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AFFILIATIONS
1 Sorbonne Université, CNRS, Laboratoire de Chimie Physique Matière et Rayonnement, UMR 7614, F-75005 Paris, France
2 Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague,
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ABSTRACT
Via the interatomic Coulombic electron capture (ICEC) process, an electron can be captured by an atom or a molecule, while the binding
and excess energy is transferred, via a long-range Coulomb interaction, to a neighboring atom or molecule. The transferred energy can be
used to ionize or electronically excite the neighboring species. When the two species are asymptotically far apart, an analytical formula for the
ICEC cross sections can be derived. The latter can then be estimated using only the energies and the photoionization cross sections of each
species. In this work, we develop an analytical model that allows us to predict the ICEC cross sections when the size of the involved species is
comparable to the distance between the two entities. Using ab initio R-matrix results for various systems, we show that the new model reduces
the error of the asymptotic formula by two orders of magnitude on average while only using parameters that can be taken from the properties
of each species.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0227540

I. INTRODUCTION

In interatomic Coulombic electron capture (ICEC), an electron
is captured by one neutral or positively charged atom or molecule
while the binding and excess energy is transferred, via a long-range
Coulomb interaction, to a neighboring atom or molecule. The lat-
ter can be ionized or electronically excited. ICEC was discovered
and first investigated using analytical scattering theory.1,2 Later on,
ab initio calculations using the R-matrix method were performed.3,4

A recent review on ICEC can be found in Ref. 5.
Using the dipole–dipole coupling approximation, also called

the virtual photon approximation (VPA), an analytical formula for
the ICEC cross sections can be derived.1,2 The cross sections can be
estimated using only the energies and the photoionization cross sec-
tions of each species. However, the approximation assumes that the
two species are asymptotically far apart and therefore is inadequate
when the size of the involved species is comparable to the distance
between the two entities. Ab initio R-matrix calculations showed that
in this close interatomic distance range, the ICEC cross sections are a

few orders of magnitude larger.3,4 Despite this limitation, having an
analytical formula for the ICEC cross sections that relies only on the
tabulated data of each species allows for a simple and fast estimate of
the ICEC efficiency.

In this study, we develop an analytical model that allows us
to predict the ICEC cross sections beyond the VPA while keeping
a simple description of the whole system as two independent enti-
ties. Furthermore, we show that the parameters of our novel formula
can be taken from the properties of each species as in the VPA.
In comparison with first-principles ICEC cross sections, our model
reduces the error by about two orders of magnitude on average with
respect to the virtual photon approximation at interatomic distances
comparable to the size of the involved species.

This paper is organized as follows: In Sec. II, we define the
model and derive the formula for the ICEC cross sections within that
model. This is followed by a brief summary of the R-matrix method
and the computational details in Sec. III. In Sec. IV, we evaluate the
parameters of the model by fitting it to ab initio cross sections for
several systems. Then, we compare the ab initio cross sections with
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the approximation by the VPA and by our model in the systems that
have been used for the fitting, as well as systems that have not been
considered in the fitting stage. The latter represent a test for our new
model. Hartree atomic units are used throughout this paper unless
explicitly mentioned otherwise.

II. ANALYTICAL MODEL BEYOND THE VIRTUAL
PHOTON APPROXIMATION

In the following, we derive an approximate formula that takes
into account the overlap of acceptor and donor orbitals. We use
the formalism of nonrelativistic quantum scattering theory from
Ref. 6. We confine ourselves to the fixed-nuclei approximation and
investigate the electronic problem only.

Consider the ICEC process

e−(Ei) +A +D→ e−(E f ) +A− +D+, (1)

where Ei (and E f ) are the energies of the incoming (and outgoing)
electron, A stands for the acceptor of the electron, and D is the donor
of the ICEC electron. Both the acceptor and the donor can be atoms,
molecules, or ions. In all the processes considered in this paper,
the donor is a neutral species and the acceptor is a singly ionized
cation (i.e., A− is a neutral species). The differential cross section is
given by

dσ
dΩ
(k f , A−D+ ← ki, AD) = k f

ki
∣ f̂ (k f , A−D+ ← ki, AD)∣

2
, (2)

where ki (and k f ) is the wave vector of the incoming (and outgoing)
electron and f̂ is the scattering amplitude of the process.

From the scattering theory perspective, ICEC is a multichan-
nel inelastic process where an electron is scattered on a target
containing N bound electrons. For such a general process, the
system’s electronic wave function is antisymmetrized to satisfy the
Pauli exclusion principle. The antisymmetrization gives rise to two
contributions to the scattering amplitude,6

f̂ (k f , A−D+ ← ki, AD) = f di(k f , A−D+ ← ki, AD)
−N f ex(k f , A−D+ ← ki, AD). (3)

On the right-hand side, the scattering electron is already treated
as distinguishable from the N target electrons. The direct contri-
bution fdi assumes that the outgoing electron and the incoming
electron are the same one, and the process is an inelastic scatter-
ing of this electron, which causes a rearrangement of the target. In
ICEC, we call this the electron transfer contribution. The exchange
contribution fex is the complementary process. More specifically, for
ICEC, the acceptor subsystem of the target captures the incoming
electron, and the excess energy is released by the donor subsys-
tem, emitting the outgoing electron. We call this the virtual photon
contribution.

The lowest order approximation of the exchange term leads to
the VPA. The detailed derivation was given in Refs. 1 and 2. We also
mention that a similar formula was derived using molecular quan-
tum electrodynamics theory for the case of resonant energy transfer
(see, for example, Refs. 7 and 8.) Let us summarize the main steps
as follows.1 Denoting R the distance between the centers of mass of
A and D, we assume that R is much larger than the size of A and

D. This eliminates the overlap of the two subsystems. We use the
distorted-wave Born approximation (DWBA).6 The initial state is
the electron incoming into subsystem A (not interacting with D),
and the final state is the electron outgoing from D+ (not interact-
ing with A−). The two subsystems interact with each other via the
Coulomb interaction of two groups of electrons separated by the dis-
tance R. Then, we use the multipole expansion and notice that the
lowest non-vanishing term corresponds to the dipole–dipole inter-
action of the two charge densities and is proportional to R−3. The
integral of the differential cross section over the scattering angle
gives the total cross section. We use the definition of the pho-
toionization and photorecombination cross sections and apply the
principle of detailed balance to convert the photorecombination
cross sections into photoionization cross sections. The final result is
(in SI units)2

σVPA =
3h̵4c2

8πme

gA−

gA

σ(A
−
)

PI (Ei)σ(D)PI (E f )
EiR6E2

vph
, (4)

where gA and gA− are the multiplicities of the corresponding states,
σPI are the photoionization cross sections, and Evph is the energy of
the virtual photon given by

Evph = Ei + EAA = E f + IPD, (5)

where EA is the electron affinity and IP is the ionization energy.
We continue with the direct contribution. As for the exchange

contribution, we consider only the lowest order term. High-order
corrections are expected to be much smaller. The in-channel of the
direct contribution is an incoming electron scattering off of AD. The
out-channel is an outgoing electron scattering off of A−D+,

∣Ψin⟩ = ∣ki+⟩∣ΨAD⟩, (6)

∣Ψout⟩ = ∣k f −⟩∣ΨA−D+⟩. (7)

We divide the scattering potential in both channels into two parts,

V in
I = − ∑

α ∈AD

Zα

∣r − Rα∣
+ ∑

i ∈AD

1
∣r − ri∣

, (8)

V in
II =∑

i ∈A
∑
j ∈D

1
∣ri − rj ∣

, (9)

Vout
I = − ∑

α ∈A−D+

Zα

∣r − Rα∣
+ ∑

i ∈A−D+

1
∣r − ri∣

, (10)

Vout
II = ∑

i ∈A−
∑

j ∈D+

1
∣ri − rj ∣

. (11)

The positions of the nuclei are denoted by Rα, and their charges are
denoted by Zα. The position of the continuum electron is denoted
by r, and the positions of the target electrons are denoted by ri and
rj. The potentials with the subscript I are chosen so that they cannot
cause the process we are seeking—transfer of an electron from D
to A. They are describing the interaction of the continuum electron
with the target system. The potentials with the subscript II describe
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the interaction of the electrons of the two subsystems, A and D in
the in-channel and A− and D+ in the out-channel.

We may now use the DWBA to obtain the approximation of
the desired scattering amplitude,6

f di(k f , A−D+ ← ki, AD) ≈ −(2π)2⟨Ψout∣Vout
II ∣Ψin⟩. (12)

In Vout
II , it is assumed that the electrons of A− are separated from

the electrons of D+, with the distance being R. We may employ the
multipole expansion [see Fig. 4 and Eq. (52) of Ref. 9], which in the
lowest order gives

f di(k f , A−D+ ← ki, AD) ≈ −(2π)2 ⟨k f − ∣ki+⟩⟨ΨA−D+ ∣ΨAD⟩
R

. (13)

This contribution is nontrivial because we do not assume that the
two overlaps in the numerator are zero.

Now, we formulate a simplified model that we use to obtain
an expression for the cross sections of the electron transfer contri-
bution to ICEC. First, we focus on the overlap of the target states
SAD = ⟨ΨA−D+ ∣ΨAD⟩. In a Hartree–Fock-like picture, the two states
comprise the following occupied spin-orbitals:

∣ΨAD⟩ = ∣ψA
1 . . .ψA

nAψ
D
1 . . .ψD

nD⟩, (14)

∣ΨA−D+⟩ = ∣ψ
A
1 . . .ψA

nA+1ψ
D
1 . . .ψD

nD−1⟩, (15)

where nA + nD = N. The overlap becomes

SAD = ⟨ψA
nA+1∣ψD

nD⟩. (16)

For the sake of simplicity of the model, we assume that the two cor-
responding spin-orbitals have the same spin and they are Gaussians
with widths aA and aD, whose centers are at mutual distance R,

⟨r∣ψA
nA+1⟩ = (πa2

A)−3/4 exp(−(r − R/2)2

2a2
A

), (17)

⟨r∣ψD
nD⟩ = (πa2

D)−3/4 exp(−(r + R/2)2

2a2
D

). (18)

The overlap then amounts to

SAD = (
2aAaD

a2
A + a2

D
)

3/2

exp(− R2

2(a2
A + a2

D)
). (19)

The continuum electrons ∣ki+⟩ and ∣k f−⟩ are the solutions
of the time-independent Schrödinger equation with appropriate
boundary conditions with the potential generated from ∣ΨAD⟩ and
∣ΨA−D+⟩, respectively. We take into account only the spherical con-
tributions to these potentials, which allows us to use the partial wave
expansion and obtain6

⟨r∣ki/ f ±⟩ =
1
√

2π
3

1
r ki/ f

∞

∑
l=0
(2l + 1)ilψ±l,ki/ f

(r)Pl(r̂ ⋅ k̂i/ f ), (20)

where the hat denotes unit vectors, ψ±l,ki/ f
are the radial incom-

ing/outgoing scattering wave functions, and Pl is the Legendre
polynomial. Evaluating the overlap yields

⟨k f −∣ki+⟩=
1

2π2kik f
∫
∞

0
dr
∞

∑
l=0
(2l + 1)ψ−∗l,k f

(r)ψ+l,ki
(r)Pl(k̂i ⋅ k̂ f ).

(21)
Now, let us gather the results for the differential cross section of

the lowest order contribution to the electron transfer path of ICEC
within our model by substituting (13) and (19) into (2),

dσ
dΩ
= k f

ki
(2π)4 1

R2 S2
AD∣⟨k f − ∣ki+⟩∣2. (22)

Our goal is to obtain the corresponding total cross section,

σ = ∫ dΩ
dσ
dΩ

. (23)

The only angle-dependent part of the differential cross section
formula is the overlap of the continuum electrons,

∫ dΩ∣⟨k f − ∣ki+⟩∣2 =
1

π2k2
i k2

f

∞

∑
l=0
(2l + 1)Jl, (24)

where we denote

Jl = ∣∫
∞

0
drψ−∗l,k f

(r)ψ+l,ki
(r)∣

2
. (25)

The total cross section becomes

σ = 32π
E3/2

i E1/2
f

1
R2

a3
Aa3

D

(a2
A + a2

D)3 exp(− R2

a2
A + a2

D
)
∞

∑
l=0
(2l + 1)Jl. (26)

The J l is the square of the overlap of the radial wave functions
describing the incoming and outgoing electrons, which correspond
to different potentials. The larger the l, the more the radial wave
functions are pushed out of the vicinity of the system’s center of
mass by the angular momentum barrier. It is only in the vicinity of
the center where the two potentials differ. When the classical turning
points, solutions r of the equation

l(l + 1)
r2 = k2, (27)

for the two wave functions, are outside the region where the poten-
tials differ, they correspond to approximately identical potentials,
and their overlap approaches ∼δ(ki − k f ). If we assume that the
energies of the acceptor spin-orbital of A and the donor spin-
orbital of D are different (which is the case if A ≠ D+), the overlap
approaches zero. This discussion can be summarized by the claim
that as l(l + 1)/K2

AV increases with l, J l decreases. For the value of
K2

AV, we use

K2
AV = (aA + R)2Ei + (aD + R)2E f , (28)

the average of r2k2 of the in- and out-channels, where r is the extent
of the radial potential approximated by R plus the acceptor/donor
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orbital width and k is the corresponding wave number. In our model,
we assume an exponential decrease of J l,

Jl ≈ C exp(− l(l + 1)
K2

AV
). (29)

Let us summarize the results. Within our model, the total ICEC
cross section is given by the sum of two contributions,

σmodel = σVPA + σETM, (30)

where the first term is given by the VPA (4) and the latter term
is the electron transfer contribution in a simplified model (26),
with J l being given by (29) and K2

AV being given by (28). We
call the second contribution the electron transfer model (ETM).
In principle, we should add the two contributions coherently, at
the level of the scattering amplitudes (3). However, our incoherent
sum should differ only for R, where the absolute values of the two
contributions are comparable. The VPA and ETM cross sections
depend on R as R−6 and R−2 exp (−βR2), respectively; therefore,
they should be comparable only in a limited interval of R. Thanks
to this, the incoherent sum should suffice. The model contains
three parameters: aA, aD, and C. Our goal is to either relate these
to the tabulated parameters of the subsystems or give their uni-
versal values so that we can use the model to estimate the ICEC
cross sections in various systems without performing any ab initio
calculations.

III. THE R-MATRIX METHOD
A. Theory

We use the R-matrix method10 to calculate the ab initio
cross sections of the ICEC process. More specifically, we utilize its
implementation in the UKRmol+ suite.11

In the R-matrix method, we divide the configuration space into
two regions separated by the so-called R-matrix sphere of radius a.
In the inner region, the (N + 1)-electron eigenstates are found in the
form of the close-coupling expansion,

ΨN+1
k = Â∑

i,j
cijkΦ

N
i (x1, . . . , xN)ηij(xN+1)

+∑
m

bmkχ
N+1
m (x1, . . . , xN+1). (31)

The first term is a sum of antisymmetrized products of an N-electron
target state ΦN

i and a continuum spin-orbital ηij. The second term
contains the so-called L2 configurations where all N + 1 electrons are
bound in the target system. The x coordinates comprise the spatial
coordinates r and the spin index ξ. The coefficients cijk and bmk are
obtained from the diagonalization

(Ĥ + L̂)ΨN+1
k = EkΨ

N+1
k , (32)

where Ĥ is the (N + 1)-electron Hamiltonian and L̂ is the Bloch
operator ensuring the hermiticity of the diagonalized operator.

The R-matrix is constructed from these states’ surface ampli-
tudes and energies on the R-matrix sphere. The exchange and corre-
lation between the continuum electron and the target are neglected
in the outer region. Here, the interaction is treated on the level of the

TABLE I. Computational details of the R-matrix calculations for the systems studied.
The three numbers given in the orbitals column are the number of core/active/virtual
orbitals used. They were chosen from the set of molecular orbitals in energy order.
The column states specifies the number of target states used in the scattering calcula-
tions. BTO/GTO specifies the type of continuum basis functions used. For both types,
the first number specifies the highest partial wave included. For BTOs, the next two
numbers give the number of the radial B-splines and their order. The GTOs used were
taken from the continuum basis sets included in the UKRmol-scripts15 release.

System Basis Orbitals States a raf Continuum

(HeNe)+ cc-pVDZ 2/8/4 20 13 80 GTO, 6
C∞v , (HeH2)+ cc-pVTZ 0/7/4 20 13 80 GTO, 6
(ArHe)+ cc-pVDZ 6/4/0 4 17 80 BTO, 6, 30, 8
(LiNa)+ cc-pVDZ 6/2/0 2 51 120 BTO, 6, 30, 8
(LiNe)+ cc-pVDZ 3/4/0 14 30 120 BTO, 4, 30, 8

(HeNa)+ cc-pVDZ 5/2/0 4 26 120 BTO, 6, 30, 8
C2v , (HeH2)+ cc-pVTZ 0/7/4 20 13 80 GTO, 6
C∞v , (ArH2)+ cc-pVDZ 6/4/0 4 20 80 BTO, 4, 20, 9

first few terms of the multipole expansion of the Coulomb interac-
tion between the continuum electron and the charge density of the
target. The time-independent Schrödinger equation for the contin-
uum electron is translated into an equation for the R-matrix. Using
this equation, we propagate the R-matrix from the R-matrix sphere
outward to a sphere of radius raf. At this outer sphere, we use the R-
matrix to match the radial wave functions from the inner region to
their asymptotic form, obtaining the scattering matrices and, from
them, the sought-after cross sections.

B. Computational details
We studied eight different systems. The system-specific com-

putational details are gathered in Table I. We used MOLPRO12–14 to
optimize the molecular orbitals for the (positively charged) target
or the neutral target (target + one additional electron) using the
Hartree–Fock method. The optimization for the neutral target was
used only for (ArH2)+, because for this system, it better reproduced
the asymptotic threshold energies. The scattering models were built
from configurations

(core + active)N (continuum)1, (33)

(core + active)N+1, (34)

(core + active)N (virtual)1, (35)

where the target molecular orbitals are divided into four groups: the
core orbitals are doubly occupied in all N and (N + 1) electron states,
the active orbitals are used as an active space in the N-electron state
calculation, the virtual orbitals are only used in the (N + 1)-electron
configurations, and the remaining orbitals are discarded. For all sys-
tems, the multipole expansion of the potential in the outer region
was retained up to second order.

IV. RESULTS AND DISCUSSION
The first five systems studied (above the horizontal line in

Table I) are used to finalize the definition of the model, i.e., to spec-
ify how to obtain the parameters aA, aD, and C from the properties
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of the two species. The model is then benchmarked by comparing
the R-matrix cross sections with the VPA and the model estimates
at a distance R comparable to the size of the system. For bench-
marking, we use all eight systems from Table I and, additionally, the
ICEC cross sections in (H2O +H)+ studied in Ref. 16. The asymp-
totic thresholds of the considered processes can be found in the
Appendix.

A. Setting up the model
We performed the R-matrix calculations of ICEC cross sections

for the following systems: (HeNe)+, (ArHe)+, (LiNe)+, (LiNa)+,
and (HeH2)+ for a C∞v geometry, i.e., all three nuclei are in one
line. Calculations were run for a series of distances R between
the centers of mass of the two subsystems, and both ICEC pro-
cesses were considered for each system [e.g., the processes He +Ne+

→ He+ +Ne and He+ +Ne→ He +Ne+ for the system (HeNe)+].
Then, we have fitted the R-matrix cross sections to the sum (30) of
the VPA (4) and ETM (26) expressions with respect to R and Ei with
the fitting parameters being aA, aD, and C. The photoionization cross
sections were taken from Ref. 17 for the noble gases, from Ref. 18 for
H2, and from TOPbase19 for the alkali metals.

In Fig. 1, we compare the R-matrix, VPA, ETM, and VPA
+ ETM cross sections, where the ETM parameters have been speci-
fied by fitting VPA + ETM to the R-matrix results, for two possible
ICEC processes in (HeNe)+. For R ≥ 8 a.u., the asymptotic VPA (4)
is in agreement with the R-matrix cross sections. For all smaller R,
the ETM gives a better estimation of the ab initio data than the VPA.
By comparing the two contributions to the total fitted cross sections
(the dashed and dotted lines), we see that they have equal magni-
tudes for ≈7.3 a.u. and are comparable in an interval of width ⪅1 a.u.
around this value. In this region, it would be more accurate to add
the two contributions coherently, but the relative size of the relevant
interval with respect to the whole investigated interval justifies the
usage of the incoherent sum. The equilibrium distance in the HeNe+

dimer averaged over the asymptotically degenerate ground states is
≈4 a.u.,20 where the VPA underestimates the cross section by more
than two orders of magnitude. For this interatomic distance, the fit-
ted ETM slightly overestimates it but is far more accurate than the
VPA.

The aA and aD parameters of the model are the widths of the
Gaussians used to approximate the acceptor/donor orbitals. These
widths are related to the radii of the corresponding atoms. In our
model, we want to estimate the a parameters as

a = α r, (36)

where r is a well-defined and tabulated atomic radius and α is a con-
stant universal for all the systems. We correlate the fitted parameters
with the covalent21 and the van der Waals radii;22 see Fig. 2. We are
correlating a sum of squares of the fitted parameters for each process
rather than the a parameters themselves. This is because aA and aD
in formula (26) are not independent. We have, therefore, fitted the
combination mentioned above to ensure better convergence of the
fit and smaller resulting standard deviations.

This figure suggests that the covalent radius works better than
the van der Waals radius at being proportional to the width para-
meters of the used Gaussians. The linear fit results of both types of

FIG. 1. ICEC cross sections for He + Ne+ → He+ + Ne (blue) and He+ + Ne
→ He + Ne+ (red). Dots are the ab initio R-matrix results, the dashed line is the
VPA contribution (4), the solid line is the VPA + ETM contribution, and the dot-
ted line is the ETM contribution (26). The parameters of ETM were determined
by fitting the VPA + ETM to the R-matrix cross sections. For both processes,
Evph = 29.56 eV, which for the first process means Ei = 8.00 eV and E f = 4.97 eV
and vice versa for the reverse process.

atomic radii are in Table II. The rms of residuals also speaks in favor
of the covalent radius.

We analyzed the fitted values of C for the processes with respect
to the physical parameters of the respective particles. Based on this,
we impose an ad hoc dependence on the difference of the energies
of the incoming electron and the outgoing electron in the following
form:

C = C̄ exp(− ∣EAA − IPD∣
d

), (37)

where C̄ and d are fitting parameters. The C values for all the pro-
cesses and the fit to function (37) are shown in Fig. 3. The resulting
values of the fitting parameters are given in Table II.

The parameters of the ETM (26), (28), and (29) are now deter-
mined. The value of C is given via (37), where the values of C̄ and
d are given in Table II. The parameters aA and aD are proportional
to the covalent radius of the given atom, Eq. (36), where the value of
the constant of proportionality α is specified in Table II. For H2, the
effective radius is given as the sum of the covalent radius of H and
the half of the H2 bond length. We estimate the ICEC cross sections
with the sum (30) of the VPA (4) and ETM contributions.

B. Benchmarking the model
Now, we want to compare the cross sections estimated by the

model with the ab initio ones. We compare the values for three
other systems in addition to the systems used for fitting the model’s
parameters. These are (HeNa)+, (HeH2)+ for a C2v geometry, and
(ArH2)+ for a C∞v geometry.

The results for (HeH2)+ are shown in Fig. 4 in comparison
with the VPA and VPA + ETM. In this case, the R-matrix cross
sections do not converge to the asymptotics given by the VPA for-
mula; instead, they behave as approximately twice the VPA formula
(the dotted line). The reason could be that for molecules, the VPA
formula in Eq. (4) describes the cross sections averaged over the ori-
entations of the two particles, but here we have results for one fixed
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FIG. 2. Correlation of the fitted a2
A + a2

D

with r2
x,A + r2

x,D, where x stands for the
covalent radius (top panel) or the van
der Waals radius (bottom panel). The red
line is a linear fit. For H2, the hydro-
gen atomic radius plus half of the H2
bond length was used as the H2 effective
radius. In both graphs, the crosses for
(HeH2)+ (in C∞v ) and (HeNe)+ are
doubled because the fitted parameters
obtained from both directions of ICEC
coincide.

TABLE II. Above the horizontal line: Results of the linear fit of a = α rx of the data
shown in Fig. 2. Below the horizontal line: Results of the fit of function (37) to the data
shown in Fig. 3.

Parameter Value Std. error rms of res.

α (for rcov) 1.63 0.07 0.57
α (for rvdW) 0.88 0.10 1.39

C̄ 9 5 1.20
d 1.9 eV 0.3 eV

orientation of H2. Another possibility is that the target model is not
accurate enough or that the partial waves of the continuum electron,
not included in the calculation, contribute. Considering the rescaled
VPA, the R-matrix converges to this asymptote at R = 11 a.u. The
VPA + ETM cross sections give better estimates for R ⪅ 8 a.u. The
equilibrium distance of the HeH+2 dimer in the C2v orientation is

FIG. 3. Dependence of the fitted C parameters on the absolute value of the dif-
ference of the energy of the electron affinity of the acceptor and the ionization
energy of the donor. The red line is a fit of function (37). There is a double cross
for (HeH2)+ (in C∞v ) because the fitted C values obtained from both directions
of ICEC coincide.
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FIG. 4. ICEC cross sections for He +H+2 → He+ +H2 (blue) and He+ +H2
→ He +H+2 (red). The nuclei are in a C2v geometry, i.e., the line connecting the
two H nuclei is perpendicular to the line connecting the He nucleus and the cen-
ter of mass of H2. Dots are the ab initio R-matrix results, the dashed line is the
VPA, the solid line is the model VPA + ETM, and the dotted line is the VPA multi-
plied by 2. For both processes, Evph = 27.43 eV, which for the first process means
Ei = 12.00 eV and E f = 3.84 eV and vice versa for the reverse process.

≈4.5 a.u.23 At R = 5 a.u., the VPA underestimates the R-matrix by
almost two orders of magnitude, and the model is far more accurate.

In Table III, we can see the comparisons of the cross sections
obtained from the R-matrix, the VPA, and the model for one value

of R and E for each process. The R value was chosen among the ones
used for R-matrix calculations such that the energy of the ground
state of the target is minimal. The energy was selected so that the
R-matrix cross sections are reliable in the sense that the continuum
basis provides a good description and other ICEC channels (that we
have not included in the calculations) are closed. We compare the
logarithmic error (see Table III).

For all already mentioned processes, both included and
excluded from the fitting, the model estimates the R-matrix values
better than the VPA. For the chosen interparticle distances, it is,
on average, two orders of magnitude closer. For all systems, except
(HeNa)+, the model prediction is within one order of magnitude
from the ab initio cross section.

Apart from all the models we have considered so far, we have
also compared the R-matrix, VPA, and the model for ICEC in
(H +H2O)+. The computational details and full analysis of the
R-matrix results can be found in Ref. 16. Let us only summarize rel-
evant information. In all calculations, the H atom was on the C2 axis
of the H2O molecule. In H–H2O, the H was on the H side of the H2O
molecule, and in H2O–H, it was on the O side of the H2O molecule.
When the initial state is H+ +H2O, the process is denoted P, and
when it is H +H2O+, it is denoted W.

In our model, we used the covalent radius of hydrogen plus
half of the OH bond for the effective radius and included the first
excited state of H2O+ as the only state produced by the ICEC pro-
cess, motivated by the discussion in Ref. 16. For H2O–H ICEC-W,

TABLE III. Comparison of the ab initio R-matrix cross sections with the predictions of the VPA and the model (VPA + ETM) for one value of R and E for each process. The last
two columns compare the logarithmic errors of the two approximations. The processes above the upper horizontal line have been used to fit the model, as opposed to the ones
below. The R-matrix cross sections below the lower horizontal line were taken from Ref. 16; see the text for details.

Cross sections (Mb)

Process R (a.u.) E (eV) R-matrix VPA Model log ( VPA
R−matrix) log ( model

R−matrix)

HeNe+ → He+Ne 4.0 5.00 1.54× 102 1.02× 100 1.11× 103 −2.18 0.86
He+Ne→ HeNe+ 4.0 5.00 1.29× 103 7.80× 100 2.81× 103 −2.22 0.34
ArHe+ → Ar+He 5.0 13.00 7.35× 101 2.19× 100 5.10× 101 −1.53 −0.16
Ar+He→ ArHe+ 5.0 13.00 2.35× 100 2.34× 10−1 1.59× 101 −1.00 0.83
LiNe+ → Li+Ne 4.0 21.10 7.73× 100 7.06× 10−2 8.30× 100 −2.04 0.03
Li+Ne→ LiNe+ 4.0 21.10 2.73× 100 1.98× 10−1 2.12× 100 −1.14 −0.11
LiNa+ → Li+Na 10.0 2.00 7.99× 103 1.24× 10−3 1.24× 104 −6.81 0.19
Li+Na→ LiNa+ 10.0 2.00 1.83× 104 1.41× 10−3 1.41× 104 −7.11 −0.11
C∞v , HeH+2 → He+H2 5.0 11.00 5.44× 100 1.69× 10−1 6.60× 100 −1.51 0.08
C∞v , He+H2 → HeH+2 5.0 11.00 3.37× 101 1.01× 100 3.95× 101 −1.52 0.07

HeNa+ → He+Na 5.0 22.50 2.30× 100 5.81× 10−3 9.54× 10−2 −2.60 −1.38
He+Na→ HeNa+ 5.0 22.50 1.77× 101 1.07× 10−2 6.72× 10−1 −3.22 −1.42
C2v , HeH+2 → He+H2 5.0 14.00 3.63× 100 6.31× 10−2 4.00× 100 −1.76 0.04
C2v , He+H2 → HeH+2 5.0 14.00 1.03× 101 1.83× 10−1 1.59× 101 −1.75 0.19
C∞v , ArH+2 → Ar+H2 6.0 2.00 9.85× 103 9.86× 100 8.81× 103 −3.00 −0.05
C∞v , Ar+H2 → ArH+2 6.0 2.00 2.06× 103 3.94× 100 1.05× 104 −2.72 0.71

H–H2O ICEC-P 5.5 3.30 5.25× 103 6.87× 100 3.39× 102 −2.88 −1.19
H–H2O ICEC-W 5.5 3.82 3.97× 101 1.11× 100 1.86× 102 −1.55 0.67
H2O–H ICEC-P 5.8 4.02 1.54× 103 3.86× 100 1.66× 102 −2.60 −0.97
H2O–H ICEC-W 5.8 4.28 7.51× 100 7.03× 10−1 1.10× 102 −1.03 1.17
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the model overestimates the cross sections such that it is a similarly
good estimate as the VPA. In this system, the electron transfer con-
tributions to the cross sections for ICEC-P and ICEC-W differ by
more than two orders of magnitude. In our model, the only asym-
metry is introduced by the energies Ei and E f , which at the same
continuum energy switch values for ICEC-P and ICEC-W. The dif-
ference of these values is given by the difference of the ionization
energies of the states active in ICEC. In the (H +H2O)+ system,
this is not enough to describe the asymmetry of the two processes.
This is the reason for the noticeable underestimation of ICEC-P
and overestimation of ICEC-W by the model. Nevertheless, only for
the H2O–H ICEC-W process, we obtain an estimate similarly pre-
cise as the VPA, whereas, in the other three processes, the model is
approximately an order of magnitude closer to the R-matrix cross
sections.

V. CONCLUSION
We have developed an analytical model that predicts the inter-

atomic Coulombic electron capture cross sections beyond the virtual
photon approximation. While the new model is more accurate than
the virtual photon at distances where the two involved species
interact, it keeps a simple description of the whole system as two
independent entities. Furthermore, using R-matrix calculations, we
have demonstrated that the parameters of our novel formula can be
taken from the properties of each species. Our model reduces the
error by about two orders of magnitude on average with respect to
the virtual photon approximation at interatomic distances compara-
ble to the size of the involved species when tested against R-matrix
ICEC cross sections.
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APPENDIX: THE ASYMPTOTIC THRESHOLDS
FOR THE ICEC PROCESSES

In Table IV, we gather the asymptotic (R→∞) thresholds, i.e.,
the minimal energy of the incoming electron Ei required for the pro-
cess to be energetically allowed. The thresholds were evaluated using
the conservation of energy (5) and the conditions Ei ≥ 0 and E f ≥ 0.
In this table, we can find the thresholds for one ICEC process for
each system considered. The reverse of each process in this table has
a threshold of 0 eV. The ionization potentials necessary to evaluate
the thresholds were taken from Refs. 24 and 25.
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