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We study spherically symmetric static solutions of the most general sixth-derivative gravity using series
expansions. Specifically, we prove that the only solutions of the complete theory (i.e., with generic
coupling constants) that possess a Frobenius expansion around the origin, r ¼ 0, are necessarily regular.
When restricted to specific branches of theories (i.e., imposing particular constraints on the coupling
constants), families of potentially singular solutions emerge. By expanding around r ¼ r0 ≠ 0, we identify
solutions with black hole horizons. Finally, we argue that, unlike in fourth-derivative gravity, the conditions
R ¼ 0 and gttgrr ¼ −1 are too restrictive for sixth-derivative gravity solutions.
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I. INTRODUCTION

In the last decade there has been a renewed interest in the
important yet ambiguous role of higher derivatives in
gravity. The perturbative quantization of Einstein gravity
and even the quantization of matter fields on a curved
background require the introduction of higher-derivative
terms in the gravitational sector to renormalize loop
divergences [1–3]. Such terms also appear in the low-
energy regime of string theory [4,5]. Alternatively, by
considering higher-derivative terms at the fundamental
level, one can formulate renormalizable and superrenorma-
lizable models of quantum gravity [6,7]. This comes with
the drawback of having ghostlike particles in the spectrum,
traditionally associated with violation of unitarity and other
instabilities. Recently, however, considerable effort has
been made to analyze scenarios in which the effect of
ghosts can be controlled (at classical and quantum levels)
and unitarity can be recovered [8–13]. Some of these
constructions depend on more complicated actions, with
metric derivatives higher than fourth [7,13] or in the form of
nonlocal operators [14–17].
Among the main issues that a quantum theory of gravity

is expected to address is the resolution of the spacetime
singularities that occur in general relativity. In the absence
of a satisfactory theory and an underlying regularization
mechanism, phenomenological models of quantum-cor-
rected regular black holes abound in the literature. The
question of whether higher derivatives could solve the
problem has been considered in different contexts [16–26],
but owing to the complicated equations of motion
and the humongous amount of possible higher-derivative

correction terms, such studies most often involve a lineari-
zation of field equations. In this simplified setup it was
shown that there is a significant difference between theories
defined by actions with four and withmore than four metric
derivatives. For instance, the latter models have a regular
nonrelativistic limit when coupled to normal matter, while
the former still displays curvature singularities [21,22].
Nevertheless, results concerning exact solutions of

higher-derivative gravities are nearly absent in the liter-
ature. An important exception is the case of fourth-
derivative gravity, for which several families of exact
solutions are known (see, e.g., [27–43] and references
therein). It turns out that this model might not offer a
resolution of the singularity problem at the classical level.
Indeed, it admits singular static spherically symmetric
solutions—and the asymptotically flat solutions that couple
to normal ghost-free matter appear to contain a naked
singularity [31].
A suggestion that the situation could be different for

gravity models with more derivatives was provided in the
work [28], which reported finding regular solutions, but a
systematic study of the models and their solutions remained
open. Recently, exact solutions for the Einstein gravity
augmented by the six-derivative term Cμν

αβCαβ
ρσCρσ

μν

have been obtained [44]. While this term can be regarded
as a two-loop correction based on the quantization of
general relativity [3], it is not the only one at this
perturbative order. Moreover, taken alone it does not shed
light on the features of the solutions of superrenormalizable
gravity models, nor does it offer an immediate insight into
the singularity problem, as divergent solutions also seem to
exist [45].
Exact solutions are also known for the Einsteinian cubic

gravity and higher-dimensional quasitopological theories
of gravity [46–49]. Both classes of models are based on
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actions with very specific combinations of higher-deriva-
tive terms in order to yield second-order field equations for
static spherically symmetric metrics. However, owing to the
uniqueness of such constructions, their solutions ought to
be the exception rather than the rule for higher-derivative
gravities. For instance, regular black holes have been
recently obtained in this framework, but only in higher-
dimensional theories with an infinite tower of higher-
derivative terms [50,51].
Our goal in this short paper is to present results regarding

the static spherically symmetric vacuum solutions in
gravity models defined by actions with up to six derivatives
of the metric, especially concerning the occurrence of
regular spacetime configurations. The basic assumption
is that such higher-derivative action is the relevant one at
some energy scale, regardless of whether it is a funda-
mental theory or an emergent one. We shall not attempt to
discuss the complicated problem of ghosts and stability of
the solutions, as this lies beyond the scope of this work.
The gravity model we study is the most general exten-

sion of the Einstein-Hilbert action that includes terms with
four and six derivatives of the metric, namely,

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
αRþβ1R2þβ2R2

μνþγ1R□Rþγ2Rμν□Rμν

þ γ3R3þγ4RRμνRμνþγ5RμνRμ
ρRρνþγ6RμνRρσRμρνσ

þ γ7RRμνρσRμνρσþγ8RμνρσRμντυRρσ
τυ

�
; ð1Þ

where the constants α, β1;2, and γ1;…;8 are, respectively, the
coefficients of the terms with a total number of 2, 4, and 6
derivatives. Any other four- or six-derivative term can be
cast as a combination of the terms in (1) and boundary or
topological terms (that do not contribute to the equations of
motion) [52,53].
The variation of the above action with respect to the

metric yields the field equations

Hμν ≡ 1ffiffiffiffiffiffi−gp δS
δgμν

¼ 0; ð2Þ

which we calculated using the package xACT [54–56] for
Mathematica [57]. For a generic metric in the standard
spherically symmetric coordinates,

ds2 ¼ −BðrÞdt2 þ AðrÞdr2 þ r2ðdθ2 þ sin2 θdϕ2Þ; ð3Þ

the field equations assume a diagonal form. Moreover, the
generalized Bianchi identity ∇νHμν ¼ 0 acts as a con-
straint, and we end up with only two independent equations
that can be taken to beHtt ¼ 0 andHrr ¼ 0. Together, they
form a system of coupled differential equations that is of
sixth order for BðrÞ and fifth order for AðrÞ. The terms of
highest differential order are originated from the structures
proportional to γ1 and γ2 in (1), as these are the ones that

contain the largest number of derivatives acting on a single
metric component.
Solutions of the field equations around a certain point

r ¼ r0 can be obtained by assuming that the functions AðrÞ
and BðrÞ are represented by Frobenius series. For expan-
sions around r ¼ 0, we use the ansatz

AðrÞ ¼ rs
X∞
n¼0

anrn;
BðrÞ
b0

¼ rt
�
1þ

X∞
n¼1

bnrn
�
; ð4Þ

with s; t∈R yet to be determined, while around a generic
point r0 ≠ 0 we use the more convenient representation in
terms of FðrÞ≡ 1=AðrÞ,

FðrÞ ¼ Δw
X∞
n¼0

fnΔn;
BðrÞ
b0

¼ Δt

�
1þ

X∞
n¼1

bnΔn

�
;

Δ≡ r − r0; ð5Þ

with w; t∈R to be determined. We assume that
a0; b0; f0 ≠ 0, so that the powers s, t, and w define the
leading terms of the series. The corresponding expansion of
the field equations at the lowest order comprises the system
of indicial equations, for they determine the admissible
values of s (or w) and t. This is a first constraint on the
space of possible solutions. After fixing this pair of
parameters, a solution might be obtained by solving the
field equations order by order. We refer to the families of
solutions by the pair of indexes ðs; tÞ0 and ðw; tÞr0 , with the
subscript label indicating whether this is a solution around
r ¼ 0 or r ¼ r0 ≠ 0.
From the differential order of the field equations, one

might expect that solutions could have up to 11 free
parameters [this counting includes the parameter b0, which
is not physical for it corresponds to the time rescaling
freedom of the metric (3)]. Although the field equations
form a nonlinear system, the reasoning based on the
differential order seems to work in quadratic gravity
[31]. As we show below, all the solutions we found satisfy
this upper bound.

II. SOLUTIONS AROUND r= 0

The expanded field equations at the lowest order using
the ansatz (4) have the general structure

HttðrÞ
BðrÞ ¼ rpðsÞ

X8
i¼1

γigiðs; t; a0Þ þ… ¼ 0;

HrrðrÞ ¼ rqðsÞ
X8
i¼1

γihiðs; t; a0Þ þ… ¼ 0; ð6Þ

where the powers p and q depend on s, the coefficients gi
and hi only depend on s, t, and a0, and the ellipsis denote
terms of higher order in r. The explicit expressions for all
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these quantities are presented in the Appendix. Notice that,
to the lowest order, (6) only receives contributions from the
six-derivative terms in the action (1).
The requirement that the field equations are solved for

arbitrary values of the parameters γ1;…;8, results in the
system of indicial equations

giðs; t; a0Þ ¼ hiðs; t; a0Þ ¼ 0; ∀ i ¼ 1;…; 8: ð7Þ
A detailed consideration of this system is carried out in the
Appendix, where we also prove that its only solution is

s ¼ t ¼ 0; a0 ¼ 1: ð8Þ

In other words, there is only one family of solutions of the
type (4) around r ¼ 0, with indicial structure ð0; 0Þ0.
After solving the equations Htt ¼ 0 and Hrr ¼ 0 up to

nine orders in r, we are convinced that the solutions in this
family are characterized by six parameters, which can be
taken to be a2, a3 (or b3), a4, b0, b2, and b4. Among these,
only five parameters are physical, for b0 corresponds to the
time rescaling freedom of the metric. The free parameters
appeared within the first five orders of the expansion;
beyond this, at each new order we found two equations for
two new parameters. The general structure of the solution is

AðrÞ ¼ 1þ a2r2 þ a3r3 þ a4r4 þ
ða3 þ b3Þā5
γ2ð3γ1 þ γ2Þ

r5 þOðr6Þ;

BðrÞ
b0

¼ 1þ b2r2 þ b3r3 þ b4r4 þ
ða3 þ b3Þb̄5
γ2ð3γ1 þ γ2Þ

r5 þOðr6Þ;

ð9Þ

where the parameters a3 and b3 are related through

ð8γ1 þ 3γ2Þa3 ¼ 3ð4γ1 þ γ2Þb3; ð10Þ

and the quantities ā5 and b̄5 depend polynomially on a2 and
b2 and on the parameters of the model. The coefficients of
the terms Oðr6Þ are determined from the lower-order ones.
A remarkable feature of these solutions is that the

geometry is regular at r ¼ 0 in the sense that all the
curvature invariants constructed by contracting an arbitrary
number of Riemann and metric tensors are bounded. This
happens because the solution in Eq. (9) satisfies a0 ¼ 1 and
a1 ¼ b1 ¼ 0. In particular, for the Kretschmann and Ricci
scalars we have

RμναβRμναβ ¼
r→0

12ða22 þ b22Þ þOðrÞ; ð11Þ

R ¼
r→0

6ða2 − b2Þ þOðrÞ: ð12Þ

It is also interesting to notice that the solution (9)
explicitly requires γ2ð3γ1 þ γ2Þ ≠ 0. This is precisely the
condition for the model (1) to have sixth-order derivatives

in both the spin-2 and spin-0 sectors. If this condition is not
satisfied, the structure of the solution family ð0; 0Þ0 can be
different from the one of the most general model. For
instance, if γ1 ¼ γ2 ¼ 0 the field equations contain at most
four derivatives acting on a single metric function, and one
might expect a reduction of the number of free parameters
in a solution. In Sec. V we shall discuss some important
cases of incomplete sixth-derivative models, i.e., in which
some coefficients γi are null or assume other particular
values.

III. SOLUTIONS AROUND r= r0 ≠ 0

In contrast to the solutions around r ¼ 0, we have
identified several families of solutions around a finite point
r ¼ r0 ≠ 0. This diversity is indicative of the various
possibilities for the point r0, which can be, e.g., a horizon
or a generic point, depending on the indicial structure of the
solution (5).
The solutions around a generic point are in the

class ð0; 0Þr0 . After solving the field equations up to three
orders in r − r0, we are convinced that such solutions are
characterized by 11 free parameters (f0;…; f4, b0;…; b4,
and r0), which appear already at first order. This is precisely
the maximal number of free parameters (including the
nonphysical parameter b0) that we expected for a solution
of the type (5), taking into account the differential order of
the field equations. The situation here is analogous to the
fourth-derivative gravity, where the family of solutions
ð0; 0Þr0 around a generic point also has the maximal
number of free parameters [31]. This counting of free
parameters is confirmed by the analysis using the metric
written in conformal-to-Kundt form [45].
Expansions around a horizon r ¼ r0 correspond to the

family ð1; 1Þr0. Similar analysis reveals that these solutions
are characterized by five physical parameters (which can be
taken to be f0, f1, b1, b2, and r0) and their existence allows
us to conclude that there are black holes in sixth-derivative
gravity. The general structure of the solution is

FðrÞ ¼ f0Δþ f1Δ2 þ f2Δ3 þ f3Δ4 þOðΔ5Þ;
BðrÞ ¼ b0ðΔþ b1Δ2 þ b2Δ3 þ b3Δ4Þ þOðΔ5Þ; ð13Þ

where four parameters among f0, f1, f2, b1, b2 are
independent, b0 represents the residual gauge freedom,
and the subsequent parameters fn and bn for n∈ f3; 4;…g
can be expressed as functions of those and of r0. Different
from the solution ð0; 0Þ0, in this case we refrain from
displaying the structure of the first terms of the solution
because the expressions are considerably longer.
Nevertheless, Eq. (13) is enough to verify that the solutions
of type ð1; 1Þr0 have regular curvature scalars at the horizon
r ¼ r0. In fact, the Kretschmann and Ricci scalars are
bounded,
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RμναβRμναβ ¼
r→r0

16þ 16f20r
2
0 þ ð3b1f0 þ f1Þ2r40

4r40
þOðΔÞ;

ð14Þ

R ¼
r→r0

4 − ½f0ð8þ 3b1r0Þ þ f1r0�r0
2r20

þOðΔÞ: ð15Þ

Since asymptotically flat regular black holes must have
an even number of horizons, one expects also to encounter
families of solutions expanded around a double (extreme)
horizon. The search for such solutions is more complicated
precisely because of their extremal nature, which makes
them completely determined by the parameters of the
model (with the only free parameters being the gauge
one). More details about these and other solutions around
r ¼ r0 ≠ 0 will be provided in a separate work [45].

IV. SOLUTIONS WITH R= 0 AND WITH gttgrr = − 1
There are two classes of solutions that, although promi-

nent in general relativity and quadratic gravity, do not seem
to be very relevant for a generic sixth-derivative grav-
ity model.
In fourth-derivative gravity, metrics with vanishing Ricci

scalar (R ¼ 0) played an important role in the identification
of certain classes of asymptotically flat solutions [31].
Here, nevertheless, the trivial flat spacetime is the
only solution in the form of Eqs. (3) and (4) that satisfies
this condition. This can be verified by comparing the
solution (9) with the expansion of the equation R ¼ 0
order by order. The lower-order equations generate con-
straints between the free parameters of (9) and, at order r8,
it forces ai ¼ 0 ¼ bi for i ≥ 1.
Also, solutions such that gttgrr ¼ −1—i.e., defined by a

single metric function, AðrÞ ¼ 1=BðrÞ—can be shown to
have no free parameters, with all the coefficients in (9)
being determined by the constants in the action. Simply
put, under these conditions the constraints between the free
parameters in (9) are such that bi ¼ 0 for i ¼ 3; 4;…, but it
might happen that b2 is a nonzero fixed constant. Although
the assumption AðrÞ ¼ 1=BðrÞ is often employed in the
construction of phenomenological models of regular black
holes, our result implies that it might be too restrictive in
gravity models with more than four derivatives, in line
with statements in [46,58]. Indeed, the lack of free
parameters makes it difficult to associate solutions of this
type with matter sources. This observation might serve as a
motivation for further studies of regular geometries with
gttgrr ≠ −1 (see, e.g., [26,59]).

V. EFFECT OF THE TERMS REQUIRED BY
RENORMALIZABILITY

Up to this point, the discussion concerned the most
general (complete) sixth-derivative gravity model. There

are various branches, though, that can be analyzed if some
of the coefficients in the action (1) are switched off or
taken in particular combinations. A more detailed con-
sideration of these specific scenarios will be carried out in
a separate work [45], but here we would like to address the
question of the effect of the terms required by renormaliz-
ability. In fact, while the action (1) emerges in its most
general form from quantum corrections to general rela-
tivity, it need not contain all those six-derivative structures
if it is taken to be the action of a superrenormalizable
gravity.
From the point of view of renormalizability, a sixth-

derivative gravity model must have sixth-order derivatives
in its spin-2 and spin-0 sectors. In terms of the action (1),
this corresponds to the requirements γ2 ≠ 0 and
3γ1 þ γ2 ≠ 0. Also, since the counterterms can have up
to four metric derivatives [7], for multiplicative renorma-
lizability we must have α; β1; β2 ≠ 0, and a cosmological
constant. We omit the latter, for our interest is in the
higher derivative’s effects. Therefore, the terms in the first
line of Eq. (1) with the restrictions mentioned above
suffice to yield a superrenormalizable model; omitting or
including cubic-curvature structures will not affect the
renormalizability.
In this spirit, superrenormalizable models can be for-

mulated in terms of other structures quadratic in curvature
and with two covariant derivatives, such as Rμναβ□Rμναβ or
Cμναβ□Cμναβ, because they also yield sixth-order deriva-
tives of the metric. Although they only differ from
combinations of R□R and Rμν□Rμν by cubic and boundary
terms, such models are not equivalent if the action does not
contain all the terms present in (1).
In Table I we summarize the families of solutions

that exist around r ¼ 0 for a superrenormalizable action
with all the two- and four-derivative structures and different
combinations of six-derivative terms (with arbitrary

TABLE I. Summary of solutions around r ¼ 0. The arrow in
the counting of the number of parameters indicates the reduction
of parameters after taking into account the freedom to rescale the
time coordinate.

Six-derivative terms in the
action

ðs; tÞ0 solution
family

Number of free
parameters

R□R, Rμν□Rμν,
Rμναβ□Rμναβ

ð0; 0Þ0 6 → 5

R□R, Rμν□Rμν ð0; 0Þ0 6 → 5
ð1;−1Þ0 3 → 2

R□R, Rμναβ□Rμναβ ð0; 0Þ0 6 → 5

R□R, Cμναβ□Cμναβ ð0; 0Þ0 6 → 5
ð2; 2Þ0 8 → 7
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coefficients). Here we restrict considerations to integer
values of s and t.
Some models admit a family of solutions with indicial

structure ð1;−1Þ0 or ð2; 2Þ0, in addition to the family
ð0; 0Þ0. The latter is described as a particular case of (9),
by adjusting the coefficients γi according to the terms
present in the action. Solutions with indicial structures
ð0; 0Þ0, ð1;−1Þ0, and ð2; 2Þ0 also occur in the fourth-
derivative gravity, but with a different number of free
parameters [27,31].
The family of solutions ð1;−1Þ0 here is defined by two

physical parameters, so it is smaller than the one of fourth-
derivative gravity, which has three parameters [31]. This
family contains the Schwarzschild solution, which turns out
to be the only solution in this class that satisfies R ¼ 0 (and,
besides that, gttgrr ¼ −1). Solutions in this family are
singular, with the Kretschmann scalar behaving like r−6

as r → 0.
On the other hand, the family ð2; 2Þ0 here is larger than

in fourth-derivative gravity, for it has two more free
parameters. These solutions are also singular, with the
Kretschmann scalar behaving like r−8 as r → 0. However,
they are only present in some models constructed with the
Weyl tensor [60].

VI. CONCLUSIONS

There is an important difference between fourth- and
sixth-derivative gravity in what concerns the space of
static spherically symmetric solutions. In fact, while the
former admits families of singular solutions, with indicial
structure ð1;−1Þ0 and ð2; 2Þ0 [27], in a generic sixth-
derivative gravity described by the action (1) (with
arbitrary and unrelated couplings) all the solutions of
the form of Eqs. (3) and (4) belong to the family ð0; 0Þ0
and are regular at r ¼ 0. This possibility was suggested
in [28], and our analysis corroborates the result. A similar
contrast between these higher-derivative gravities had
already been noticed for the linear version of the models
[21], and it is rewarding to see that it has a counterpart at
the nonlinear level.
We have also identified solutions that contain a

horizon. The fact that we only found regular solutions
around r ¼ 0might suggest that these black hole solutions
are regular. In order to confirm this statement, however, it
would be necessary to use numerical methods or to prove
that the solutions with a horizon also have a representation
in terms of Frobenius series around the origin. Indeed,
there may still exist singular solutions of non-Frobenius
type, or regular solutions at r ¼ 0 may possess singular-
ities for finite values of r ≠ 0. The study of numerical
solutions to sixth-derivative gravity is still in the early
stages (see, e.g., [61]), and we expect that our work will
motivate further research on this important topic for
the understanding of the role of higher derivatives in
gravity.

Regarding incomplete sixth-derivative models, we
discussed the influence of the terms required by renorma-
lizability on the space of solutions. In particular, we
identified renormalizable models that have singular solu-
tions of the type ð1;−1Þ0, and others admitting solutions
ð2; 2Þ0. Nevertheless, since these models are obtained by a
special tuning between the coefficients in the general action
(1), we conjecture that the solution that is equivalent to the
Schwarzschild one in general relativity is in the class
ð0; 0Þ0—because it is the one common to all such models
with sixth-order field equations. The situation here is
similar to fourth-derivative gravity, for which the asymp-
totically flat solution that couples to normal ghost-free
matter is in the ð2; 2Þ0 class, although the model admits the
Schwarzschild black hole as solution [31].
Last but not least, we found that solutions satisfying the

constraints R ¼ 0 or gttgrr ¼ −1 do not seem to be of much
relevance in gravity theories with more than four metric
derivatives (with generic couplings). Therefore, like in [26],
it might be necessary to relax those conditions to construct
phenomenological models of regular black holes aimed at
reproducing aspects of solutions of higher-derivative
gravity.
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APPENDIX: SYSTEM OF INDICIAL EQUATIONS
AND ITS SOLUTION

The system of indicial equations for the Frobenius series
solutions of sixth-derivative gravity around r ¼ 0 is
obtained by substituting the ansatz for the metric,
Eqs. (3) and (4), into the field equations originated from
the action (1) and expanding to the lowest order in r. The
resulting expressions have the general form of Eq. (6), but
here we shall split the analysis into three cases: s > 0,
s ¼ 0, and s < 0.

1. Case s > 0

If s > 0, the expansion of the field equations at lowest
order yields

HttðrÞ
BðrÞ ¼ 1

32a30r
6þ3s

X8
i¼1

γigiðs; tÞ þO

�
1

r5þ3s

�
;

HrrðrÞ ¼
1

32a20r
6þ2s

X8
i¼1

γihiðs; tÞ þO

�
1

r5þ2s

�
; ðA1Þ

TOWARD REGULAR BLACK HOLES IN SIXTH-DERIVATIVE … PHYS. REV. D 110, 104056 (2024)

104056-5



where the coefficients giðs; tÞ and hiðs; tÞ depend on the quantities s and t through

g1ðs; tÞ ¼ 4ðsþ 2Þ½sðtþ 4Þ − tðtþ 2Þ − 4�½ð6s − tÞð10s2 − st − t2Þ þ 2ð118s2 − 34st − t2Þ þ 4ð69s − 14tþ 22Þ�; ðA2Þ

h1ðs; tÞ ¼ 4ðsþ 2Þ½sðtþ 4Þ − tðtþ 2Þ − 4�½tð10s2 − st − t2Þ þ 2ð20s2 þ 6st − 3t2Þ þ 4ð31s − 6tþ 14Þ�; ðA3Þ

g2ðs; tÞ ¼ 2½stð60s4 − 76s3tþ 11s2t2 þ 6st3 − t4Þ þ 2ð60s5 þ 146s4t − 208s3t2 þ 35s2t3 þ 8st4 − t5 þ 328s4 þ 152s3t

− 263s2t2 þ 96st3 − 3t4Þ þ 8ð124s3 − 69s2t − 15st2 þ 21t3 − 5s2 − 110stþ 2t2Þ − 96ð9sþ 2tþ 3Þ�; ðA4Þ

h2ðs; tÞ ¼ 2½st2ð10s3 − 11s2tþ t3Þ þ 2tð20s4 þ 6s3t − 21s2t2 þ 2st3 þ t4Þ þ 2ð60s4 þ 56s3t − 71s2t2 − 4st3 þ 21t4Þ
þ 8ð64s3 − 9s2t − 33st2 − 7t3 þ 47s2 − 26stþ 6t2Þ þ 96ð2t − 5s − 3Þ�; ðA5Þ

g3ðs; tÞ ¼ 4½sðtþ 4Þ − tðtþ 2Þ − 4�2½30s2 þ st − t2 þ 2ð47s − tþ 37Þ�; ðA6Þ

h3ðs; tÞ ¼ 4½sðtþ 4Þ − tðtþ 2Þ − 4�2½tð5sþ tÞ þ 2ð10sþ 4tþ 23Þ�; ðA7Þ

g4ðs; tÞ ¼ 2½t2ðs − tÞ2ð30s2 þ st − t2Þ þ 2tð80s4 − 55s3t − 71s2t2 þ 47st3 − t4Þ þ 2ð140s4 þ 146s3t − 193s2t2 þ 22st3

þ 25t4Þ þ 8ð59s3 − 20s2tþ 23st2 þ 12t3 − 39s2 þ 28stþ 56t2Þ − 32ð8s − 21t − 19Þ�; ðA8Þ

h4ðs; tÞ ¼ 2½t3ðs − tÞ2ð5sþ tÞ þ 8t2ð5s3 − 6s2tþ t3Þ þ 2tð70s3 − 35s2t − 34st2 þ 27t3Þ þ 8ð30s3 þ 5s2t − 23st2 þ 14t3

þ 19s2 − 28stþ 48t2Þ − 32ð21s − 16t − 17Þ�; ðA9Þ

g5ðs; tÞ ¼ t2ðs − tÞ2ð30s2 þ st − t2Þ þ 12stð10s3 − 3s2t − 14st2 þ 7t3Þ þ 6ð40s4 þ 84s3t − 23s2t2 − 8st3 þ 7t4Þ
þ 8ð71s3 þ 69s2tþ 24st2 þ 8t3Þ þ 24ð6s2 þ 16stþ 11t2Þ − 32ð3s − 9t − 10Þ; ðA10Þ

h5ðs; tÞ ¼ t3ðs − tÞ2ð5sþ tÞ þ 6t2ð5s3 − 5s2t − st2 þ t3Þ þ 6tð20s3 þ 3s2t − 12st2 þ 9t3Þ þ 8ð25s3 þ 27s2t − 3st2

− 5t3Þ þ 24ð10s2 þ 8stþ 9t2Þ − 32ð9s − 15t − 14Þ; ðA11Þ

g6ðs; tÞ ¼ t2ðs − tÞ2ð30s2 þ st − t2Þ þ 2tð40s4 þ 19s3t − 97s2t2 þ 37st3 þ t4Þ þ 4ð20s4 þ 24s3t − 22s2t2 − 43st3

þ 11t4Þ þ 8ð10s3 − 5s2tþ 23st2 − 10t3 − 25s2 þ 54stþ 39t2Þ − 32ð5s − 18t − 7Þ; ðA12Þ

h6ðs; tÞ ¼ t3ðs − tÞ2ð5sþ tÞ þ 4t2ð5s3 − 3s2t − 3st2 þ t3Þ þ 4stð10s2 − 9st − 3t2Þ þ 8ð20s3 − 7s2t − 14st2 þ 19t3

þ 11s2 − 14stþ 21t2Þ − 32ð15s − 4t − 11Þ; ðA13Þ

g7ðs; tÞ ¼ 4½t2ðs − tÞ2ð30s2 þ st − t2Þ þ 2tð40s4 þ 19s3t − 97s2t2 þ 37st3 þ t4Þ þ 2ð40s4 þ 128s3tþ 43s2t2 − 92st3

þ 21t4Þ þ 16ð15s3 − 3s2tþ 27st2 − 4t3Þ þ 8ð46s2 − 36stþ 45t2Þ þ 32ð15sþ 13Þ�; ðA14Þ

h7ðs; tÞ ¼ 4½t3ðs − tÞ2ð5sþ tÞ þ 4t2ð5s3 − 3s2t − 3st2 þ t3Þ þ 2tð20s3 þ 17s2t − 20st2 þ 11t3Þ þ 8ð20s3 − 2s2t

þ 5st2 − t3 þ 26s2 − 8stþ 31t2Þ − 32ð6s − 3t − 11Þ�; ðA15Þ

g8ðs; tÞ ¼ 4½t2ðs − tÞ2ð30s2 þ st − t2Þ þ 6t2ð31s3 − 41s2tþ 9st2 þ t3 þ 70s2 − 54stþ 4t2Þ − 8ðs3 − 66st2 þ 19t3Þ
þ 32ð9t2 þ 1Þ�; ðA16Þ

h8ðs; tÞ ¼ 4½t3ðs − tÞ2ð5sþ tÞ þ 24st3ðs − tÞ þ 12t3ð3s − tÞ þ 8ð10s3 − 3s2tþ 7t3Þ þ 144s2 þ 160�: ðA17Þ
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Hence, for the field equations to be solved at lowest order
in r for any values of γ1;…;8, we must have

giðs; tÞ ¼ hiðs; tÞ ¼ 0; ∀ i ¼ 1;…; 8; ðA18Þ

which constitute the system of indicial equations for s > 0.
To prove that the system (A18) does not admit solutions

with s > 0, consider the following observations:
(i) The subsystem g3ðs; tÞ ¼ h3ðs; tÞ ¼ 0 only admits

the one-parameter family of solutions

s ¼ t2 þ 2tþ 4

tþ 4
; t ≠ −4: ðA19Þ

Indeed, it is straightforward to verify that

h3ðs; tÞ ¼ 0 ⇔ s ¼ t2 þ 2tþ 4

tþ 4
or

s ¼ −
t2 þ 8tþ 46

5ðtþ 4Þ : ðA20Þ

The latter option yields

g3ðsðtÞ; tÞ ¼ −
1728ðt − 2Þðt2 þ 3tþ 11Þ3

25ðtþ 4Þ2 ¼ 0;

t∈R ⇔ t ¼ 2; ðA21Þ

forcing s ¼ −11=5 < 0, which violates the
assumption on the sign of s. On the other hand,
the former option, given by Eq. (A19), solves
g3ðs; tÞ ¼ 0 for any value of t ≠ −4.

(ii) The only admissible solution for the subsystem
g3ðs; tÞ ¼ h3ðs; tÞ ¼ 0 and h4ðs; tÞ ¼ 0 is
s ¼ −t ¼ 1. In fact, substituting (A19) into the
expression for h4ðs; tÞ we obtain

h4ðs; tÞ ¼
64ðtþ 1Þ2ðt2 þ 3tþ 11Þðt2 þ 4tþ 12Þ

ðtþ 4Þ2 ;

ðA22Þ

whose roots can be easily obtained using Bhaskara’s
formula. The only real solution is t ¼ −1, which
yields s ¼ 1.

Finally, it is immediate to verify that s ¼ −t ¼ 1 is not a
zero of any of the functions in Eqs. (A14)–(A17). This
completes the proof that the system (A18) does not have
solutions with s > 0.

2. Case s= 0

In this case, the expansions ofHtt and Hrr have the form

HttðrÞ
BðrÞ ¼ 1

32a30r
6

X8
i¼1

γigið0; t; a0Þ þO

�
1

r5

�
;

HrrðrÞ ¼
1

32a20r
6

X8
i¼1

γihið0; t; a0Þ þO

�
1

r5

�
; ðA23Þ

now with coefficients gið0; t; a0Þ and hið0; t; a0Þ that also
depend on a0, namely,

g1ð0; t; a0Þ ¼ −8½4ð1 − a0Þ þ tðtþ 2Þ�½t3 − 2t2 − 56tþ 8ða0 þ 11Þ�; ðA24Þ

h1ð0; t; a0Þ ¼ 8½4ð1 − a0Þ þ tðtþ 2Þ�½t3 þ 6t2 þ 24t − 8ða0 þ 7Þ�; ðA25Þ

g2ð0; t; a0Þ ¼ −4½t5 þ 3t4 − 84t3 − 8ða0 þ 1Þt2 þ 96ða0 þ 1Þt − 48ða20 þ 2a0 − 3Þ�; ðA26Þ

h2ð0; t; a0Þ ¼ 4½t5 þ 21t4 − 28t3 þ 8ða0 þ 3Þt2 þ 32ð3 − 5a0Þtþ 48ða20 þ 2a0 − 3Þ�; ðA27Þ

g3ð0; t; a0Þ ¼ −4½4ð1 − a0Þ þ tðtþ 2Þ�2½t2 þ 2tþ 2ða0 − 37Þ�; ðA28Þ

h3ð0; t; a0Þ ¼ 4½4ð1 − a0Þ þ tðtþ 2Þ�2½t2 þ 8tþ 2ða0 þ 23Þ�; ðA29Þ

g4ð0; t; a0Þ ¼ −2½t6 þ 2t5 − 2ða0 þ 25Þt4 − 8ða0 þ 12Þt3 þ 32ð5a0 − 14Þt2 þ 672ða0 − 1Þtþ 32ða0 − 1Þ2ða0 − 19Þ�;
ðA30Þ

h4ð0; t; a0Þ ¼ 2½t6 þ 8t5 − 2ða0 − 27Þt4 þ 8ð14− 3a0Þt3 þ 32ð12− 7a0Þt2 þ 32ða20 − 17a0 þ 16Þtþ 32ða0 − 1Þ2ða0 þ 17Þ�;
ðA31Þ

g5ð0; t; a0Þ ¼ −½t6 − 42t4 − 64t3 − 24ða0 þ 11Þt2 þ 288ða0 − 1Þtþ 32ða0 − 1Þ2ða0 − 10Þ�; ðA32Þ
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h5ð0; t; a0Þ ¼ t6 þ 6t5 þ 54t4 − 40t3 − 24ða0 − 9Þt2 − 480ða0 − 1Þtþ 32ða0 − 1Þ2ða0 þ 14Þ; ðA33Þ

g6ð0; t; a0Þ ¼ −½t6 − 2t5 − 44t4 − 8ða0 − 10Þt3 þ 24ða0 − 13Þt2 þ 576ða0 − 1Þtþ 32ða0 − 1Þ2ða0 − 7Þ�; ðA34Þ

h6ð0; t; a0Þ ¼ t6 þ 4t5 − 8ða0 − 19Þt3 − 168ða0 − 1Þt2 − 128ða0 − 1Þtþ 32ða0 − 1Þ2ða0 þ 11Þ; ðA35Þ

g7ð0; t; a0Þ ¼ −4½t6 − 2t5 − 2ða0 þ 21Þt4 þ 8ða0 þ 8Þt3 þ 72ða0 − 5Þt2 þ 32ða0 − 1Þ2ða0 − 13Þ�; ðA36Þ

h7ð0; t; a0Þ ¼ 4½t6 þ 4t5 − 2ða0 − 11Þt4 − 8ða0 þ 1Þt3 þ 8ð31 − 7a0Þt2 þ 32ða20 − 4a0 þ 3Þtþ 32ða0 − 1Þ2ða0 þ 11Þ�;
ðA37Þ

g8ð0; t; a0Þ ¼ −4½t6 − 6t5 − 24t4 þ 152t3 − 288t2 þ 32ða0 − 1Þ3�; ðA38Þ

h8ð0; t; a0Þ ¼ 4½t6 − 12t4 þ 56t3 þ 32ða0 − 1Þ2ða0 þ 5Þ�: ðA39Þ

Therefore, for the field equations to be solved at lowest
order in r for any values of γ1;…;8, we must have

gið0; t; a0Þ ¼ hið0; t; a0Þ ¼ 0; ∀ i ¼ 1;…; 8: ðA40Þ

Notice that this system of indicial equations for s ¼ 0
might also act as constraint to the value of the parameter a0
in Eq. (3).
To prove that the only solution of (A40) is t ¼ 0 and

a0 ¼ 1, we proceed like in the previous case and start by
considering the coefficients related to the parameter γ3. We
have the following results:

(i) The only admissible solutions of the subsystem
g3ð0; t; a0Þ ¼ h3ð0; t; a0Þ ¼ 0 are either t ¼ −20
and a0 ¼ −143 or in the form

a0 ¼
1

4
ðt2 þ 2tþ 4Þ; t∈R: ðA41Þ

In fact, it is straightforward to verify that

h3ð0; t; a0Þ ¼ 0 ⇔ a0 ¼
1

4
ðt2 þ 2tþ 4Þ or

a0 ¼ −
1

2
ðt2 þ 8tþ 46Þ: ðA42Þ

The latter option yields

g3ð0; t; a0ðtÞÞ ¼ 216ðtþ 20Þðt2 þ 6tþ 32Þ2 ¼ 0;

t∈R ⇔ t ¼ −20; ðA43Þ

which results in a0 ¼ −143. On the other hand, the
former solution, Eq. (A41), solves g3ð0; t; a0Þ ¼ 0
for any real t.

(ii) The only admissible solution for the subsystem
g3ð0; t; a0Þ ¼ h3ð0; t; a0Þ ¼ 0 and h4ð0; t; a0Þ ¼ 0
is t ¼ 0 and a0 ¼ 1. Indeed, by direct substitution
one can verify that t ¼ −20 and a0 ¼ −143 does not
solve h4ð0; t; a0Þ ¼ 0. As for solutions in the form
(A41), substituting into (A31) we obtain

h4ð0; t; a0ðtÞÞ ¼ 2t2ðt2 þ 2Þðt2 þ 6tþ 32Þ; ðA44Þ

whose only real root is t ¼ 0, which yields a0 ¼ 1.
It is immediate to verify that t ¼ 0 and a0 ¼ 1 is a zero of
all the functions (A24)–(A39), being, therefore, the only
solution of the system (A40).

3. Case s < 0

Finally, the lowest-order term of the expansion of Htt
and Hrr for negative values of s reads

HttðrÞ
BðrÞ ¼−

4γ3þ2γ4þγ5þγ6þ4γ7þ4γ8
r6

þOðr−5Þ;

HrrðrÞ¼
4γ3þ2γ4þγ5þγ6þ4γ7þ4γ8

r6−s
a0þOðrs−5;r−6Þ:

ðA45Þ

Therefore, the field equations cannot be solved at lowest
order for arbitrary values of the parameters γi if s < 0.
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