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Abstract In this paper, we obtain a complete list of sta-
tionary and axisymmetric spacetimes, generated from a
Minkowski spacetime using the Ernst technique. We do so
by operating on the associated seed potentials with a compo-
sition of Ehlers and Harrison transformations. In particular,
assigning an additional “electric” or “magnetic” tag to the
transformations, we investigate the new spacetimes obtained
either via a composition of magnetic Ehlers and Harri-
son transformations (first part) or via a magnetic-electric
combination (second part). In the first part, the resulting
type D spacetime, dubbed electromagnetic swirling universe,
features key properties, separately found in swirling and
(Bonnor–)Melvin spacetimes, the latter recovered in appro-
priate limits. A detailed analysis of the geometry is included,
and subtle issues are addressed. A detailed proof that the
spacetime belongs to the Kundt family, is included, and
a notable relation to the5 planar-Reissner–Nordström-NUT
black hole is also meticulously worked out. This relation is
further exploited to reverse-engineer the form of the solu-
tion in the presence of a nontrivial cosmological constant.
A Schwarzschild black hole embedded into the new back-
ground is also discussed. In the second part, we present four
novel stationary and axisymmetric asymptotically nonflat
type I spacetimes, which are naively expected to be exten-
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sions of the Melvin or swirling solution including a NUT
parameter or electromagnetic charges. We actually find that
they are, under conditions, free of curvature and topological
singularities, with the physical meaning of the electric trans-
formation parameters in these backgrounds requiring further
investigation.
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1 Introduction

Since the advent of Einstein’s equations, the quest for exact
solutions to this set of coupled nonlinear partial differential
equations has played an important part in modern physics [1].
Exact solutions have significantly aided us in understand-
ing many classical and semiclassical properties of gravity,
and this is exactly what makes them integral to our com-
prehension of diverse phenomena occurring at astrophysi-
cal and cosmological scales. Furthermore, these solutions
have set the stage for the theoretical exploration of many
groundbreaking concepts, including, but not limited to, black
hole thermodynamics [2–5], the information paradox [6], and
holography [7].

Dealing with the field equations of General Relativ-
ity (GR) poses a nontrivial challenge, which reduces to a
tractable problem only when a high amount of symmetry is
imposed. In particular, exploiting the Lie point symmetries
inherent in Einstein’s equations, serves as a robust method for
generating exact solutions – solutions that would be practi-
cally impossible to integrate with brute force. Two especially
interesting Lie point symmetries of the Einstein–Maxwell
system, Ehlers [8,9] and Harrison [10] transformations, suf-
fice for the construction of novel stationary and axially sym-
metric spacetimes. These two transformations are part of a
larger set of Lie point symmetries, which exist as hidden sym-
metries of the Einstein–Maxwell system of field equations,
and which are revealed only when one formulates the theory
in terms of the complex so-called Ernst potentials [11,12];
they are indeed potential-space symmetries, the parameters
of which comprise an eight-parameter isometry group, a non-
linear representation of which was originally given in [13].
The linear representation of this group and the apparent iso-
morphism with SU(2,1), was only a few years later delivered
by Kinnersley [14], who extended the previous results of
Geroch [15] to include electromagnetism.

Recently, stationary and axisymmetric spacetimes have
received a considerable amount of attention within the frame-
work of the Ernst description [11,12] of gravity.1 In particu-
lar, the significant effect that Ehlers and Harrison transforma-
tions have on accelerating spacetimes, has been explored in
detail [17–20]. Using Ehlers or Harrison transformations, or a
combination of them for that matter, it has lately been demon-
strated that certain algebraically special accelerating space-
times can be mapped to novel algebraically general solu-
tions. For example, some of us have successfully constructed
a complete hierarchy of type I spacetimes [20] obtained
via this generating technique, generalizing the well-known

1 These equations were originally derived by Ernst in [12] for station-
ary electrovac fields with the further assumption of axisymmetry. Later,
Israel and Wilson [16], as well as Harrison [10], rederived them inde-
pendently for general stationary electrovac fields.

Plebański–Demiański family, i.e., the most general family of
type D solutions in Einstein–Maxwell theory.

To better understand these developments, we shall briefly
review the effects of these transformations. For seed space-
times cast into the electric form of the Weyl–Lewis–
Papapetrou (WLP) metric,2 the standard lore is that Ehlers
transformations introduce an additional real parameter which
in certain cases can be associated with a NUT parameter in
the target metric. On the other hand, Harrison transforma-
tions introduce an additional complex parameter, whose real
and imaginary parts, can in certain cases be associated with
monopolic electromagnetic charges in the target configura-
tion. When the seed is a type D accelerating spacetime, it has
been observed that, on top of the above effects, the transfor-
mations also bring about a change in the algebraic character
of the generated solution, namely the target spacetimes are
of type I. An explanation for this peculiar effect seemingly
lies in the way that the transformation parameters enter the
new metrics.

To get a good grasp on this, let us for a moment consider
the Schwarzschild black hole as a prototypical seed example.
Casting it into the electric form of the WLP metric and oper-
ating on the seed potentials with an Ehlers transformation,
it is known that the resulting spacetime is the Taub–NUT
black hole, modulo coordinate transformations, and param-
eter redefinitions. In other words, the transformation – with-
out changing the Petrov type [17,18] – has introduced a new
parameter, which now, together with the mass, determines
the location of the black hole horizon. In sharp contrast to
this, if we let our seed be the C-metric [21–23], an Ehlers
transformation will not only affect the usual event horizon
in the above sense, but also the Rindler one [19,20]. As a
byproduct of this, the resulting spacetime turns out to be
an accelerating Schwarzschild black hole with a NUT-like
parameter, which however is of type I, and as such, it cannot
be found within the Plebański–Demiański type D hierarchy.
Similarly, a Harrison transformation has its two real param-
eters entering both, black hole and Rindler, horizons of the
C-metric, thereby leading to a charged accelerating black
hole of type I and not in a Reissner–Nordström-C-metric of
type D, as one may have perhaps expected.

Important insight into the modified Rindler horizons in
these type I accelerating black holes can be obtained by
viewing the new solutions as a particular limit of black hole
binaries [19]. Recall that the near-horizon geometry of a
Schwarzschild black hole is described by the Rindler met-
ric, characteristic of an accelerating observer. A mathemat-
ically equivalent way to “zoom in” on the event horizon is
to take the infinite mass limit of the solution. An acceler-
ating Schwarzschild black hole can be conceptualized as a
binary system of two Schwarzschild black holes, effectively

2 See the next section for definitions of “electric” and “magnetic” forms.
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described by the Bach–Weyl solution [24], where one of the
two grows infinitely large (becomes infinitely massive) while
retaining a finite distance from the other. The event horizon of
the “big” black hole appears then as an accelerating horizon
to its small sibling. Consequently, the Bach–Weyl solution
ends up appearing as a C-metric in this limit. Analogously,
these type I accelerating black holes, featuring Rindler hori-
zons which depend on the transformation parameters among
others, can be thought about as a limit of the NUTty and/or
charged extension of the Bach–Weyl spacetime. A complete
hierarchy of these novel type I spacetimes, including also a
seed angular momentum parameter, can be found in [20].3

In light of these recent developments, this study aims to
shed light on the remaining spacetimes one can generate by
composing Ehlers and Harrison transformations. To further
elaborate on our agenda, it is best if we use the following ter-
minology, which will be formally introduced in Sect. 2.1. An
electric (resp. magnetic) Ehlers transformation is an Ehlers
transformation of the Ernst potentials associated with a seed
metric cast into the electric (resp. magnetic) form of the WLP
metric, and ditto for Harrison. To date, and to the best of our
knowledge, only the combination of electric transformations
has been investigated. In this work, we wish to fill the gaps,
and we do so by first combining a magnetic Ehlers transfor-
mation with a magnetic Harrison one (first part), and then by
taking all possible combinations of an electric and a magnetic
transformation (second part). It is a firmly established fact
that operating with magnetic Harrison and magnetic Ehlers
transformations on the seed potentials of Minkowski space-
time, one obtains two interesting asymptotically nontrivial
backgrounds, commonly known as Bonnor–Melvin [25,26]
and swirling [27,28] spacetimes, respectively. We will briefly
review them later on. In the first part of this work, we present
a more general spacetime, dubbed electromagnetic swirling
universe, from which, as the name suggests, the aforemen-
tioned solutions follow in appropriate limits. We study this
geometry in detail, also addressing a rather subtle issue
concerning the uniqueness of timelike Killing vectors, rel-
evant also in the swirling case, which has been unfortunately
neglected so far. Moreover, we prove that the new metric is
Kundt via an intricate chain of coordinate reparametrizations
and parameter redefinitions. We also explicitly prove the exis-
tence of an intriguing relation between this new background
and a planar Reissner–Nordström–NUT spacetime. It is this
particular relation which we exploit to also analytically derive
the cosmological extension of the electromagnetic swirling
universe, i.e., the form of the solution in the presence of a
cosmological constant. As a finale to the first part, we embed
a Schwarzschild black hole into the new background, giving

3 The solution with angular momentum has also later appeared in the
fifth revision of [19].

some emphasis on the dragging effect and the deformation
of the horizon surface.

In the second part, we give attention to electric-magnetic
mixtures, registering the complete list of novel spacetimes
one can generate from Minkowski spacetime by combin-
ing an electric with a magnetic transformation. Four type
I families are obtainable in this way, and we discuss the con-
ditions under which they can be legitimately called back-
grounds. Due to the number of solutions, the analysis will
not be exhaustive. We show that all spacetimes in the sec-
ond part of this work, feature closed timelike/null curves
(CTCs/CNCs). These appear inside regions, the boundaries
of which are also surfaces where the frame-dragging angu-
lar velocity becomes singular. We then argue that one may
perhaps ascribe the occurrence of nonchronal regions to the
intensity of rotation building up very close to these singu-
lar surfaces; inertial frames get dragged so strongly that the
light cones end up being tilted in the direction of the cir-
cumference. We remark that two of the backgrounds carry
everywhere finite electric and magnetic fields which decay
in all directions at infinity. Such behavior is in stark con-
trast to what happens in the Bonnor–Melvin solution, where
the fields are uniform in the vicinity of the symmetry axis.
Whether CTC-free parts of these two backgrounds could per-
haps be as suitable as the former spacetime, for example in
describing astrophysical black holes surrounded by strong
magnetic fields, remains an open question. The presence of
closed timelike/null curves requires much deeper scrutiny.
Although they render the entirety of each solution unreal-
istic for modeling (astro)physical phenomena, the fact that
these pathologies beset solutions to the Einstein–Maxwell
theory, perhaps makes these backgrounds interesting from a
totally different perspective.

This paper is structured as follows. In Sect. 2.1 we com-
municate the very basics of the Ernst formalism and briefly
discuss the symmetry transformations. We use this sec-
tion to also derive the nomenclature, and we further lay
down the steps we follow to generate new solutions, giv-
ing an algorithmic description of the generating technique
we use in this work. In Sect. 2.2, we review, in double-
quick time, a highly convenient method for the Petrov clas-
sification, which we will use throughout. In Sect. 3, we
combine magnetic Ehlers and Harrison transformations to
obtain the electromagnetic swirling universe, analyzing its
geometric properties and making its relation to a planar
Reissner–Nordström–NUT spacetime manifest. We use the
latter link to derive the electromagnetic-swirling-(A)dS solu-
tion. Finally, a Schwarzschild black hole is embedded into
the new background, with its most interesting features dis-
cussed in some depth. In Sect. 4, we direct our efforts towards
generating new spacetimes by combining electric and mag-
netic Ehlers and Harrison transformations. We start with a
Minkowski seed and work our way up to the four different
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spacetimes one can obtain by combining a magnetic trans-
formation with an electric one. We investigate whether (and
under which conditions) these asymptotically nonflat geome-
tries can be characterized as backgrounds. Finally, in Sect. 5
we summarize our findings and conclude, also suggesting
new possible avenues for further research.

2 The essentials

2.1 The complex-potential formalism

In this section, we review the formulation of the Einstein–
Maxwell field equations in terms of two complex potentials,
as presented by Ernst in his seminal works [11,12]. Mak-
ing a stationary and axisymmetric ansatz, one can introduce
two complex potentials, E , and �, and write the Einstein–
Maxwell field equations as a pair of complex equations.
Doing so, a set of Lie point symmetries is revealed, the real-
ization of which eludes one in the usual tensorial formalism.
This set of symmetry transformations can then be exploited
to generate new solutions from old ones. Let us briefly review
the scheme.

The first step is to make a stationary and axisymmetric
metric ansatz, the Weyl–Lewis–Papapetrou (WLP) ansatz,

ds2 = − f (dt − ω dφ)2 + f −1[e2γ (dρ2 + dz2) + ρ2dφ2],
(2.1)

where f, ω, and γ are functions of ρ and z. We further take
our gauge field to have the symmetry-compatible form

A = At dt + Aφ dφ, (2.2)

where the scalar potentials are also functions of the Weyl
coordinates ρ and z. Defining

E := f − �� + iχ, � := At + i ˜Aφ, (2.3)

one may show, after some cumbersome algebra, that the
Einstein–Maxwell field equations for stationary axisymmet-
ric fields are equivalent to the complex Ernst equations

(Re E + ��)∇2E = ∇E · (∇E + 2�∇�), (2.4a)

(Re E + ��)∇2� = ∇� · (∇E + 2�∇�), (2.4b)

together with a pair of equations determining γ via inte-
gration by quadrature.4 The Laplacian and the gradient
are understood as operators in three-dimensional Euclidean
space in cylindrical coordinates. The potentials χ and ˜Aφ are
twist potentials satisfying the real equations

φ̂ × ∇χ = −ρ−1 f 2∇ω − 2φ̂ × Im(�∇�), (2.5a)

4 These will not bother us, for the symmetry transformations do not
transform γ at all.

φ̂ × ∇˜Aφ = ρ−1 f (∇Aφ + ω∇At ), (2.5b)

respectively, where φ̂ is the unit normal in the azimuthal
direction. Interestingly, if we define our complex potentials
as

E := − f − �� − iχ, � := Aφ + i ˜At , (2.6)

and considering the metric ansatz

ds2 = f (dφ − ω dt)2 + f −1[e2γ (dρ2 + dz2) − ρ2dt2],
(2.7)

instead of (2.1), then for a gauge field as in Eq. (2.2), we also
arrive at Eqs. (2.4), with the twist potentials now satisfying
the equations

φ̂ × ∇χ = −ρ−1 f 2∇ω + 2φ̂ × Im(�∇�), (2.8a)

φ̂ × ∇˜At = ρ−1 f (∇At + ω∇Aφ). (2.8b)

As previously mentioned, Eqs. (2.4) are invariant under a
bunch of symmetry transformations in potential space, whose
domain and target (as maps) are potentials associated with
stationary and axisymmetric Einstein–Maxwell fields. Their
finite forms read [13]

G1[a] : (E0,�0) �→ (E, �) := (E + ia, �0), (2.9a)

G2[α] : (E0,�0) �→ (E, �) := (E0 − 2α�0 − αα,�0 + α),

(2.9b)

D[ε] : (E0,�0) �→ (E, �) := (εεE0, ε�0), (2.9c)

E[c] : (E0,�0) �→ (E, �) := (E0,�0)

1 + icE0
, (2.9d)

H[β] : (E0,�0) �→ (E, �) := (E0, �0 + βE0)

1 − 2β�0 − ββE0
, (2.9e)

where a, c are real parameters and α, β, ε complex. Transfor-
mations G1 and G2 are “gauge” transformations which trans-
form the potentials, but leave the metric and the gauge field
invariant, D is a duality-rescaling transformation, E denotes
the Ehlers transformation [8], and H stands for the Harrison
[10] one. Note that a composition of G1, D and E gives the
inversion map

I : (E0,�0) �→ (E,�) := (1,�0)

E0
, (2.10)

which thus is also a (discrete) symmetry of the Ernst equa-
tions. In particular,

I = G1[a] ◦ E[1/a] ◦ G1[a] ◦ D[ia], (2.11)

and we can easily verify that

E[a] = I ◦ G1[a] ◦ I, H[α] = I ◦ G2[α] ◦ I . (2.12)

The transformations (2.9) are associated with eight Killing
vectors (KVs) locally generating an isometry group of the
potential space whose linear representation is a representa-
tion of SU(2,1) [14]. As discussed in [20], Ehlers transforma-
tions form a one-dimensional subgroup, i.e., E[a] ◦ E[b] =
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E[a + b], and they commute with Harrison transformations
because [G1, G2] = 0. On the other hand, two Harrison trans-
formations do not in general yield a Harrison, simply because
[G2, G2] �= 0. Actually,

H[α] ◦ H[β] = E[−2 Im(αβ)] ◦ H[α + β], (2.13)

so, unless αβ = βα, a “Harrison of Harrison” gives an
“Ehlers of Harrison” with the Ehlers parameter fixed in terms
of the Harrison parameters α and β. If we recall that the Har-
rison map generates electrovac solutions from vacuum ones,
then Eq. (2.13) implies that two Harrison transformations
map static vacuum solutions to stationary electrovac ones.

Let us also agree on the terminology to be used in this
work. The metric (2.1) will be called the electric form of
the WLP, whereas (2.7) will be the magnetic form. These
names [29], which unfortunately are misleading, are based
on the simple observation that a Harrison transformation
(with real parameter) of the potentials (2.3) associated with
a vacuum spacetime cast into (2.1), introduces an electric
charge, whereas the same transformation acting on the poten-
tials (2.6) associated with the very same vacuum spacetime
cast into (2.7), gives new potentials associated with a mag-
netized version of the seed. Nevertheless, this way of naming
things is convenient for the task at hand, and we adhere to
it henceforth. Therefore, the potentials (2.3) will be called
electric, as they are associated with a seed metric cast into
the electric WLP, while the potentials (2.6) will be dubbed
magnetic by the same reasoning. Finally, a symmetry trans-
formation of electric potentials will be addressed as electric,
and ditto for the magnetic case.

Since this is a solution-generating technique, the process
is purely algorithmic. To the aid of the interested reader, we
list the steps below for the so-called electric case. The same
steps ought to be followed in the magnetic case using the
relevant equations.

1. Given a stationary and axisymmetric metric, identify
f, ω, and γ in (2.1) via direct comparison.

2. These should be fed to Eq. (2.5b), together with the com-
ponents of the seed gauge field, which can then be inte-
grated for the twist potential ˜Aφ . Results should in turn
be fed to Eq. (2.5a) to obtain χ .

3. Substitute everything into the definitions (2.3) to get
exact expressions for the seed potentials. Next, do your
favorite transformations and read off the target functions
f, At , Ãφ, and χ again from (2.3).

4. These should now be fed to Eq. (2.5a), which can be inte-
grated for ω. Having ω, plug everything into Eq. (2.5b) to
get the azimuthal component of the target gauge field.

5. Substitute the target f, ω, At , Aφ, and the seed γ into
the metric (2.1) and the gauge field (2.2), and voilà.

Although this procedure looks simple per se, the computa-
tional complexity involved may become quite intractable.

2.2 Petrov classification

A fundamental way to distinguish gravitational fields, inde-
pendent of the coordinate system, is to classify them accord-
ing to their Petrov type [30]. To do so, we need to study the
algebraic structure of the Weyl tensor, which in four dimen-
sions has ten independent components, encoded in the five
complex Weyl–NP scalars �0, . . . , �4, within the frame-
work of the Newman–Penrose formalism. The Petrov clas-
sification is a useful tool in our case, for one can directly
prove the possible nonequivalence between certain solutions
appearing in this manuscript, by simply looking at their
Petrov type. This being the case, it is worth including a
double-quick review of the classification algorithm used in
this work.

First, we consider an arbitrary complex null tetrad (CNT)
e = {k, l,m,m} with k, l real null vectors and m,m complex
conjugate null vectors, such that kala = −1, mama = 1,
and all other products zero. Latin indices are lowered/raised
with the use of the metric gab = gμνe

μ
a e

ν
b and its inverse.

Having a complex null tetrad, we next consider the definition
of the five complex Weyl–NP scalar as given in [1]. The
problem of finding the Petrov type of a given spacetime will
be attacked using the d’Inverno and Russell–Clark method
[31]. Starting with an arbitrary null basis, we wish to find
the specific Lorentz transformation leading to a new basis, in
which the number of vanishing Weyl scalars is maximal. For
�4 �= 0, it is known that this is equivalent to the problem of
finding the roots of the complex quartic equation

�4ε
4 − 4�3ε

3 + 6�2ε
2 − 4�1ε + �0 = 0. (2.14)

Based on the number and multiplicity of these roots, we
can then determine the Petrov type. To make things simpler,
we will choose our CNT such that �1 = 0 = �3 and �4 �= 0.
In Appendix A, we show that such a choice is always possible
for the general WLP metric, and we explicitly suggest the
way to construct it. Given this CNT, Eq. (2.14) becomes a
quadratic for z = ε2, and dividing it by �4, we get

z2 + 6�2

�4
z + �0

�4
= 0, (2.15)

with discriminant proportional to

9�2
2 − �0�4. (2.16)

The two roots of the quadratic are

z± =
−3�2 ±

√

9�2
2 − �0�4

�4
. (2.17)
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Thus, if 9�2
2 �= �0�4, the quartic Eq. (2.14) has four simple

roots {±√
z+,±√

z−}, meaning that the Petrov type is I. On
the other hand, if the discriminant vanishes, the quadratic has
a double root z0 = −3�2/�4 which implies that the quartic
Eq. (2.14) has two double roots ±√

z0. This means that the
Petrov type is D in this case. Clearly, all spacetimes in the
WLP family will be either O, D, or I. Having completed the
formalities, we shall now proceed with the construction and
study of a Schwarzschild black hole embedded into an elec-
tromagnetic swirling universe, with enough emphasis given
also on the underlying background geometry.

3 The electromagnetic swirling universe

Since this section is dedicated to a sort of composite back-
ground, we shall start it with a quick discussion about the
separate building blocks of the latter, the electromagnetic
universe and the swirling spacetime. The magnetic universe,
also known as the Bonnor–Melvin solution, was first found
by Bonnor [25], and it was only later rediscovered by Melvin
[26]. It describes a static and cylindrically symmetric mag-
netic field immersed in its own gravitational field. In other
words, it can be seen as describing a magnetic flux tube held
together by its own gravitational pull. The magnetic field
lines are parallel to the axis of symmetry, and the field can
be treated as a uniform one only near the vicinity of the
axis. Since it contributes to the stress tensor, and since stress-
energy acts as a gravitating mass, its intensity must be falling
off far away from the symmetry axis to prevent a collapse
under its own gravity; and this is the case indeed.

Here, we shall present the solution with both, magnetic
and electric, external fields. We will refer to it as the elec-
tromagnetic universe. In cylindrical coordinates, the metric
describing it reads

ds2
EM = ρ2

V 2 dφ2 + V 2(−dt2 + dρ2 + dz2), (3.1)

where V (ρ) := 1 + XXρ2 and X is the complex conju-
gate of X := (E + i B)/2, with E (resp. B) controlling the
intensity of the electric (resp. magnetic) field. This metric is
accompanied by the gauge field

A = −zE dt − Bρ2

2V
dφ, (3.2)

and it belongs to the Kundt class of Petrov type D electrovac
spacetimes. Asymptotically, it approached the Levi-Civita
spacetime5

ds2 = ρ−2dφ2 + ρ4(−dt2 + dρ2 + dz2). (3.3)

5 This is the Levi-Civita metric with σ = 1 = k. See [32] for more
details.

To see this, a rescaling of the noncompact coordinates is
necessary.

Its motion group is locally generated by the four KVs

T1 = ∂t , T2 = ∂z, T3 = ∂φ, T4 = z∂t + t∂z . (3.4)

These KVs do not commute, thus forming a nonabelian Lie
algebra g with nonvanishing brackets

[T1, T4] = T2, [T2, T4] = T1. (3.5)

The center of this Lie algebra is the one-dimensional sub-
space span{T3} which is obviously isomorphic to the real line.
This is a solvable algebra with its derived subalgebra being
two-dimensional abelian. One can actually observe that g is
a trivial extension of e(1, 1), the latter being the Lie algebra
of the pseudo-Euclidean group E(1, 1) of rigid motions in
Minkowski 2-space.

Another interesting feature of this solution is that, much
like what happens in anti-de Sitter space (AdS), timelike
geodesics are forbidden to escape to radial infinity due to
the strong attraction towards the axis of symmetry. Yet, here
the source of this extreme gravitational pull is not a neg-
ative cosmological constant, but rather the electromagnetic
field itself (see [26] for the study of geodesic motion in the
magnetic universe). Finally, let us remark that the electro-
magnetic universe can be obtained from a Minkowski seed
via a magnetic Harrison transformation with parameter i X .

Definitely, less has been said about the swirling space-
time. This is a stationary vacuum solution of Einstein’s field
equations,

ds2
S = ρ2

1 + j2ρ4 (dφ + 4 j z dt)2

+(1 + j2ρ4)(−dt2 + dρ2 + dz2), (3.6)

with the above expression first reported in [28], to the best
of our knowledge, as an analytic continuation of the Bianchi
II cosmological metric of Taub [33]. This metric belongs to
the Kundt family of Petrov type D vacuum solutions,6 and
its associated isometry group is locally generated by the four
KVs

T1 = ∂t , T2 = ∂φ, T3 = z∂t + t∂z − 2 j (t2 + z2)∂φ,

T4 = ∂z − 4 j t∂φ. (3.7)

Besides them, there is an additional irreducible rank-2 Killing
tensor obtained from the Killing–Yano 2-form

− 4jρzdt ∧ dρ + jρ2
(

1 + j2ρ4
)

dt ∧ dz + ρdρ ∧ dϕ.

(3.8)

6 Since type D vacuum solutions in Kundt’s class were classified by
Kinnersley in [34], this metric probably appears therein, though defi-
nitely in a different chart.
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Since the KVs do not commute, their linear span ought to
be a nonabelian Lie algebra. To identify this algebra, it is best
if we choose another set of basis vectors, {T+, T−, T, T3},
with T± = (T1 ± T4)/

√
2 and T = 4 jT2. Concerning the

new basis, the nonvanishing Lie brackets read

[T±, T3] = ±T±, [T+, T−] = T, (3.9)

and it is now easy to see that the derived subalgebra, spanned
by {T±, T }, is the three-dimensional Heisenberg algebra. It
turns out that the full Lie algebra, with center span{T }, is
solvable and nondecomposable. If it bears a special name,
then this name unfortunately eludes us. It features as A4,8 in
the classification of four-dimensional Lie algebras by Patera
and Winternitz [35].

The limit of (3.6) to the Levi-Civita metric is discussed
in [27]. In the same work, a numeric treatment suggests
that geodesic motion is vortex-like.7 The swirling space-
time is free of curvature singularities, a Misner string, and
nonchronal regions. Finally, it is interesting to remark that the
metric function ω grows infinitely large as |z| → ∞. Being
linear in z, it is constant on fixed-z planes and zero on the
equatorial plane z = 0, where it changes sign. Do also note
that this solution can be obtained from a Minkowski seed via
a magnetic Ehlers transformation with parameter j .

3.1 The geometry

Let us then construct a new spacetime which features both,
an external electromagnetic field and swirling rotation.8 We
will create this from a Minkowski seed via a composition of
magnetic Ehlers and Harrison transformations, in particular

E[ j] ◦ H[i X ], (3.10)

where the complex X was defined directly below Eq. (3.1).
Since this is the first solution we present in this work, we
will execute the steps listed in Sect. 2.1 one by one. Our seed
metric is Minkowski in cylindrical coordinates,

ds2
0 = −dt2 + dρ2 + dz2 + ρ2dφ2. (3.11)

This can be cast into the metric (2.7) with nonvanishing seed
functions

f0 = ρ2 = e2γ . (3.12)

Equations (2.8a) and (2.8b) then yield vanishing twist poten-
tials up to the choice of integration constants. The seed poten-
tials are then the simplest possible, E0 = −ρ2 and �0 = 0.

7 Recently, a very detailed analysis of the geodesics in the swirling
background and in the exterior of the swirling black hole, has been
carried out in [36].
8 During the final stages of this work, we have noticed the thesis [37]. In
there, an accelerated Reissner–Nordström black hole was constructed
in a magnetic swirling background.

We act upon them with the transformation (3.10) to obtain
the new potentials

(E,�) = (E0, i XE0)

1 + (i j − |X |2)E0
, (3.13)

from which we may read off

f = ρ2

V 2 + j2ρ4 ,

χ = j fρ2,

Aφ = − f

2
(BV − j Eρ2),

˜At = (Aφ)(E,B)→(−B,E),

(3.14)

where V was defined directly below (3.1), and
(Aφ)(E,B)→(−B,E) denotes the value of Aφ with B exchanged
with E and E exchanged with −B. We use |w| = √

ww for
the modulus of a complex variable w. Plugging the above
into Eq. (2.8a), we obtain a pair of differential equations,
first-order in derivatives of ω, which we can integrate for

ω = −4 j z. (3.15)

With ω available, everything shall be fed to Eq. (2.8b) which
now yields a pair of differential equations, first-order in
derivatives of At , the solution of which reads

At = −z f [EV 2ρ−2 + j (2BV − j Eρ2)]. (3.16)

It follows that the metric describing the electromagnetic
swirling universe (EMS) is

ds2
EMS = ρ2

V 2 + j2ρ4 (dφ + 4 j z dt)2

+(V 2 + j2ρ4)(−dt2 + dρ2 + dz2), (3.17)

accompanied by a gauge field

A = ρ2 2z[EV 2ρ−2 + j (2BV − j Eρ2)]dt + (BV − j Eρ2)dφ

2(V 2 + j2ρ4)
.

(3.18)

It is straightforward to see that when the Harrison parameter
vanishes, i.e., X = 0 or equivalently, E = 0 = B, the gauge
field vanishes and, taking into account that V = 1 in such a
case, we recover the swirling metric (3.6). On the other hand,
when the Ehlers parameter vanishes, it is also easy to verify
that the resulting spacetime is the electromagnetic universe
with metric (3.1) and gauge field (3.2). The metric (3.17)
admits a nonabelian group of motions G4, locally generated
by the KVs in the swirling case, Eq. (3.7). Of course, equal-
ity at the level of the algebras does not in general imply a
group isomorphism (consider covering groups for example).
In addition, we have a different Killing–Yano 2-form,

−4 j2zρ dt ∧ dρ + (|X |2V + j2ρ2)(V 2 + j2ρ4)dt ∧ dz

+ jρdρ ∧ dφ, (3.19)

which reduces to the Killing–Yano 2-form (3.8) when we
switch off the Harrison parameter (after a harmless overall
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division by j). On the other hand, if we make j vanish, we get
a Killing tensor ∝ −∂t ⊗ ∂t + ∂z ⊗ ∂z , which is just a trivial
Killing tensor in the case of the electromagnetic universe.

Let us now have a closer look at the metric (3.17). First of
all, observe that the ρ coordinate is not the so-called reduced
circumference. The latter reads

R :=
√
gφφ

2π
= ρ

√

V 2 + j2ρ4
, (3.20)

which goes to zero both as ρ → 0 and ρ → ∞. In fact, its
maximum is at a ρmax = ( j2 + |X |4)−1/4 with

0 < R ≤ Rmax :=
(

2|X |2 + 2
√

j2 + X4

)−1/2

. (3.21)

Hence, this would make a very restricted coordinate, and
this is why we will stick to the use of the initial ρ coordinate.
There are only two metric functions that change sign, gtt and
gtφ . For the former, the surface where the change of sign
happens, that is the surface on which gtt = 0, is given by the
equation S = 0, where

S(ρ, z) := (V 2 + j2ρ4)2 − (4 j zρ)2, (3.22)

This actually defines two surfaces S± = 0 (the + for positive
z and the − for negative), with

S± := V 2 + j2ρ4 ∓ 4 j zρ, (3.23)

on which ∂t is null, and whose unit normals

nμ
± = gμν∂νS±

√

gλσ (∂λS±)∂σS±
, (3.24)

are spacelike, i.e., nμ
±nν±gμν

S±= 1. This means that the sur-
faces are timelike.

Observe that S(ρ,−z) = S(ρ, z), or, equivalently, that
S±(ρ,−z) = S∓(ρ, z), and that S±(ρ, 0) �= 0. This implies
that the equator, which is also the timelike surface where
gtφ = 0, acts as a plane of reflection, with S− = 0 in the
z < 0 half-space being the mirror image of S+ = 0 in the
positive z half-space. Since

gtt = − S+S−
V 2 + j2ρ4 , (3.25)

it is clear that for z > 0, S− > 0, and that if

z >
V 2 + j2ρ4

4 jρ
, (3.26)

then gtt > 0, viz. S+ < 0 gives a region in which ∂t is
spacelike. Similarly, for z < 0, S+ > 0, and if

z < −V 2 + j2ρ4

4 jρ
, (3.27)

this provides another region, this time S− < 0, in which
∂t is again spacelike. These two regions pretty much ful-
fill the criteria to be called ergoregions, with S± = 0 giv-

ing the ergosurfaces. However, there might be a caveat with
this interpretation, which requires further investigation and
a deeper understanding.

In the familiar Kerr geometry, ∂t can be selected as the
unique timelike and normalized KV at infinity. Asymptotic
flatness of a metric guarantees that the ergoregion (if it exists)
is confined. Here, the metric exhibits a peculiar asymptotic
behavior (it is basically asymptotically swirling as we will
soon see). In fact, it is not hard to see that regions, where ∂t
is spacelike, extend to infinity. Indeed, take z to grow faster
than ρ3, and notice that the second term in (3.23) becomes
dominant, yielding

gtt ∼ (4 jρz)2

V 2 + j2ρ4 > 0. (3.28)

On the other hand, if z grows slower than ρ3, it is the first
term in S± that prevails, yielding

gtt ∼ −( j2 + |X |4)ρ4 < 0. (3.29)

Therefore, there are regions at infinity where ∂t is not time-
like. Actually, there is simply no such KV (or a linear com-
bination of them) in our case. To see this, consider the
most general linear combination ξ = ∑4

i=1 CiTi , where
the Ti ’s are given in Eq. (3.7), with the Ci ’s being constant
coefficients. Being a linear combination of KVs with con-
stant coefficients, this is obviously another KV. Fix a t , do
(ρ, z) → (ρε−1, zε−4), and Taylor expand about ε = 0.
This ensures that we are probing a case where z grows faster
than ρ3, as fast as ρ4 in particular. Doing so, one confronts
the following situation: it is impossible to choose the con-
stants {Ci } in a way such that the leading-order term in the
expansion is negative! In other words, there is a region at
asymptotic infinity where no KV can be timelike. Therefore,
the concept of t as a time of distant observers or a “time at
infinity” seems to be somehow problematic, to say the least.

Well, even in Kerr spacetime, it is true that the interpre-
tation of t as a “time”, universal in the entirety of “space”
(as a time of distant observers), is meaningful only outside
the ergosphere [38]. Here, it just happens that the ergoregion
unfortunately extends to infinity. Of course, it is always pos-
sible to find a KV which is timelike at ρ infinity provided that
z grows slower than ρ3. Truly, ∂t is such a KV, but so are other
combinations ξ , e.g. ξ = C1T1+C2T2+C4T4 withC2

1 > C2
4 .

Clearly, a normalization condition at infinity cannot be used
here to single out a unique combination, for there is no ξ sat-
isfying this at all; indeed, ξ · ξ ∼ −(C2

1 −C2
4 )( j2 +|X |4)ρ4.

One may however demand that ξ · ξ ∼ −1 as ρ → 0 (after
all this is a physical region). This forces C2

1 = C2
4 + 1, but

still leaves C2 completely arbitrary. Moreover, the condition
that ξ · ξ is time independent further fixes C4 = 0, so we are
left with ξ = ∂t + C2∂φ . There is no other condition, based
on limits, which we can use to somehow fixC2. Note that one
confronts the same situation also in the swirling spacetime.
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It is certainly tempting to consider the discrete symmetries
of the metric as a means to fixC2. Recall that in a Kerr geom-
etry, reflection of time t → −t is not a symmetry unless it is
accompanied by a change in the direction of rotation, namely
φ → −φ, and vice versa. This is true also for the EMS met-
ric (3.17), except now we have additional ways to restore
time-reversal symmetry. As a matter of fact, time reversal
here, if accompanied by a transformation z → −z (which
maps one semi-axis to the other), is another (simultaneous)
discrete symmetry transformation; it leaves the metric invari-
ant. Do also notice that a transformation φ → −φ, again
accompanied by z → −z, is yet another discrete symmetry.
These additional discrete symmetries are a key characteris-
tic of the EMS and swirling metrics. They do not exist for
example in the Kerr case. It then appears natural to ponder
whether demanding that the norm of the KV candidate is
invariant under all the aforementioned discrete symmetries
of the metric, namely (t, φ) → −(t, φ), (t, z) → −(t, z),
and (z, φ) → −(z, φ), is a good condition (on top of the pre-
vious ones), one that does the job. This indeed yieldsC2 = 0,
resulting in ξ = ∂t . However, this does not prove uniqueness,
although it naively appears to do so.

To see this, consider the harmless coordinate transforma-
tion (t ′, z′, φ′) = (t, z − α, φ + 4 jαt) where α is some
real constant. The transformation is (metric-)form preserv-
ing, and therefore, the metric has the same discrete symme-
tries. Since the inner product ξ · ξ is a coordinate scalar, we
may directly write it in terms of the prime coordinates. Now,
∂t · ∂t was invariant under (t, z) → −(t, z), but it will not
be invariant under (t ′, z′) → −(t ′, z′). However, the norm of
another KV, namely ∂t ′ = ∂t − 4 jα∂φ , will. In fact, ∂t ′ also
satisfies all the preceding criteria by default, and we see that
discrete symmetries cannot help us single out a candidate
KV after all. Our naively “unique” ∂t is as good as any other
member of the family ∂t − 4 jα∂φ . Therefore, in the absence
of a robust selection mechanism, we argue that one should
indeed use the whole family ξ = ∂t + C∂φ as the timelike
KV, where C is an arbitrary real constant. It then follows that
ergosurfaces would be understood as (the timelike) surfaces
where ξ is null, ergoregions as regions where ξ is spacelike,
and the frame-dragging angular velocity would be given by

� := −ξ · ∂φ

gφφ

. (3.30)

The latter deserves a few more comments. In particu-
lar, consider for a moment the general WLP metric in the
form (2.7), for which we have the convenient equation

� = −C + ω. (3.31)

It becomes evident, that using � to measure the value of
the angular speed at each point is not really a meaningful
practice, for C is completely arbitrary. Instead, the mean-
ingful quantity to look at is ��(ρ, z) := �(ρ, z) − �0 =

ω(ρ, z)−ω0. Remarkably, it then seems that for such space-
times, in which the timelike KV is the one-parameter family
ξ , rotation can only be understood in a relative manner. For
example, in the EMS case we currently study, � = −C−4 j z.
It is clear that, taking �0 to be the value of � on an arbi-
trary z slice, this slice will be the surface where the differ-
ence �� changes sign.9 This ultimately implies the presence
of counter-rotating regions, though the exact localization of
these regions is obviously observer-dependent. After this elu-
cidating aside, let us now, once and for all, choose coordi-
nates adapted to a C = 0 observer (our timelike KV being
ξ = ∂t ), and let us proceed with discussing further features
of the solution.

Going to a rectangular coordinate system, one can easily
show that the metric has no coordinate singularities. There
is no event horizon, and the absence of a conical singularity
can be verified by the fact that

lim
ε→0

∫ 2π

0
√
gφφ |ρ=ε dφ

∫ ε

0
√
gρρ dρ

= 2π. (3.32)

The absence of a Misner string is also evident since the norm
of the azimuthal KV vanishes as ∼ ρ2 near the symme-
try axis. The electromagnetic swirling universe is also free
of Closed Timelike Curves (CTCs), for ∂φ is everywhere
spacelike. Probing the spacetime for curvature singularities,
we shall have a look at Rab

cd, i.e., (the components of) the
Riemann tensor in the orthonormal basis {ea}, defined in
Appendix A. If this tensor is regular near a coordinate singu-
larity, then the singularity is just due to a poor choice of chart.
Indeed, all curvature invariants up to arbitrary polynomial
order can be constructed using this particular tensor. Thus,
if the tensor itself is regular, the regularity of the invariants
follows. On the other hand, if Rab

cd is singular near a locus
of interest, this does not automatically imply the existence of
a curvature singularity, for the poles appearing in the tensor
components could, in theory, not appear when taking traces to
form curvature invariants. We find that Rab

cd depends solely
on ρ, and that it is regular everywhere since the denominator
of all components is just (V 2 + j2ρ4)3.10 We also verify that
it falls off quite fast as ρ → ∞, which reassures us that tidal
forces are diminishing as one moves far away from the axis.
To give an example, we mention that the Kretschmann scalar
goes as 64(5|X |4 − 3 j2) +O(ρ) in the neighborhood of the
symmetry axis, whereas it falls off as ∼ ρ−12 when ρ → ∞.

The new metric is asymptotic to

ds2
EMS ∼

ρ→∞
1

(|X |4 + j2)ρ2 (dφ + 4 j z dt)2

+(|X |4 + j2)ρ4(−dt2 + dρ2 + dz2), (3.33)

9 This will also act as the plane of reflection for the ergoregions.
10 Recall that this goes to 1 when ρ → 0.
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provided that z grows slower than ρ3. A coordinate rescaling

{t, ρ, z} = | j |
√

j2 + |X |4 {t ′, ρ′, z′}, φ = j2 + |X |4
j2 φ′,

(3.34)

brings the above to a form asymptotic to a swirling metric
with parameter

j ′ = ( j2 + |X |4)2

j3 . (3.35)

However, the gauge field strength 2-form does not vanish as
ρ′ → ∞. In fact,

F ∼
ρ′→∞

j2[( j2 − |X |4)E − 2 j B|X |2]
( j2 + |X |4)2 dz′ ∧ dt ′ (3.36)

Therefore, the complete solution is not asymptotic to the
swirling spacetime because the latter is a vacuum solution.
Note that ∗(F ∧ ∗F) → 0 as ρ′ → ∞.

Concerning the Petrov type of the EMS spacetime, it
is straightforward to conclude that it is D, for we find
that 9�2

2 = �0�4 (see the reasoning and other details in
Sect. 2.2). On the contrary, it is not trivial at all to prove
that (3.17) actually belongs to Kundt’s class. Solutions in
the Kundt family admit a shearfree, nonexpanding, and non-
twisting null geodesic congruence, with the general metric
being [1,32,39,40]

ds2 = 2P−2dζ dζ − 2du(dv + W dζ + W dζ + H du),

(3.37)

where P, H are real functions, and W is complex. Now, con-
sider the specific functions

P2 = z̃2 + γ 2

z̃ + k
, W = −

√
2v

(̃z + iγ )P2 ,

H = z̃2 + γ 2

2
− 2γ 2v2

(̃z2 + γ 2)2P2 , (3.38)

where

γ = j

22/3( j2 + |X |4)2/3 , k = −γ XX

j
, (3.39)

and where z̃ is supposed to be given in terms of Re ζ via√
2P2dz̃ = dζ + dζ . Let us then perform the coordinate

redefinitions

√
2ζ = z̃(̃z − 2k)

2
+ (γ 2 + k2) ln

z̃2 + γ 2

P2 + i(ψ + γ q2),

v = q (̃z2 + γ 2), u = τ − q,

(3.40)

in order to express (3.37) in the coordinate system {τ, z̃, q, ψ}.
We get

ds2 = (̃z2 + γ 2)(−dτ 2 + dq2) + P−2(dψ + 2γ q dτ)2

+P2 dz̃2, (3.41)

which we readily recognize as a member of the general family
of nonexpanding type D solutions (see (16.27) in [32]). At
this stage, yet another coordinate transformation with

τ = t (γ 2 + k2)−1/2,

z̃ = −k + ρ2(γ 2 + k2)−1/4,

q = z(γ 2 + k2)−1/2,

ψ = 2φ(γ 2 + k2),

(3.42)

finally brings us to the metric (3.17), and that is all. There-
fore, we conclude that the EMS universe is also Kundt, as
a combination of two Kundt spacetimes, the swirling one
(k = 0 via X = 0) and the EM universe (γ = 0 via j = 0).

At the same time, there is a gauge field that we completely
neglected so far. To find its form in coordinates {u, v, ζ, ζ },
we start the other way around. Let

j = γ

4(γ 2 + k2)2 , X = ˜E + i˜B

2(γ 2 + k2)
, (3.43)

where k = −˜E2 − ˜B2, and perform the coordinate transfor-
mations

t = τ

√

γ 2 + k2,

ρ = 2
√

γ 2 + k2
√̃
z + k,

z = q
√

γ 2 + k2,

φ = ψ(γ 2 + k2)−1/2,

(3.44)

to arrive at

A = q
2γ ˜B (̃z + k)(k̃z − γ 2) − ˜E[k 2̃z2 − (k2 + 4k̃z + z̃2)γ 2 + γ 4]

(γ 2 + k2)(̃z2 + γ 2)
dτ

+(̃z + k)
γ ˜E (̃z + k) + ˜B(k̃z − γ 2)

(γ 2 + k2)(̃z2 + γ 2)
dψ, (3.45)

which is the form of the gauge field (3.18) in the coordinate
system {τ, z̃, q, ψ} with the spacetime metric being (3.41).
At this stage, we shall consider

τ = u + v/(̃z2 + γ 2),

q = v/(̃z2 + γ 2),

ψ = √
2 Im ζ − γ v2/(̃z2 + γ 2)2,

dz̃ = (̃z + k)(dζ + dζ )(̃z2 + γ 2)−1/
√

2,

(3.46)

which bring us to

A = v
2γ ˜B (̃z + k)(k̃z − γ 2) − ˜E[k 2̃z2 − (k2 + 4k̃z + z̃2)γ 2 + γ 4]

(γ 2 + k2)(̃z2 + γ 2)
du

− v˜E

(̃z2 + γ 2)2 dv + Aζ dζ + Aζ dζ , (3.47)

where

Aζ = −i˜B
(̃z + k)(k̃z − γ 2)√

2(γ 2 + k2)(̃z2 + γ 2)

+˜E (̃z + k)
2̃zv2(γ 2 + k2) − iγ (̃z + k)(̃z2 + γ 2)3

√
2(γ 2 + k2)(̃z2 + γ 2)4

,

(3.48)

and where z̃ is implicitly given in terms of Re ζ via the sec-
ond equation in the right column of (3.46). From here, one
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can check that using the backwards coordinate transforma-
tions (3.40) and (3.42), together with (3.39) and

˜E = E(γ 2 + k2), ˜B = B(γ 2 + k2), (3.49)

one indeed reaches Eq. (3.18).
Finally, let us have a look at the electric and magnetic fields

in the EMS universe. Following the procedure presented in
Appendix B, we find that

E = −2 j BVρ2 + E(V 2 − j2ρ4)

(V 2 + j2ρ4)2 ẑ,

B = (E)(E,B)→(−B,E). (3.50)

Both depend only on ρ with field lines parallel to the axis of
symmetry, in the vicinity of which they acquire a constant
profile, −Eẑ and Bẑ, respectively. Moreover, they fall off as
∼ ρ−4 when ρ grows large, with the extrema of their mag-
nitude given by the positive real roots of a hexic polynomial
in ρ.

3.2 Double Wick rotation and the planar
Reissner–Nordström–NUT spacetime

It is a well-established result that the Bonnor-Melvin solution
can be mapped to a planar Reissner–Nordström (RN) space-
time [41]. It is also known that the swirling solution can be
mapped to a planar Taub–NUT spacetime [27]. These map-
pings are in general achieved by employing a double Wick
rotation, coordinate transformations, and parameter redefi-
nitions. Therefore, one may reasonably expect to be able, in
a similar fashion, to map the electromagnetic swirling uni-
verse, which utterly is a combination of the above, to a planar
RN–NUT spacetime. Indeed, we prove that this is the case.

First, let us show how to “planarize” the standard RN–
NUT metric via a limiting process. Here, the word “standard”
refers to the metric

ds2
RNN = − f (dτ − 2lx dϕ)2 + f −1dr2

+(r2 + l2)[dx2(1 − x2)−1 + (1 − x2)dϕ2], (3.51)

and the gauge field

ARNN = gl − er

r2 + l2
dτ + x

2elr + g(r2 − l2)

r2 + l2
dϕ, (3.52)

where

f (r) = r2 − 2mr − l2 + q2

r2 + l2
, q2 = e2 + g2, (3.53)

with e and g being the electric and magnetic charge param-
eters, respectively, l denoting the NUT parameter, and m
standing for the mass parameter.

We can “planarize” this solution, i.e., “flatten” the S2 into
R

2, by performing the rescalings

y = λỹ, r = r̃/λ, m = m̃/λ3, e = ẽ/λ2,

g = g̃/λ2, l =˜l/λ, (3.54)

and sending λ → 0 with m, e, g, l → ∞ while m̃, ẽ, g̃, and
˜l are kept fixed. Here, y = {τ, x, ϕ}. This procedure results
in the metric

ds2
pRNN = − f (dτ − 2lx dϕ)2 + f −1dr2

+(r2 + l2)(dx2 + dϕ2), (3.55)

with

f = −2mr + q2

r2 + l2
, (3.56)

and in a gauge field equal to (3.52). We have dropped the
use of tilde accents for convenience. Notice that the gauge
field is invariant under this process. Of course, the result is
not necessarily guaranteed to be a solution; this is something
that has to be checked. Nevertheless, one can verify that the
full solution, comprised of the metric (3.55) and the gauge
field (3.52), does indeed satisfy the Einstein–Maxwell field
equations. Note that if m > 0 and r > 0, there is a Killing
horizon at r = q2/(2m) (same as in the case of the planar
RN solution), separating the inner region 0 < r < q2/(2m)

from the outer one, where t is timelike and r is spacelike
in the former and the other way around in the latter. On the
other hand, if m < 0 and r > 0, and in contrast to the
situation in the planar RN spacetime, the planar RN-NUT
does not suffer from a naked singularity exactly due to the
presence of the NUT parameter; the curvature scalars are
everywhere regular. Of course, the planar RN–NUT solution
is also plagued with a Misner string, for the symmetry axis
cannot be well-behaved both at x = 1 and x = −1.

Now, let us perform a double Wick rotation (t, φ) =
i(˜φ,˜t ) of (3.17) and (3.18), also doing E = i˜E and B = i˜B
such that ˜X := ˜E + i˜B = i X . After the coordinate transfor-
mations

˜t = 4|m|3(4m2l2 + q4)−1τ,

ρ =
√

4m2l2 + q4
√

−2mr + q2/(2m2),

z = x
√

4m2l2 + q4/(2|m|),
˜φ = ϕ

√

4m2l2 + q4/(2|m|),
(3.57)

and the parameter redefinitions

j = −8l|m|5(4m2l2 + q4)−2,

|˜X |2 = 4m4q2(4m2l2 + q4)−2, (3.58)

we find out that the resulting metric is exactly the planar RNN
metric (3.55). However, to bring the resulting gauge field into
the form (3.52), an additional gauge transformation is neces-
sary, the purpose of which is to shift the temporal component
by the specific constant 2m(2glm − eq2)(4m2 l2 + q4)−1.
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Only then, the further parameter redefinitions

˜E = 4m2 4elmq2 − g(4m2l2 − q4)

(4m2l2 + q4)2 ,

˜B = (|m|/m)(˜E)(e,g)→(g,−e), (3.59)

which satisfies the right equation in (3.58), leading to the
desired result, namely the mapping of the gauge field in the
EMS universe to (3.52). Consequently, we conclude that the
full solution can be consistently mapped to a planar RN–NUT
spacetime via the above sequence of operations. The various
limits are then clear. Killing l is tantamount to switching off j ,
and vice versa; this provides the (bijective) mapping of the
electromagnetic universe to the planar RN spacetime [41].
Killing e, g is tantamount to switching off X , and the other
way around; this gives the mapping of the swirling solution
to the planar Taub–NUT spacetime [27].

3.3 Adding a cosmological constant

The previous result motivates one to use the extension of the
RN–NUT spacetime for a nonvanishing cosmological con-
stant �, to derive a generalization of the EMS solution which
includes a � �= 0. In general, when a cosmological constant
is included, the system of field equations is no longer inte-
grable. Equations that were homogeneous in the absence of
�, become inhomogeneous in its presence. In particular, the
WLP metric itself is not suitable for stationary axisymmetric
fields in the presence of a cosmological constant,11 ergo the
machinery used so far is not applicable. This is why the task
of extending stationary and axisymmetric solutions of the
Ernst equations to account for the presence of �, is a highly
nontrivial one.

Having said that, let us now attack the problem of general-
izing the EMS solution. It can be straightforwardly checked
that the form of the planar RN–NUT spacetime in the pres-
ence of �, is given by (3.55) and (3.52), with

f = −2mr + q2 + �l4 − �r2(r2 + 6l2)/3

r2 + l2
. (3.60)

Considering the inverse forms of the coordinate transforma-
tions (3.57), together with the parameter redefinitions

l = − j |m|1/3

21/3( j2 + |˜X |4)2/3
,

q2 = (2m2)2/3|˜X |2
( j2 + |˜X |4)2/3

, (3.61)

and doing a double Wick rotation (˜t, ˜φ) = i(φ, t) of the
resulting spacetime, also setting ˜X = i X , we obtain the gen-

11 See [42] for a generalized metric which, given a certain harmonic
condition, can be reduced to the WLP metric.

eralized metric

ds2
EMS� = R

V 2 + j2ρ4 (dφ + 4 j z dt)2

+(V 2 + j2ρ4)

(

−dt2 + ρ2dρ2

R + dz2
)

,

(3.62)

where

R(ρ) = �
12 j4 − (3 j2 + |X |4)2

12( j2 + |X |4)3 +
(

1 − �(3 j2 + |X |4)|X |2
3( j2 + |X |4)2

)

ρ2

−�ρ4

2

(

1 + 2|X |2
3

ρ2 + j2 + |X |4
6

ρ4
)

. (3.63)

Up to gauge transformations, the resulting gauge field
is (3.18) as expected. Of course, there is no guarantee that the
metric (3.62) and the gauge field (3.18) solve the Einstein–
Maxwell-� field equations, but we verify that this is the case
indeed. Therefore, we have successfully constructed the cos-
mological extension of the EMS spacetime, which also is of
Petrov type D, as well as a member of the Kundt class.12

Observe that for ∂φ to remain spacelike at infinity, we must
consider � < 0. We also see that there is a spinning string
at ρ = 0, for

lim
ρ→0

gφφ = �
3 j4 − |X |4(|X |4 + 6 j2)

12( j2 + |X |4)3 , (3.64)

Let us then do (t, φ) = (˜t + a˜φ, ˜φ), with a being a constant,
together with a reidentification of the new coordinates such
that ˜φ is 2π periodic, to see whether we can obtain a new
spacetime free of it. It is not difficult to check that g

˜φ˜φ has
a z dependence, and that the axis can be made regular only
at a single z (by fixing a), meaning that the spinning string
will persist. Therefore, we deduce that it is not artificial (it
cannot be removed everywhere along the z axis); it rather
corresponds to an actual Misner string! Fortunately, we can
remove it by tuning the Ehlers and Harrison parameters as

j2 = 3 + 2
√

3

3
|X |4, (3.65)

before any regluing. Doing so, we then observe that the
induced metric with t = cte = z, after the optional rescaling
ρ = ρ̃

√

4|X |2 − �/(2|X |), assumes the form

ds2
EMS�|t,z ∼̃

ρ→0
dρ̃2 + (4|X |2 − �)2

16|X |4 ρ̃2dφ2, (3.66)

12 Applying the parameter redefinitions (3.43) and the coordinate trans-
formations (3.44), one should be readily convinced that the transformed
metric belongs to the general family of nonexpanding type D solutions.
From there, reaching the Kundt form is more or less straightforward
(see [32]).
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close to the symmetry axis.13 The above expression suggests
the presence of an infinite strut with negative mass per unit
length

μ = δ/4 = �/(4|X |2), (3.67)

where 2πδ is the excess angle of the line source. Thankfully,
this can be made to vanish via the rescaling

φ = 4|X |2
4|X |2 − �

˜φ, (3.68)

if we reidentify ˜φ as our new azimuthal coordinate with
period 2π . Consequently, it is always possible to obtain a
regular spacetime with a negative cosmological constant, free
of a Misner string, conical singularities, and CTCs, with the
caveat of having the particular relation (3.65) between j and
X .

After imposing the tuning (3.65) by replacing j , and with
˜φ being our new azimuthal coordinate, the R function in the
metric (3.62) acquires the form

R = ρ2 −9� + 2|X |2[18 − �ρ2(9 + 6|X |2ρ2 + (3 + √
3)|X |4ρ4]

36|X |2 .

(3.69)

This is a positive function, with the reduced circumference
being (dropping the tilde accent)

R :=
∫ 2π

0
√
gφφ dφ

2π
= 4|X |2√R

(4|X |2 − �)

√

V 2 + 3+2
√

3
3 |X |4ρ4

.

(3.70)

In contrast to R in the case � = 0, here the reduced circum-
ference, being a monotonically increasing function of ρ, has
the same range as the ρ coordinate. Moreover, the presence of
a negative cosmological constant has a significant impact on
the full extent of the ergoregions as we see in the instructive
Fig. 1.

Indeed, if we let both ρ and |z| approach infinity, we find
that

gtt ∼
ρ,|z|→∞ −4 j2�z2ρ4

3
> 0, (3.71)

where j, X are understood as being related via Eq. (3.65). In
fact, as ρ → ∞, it suffices that |z| � 1.05/

√−� for ∂t to
be spacelike. Close to the axis, that is as ρ → 0, we have

gtt
|z|∈O(ρ−2)∼
ρ,|z|−1→0

∝ (4|X |2 − �)ρ2z2 > 0, (3.72)

where we let z approach infinity at least as fast as ρ−2. As in
the EMS case, the ergoregions do not touch the z axis.

13 If we do not rescale ρ, then Eq. (3.66) will be the same up to mul-
tiplication by a constant factor. This will not change the value of the
deficit, since it does not alter the ratio between the proper length of a
circumference and the radius.

Finally, for completeness, let us mention that the met-
ric (3.62) with� > 0, after taking care of the Misner string by
imposing Eq. (3.65), features a cosmological horizon located
at the largest positive real root of a polynomial hexic in
ρ. This can be utterly written as a polynomial cubic in ρ2

which, using Descartes’ rule of signs, appears to have a sin-
gle positive real root if and only if X2 > �/4. This is then a
double root of the hexic equation. Alas, the whole situation
(with positive �) gets more complicated, if we notice that as
we approach this root, call it ρ+, the reduced circumference
vanishes, meaning that ρ = ρ+ behaves as a sort of “axis”
besides ρ = 0. This observation is rather expected, simply
because the root of gρρ is necessarily a root of gφφ , as can
be seen from the line element (3.62).

Let us also briefly go through the various limits. When
X = 0, the gauge field vanishes, and the cosmological EMS
metric (3.62) reduces to the cosmological extension of the
swirling solution presented in [27]. The latter is free of curva-
ture singularities and free of any horizons if � < 0. Notwith-
standing these good features, a fact completely neglected in
[27], is that the cosmological swirling solution actually fea-
tures a cosmic spinning string, evident from

lim
ρ→0

gφφ = �

4 j2 , (3.73)

which proves to be irremovable through coordinate transfor-
mations and regluing. As such, it shall again be understood
as a Misner string. Since we no longer have the freedom to
tune parameters in order to remove it (as we did previously),
one comes to the unfortunate conclusion that the swirling-�
solution of [27] is in general plagued with a Misner string
and the CTCs accompanying it.

When j = 0, the metric (3.62) acquires the static form

ds2 = ρ2 − �|X |−4V 4/12

V 2 dφ2

+V 2
(

−dt2 + ρ2dρ2

ρ2 − �|X |−4V 4/12
+ dz2

)

,

(3.74)

and the gauge field becomes (3.2). We remark that this is not
the metric presented in the perhaps pertinent cases [43,44].
The above spacetime seems to have a spinning string, for

lim
ρ→0

gφφ = −�|X |−4/12. (3.75)

If � > 0, it is impossible to remove this string by any means.
If on the other hand � < 0, we can do

(t, φ) =
(

˜t +
√−�

2
√

3XX
˜φ, ˜φ

)

(3.76)

and reglue the spacetime to get rid of it. The new spacetime
is then also free of conical singularities. An expansion of the
induced metric with ˜t = cte = z near the symmetry axis
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Fig. 1 Cross-sections of the ergoregions in the EMS (stippled dark
gray areas) and EMS-� (stippled light gray areas) spacetimes. Plots are
for |X | = 0.35, and are given by Eq. (3.65). The cosmological con-
stant in the EMS solution has been set to −3. In a we display a y = 0
cross-section with rectangular coordinates (x, y) = ρ(sin φ, cos φ). In
c we display a |z| = 3 cross-section. Similarly, in b, a uy = 0 slice

is displayed using coordinates (ux, uy) = (2/π)(atan ρ)(sin φ, cos φ)

and v = (2/π) atan z, where 0 ≤ u2
x + u2

y < 1. Finally, in d we show
a |v| = (2/π) atan 3 plane section. Coordinates {ux, uy, v} are particu-
larly convenient, since radial infinity is approached via u2

x+u2
y → 1 and

|z| infinity via |v| → 1, with the symmetry axis located at ux = 0 = uy

attests to that. Moreover, ∂
˜φ is clearly spacelike everywhere

if we adhere to the use of a negative cosmological constant,
while we also remark that there are no curvature singularities,
nor are any ergoregions present.

3.4 Embedding a Schwarzschild black hole

Having analyzed the background, it is time to discuss the
EMS black hole which is just the Schwarzschild black hole
embedded in the previously discussed spacetime. For this
reason, we will refer to it also as Schwarzschild–EMS. This

embedding shall be understood as a composition of magnetic
Ehlers and Harrison transformations acting on the potentials
associated with a Schwarzschild spacetime. We will work
with the spherical-like coordinates {t, r, x = cos θ, φ},14

since these prove to be the most convenient for integration.
It is quite straightforward to carry out the first steps which

result in identifying the Schwarzschild metric

ds2
S = −(1 − 2M/r)dt2 + (1 − 2M/r)−1dr2

14 Here, the coordinate x ought not to be confused with the usual Carte-
sian coordinate x used in other parts of this work.
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+r2(1 − x2)−1dx2 + r2(1 − x2)dφ2, (3.77)

with the magnetic WLP metric (2.7), the nonvanishing metric
functions being

f0 = r2(1 − x2), e2γ = r4(1 − x2)

(r − M)2 − M2x2 , (3.78)

with Weyl’s coordinates ρ, z given in terms of r, x via

ρ =
√

r(r − 2M)(1 − x2), z = (r − M)x . (3.79)

Since this is a static vacuum solution, it is evident that �0 = 0
and E0 = − f0. Observe that the mass does not appear in the
potentials, but rather in the function γ and the coordinate
transformations (3.79).

Having retrieved the seed data, we now act with the trans-
formation (3.13) on the seed potentials to obtain—after inte-
grating the twist equations—a new spacetime, comprised of
the metric

ds2
SEMS = f (dφ − ω dt)2 + (1 − x2) f −1r2ds2

S |dφ=0,

(3.80)

with functions

f = r2(1−x2)

V 2+ j2r4(1−x2)2 , ω = −4 j (r − 2M)x, (3.81)

together with the gauge field

A = −(r − 2M)x
E[V 2 − j2r4(1 − x2)2] + 2 j Br2(1 − x2)V

V 2 + j2r4(1 − x2)2 dt

+r2(1 − x2)

2

j Er2(1 − x2) − BV

V 2 + j2r4(1 − x2)2 dφ, (3.82)

where the function V is now defined as

V (r, x) := 1 + |X |2r2(1 − x2). (3.83)

This spacetime describes the exterior of a black hole with
a Killing horizon, located at r+ = 2M , dressing a singu-
larity at the radial origin. Indeed, grr (r+, x) = 0, and the
Kretschmann scalar blows up as ∼ M2r−6 only when r → 0.
The surface area of the horizon is that of a 2-sphere of radius
r+, namely 4πr2+. However, its circumference at the equa-
tor x = 0 is not 2πr+ in the presence of the transformation
parameters, i.e.,
∫ 2π

0

√

gφφ(r = r+, x = 0) dφ

= 2πr+
√

(1 + |X |2r2+)2 + j2r4+
. (3.84)

This suggests that the horizon surface, its embedding in par-
ticular, can be visualized as a 2-sphere of area 4πr2+, which
is deformed when we switch on j and/or X . In particular, the
deformation caused by these parameters can be visualized
as squeezing the 2-sphere on the equatorial plane, progres-
sively obtaining an egg-shaped surface which is deformed

Fig. 2 Heatmap of ω̃ := (2/π) atan |ω(ux, v)| on the uxv-plane for
j = 0.5 and M = 1. Lightest hue corresponds to ω̃ = 1, whereas
darkest hue (pure black) to ω̃ = 0. The darker the hue, the smaller ω̃

is. The horizon should be understood as the [−1/2, 1/2] part of the
v axis. Note that ω̃ vanishes only on the equatorial plane and in the
horizon limit. We also display the following isolines: ω̃ = 10−3 (solid),
ω̃ = 10−2 (dashed), and ω̃ = 0.1 (dotted)

into a peanut-like one as we squeeze stronger. Moreover,
the solution is stationary; the black hole gets dragged due to
the swirling property of the background. It also got “elec-
tromagnetized”, in the sense that it is no longer a vacuum
solution, but rather an electrovac one, a fact ascribed to the
presence of the external electric and magnetic fields in the
background geometry. Note that (3.80) enjoys the good fea-
tures of the EMS background, i.e., it is free of topological
singularities and nonchronal regions,15 while it also shares
the same asymptotic behavior with the latter.

Concerning ω, we display various isolines over a heatmap
in Fig. 2 (see caption for details). We do so in coordinates
{ux, uy, v}, introduced previously.

In fact, we first switch to coordinates (3.79) via the inverse
transformations

r = M +
√

ρ2 + z2 + M2 + √

(ρ2 + z2 + M2)2 − 4M2z2

2
,

x =
√

2z
√

ρ2 + z2 + M2 + √

(ρ2 + z2 + M2)2 − 4M2z2
.

(3.85)

In this chart, the horizon surface is understood as a closed line
segment of length 2M on the z axis (with center at z = 0).
We can formally approach it for |z| ≤ M by taking ρ → 0.
Then, we once again employ the convenient coordinates

ux = (2/π)(atan ρ) sin φ, uy = (2/π)(atan ρ) cos φ,

v = (2/π) atan z (3.86)

15 The reader may convince herself/himself by quickly performing the
pertinent checks we previously did in the case of the background.
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in which |z| infinity sits at |v| = 1 and ρ infinity at u2
x +u2

y =
1. The horizon is again understood as a line segment, now of
length (4/π) atan M , on the v axis (with center at v = 0).

In Fig. 2 we (indirectly) see that |ω| grows infinitely large
as |z| → ∞. Since it describes the frame-dragging angular
velocity, the fact that it is linear in z, implies that the two
z half-spaces (positive and negative) counterrotate. We also
observe that it gets smaller and smaller as we approach the
equator, where it vanishes. It also decreases as we approach
the horizon where it also vanishes in the respective limit.
Note that, for j > 0, ω < 0 in the half-space defined by
z > 0 (or v > 0), positive otherwise; the exact opposite holds
true when j < 0. Regarding the ergoregions, these prove to
be more or less insensitive to the introduction of a mass.
Actually, their behavior at asymptotic infinity is exactly the
same as that in the case of the EMS solution we previously
discussed, and there is nothing, really worth reporting, going
on close to the horizon.

Attacking the Petrov classification next, and following the
reasoning presented in Sect. (2.2), we can deduce that the
general Petrov type is I, for we have that 9�2

2 �= �0�4. In
particular,

9�2
2 − �0�4 = 18M(r − 2M)(1 − x2)( j − i |X |2)

×{ jr2(1 − x2) + i[1 − |X |2r2(1 − x2)]}2[ jr2(1 − x2) + iV ]3

r4[V 2 + j2r4(1 − x2)2]5
.

(3.87)

This becomes zero when M = 0, or j = 0 = X , or at the
poles x = 1 and x = −1, or at the horizon r = 2M . In
the limit of vanishing mass, we recover the EMS universe
(discussed in the previous sections), albeit in the spherical-
like coordinate system {t, r, x, φ}. When j = 0 = X , we
obtain the Schwarzschild seed which is type D everywhere.
At the poles, we observe that �4 �= 0, meaning that the
Petrov type is D on the axis (at least in the exterior). On
the horizon surface, the spacetime is algebraically special.
Since r = 2M turns out to be a pole of �4, it would be
erroneous to make a definite claim that the Petrov type is D;
we can only argue (as we just did) that the solution is alge-
braically special, because 9�2

2 − �0�4,16 which vanishes
at r = 2M , utterly corresponds to a combination of curva-
ture invariants and thus, it is independent of the reference
frame. Note that our choice (A.10) of the orthonormal tetrad,
from which we constructed the CNT (see Appendix A for
details), corresponds to a zero angular momentum observer
in circular motion; it is not suitable for studying the hori-
zon limit. To determine the actual Petrov type at r = 2M ,
one must rather consider a falling observer [45]. Finally,
when X = 0, we obtain the swirling black hole, the Petrov
type of which is also I, whereas for j = 0 we recover the

16 Note that 9�2
2 − �0�4 = √

(I 3 − 27J 2)/(�0�4) with I, J as
defined in [1].

static type I Schwarzschild–Melvin spacetime [46], which
describes a Schwarzschild black hole embedded into an (elec-
tro)magnetic universe. The latter solution is of Petrov type II
on the horizon surface (again located at r = 2M), and it also
features another locus of interest given by

|X |
√

1 − x2 = r−1, x �= 1,−1, (3.88)

where all Weyl scalars vanish and the Petrov type is, there-
fore, O [45].

4 Mixing electric and magnetic transformations

In this section, we wish to scrutinize another possible route.
Instead of composing transformations of the same “kind”,
i.e., either electric or magnetic, we shall explore their mix-
ture. Once again, we will consider only Ehlers and Harrison
transformations. In general, there are eight possible mixed
compositions,

Uα
β ◦U γ

δ, (4.1)

with β �= δ, where α, . . . , δ = 1, 2 and

(Uα
β) =

(

Ee Em

He Hm

)

. (4.2)

However, if the seed is Minkowski, the number of available
compositions reduces to four, namely

Uα
1 ◦Uβ

2. (4.3)

This happens because

Uα
2 ◦Uβ

1 ∼ Uα
2, (4.4)

where ∼ denotes a rough equivalence relation here, in the
sense that electric transformations of the seed potentials asso-
ciated with Minkowski space, result in a metric which is also
Minkowski modulo coordinate transformations.

Our first course of action is to study the novel space-
times obtained via these mixed compositions in the case
of a Minkowski seed. For starters, we wish to see if these
geometries, presented here for the first time, turn out to be
backgrounds, i.e., that they are first and foremost free of cur-
vature singularities, topological defects, and other sorts of
pathologies. Since we know that U 1

α ◦ U 2
α = U 2

α ◦ U 1
α ,

we could directly operate on the seed potentials with Ee[c] ◦
He[Q] ◦ Em[ j] ◦ Hm[i X ], where j, c are real parameters, X
was previously introduced in the case of the electromagnetic
universe, namely X = (E + i B)/2, and we also define a new
complex parameter Q := (qe+ iqm)/2. This would be tanta-
mount to casting the EMS metric in the form (2.1) and acting
on the associated electric potentials with Ee[c] ◦ He[Q]. We
could then consider all possible limits, in which we remain
with two layers of transformations, one magnetic and one
electric. Nevertheless, computationally speaking, this would
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not be a wise strategy to pursue. For this reason, we will gen-
erate each case separately. We will probe the new geometries
only for curvature singularities, spinning strings, conical sin-
gularities, and nonchronal regions (regions with CTCs). We
will call them backgrounds if they are free of curvature and
topological singularities, proper backgrounds if they are also
free of CTCs/CNCs.

4.1 Electromagnetic universe and electric Harrison
transformations

Here, we operate on the magnetic potentials E0 = −ρ2

and �0 = 0, associated with Minkowski spacetime, with
He[Q] ◦Hm[i X ].17 Of course, we do not have to truly do the
composition; we may directly act on the electric potentials,
associated with the electromagnetic universe, with He[Q].
Hence, our seed potentials are

E0 = V 2 − 4|X |2z2, �0 = −2Xz, (4.5)

where we recall that V = 1 + |X |2ρ2. We thus follow the
prescription presented at the end of Sect. 2.1, skipping the
integration details to get the target metric (2.1), with

f = V 2

V2 + 2V(qeE − qm B)z + 16|QX |2z2 ,

ω = Cω − (qeB + qmE)
1 + |Q|2(V 2 + 4|X |4ρ2z2)

|X |2V ,

e2γ = V 4, (4.6)

where we further defined V(ρ, z) := 1 − |Q|2E0 for con-
venience. Soon, we will also display the gauge field; before
that, let us study this new metric which has Petrov type I.

The first thing that one observes, is that on the equa-
torial plane z = 0, f has a double (and single) pole at
ρ = ρ∗, where ρ∗ denotes the positive real root of V = 0, or
|Q|2V 2 = 1 equivalently. We find that

ρ∗ =
√

1 − |Q|
|X |√|Q| , (4.7)

which is clearly real if-f |Q| ≤ 1. Saturating the bound,
this coordinate singularity is put exactly at ρ = 0 = z. For
Q < 1, the locus is a ring. For qeB �= −qmE , this is the only
pole of f . In any case, if this is a true curvature singularity
(be it a point or a ring), and since f �= 0 for all ρ, z, indi-
cating the absence of a horizon, it must be that it is a naked
one, with the general consensus being that such configura-
tions are unphysical. Note that the metric does not have any
other singular limits besides the one we just reported, which
unfortunately happens to be a curvature singularity, for we
find that the Kretschmann scalar at the equator blows up as
∼ (ρ − ρ∗)−8 in the limit ρ → ρ∗. Parameter tuning cannot

17 See p. 3 of this manuscript for nomenclature.

be a remedy to this; there are simply not enough parameters
to tune in order to get rid of all poles up to octic order in
the pertinent Taylor expansion. The situation is worse when
|Q| = 1, in which case Rμν

ρσ Rρσ
μν ∼ ρ−16 when ρ → 0.

Consequently, it is mandatory to restrict |Q| > 1 in order to
expel ρ∗ from the physical range of ρ. Still, regularity (of cur-
vature invariants) is guaranteed only if the components of the
Riemann tensor in the orthonormal basis of Appendix A are
everywhere regular. Fortunately, we find that their denomina-
tors are proportional to f −1, with the proportionality factors
being nonvanishing functions of ρ. Since f −1 = 0 has no
positive real solutions for |Q| > 1, it follows that the space-
time is indeed everywhere regular.

Having successfully tackled this important issue, it is time
to address another subtlety. Observe that at fixed z,

lim
ρ→0

gφφ = −
(

Cω − (1 + |Q|2)(qeB + qmE)

|X |2
)2

lim
ρ→0

f,

(4.8)

where the limit of f as ρ → 0 is a nonvanishing expression
that involves the parameters and z, appearing as a denomi-
nator of the leading term in the above. Once again, we are
confronted with a spinning string, which we can remove by
fixing the integration constant Cω as

Cω = (1 + |Q|2)(qeB + qmE)

|X |2 . (4.9)

Of course, keeping the integration constant free in this case,
only to fix it now, was after all a proactive action. Had we set
it to zero, we would again have the string removed via a coor-
dinate transformation, followed by a regluing of spacetime.
Nevertheless, the final expression becomes

ω = (qeB + qmE)[1 − |Q|2(V + 4|X |2z2)]ρ2

V
, (4.10)

and we now also have well-defined limits X → 0 (Minkowski),
or Q → 0 (electromagnetic universe).18 Additionally, we
remark that after taking care of the string, the induced metric
with t = cte = z becomes ∼ C(dρ2 + ρ2dφ2) in the vicin-
ity of the symmetry axis, where C denotes a proportionality
factor depending on the parameters and the chosen value of
z. This tells us that there are no conical singularities to be
bothered with. Henceforth, we consider only the family with
|Q| > 1 and Cω as in Eq. (4.9).

For |Q| > 1, the solution is everywhere stationary (not just
static) provided that qeB �= −qmE . If qeB + qmE > 0, we
have that ω < 0. If the former is negative, the latter is positive.
It is also clear that as ρ → 0, it holds that ω → 0. However,
the metric function ω is no longer the object of interest here,

18 Observe that, if Cω is not fixed as in Eq. (4.9), X → 0 is a singular
limit of ω in (4.6).
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because the frame-dragging velocity (in coordinates adapted
to ∂t ) is actually given by

ω̃ = − ω f 2

ρ2 − (ω f )2 . (4.11)

This function is too lengthy to write it down explicitly. How-
ever, it is obvious that its zeroes are the zeroes of ω (given
that f has no poles), its poles the zeroes of

gφφ = ρ2 − ( f ω)2

f
, (4.12)

i.e., the surface where the reduced circumference shrinks
to zero. Since ω has a fixed sign depending on the choice of
qeB + qmE , and since f > 0 everywhere, it follows that the
sign of ω̃ may change if and only if gφφ changes sign, namely
if there exist CTCs in this spacetime. The boundary of these
nonchronal regions, that is the surface on which the norm
of ∂φ vanishes, will then be a surface of infinite |ω̃|. These
observations are manifest in Fig. 3. Indeed, observe that the
white curves in panel [a] are exactly the dashed ones in panel
[b]. Note that appearances can be deceiving here, for it looks
like the nonchronal regions extend to infinity. This is not
true; by doing ρ → ρ/λ, z → z/λα with α real positive, and
expanding about λ = 0, one may check that the leading term
is always positive, whichever the value of α is. Interestingly,
the fact that the chronology horizons [47] (the surfaces where
the nonchronal regions meet the chronal ones) coincide with
the surfaces of singular frame-dragging angular velocity, per-
haps admits a physical interpretation. Rotation becomes very
rapid very close to these singular surfaces, thereby dragging
inertial frames so strongly that the light cones are completely
tilted in the direction of the circumference! Such a situation is
not unfamiliar generally speaking. A similar interpretation,
roughly speaking, appears, for example, in the case of the
Van Stockum solution [48,49].

Now, observe that if we tune our transformation parame-
ters such that qmE = −qeB, ω vanishes and thus we obtain
a static metric, which also is of Petrov type I. The new met-
ric is now free of CTCs, because gφφ = ρ2/ f with f > 0
everywhere; there is no rotation taking place any longer to
tilt the light cones. However, our claim that the spacetime
is regular is not valid under the particular tuning. Indeed,
the assumptions for that were qmE �= −qeB and |Q| > 1.
Unfortunately, when qmE = −qeB, there are two spatial

surfaces, one for z < 0 and the other for positive z, on which
the curvature invariants become singular. The explicit sur-
face equations are found by requesting the vanishing of the
denominator of f . Therefore, although we got rid of rota-
tion and the CTCs, we ended up with a far worse situation,
namely a naked singularity with a weird disconnected geom-
etry. It goes without saying that there is no reason to further
discuss this scenario, and one should stick to the previous
assumptions which at least guarantee regularity.

Let us finally have a look at the gauge field. Its components
read

At = f
[V + (qeE − qm B)z](−Ez + qeE0/2) − (Bz + qmE0/2)(qeB + qmE)z

V 2 ,

Aφ = ρ2 4|X |2qmz + (V + 4|X |2z2)[(3q2
e − q2

m)B/4 + qeqmE] − B

2V
− ωAt ,

(4.13)

modulo gauge transformations. A visual of the field lines
(and more) can be found in Fig. 4. We mention that the elec-
tric and magnetic fields vanish at asymptotic infinity in all
directions. Contrasting this with the behavior of the fields
in the electromagnetic universe, in which they are uniform
close to the axis for all z, we can argue that the electric and
magnetic fields in this spacetime are better-behaved, at least
in terms of asymptotic behavior.

4.2 Electromagnetic universe and electric Ehlers
transformations

Next, let us discuss an alternative possibility that generates
a new type I axisymmetric stationary electrovac field, start-
ing again with the electromagnetic universe as our seed. This
scenario involves acting with E[c], where c is a real param-
eter, upon the seed potentials (4.5). Skipping the integration
details (we just follow the algorithmic process outlined at
the end of Sect. 2.1), we obtain the target metric (2.1), with
functions

f = V 2

1+c2(V 2−4|X |2z2)2 , ω = 8c |X |2ρ2z
V , e2γ = V 4, (4.14)

together with a gauge field, whose components read

At = −E + cB(V 2 − 4|X |2z2)

1 + c2(V 2 − 4|X |2z2)2 z,

Aφ = − B + cE(V + 4|X |2z2)

2V
ρ2 − ωAt .

(4.15)

It is easy to see that if c �= 0, the Petrov type is I. Of
course, for c = 0 the solution reduces to the electromagnetic
universe which has Petrov type D. The metric does not exhibit
any coordinate singularities, and the axis is not plagued with
a spinning string. In particular, the induced metric with t =
cte = z behaves as

ds2 ∼
ρ→0

[1 + c2(1 − 4|X |2z2)2](dρ2 + ρ2dφ2), (4.16)
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Fig. 3 In a we plot a heatmap of (2/π) atan |ω̃| on the uxv-plane for
qe = 1.05, qm = 2.06, E = 1, and B = −1. We do so in coordi-
nates (3.86). The lighter the hue, the greater |ω̃| is, with white denoting
the singular surface. Regions enclosed by the white curves are regions
of negative ω̃. In b we display a uy = 0 cross-section of the gφφ = 0
surface for qe = 2.07, qm = 2.33, E = −0.31, B = 0.06 (solid),

qe = 1.05, qm = 2.06, E = 1, B = −1 (dashed), qe = 0.01,
qm = −3.14, E = −0.07, B = 0.92 (dotted). Regions bounded by
the curves are nonchronal regions (filled with CTCs). Keep in mind that
the full picture is obtained via a complete revolution of these profiles
about the v axis, whereby infinity is depicted as a cylinder of unit height
and radius

near the symmetry axis, which also proves that there is no
conical singularity there. The components Rab

cd of the Rie-
mann tensor in the pertinent orthonormal basis of Appendix
A, have a denominator of the general form V n f −k , where n
and k are irrelevant positive integers. Since this denominator
cannot be made to vanish, we conclude that curvature invari-
ants up to arbitrary polynomial order will be everywhere
regular. Moreover, limρ→∞ Rab

cd = 0 (ditto for z → ∞)
further ensures that tidal forces vanish as we move far away
from the z axis and/or the equator. We may then call this
geometry a background, although not a proper one.

Note that f is strictly positive continuous, meaning that
there are no ergoregions in this stationary spacetime. How-
ever, there are surfaces where the reduced circumference
shrinks to zero. These are, once again, exactly the surfaces
where the frame-dragging angular velocity (4.11) blows up.
Actually, there are two separate gφφ = 0 surfaces, one in
each z half-space, which moreover behave as chronology
horizons, in the sense that they separate CTC-free regions
from CTC-full ones. Therefore, the interpretation we gave
in the previous section applies also here.19 Their structure is
more or less similar to the one in the previous case, although
now the equator functions as a plane of reflection, simply
because gφφ is invariant under z → −z. For this reason, we
do not bother plotting them.

19 One can check that the nonchronal regions do not extend to infinity
and that they exist for arbitrary values of X and c.

Now, regarding the electric and magnetic fields, the elec-
tric Ehlers transformation has – besides modifying the z com-
ponent – generated a nontrivial component in the ρ̂ direction
which, as expected, is proportional to c. Interestingly, there
are surfaces where the radial component of the electric field
(with respect to the unit basis) vanishes. These are given by

z2 = c(−E + cBV 2) ± 2|c||X |
4Bc2|X |2 , (4.17)

provided that the right hand side is positive. On these sur-
faces,

E = B2(2|c||X | ± cE)

2V 2[4E |c||X | − c(B2 + 2E2)] ẑ =: CV−2 ẑ, (4.18)

which is exactly the form of the electric (or magnetic) field
in the electromagnetic universe! Note that both, electric and
magnetic, fields vanish as ρ → ∞. This was also the case
in the seed spacetime. Remarkably, however, here they also
vanish far away in the ẑ direction, which was not at all the
case in the Bonnor–Melvin solution, where the fields did not
depend on z. In particular, we have that

E + iB ∼
z→±∞

1

4c|X |2V
(

1

z2V
ẑ ∓ ρ

z3 ρ̂

)

(B + i E). (4.19)

4.3 Swirling universe and electric Ehlers transformations

Having explored the scenarios with an electromagnetic uni-
verse as our seed, we shall now discuss our options when
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Fig. 4 Field lines plotted over the heatmap of (a function of) the norm
for the electric field (left panel) and the magnetic field (right panel).
The size of the arrows is proportional to the magnitude of the vector
at each sampled point. The heatmaps show the values of atan |E| (left)

and atan |B| (right). The lighter the color, the larger the number. The
norms are everywhere finite, and the atan function is used for display
purposes. Plots are for qe = −2, qm = 131/151, E = −2/17, and
B = −131/2567

considering a swirling seed. Let us initiate this discussion
with the following composition. In theory, we start with
Minkowski space and operate with Ee[c]◦Em[ j] on the asso-
ciated seed potentials. In practice, we will just act with E[c]
upon the seed potentials associated with the swirling space-
time cast into the electric WLP form. Consequently, it is
necessary to identify the seed quantities anew; the swirling
spacetime can be described by a metric (2.1) with functions

f0 = S2 − (4 jρz)2

S
, (4.20)

ω0 = 4 jρ2z

S2 − (4 jρz)2 , (4.21)

e2γ = S2 − (4 jρz)2, (4.22)

where we have defined S(ρ) := 1+ j2ρ4. Given the fact that
the seed is stationary, the solution to (2.5a) is a nontrivial
seed potential

χ0 = −2 j

(

ρ2 + 6z2 − 8z2

S

)

. (4.23)

With the previous quantities at hand, the only nonvanishing
seed Ernst potential is found to be

E0 = f0 + iχ0. (4.24)
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After acting with E[c], we arrive at the metric (2.1) with
functions

f = f0
(1 − cχ0)2 + c2 f 2

0

,

ω = ω0

{

1 + 2 jc[(S + 2)ρ2 − 4z2] − c2[4 − 8 j2z2(2z2

+ (S − 2)ρ2) − 3S2]
}

. (4.25)

The former is directly read off from the target potential E
since it corresponds to Re E in the absence of �. The latter
requires integrating Eq. (2.5a). Concerning the Petrov type,
here we can explicitly write down the relevant expression
because it is fairly short,

9�2
2 − �0�4

= − 144cj3ρ2

{

1+cj[(S+2)ρ2−4z2]+i[c− jρ2−cj2ρ2(12z2+ρ2)]}5

(4.26)

in particular. Therefore, the Petrov type – based on the anal-
ysis we did in Sect. 2.2 – of the solution is I. The swirling
universe is obtained in the limit c → 0. In this case, expres-
sion (4.26) vanishes, but �4 �= 0. On the other hand, in the
limit j → 0, all five complex Weyl-NP scalars become zero,
indicating a Petrov type O. Indeed, the solution reduces to
flat spacetime. This totally agrees with the fact that electric
transformations, when applied to the potentials of Minkowski
spacetime, give rise to a target spacetime which is again
Minkowski modulo coordinate rescalings. For the case at
hand, these rescalings read

t → t√
1 + c2

, (ρ, z) →
√

1 + c2(ρ, z). (4.27)

The new metric is free of a spinning string, for limρ→0 gφφ

= 0 at fixed arbitrary z. Moreover, it is also free of conical
singularities; the induced metric with t = cte = z behaves as
∼ C(ρ2 +ρ2dφ2) near the symmetry axis, where C is a con-
stant depending on the parameters and the fixed value of z.
Note that there are no coordinate singularities evident. How-
ever, the components of the Riemann tensor in the orthonor-
mal basis, i.e., Rab

cd, come with a denominator of the gen-
eral form [S2 −(4 jρz)2]m[(1−cχ0)

2 +c2 f 2
0 ]n Sn , where the

exact values of the integers m ≥ 0 < n are utterly unimpor-
tant at this stage. When m = 0 (and for some components
it is), the denominator can never vanish in the admissible
coordinate range. On the other hand, when m �= 0 (true for
some components), there are potential poles on the surfaces
S± = 0 (the ergosurfaces as we will soon see), withS± given
in Eq. (3.23) for X = 0. Therefore, one cannot argue that the
spacetime is everywhere regular, at least not in the fashion
we previously did; one needs to compute curvature invariants
explicitly. Such behavior is solely due to the swirling nature

of the target spacetime, for S± is independent of c. Neverthe-
less, calculating the Kretschmann scalar, one finds that the
denominator of the latter has m = 0 and n = 6, meaning
that it is everywhere regular. Cubic polynomials also have
m = 0 (n=9). Consequently, at least up to third-order curva-
ture polynomials (which are coordinate scalars), the absence
of singularities is verified. The appearance of poles in higher
order polynomials is highly unlikely then, although regular-
ity is not guaranteed in the robust sense of having an every-
where regular Rab

cd. Therefore, we may consider this as a
background geometry, although we will immediately see that
it cannot be proper.

Note that the denominator of f is everywhere positive,
meaning that the sign of gtt = − f only depends on the
numerator. Its vanishing happens on loci satisfying the sur-
face equation

S+S− = (1 + j2ρ4)2 − (4 j zρ)2 = 0, (4.28)

which gives the ergosurfaces. Consequently, the ergosurfaces
in this spacetime are exactly the same as the ones in the
swirling universe. Finally, let us once again probe for CTCs.
By now, the narrative should be clear. For the metric (2.1), the
frame-dragging angular velocity is given by (4.11). Rotation
becomes infinitely rapid on the surfaces where the denomi-
nator vanishes, provided that the zeroes of the denominator
are not zeroes of the numerator, or if they are, that the denom-
inator grows faster than ω f 2 close to the surface. Then, these
surfaces are necessarily zeroes of gφφ , and if gφφ changes
sign there, these act as chronology horizons, separating the
chronal from the nonchronal parts of spacetime. In the previ-
ous examples of this section, the denominator of gφφ , namely
the function f , was strictly positive. Thus, the sign of gφφ

solely depended on the sign of the numerator ρ2 − (ω f )2.
Here, because there are ergoregions, both the numerator and
the denominator are allowed to change sign. In fact, we expect
that the ergoregions and the nonchronal regions containing
CTCs, partially overlap, namely that chronology horizons
and ergosurfaces cross each other. Indeed, this can be seen in
Fig. 5. Quite interestingly, it turns out that in the spacetime
under study, there can actually be up to four disconnected
regions filled with CTCs for certain parameter ranges, two
toroidal regions with finite volume, and two other regions
that extend to infinity, as can be seen from

gφφ ∼
ρ,|z|→∞ −1024(cjρ2z3)2

144z4 + j2ρ8 < 0, (4.29)

where we let z grow exactly as fast as ρ2. Do note that
although it seems that the nonchronal “tori” closer to the
equator comes into contact with the ergosurfaces, this is not
the case. There are only two rings where the two surfaces
intersect. Looking at the left panel of Fig. 5, these would be
at |v| ≈ 0.47 with radius |ux| ≈ 0.66.
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Fig. 5 Left panel: showing
uy = 0 cross-section of the
ergoregions (light gray) and the
nonchronal regions (dark gray).
Right panel: 3D Illustration of
the nonchronal regions (regions
containing CTCs) in rectangular
coordinates
{x = ρ sin φ, y = ρ cos φ, z}.
Plots are for j = 0.5 and
c = −0.75

4.4 Swirling universe and electric Harrison transformations

The remaining spacetime to consider involves the action of
the composition He[Q] ◦ Em[ j] on the seed potentials of
Minkowski spacetime. In practice, we just act with H[Q] on
the seed potentials (4.24). The integration details are “left as
an exercise”; the whole process is already described in the
introduction of this work. We obtain the target metric (2.1)
with functions

f = f0
(1 − |Q|2 f0)2 + |Q|4χ2

0

,

ω = ω0
[

1 − |Q|4 (

4 − 8 j2z2(2z2 + (S − 2)ρ2) − 3S2)] .

(4.30)

By doing this transformation, we have further excited a gauge
field with nonvanishing components

At = f

2 f0

{

qe[ f0(1 − |Q|2 f0) − |Q|2χ2
0 ] − qmχ0

}

,

Aφ = ω0

2

{

qm j[(S + 2)ρ2 − 4z2] + [1 − (ω/ω0)(qe/|Q|2)] − ωAt
}

.

(4.31)

One can immediately check that 9�2
2 �= �0�4 with �4 �=

0 for j, Q �= 0. Therefore, the Petrov type of the solution is
I. The swirling universe solution is recovered in the limit
Q → 0 (recall that this implies qe, qm → 0). Indeed, also
9�2

2 = �0�4 in this case, with �4 �= 0, which gives the
Petrov type we expect, that is D. Minkowski spacetime (up to
irrelevant coordinate rescalings) is obtained in the limit j →
0. In this limit, all Weyl–NP scalars vanish and the type is O
as expected. This spacetime is also free of a spinning string.
The fact that gφφ vanishes as ∼ ρ2 near the symmetry axis,
proves the claim. It is also free of conical singularities, for
the induced metric with t = cte = z behaves as ∼ C(dρ2 +

ρ2dφ2) in the vicinity of the axis, with C being a constant
depending on the parameters and the fixed value of z. What
about coordinate singularities?

Let us focus on f and probe it for poles. The func-
tion is expected to blow up at solutions to the equation
(1 − |Q|2 f0)2 + |Q|4χ2

0 = 0. This is an equation quadratic
in z2, which does not have any real solution unless z = 0.
On the equatorial plane, the form

(1 − |Q|2)2 + 2 j2|Q|2(3|Q|2 − 1)ρ̂ + j4|Q|4ρ̂2 = 0,

(4.32)

is assumed, where ρ̂ := ρ1/4. It is clear that the above admits
only a single positive real solution if-f |Q| = 1, the solu-
tion being ρ = 0. This localizes the coordinate singularity
to a single point ρ = 0 = z (the origin). We then need
to check whether if this is an honest curvature singularity,
or just due to a poor choice of coordinates. Once again,
we turn to Rab

cd in order to draw conclusions. In the case
under study, the components have a denominator of the gen-
eral form [S2 − (4 jρz)2]m[(1 − |Q|2 f0)2 + |Q|4χ2

0 ]n Sn .20

Clearly, regularity cannot be directly deduced from Rab
cd,

because this guy simply blows up on surfaces (4.28) and at
the origin ρ, z = 0. This is not problematic per se, as long as
the invariants are regular. Upon examining the behavior of the
Kretschmann scalar for example, it becomes evident that the
thing can be singular only at the origin, which it approaches as
∼ ρ−12, and only when |Q| = 1. Consequently, if |Q| = 1,
the singularity sitting at ρ = 0 = z constitutes a true curva-
ture singularity. However, there is absolutely no null hyper-
surface to act as a sort of event horizon here, and one thus
fails to comply with the censorship hypothesis; the singu-
larity is naked. Moreover, the zeroes of the function f , i.e.,
the surfaces (4.28), which represent the ergosurfaces in this

20 Again, the exact values of m ≥ 0 < n are not needed to make the
argument.
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spacetime, are completely independent of Q (they coincide
with the ergosurfaces in the swirling universe), meaning that
they will also exist for |Q| = 1. A naked singularity with
ergoregions sounds indeed like things really took the wrong
turn, and they most probably did. However, such a situation
is not that unfamiliar, with the case of the hyperextreme Kerr
black hole first coming to mind [32]. As previously men-
tioned, naked singularities are generally regarded as unphys-
ical. Fortunately, all we have to do to avoid this worrying
issue, is to simply exclude the value |Q| = 1 from the pool
of allowed parameter values. Doing so, we can then argue that
spacetime is regular, of course in the less robust sense of the
foregoing section, namely that curvature invariants at least
up to some low order are regular everywhere. Then, since we
have a geometry free of all sorts of “physical” singularities,
we can again call this a background.

It turns out that this background cannot get the “proper”
attribute, because, once again, we are confronted with CTCs.
The nonchronal regions in this spacetime are more or less
similar to the ones in the previous case (see Fig. 5); there can
be up to four disjoint regions, two in the z > 0 half-space
and their mirror images in the negative half-space, with the
equator acting as the plane of reflection. As before, closer to
the equator we have compact toroidal regions full of CTCs
which exist if |Q| > 1 regardless of the value of j . As |z|
grows larger, one enters the other nonchronal regions which
again extend to infinity, as can be seen from

gφφ ∼
ρ,|z|→∞ −1024( j |Q|2ρ2z3)2

144z4 + j2ρ8 < 0, (4.33)

where we take z to grow exactly as fast as ρ2. The two regions
in each half-space merge exactly when |Q| = 1, which was
previously excluded to avoid the curvature singularity at the
origin.

Concerning the electric and magnetic fields in this elec-
trovac solution, their expressions are quite lengthy, and we
prefer to plot them instead. We do so in Fig. 6. There, we
see that the fields decay at infinity and that their magnitude
is everywhere finite besides on the ergosurfaces, the latter
indeed appearing as poles in the expressions of the norms.
We mention here that the graphic inspection is certainly not
sufficient, and that the behavior of the electric and magnetic
fields in this spacetime deserves further investigation which
we will unfortunately not include in this work.

5 Conclusions

This paper focused on obtaining the complete list of
stationary and axisymmetric spacetimes, generated from
Minkowski spacetime by operating on the associated seed
potentials with a composition of Ehlers and Harrison trans-

formations. Adopting the terminology laid down in Sect. 2.1,
it is clear that the metric functions in the electric and mag-
netic forms of the WLP metric are completely different func-
tions, though ultimately related via function redefinitions.
This implies that the Ernst potentials in the two cases are
also going to differ, and thus, any symmetry transformation
in potential space is going to provide us also with different
target potentials, and ultimately different spacetimes. This is
especially clarified in the case of a Minkowski seed, where
Ehlers or Harrison transformations of the electric potentials
eventually lead us again to seed spacetime (in cylindrical
coordinates), modulo rescalings of the noncompact coordi-
nates. On the contrary, an Ehlers or Harrison transformation
of the magnetic potentials gives rise to the swirling or elec-
tromagnetic universe, respectively. Hence, the form of the
WLP metric, electric or magnetic, with which we identify
our seed metric, crucially determines the output of the gen-
erating process, a deep-seated fact already.

Consequently, taking into account that there are two ways
to identify a seed metric and two kinds of transformations we
are interested in, we should a priori expect sixteen different
spacetimes. However, our seed is Minkowski and thus, this
number quickly reduces to ten because a composition of elec-
tric transformations does nothing, and Um ◦Ue ∼ Um where
U = {E, H}. Recalling that Em ◦ Em ∼ Em , Hm ◦ Em ∼
Em ◦ Hm , and that Hm ◦ Hm is a particular case of Em ◦ Hm ,
while also excluding cases where the resulting spacetime is
either the swirling or the electromagnetic universe, we should
be expecting at most five distinct target spacetimes. Indeed,
one of them was extensively studied in Sect. 3.1, and the
other four in Sect. 4.1.

In Sect. 3, we started by reviewing the electromag-
netic universe (the extension of the Bonnor–Melvin solu-
tion including an additional external electric field) and the
swirling solution. These can be obtained from a Minkowski
spacetime by operating on its associated magnetic seed
potentials with a Harrison and an Ehlers transformation,
respectively. Since our first goal was to combine these two,
it was reasonable to expect that the resulting spacetime cor-
rectly reduces to its building blocks in the appropriate limits,
and that it also inherits properties from both. Indeed, apply-
ing a magnetic “Ehlers of a Harrison” map, we were led to
the electromagnetic swirling universe, which met the above
expectations. We first probed for surfaces where the metric
functions change sign. This revealed the presence of a time-
like surface, on which ∂t is null. Had we been able to single
out ∂t as a unique timelike Killing vector, we would call this
the ergosurface. However, we pointed out that the usual selec-
tion mechanism one uses in Kerr geometry, for example, is
not applicable here; there is simply no KV, neither timelike
nor normalized, everywhere at infinity. Again, this was not
necessarily problematic, since also in the case of Kerr, the
definition of t as a “time” is meaningful outside the ergo-
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Fig. 6 Field lines plotted over the heatmap of (a function of) the norm
for the electric field (left panel) and the magnetic field (right panel).
The heatmaps show the values of atan |E| (left) and atan |B| (right).

The lighter the color, the larger the number. Pure white color denotes
an infinite vector magnitude. Plots are for qe = −3, qm = −1/2, and
j = −1/2

sphere; it just happens that here the ergoregions eventually
extend to infinity in particular directions.

We then pondered whether – excluding these regions at
infinity where no KV can be timelike – there are other sensi-
ble criteria, specific to our case, which can be used to advo-
cate for the existence of a single special timelike Killing vec-
tor, to which we should adapt our coordinates. Without being
able to rigorously prove that there is no such set of conditions,
we nevertheless were not able to find one. The best we could
do is to restrict the list of candidates to the one-parameter
family ∂t +C∂φ , with C being an arbitrary real parameter. It
was then natural to argue that notions such as ergosurfaces,
ergoregions, and frame-dragging angular velocity, should be
understood with respect to the complete one-parameter fam-

ily and not just ∂t ; the latter is as special as any other member
of the former. Moreover, taking the above into considera-
tion, we emphasized that rotation in these spacetimes can
only be perceived in a relative manner. The frame-dragging
angular velocity �, defined with respect to the timelike KV
∂t +C∂φ in Eq. (3.30), cannot provide an absolute measure,
for there is a free parameter C roaming around. However,
we remarked that differences (in the value of � on two dif-
ferent (ρ, z) surfaces) are independent of C , and indeed, one
may use these differences to (i) prove the existence of rotating
regions in the first place, and (ii) to further probe for counter-
rotating regions, with their exact localization being observer-
dependent. Notwithstanding this interesting observation, rel-
evant also in the swirling case (though not addressed so far),
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we eventually decided to adapt our coordinates to a C = 0
observer for clarity and simplicity. However, the particular
issue definitely requires further investigation, a task we plan
to undertake in future work.

Next, we showed that the EMS spacetime is free of curva-
ture singularities, a Misner string, and conical singularities.
We also verified, by checking the components of the Riemann
tensor in the suitable orthonormal basis of Appendix A, that
tidal forces diminish at infinity in all directions. Actually,
the EMS metric is asymptotic to a swirling metric, given that
the growth rate of the ratio ρ/z satisfies a certain inequality.
However, the complete solution is not, for the gauge field
strength does not in general vanish. We applied the method
described in Sect. 2.2 to conclude that the Petrov type of the
solution is D, and then we gave a detailed sequence of coordi-
nate transformations and parameter redefinitions, which ulti-
mately proves that the EMS spacetime belongs to the Kundt
family of solutions admitting a shearfree, nonexpanding, and
nontwisting null geodesic congruence. The electric and mag-
netic fields in this spacetime were found to decay far away
from the symmetry axis, but, exactly as in the case of the
electromagnetic universe, they were uniform in the proxim-
ity of the latter, meaning that they do not vanish far away
from the equator near the axis.

Motivated by the well-established relations of the Bonnor–
Melvin solution to a planar Reissner–Nordström spacetime,
and of the swirling solution to a planar Taub–NUT space-
time, we managed to successfully demonstrate the relation
of our EMS solution to a planar Reissner–Nordström–NUT
spacetime; we did so by performing a double Wick rotation,
and by appropriately redefining our coordinates and param-
eters. This relation, interesting in its own right, proves to be
even more intriguing, if one notices that it can be exploited
to directly derive the cosmological extension of the solution.
The presence of � renders the field equations into a set of
inhomogeneous equations, and the system is no longer inte-
grable. The generating technique no longer applies, for the
potential-space symmetries are lost. Thus, the only course
of action practically is direct integration, which can be a
daunting task. Remarkably, starting from a planar Reissner–
Nordström–NUT spacetime with a cosmological constant,
and applying the previous transformations and redefinitions
in reverse order, we arrive at a new spacetime, which for
� = 0 reduces to the EMS spacetime, and which also is a
solution to the field equations of the theory. We study this
spacetime in some detail, highlighting the presence of a Mis-
ner string which can fortunately be exorcised if we properly
tune our parameters. Note that the string exists also in the
swirling-� solution of [27], despite having been overlooked
therein. The crucial difference is that in the latter solution,
which can be recovered from the EMS-� solution we pre-
sented here in the limit X → 0, there is absolutely no way
to “banish” it.

Next, we immersed a Schwarzschild black hole in the
EMS background. The presence of a mass source in the seed
brought in a singularity and an event horizon also in the target
spacetime, their locations not modified. We made it clear that
whilst the surface area of the horizon does not change, the sur-
face itself is deformed, with the deformation controlled by the
transformation parameters. The structure of the ergoregions
was qualitatively the same, while no topological singulari-
ties or closed timelike curves were present. The asymptotic
behavior of the black hole was that of the background. The
solution was found to have Petrov type I almost everywhere
besides the axis, where the type was D, and the horizon sur-
face, where we proved that it is algebraically special. We
remarked that in order to determine the exact Petrov type on
the horizon, a frame attached to a freely falling observer is
needed.

In the second part of this manuscript, we extracted all the
spacetimes one can obtain obtain from Minkowski space-
time, by operating on its associated seed potentials with one
electric and one magnetic transformation, Ehlers or Harrison.
We showed that the order of operations matters. We excluded
cases with Um ◦Ue for reasons previously explained, though
we remark that one must consider these when the seed
spacetime is other than Minkowski. For example, given a
Schwarzschild seed, a combination Um ◦ Ue would lead to
a completely different spacetime. We registered four novel
type I asymptotically nontrivial spacetimes:

I. A four-parameter family containing the real parameters
E, B, found in the electromagnetic universe, and two
additional real parameters qe, qm introduced via the elec-
tric Harrison transformation.

II. A three-parameter family containing E, B and one addi-
tional real parameter c entering via the electric Ehlers
transformation.

III. A two-parameter family containing j and one additional
parameter c introduced via the electric Ehlers transfor-
mation.

IV. A three-parameter family containing j , found in the
swirling spacetime, and two additional parameters qe, qm
brought in by the electric Harrison transformation.

As expected, the new spacetimes are complicated modifica-
tions of either the electromagnetic universe or the swirling
solution. However, these are neither NUTty nor charged,
extensions of the latter. To be precise, there is at least no direct
evidence to support the association of c with a NUT parame-
ter, or the association of qe, qm with monopolic charges, and
the “physical” meaning of these parameters deserves further
scrutiny.

Starting with the electrovac spacetime I, here the inter-
action of qe, qm with the parameters E, B controlling the
magnitude of the external electric and magnetic fields in
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the electromagnetic universe, remarkably produced a sta-
tionary spacetime without ergoregions. We argued that for
q2
e + q2

m ≤ 4, the spacetime describes a naked singular-
ity (a ring singularity on the equatorial plane which can be
contracted to a point at ρ = 0 = z when the bound is satu-
rated), otherwise it is regular. We then showcased the pres-
ence of a spinning string on the axis which was removable,
and once we took care of that, we showed that there are no
further topological singularities to be bothered with. Lim-
its of the new geometry to Minkowski spacetime and the
electromagnetic universe were checked. By looking at the
frame-dragging angular velocity (in coordinates adapted to
∂t ), we deduced the presence of counterrotating regions and
of surfaces where the it cannot even be defined. These last
surfaces were then identified with the so-called chronology
horizons which bound the nonchronal regions appearing in
this spacetime (regions filled with CTCs). Indeed, we claimed
that such regions are expected in the configurations we study
if the angular velocity is singular on some surface, and a
physical interpretation was given, namely that very close
to these surfaces, light cones are completely tipped in the
direction of angular motion due to the extreme intensity of
rotation building up there. The electromagnetic fields in the
target spacetime, finite everywhere, were found to decay in
all directions at infinity, a behavior contrasting the one in the
electromagnetic universe, where the fields appear uniformly
close to the axis.

Electrovac spacetime II can be thought of as another modi-
fication of the electromagnetic universe. We showed that this
is yet another stationary background without ergoregions,
but with nonchronal regions which exist for arbitrary values
of the involved parameters. The electric Ehlers parameter c
has nontrivially modified the gauge field of the electromag-
netic universe, with the target electric and magnetic fields
acquiring an additional component in the ρ̂ direction. They
again were everywhere nonsingular, and they vanished in all
directions at infinity. We remarked that there exists a (ρ, z)
surface, on which the fields behave exactly like in the elec-
tromagnetic universe. Next, we extracted vacuum spacetime
III, practically a modification of the swirling universe. We
showed that this stationary spacetime inherited its ergore-
gion structure from the swirling solution and that it was reg-
ular, at least in the sense of regular curvature invariants up
to some low order. The absence of topological singularities
was verified. As in the preceding backgrounds, this one also
featured nonchronal regions, with their geometry however
being quite different. In fact, we showed that there can be up
to four disconnected regions with CTCs. We proved that there
are always two of them, which extend to infinity in certain
directions, and that for certain values of the parameters, two
additional toroidal regions can appear closer to z = 0. The
fact that the ergoregions partially overlap with the nonchronal
regions, made this particular solution even more puzzling. It

was shown that there are exactly two rings where chronology
horizons and ergosurfaces meet. Finally, electrovac space-
time IV was registered last. For q2

e + q2
m = 4, we found that

the new solution, with ergoregions as in the swirling case,
describes a naked singularity sitting at ρ = 0 = z, other-
wise, it is regular. Topological defects were again absent, but
CTCs were present, with their structure being more or less the
same as in the case of spacetime III. The expressions of the
electromagnetic fields were again too lengthy to explicitly
write them down, and thus we plotted them instead. For the
corresponding figure, we were able to tell that the fields fall
off asymptotically, but that they are not regular everywhere.
In particular, we observed that their norm is singular on the
ergosurfaces. The specific behavior of the field lines defi-
nitely requires a deeper study in order to conclude whether
this electromagnetic setup can be eventually of some use.
For example, and very roughly speaking, one could say that
the plots are somehow reminiscent of two current loops at
a given distance, perhaps in the presence of other external
electric and magnetic fields, but a convincing explanation of
the particular singular surfaces where the fields cannot even
be defined definitely eludes us.

We saw that a common factor in all of the new type I solu-
tions in Sect. 4.1, was the presence of nonchronal parts. The
“physical” interpretation given for the emergence of CTCs
in the case of spacetime I, also applies to the other cases;
their occurrence seems to be, causally enough, related to the
fact that the frame-dragging angular velocity (which would
also be the velocity of a zero angular momentum observer)
blows up, not in some asymptotic region, but actually in finite
regions of these spacetimes. As mentioned in the introduc-
tion, the problem of CTCs/CNCs requires a much deeper
investigation, i.e., whether they are geodesics or, in any case,
whether they are actually traversable under sensible condi-
tions. The whole topic is delicate anyway. Protection mech-
anisms [47,50] forbidding causality violation have yet to
acquire the form of formal theorems, and it also has been
conjectured that causality violating curves exist only in the
classical theory (and would disappear in the quantum ver-
sion). Nevertheless, at the classical level these pathologies
exist, and the very fact that they beset honest solutions to the
Einstein–Maxwell field equations (or even to pure general
relativity), namely that they do not arise due to some arti-
ficial distribution of matter or some weird gluing of space-
times, actually makes them interesting in our opinion, though
from a very different perspective.

The questions opened are perhaps more than the ones
answered, and this implies that there is still room and need
for further exploration. It would be interesting to see if and
how, for example, the consideration of different seed space-
times would affect fundamental properties of the target space-
times, obtained via this combination of electric and magnetic
transformations. One simple example is the Schwarzschild
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black hole embedded into spacetime I, which can be thought
of as the counterpart of the Reissner–Nordström black hole
immersed in the electromagnetic universe [28], in the sense
that the latter can be obtained from a Schwarzschild seed via
the combination Hm ◦ He. In the former case, it is expected
that the solution, representing a black hole with a deformed
horizon, will not be free of CTCs in the exterior, while it will
not feature ergoregions at all. On the other hand, nonchronal
regions are absent in [41], while ergoregions are present,
developing towards asymptotic infinity in some directions.
These are two spacetimes with vastly different properties,
and with parameters whose physical meaning most probably
differs greatly. It is then compelling to deeper understand
how and why a simple switch in the order of operations, can
bring about so drastically different results, and to shed light
on the physical meaning of the parameters in the spacetimes
listed here, if any. The existence of a one-parameter family
of equally good timelike Killing vectors, instead of a unique
one, is also something that requires further research. More-
over, when dealing with purely electric transformations, it is
by now understood that any combination of more than two
transformations will not yield something new. This does not
seem to be the case when mixing transformations, and it is
certainly interesting to see if there is a particular number
of mixed transformations which gives the same spacetime,
regardless of the ordering. Finally, based on the fact that
the emergence of CTCs/CNCs proved to be systematic, it is
worth investigating – besides scrutinizing the corresponding
regions in the spacetimes presented here – whether a set of
conditions for the seed spacetime can be mathematically for-
mulated, under which such pathologies can be avoided when
applying these transformations.
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Appendix A: Orthonormal frames and complex null
tetrads

Given the WLP metric (2.1), we choose an orthonormal
coframe {ϑa} with

ϑ0 = √

f (dt − ω dφ), ϑ1 = eγ f −1/2dρ,

ϑ2 = eγ f −1/2dz, ϑ3 = ρ f −1/2dφ, (A.1)

dual to the basis {ea} with

e0 = f −1/2∂t , e1 = √

f e−γ ∂ρ, e2 = √

f e−γ ∂z,

e3 = √

f ρ−1(∂φ + ω∂t ). (A.2)

Any tensor Tμ...ν
λ...ρ can be written with frame indices as

T a...b
c...d = Tμ...ν

λ...ρϑa
μ . . . ϑb

ν e
λ
c . . . eρ

d . (A.3)

We can construct an initial complex null tetrad {ea} =
{k, l,m,m} by taking combinations of the frame “legs” ea.
In particular,
√

2k = e0 − e3,√
2l = e0 + e3,√

2m = e2 + ie1.

(A.4)

At this stage, we perform a local Lorentz transformation of
the null basis with a matrix

�−1(ρ, z) = diag(1/k0, k0, 1, 1), (A.5)

to arrive at

e′ = �−1e = {k/k0, k0l,m,m} =: {k′, l ′,m,m}. (A.6)

The new basis has the nice property that � ′
4 �= 0 and

� ′
1 ≡ Cλρμνk

′λl ′ρk′μmν = 0 = Cλρμνk
′λl ′ρmμl ′ν ≡ �3,

(A.7)

in the general case, which simplifies the Petrov classification
a lot.

Since we display the black hole spacetimes in spherical-
like coordinates {t, r, x, φ} for convenience, we also provide
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our choice of orthonormal coframe in the latter coordinate
system:

ϑ0 = √

f (dt − ω dφ),

ϑ1 = eγ
√

(∂ρ/∂r)2 + (∂z/∂r)2 f −1/2dr,

ϑ2 = eγ
√

(∂ρ/∂r)2 + (∂z/∂r)2 f −1/2(∂z/∂r)−1(∂ρ/∂x)dx,

ϑ3 = ρ f −1/2dφ. (A.8)

Here, f, ω, γ, ρ, z are functions of r, x , and the tetrad e is
given by the inverse transpose of ϑ , namely e = (ϑT )−1. The
desired CNT can then be constructed using the previously
demonstrated recipe.

For the metric (2.7), we choose our orthonormal coframe
as

ϑ0 = ρ f −1/2dt, ϑ1 = eγ f −1/2dρ,

ϑ2 = eγ f −1/2dz, ϑ3 = √

f (dφ − ω dt). (A.9)

Its dual, the orthonormal basis {ea}, is comprised of

e0 = √

f ρ−1(∂t + ω∂φ), e1 = √

f e−γ ∂ρ,

e2 = √

f e−γ ∂z, e3 = f −1/2∂φ. (A.10)

To construct the desired CNT, the one for which �1 = 0 =
�3 and �4 �= 0 in the general case, we follow the previous
prescription, arriving at

k = ∂t + (ω − ρ f −1)∂φ,

2l = ρ−2[ f ∂t + (ρ + f ω)∂φ],√
2m = √

f e−γ (∂z + i∂ρ).

(A.11)

Finally, when using spherical-like coordinates, we choose
the cobasis

ϑ0 = ρ f −1/2dt,

ϑ1 = eγ
√

(∂ρ/∂r)2 + (∂z/∂r)2 f −1/2dr,

ϑ2 = eγ
√

(∂ρ/∂r)2 + (∂z/∂r)2 f −1/2(∂z/∂r)−1(∂ρ/∂x)dx,

ϑ3 = √

f (dφ − ω dt), (A.12)

where the involved functions are functions of r, x . Again, the
CNT is constructed exactly in the previous fashion.

Appendix B: Electric and magnetic fields

In this appendix section, we would like to say a few words
about the method used to extract the electric and magnetic
fields. Instead of using gradient and curl operators, we simply
find the components of the fields from the electromagnetic
tensor Fab. Since bold latin indices are raised/lowered with
the Minkowski metric η, it follows that the electromagnetic
tensor has the form

F = −Eiϑ
0 ∧ ϑ i + 1

2
εijkB

iϑ j ∧ ϑk, (B.1)

where i, j, k, . . . = 1, 2, 3, and εijk = ε0abc with εabcd being
the four-dimensional Levi-Civita tensor. Note that ηij = δij,
and thus Ei = E i; ditto for the components of the magnetic
field. Due to the form of the gauge field, the electric and
magnetic fields do not admit an azimuthal component, and
they can be written in terms of the unit basis {ρ̂, ẑ, φ̂} as

E = E iei = E1eρ
1
√
gρρ ρ̂ + E2ez2

√
gzz ẑ = E1ρ̂ + E2 ẑ.

(B.2)

The basis expansion of B can of course be obtained by replac-
ing E with B in the above. These formulas are valid for both,
electric and magnetic, forms of the metric.

For the electric case, we find that

E = e−γ ∇At , B = e−γ ∇˜Aφ, (B.3)

where the gradient is understood as the flat one in cylin-
drical coordinates, and the twist potential ˜Aφ is defined via
Eq. (2.5b). The Riemann–Silberstein vector is thus

X = E + iB = e−γ ∇�, (B.4)

with � given in (2.3). For the magnetic case, we have

E = e−γ φ̂ × ∇˜At , B = −e−γ φ̂ × ∇Aφ. (B.5)

Thus, the Riemann–Silberstein vector is now

X = −ie−γ φ̂ × ∇�, (B.6)

where � is given in Eq. (2.6). As a cross-check, one can
verify that in both cases

1

2
FμνF

μν = − Im(iX · X) = B · B − E · E (B.7)
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