the function Yx(u) as

(B1)

(B2)

T (u)

u( + ryrpu+r,r,(r, 4+ r,))
u(u® + a*u + 2Ma?)
(
(

w(w —up) (=) (u —u)

Z)(u? = 2Zu + R)

u(u+2 (B3)

which has two real roots 0, u, and two mutually complex
conjugated roots u,. and u,, namely

1/3,,2
== 232//36; + 21/322/3 ’ (B4)
where
w =22 (ﬁ\/m - 9M), (B6)
Z= (4 + )2 = —u/2, (87)
R =\/u.u,. (B8)

Then we can write the integrals 7, and 7, easily in terms
of primitive functions

1
Lo(u) = 2i—=F(po|my),

NG (B9)
Z—R*/u

@o =arcsin | —= [l +——— |, B10

47
my = 2L, (B11)

q

and
R4
= /=Q E(p,|my) + —EF((P2|m2)
u(u®> —2uZ + R?)
+ \/ r+27Z ’ (B12)
1 Z+R2—4ZL1
¢, = arcsin 7 | -2z | (B13)
p
47
my, = ?p, (B14)
with constants

p=VZ7Z*-R?, (B15)
q=R*+2Zp +27°, (B16)
Q=R>-2Zp+27°. (B17)

To clarify the notation we use the incomplete elliptic
integral of the first kind F and of the second kind E which
are defined as

» 1
Flplm)= | —————do B18
(plm) A V1 —msin® 0 (B18)
E(p|m) = A " V/1 = msin’0.do. (B19)

APPENDIX C: THE CHOICE ¢,=1

The other choice of €, = ¢y = 1 was investigated in [17].
The main disadvantage of this choice is that the appropriate
coordinates does not cover a huge portion of space-time
outside the horizon as can be seen in Fig. 5. On the other
hand the expansion of this congruence newer changes the
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FIG. 5. The integral lines of n and equipotentials of affine
parameter in BL coordinates for €, = ¢y = 1 emanating from the
horizon. The detailed explanation as in Fig. 1.

sign, yet it is still divergent in the vicinity of the axis. The
explicit value is

0, =V, =

(dT%(V) R 29), (C1)

dr cos 6

The coordinate transformations given by Eqs. (27)—(28)
and (33)—(34) differ just by different signs in relations for ¢
and ® and interchanging I'™ < I'",

In [16] they were propagating the null geodesics from
null infinity, thus covering the whole space-time.

APPENDIX D: FACTORIZATION OF
POLYNOMIAL R(r)

In this Appendix we provide the factorization of poly-
nomial R(r) which has been introduced in Eq. (122).
Taking into the account that we set £ = —1 we need to
factorize

R =3%—KA(r)
= (rP+a*)?-a*(r- rp)(r=ry) sin? ®
= (r=r)(r=ry)(r=r3)(r—ry). (D1)

This can be done in terms of real variables 7, rii as follows

ro=roirt, r=—r iy, (D2)
=it r=er—ig. (DY
where
l |:22/3( +\/—)l/’;+24 9( 2 )1/3
rr = — W -
26 q 92 q+w
1/3
—24*(3 + cos 2@)] : (D4)
1 2Ma?sin>©®
rE —%\/4r% +a?(3+2c0s20) + M2 (Ds)
rr
1
&= %a4(67 + 60 cos 20 + cos 40), (D6)
q = a*[-128a* + 192a*sin’®
+ 12(9M? - 5a%) — 2a*sin%@), (D7)
w=gq*—6912(s5)* (D8)
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