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Conformal electrodynamics is a particularly interesting example of power Maxwell nonlinear electro-
dynamics, designed to possess conformal symmetry in all dimensions. In this paper, we propose a
regularized version of conformal electrodynamics, minimally regularizing the field of a point charge at the
origin by breaking the conformal invariance of the theory with a dimensionful “Born-Infeld-like” parameter.
In four dimensions the new theory reduces to the recently studied regularized Maxwell electrodynamics,
distinguished by its “Maxwell-like” solutions for accelerated and slowly rotating black hole spacetimes.
Focusing on three dimensions, we show that the new theory shares many of the properties of its four-
dimensional cousin, including the existence of the charged C-metric solution (currently unknown in the
Maxwell theory).
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I. INTRODUCTION

Nonlinear electrodynamics (NLE) arose out of attempts
to deal with the singular nature of the classical Maxwell’s
(linear) theory of electrodynamics when applied to point
charges. One of the first and certainly the most famous
nonlinear model was proposed by Born and Infeld almost
a hundred years ago [1]—it is distinguished by the
absence of birefringence and other unique properties [2].
Subsequently, other models were proposed to achieve
better regularization [3], to embody quantum corrections
to Maxwell’s theory coming from QED [4], and (much
later) string theory [5], or to offer a maximally symmetric
alternative to Maxwell’s theory [6] (see also [7] for the
“democratic formulation” of this theory).
NLE was also used as a “physical” source of regular

black holes, increasing its significance for physics of
spacetime, see [8,9] for original references and [10–12]
for more recent works employing double copy. In this
regard, one may formulate new criterion for the importance
of a given NLE model by demanding its compatibility with
essential spacetime geometries (going beyond spherical
symmetry) [13–16], thus mimicking the success of
Maxwell’s linear theory in this regard.
While predominantly studied in four dimensions, theo-

ries of nonlinear electrodynamics are also interesting in
lower-/higher-dimensional settings. Among these, con-
formal electrodynamics [17] is of particular interest. It is
a special example of power Maxwell electrodynamics [18],

designed in a way to preserveWeyl symmetry in any number
of dimensions, such that in four dimensions it reduces to
the Maxwell theory and yields dimension-independent
(four-dimensional) Coulomb law for a point charge.
In this paper, we propose a “regularized” version of

conformal electrodynamics. Namely, we design a one-
parametric generalization of conformal electrodynamics
characterized by a dimensionful Born-Infeld-like parameter
α, which yields a finite (minimally regularized) field of a
point charge in the origin. While the new regularized
conformal electrodynamics naturally breaks the Weyl sym-
metry of the original theory, it possesses a number of
interesting properties. Namely, in four dimensions it reduces
to the recently studied regularized Maxwell (RegMax)
electrodynamics, which is a unique NLE (constructed from
a single field invariant FμνFμν that admits Maxwell-like
Robinson-Trautman [13,16], C metric [15], and slowly
rotating [14] spacetimes; see also [19] for a recent dis-
cussion of optical properties of the corresponding RegMax
black holes). As we shall show in this paper, in three
dimensions the regularized theory admits a well-behaved
generalized charged Bañados-Teitelboim-Zanelli (BTZ)
black hole with improved thermodynamic charges that
are not plagued by at infinity logarithmically divergent
vector potential. Perhaps most importantly, it also admits a
novel chargedC-metric solution (at the moment unknown to
exist in three-dimensional Einstein-Maxwell theory). We
shall argue that the last property is very exceptional among
all three-dimensional theories of NLE.
Our paper is organized as follows. The basic properties of

NLE theories are reviewed in the next section. Conformal
electrodynamics together with an overview of its spherical
solutions are gathered in Sec. III. The novel regularized

*Contact author: david.kubiznak@matfyz.cuni.cz
†Contact author: otakar.svitek@matfyz.cuni.cz
‡Contact author: tahamtan@utf.mff.cuni.cz

PHYSICAL REVIEW D 110, 064054 (2024)

2470-0010=2024=110(6)=064054(12) 064054-1 © 2024 American Physical Society

https://orcid.org/0000-0003-0683-4578
https://orcid.org/0000-0003-0469-1040
https://orcid.org/0000-0002-3204-7722
https://ror.org/024d6js02
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.064054&domain=pdf&date_stamp=2024-09-17
https://doi.org/10.1103/PhysRevD.110.064054
https://doi.org/10.1103/PhysRevD.110.064054
https://doi.org/10.1103/PhysRevD.110.064054
https://doi.org/10.1103/PhysRevD.110.064054


conformal electrodynamics is proposed in Sec. IV. Focusing
on three dimensions, the corresponding generalized charged
BTZ black holes solutions are studied in Sec. V. The novel
charged C metric in 2þ 1 dimensions is constructed in
Sec. VI. We conclude in Sec. VII. Appendix A overviews
spherical charged black holes in Maxwell’s theory,
Appendix B is devoted to construction of rotating charged
BTZ black holes, and Appendix C discusses an alternative
“lift” of RegMax electrodynamics to other dimensions.

II. THEORIES OF NONLINEAR
ELECTRODYNAMICS

In this paper, we consider Einstein gravity coupled
to nonlinear electrodynamics, described by the following
d-dimensional action:

I ¼ 1

16π

Z
M
ddx

ffiffiffiffiffiffi
−g

p ðRþ 4L − 2ΛÞ; ð1Þ

allowing for a possibility of (negative) cosmological con-
stantΛ, which we parametrize in terms of the corresponding
anti–de Sitter (AdS) radius l as follows:

Λ ¼ −
ðd − 1Þðd − 2Þ

2l2
; ð2Þ

and relate it to the thermodynamic pressure according to,
e.g., [20]

P ¼ −
Λ
8π

: ð3Þ

Here,L is the electromagnetic Lagrangian, which is taken to
be a function of electromagnetic field strength invariants of
the Maxwell tensor Fμν ¼ ∂μAν − ∂νAμ (not considering its
covariant derivatives). In d number of spacetime dimen-
sions, there are up to ½d=2� such invariants, related to the
½d=2� nontrivial eigenvalues of Fμν. One convenient way for
extracting such eigenvalues is, for example, to consider the
traces of the even powers of the Maxwell tensor, namely,

TrðF2Þ; TrðF4Þ; … TrðF2½d=2�Þ; ð4Þ

see, e.g., [21] for a construction of quasitopological electro-
magnetism in terms of powers of such traces.
A canonical example of nonlinear electrodynamics is

the Born-Infeld (BI) theory [1], whose Lagrangian in all
dimensions is naturally written as (see, e.g., [22] for
examples of solutions in higher dimensions)

LBI ¼ −
b2ffiffiffiffiffiffi−gp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det

�
gμν þ

Fμν

b

�s
þ b2; ð5Þ

where b is the Born-Infeld dimensionful parameter (with
dimensions 1=L), which regularizes the field of a point

charge and determines the maximal field strength allowed
in the theory. Theories considered in this paper will
possess similar parameters.
In this paper, we focus on a simple class of nonlinear

theories that are characterized by a single electromagnetic
invariant1

L ¼ LðSÞ; S ¼ 1

2
FμνFμν: ð6Þ

To further restrict the possibilities, one might require that a
given theory of nonlinear electrodynamics should approach
that of Maxwell in the weak field approximation

lim
S→0

L ¼ LðMÞ þ oðSÞ; LðMÞ ¼ −
1

2
S; ð7Þ

a condition known as the “principle of correspondence.”
However, while such a condition is important in four
dimensions, there is no reason a priori to consider it in
other dimensions as well. In particular, theories studied in
this paper will obey the principle of correspondence in four
dimensions but will not approachMaxwell’s theory in other
dimensions.2

Introducing the following notation:

L;S ¼ ∂L
∂S

; L;SS ¼
∂
2L
∂S2

; ð8Þ

the “generalized Maxwell equations” read

d �D ¼ 0; dF ¼ 0; ð9Þ

where

Dμν ¼
∂L
∂Fμν ¼ 2L;SFμν: ð10Þ

We also obtain the following Einstein equation:

Gμν þ Λgμν ¼ 8πTμν; ð11Þ

where the generalized electromagnetic energy-momentum
tensor reads

Tμν ¼ −
1

4π

�
2FμσFν

σL;S − Lgμν
�
: ð12Þ

1In d ¼ 3 spacetime dimensions (of main interest in this paper)
this is really no restriction, as any NLE therein is characterized by
a single field invariant.

2Another criterion for restricting possible nonlinear theories of
electrodynamics is related to the birefringence phenomena,
causality, and energy conditions. In this work, we shall not deal
with these issues and refer the interested reader to recent papers
on this topic [23–25].
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We shall discuss various examples of nonlinear electrody-
namics below.

III. CONFORMAL ELECTRODYNAMICS

The conformal electrodynamics [17] is described by the
following Lagrangian:

LðCÞ ¼ 2

d
β4−dð−SÞd=4; ð13Þ

where β is a dimensionful coupling constant, with dimen-
sions 1=

ffiffiffiffi
L

p
. It plays a slightly different role compared to

parameter b introduced for the Born-Infeld model (5) since
it does not facilitate the Maxwell limit or determine
maximal field strength. Rather, it controls the strength of
coupling between electromagnetic and gravitational fields.
Obviously, in d ¼ 4 this coupling constant disappears
and (13) reduces to the Maxwell electrodynamics (7).
Moreover, upon theWeyl scaling gμν →Ω2gμν and Aμ →Aμ,
we find that

ffiffiffiffiffiffi−gp
LðCÞ remains in any number of dimensions

invariant. We also have

LðCÞ
;S ¼ −

1

2
β4−dð−SÞd4−1 ¼ d

4S
LðCÞ: ð14Þ

With this it is easy to check that the corresponding energy-
momentum tensor (12) is traceless, T ¼ Tμ

μ ¼ 0.

A. Spherical solutions

In any number of spacetime dimensions, the field of a
point charge in conformal electrodynamics is given by the
(four-dimensional) Coulomb law,

AC ¼ −
e
r
dt; ð15Þ

where e is a charge parameter of dimensions of length; in
what follows (and to simplify our notations) we restrict
ourselves to positive charges, e > 0. Then, e is related to
the electric charge according to the following formula:

Q ¼ 1

4π

Z
Sd−2

�D ¼ ωd−2

4π
e
d−2
2 β4−d; ð16Þ

where ωd is the volume of the d-dimensional sphere,
namely,

ωd ¼
2πðdþ1Þ=2

Γððdþ 1Þ=2Þ : ð17Þ

The corresponding spherically symmetric solution is
then given by [26,27] (see Appendix A for comparison
to solutions in standard Einstein-Maxwell theory)

ds2 ¼ −fCdt2 þ
dr2

fC

þ r2dΩ2
d−2;

AC ¼ −
e
r
dt; ð18Þ

where dΩ2
d stands for the standard element on Sd, and the

metric function fC reads

fC ¼ 1 −
m
rd−3

þ 4

d
ed=2β4−d

rd−2
þ r2

l2
: ð19Þ

One can show that, when the above solution describes a
black hole, the corresponding thermodynamic quantities
are given by (see also [28,29])

M ¼ d− 2

16π
ωd−2m; T ¼ f0CðrþÞ

4π
; S ¼ ωd−2rd−2þ

4
;

ϕ ¼ e
rþ

; V ¼ ωd−2rd−1þ
d− 1

; P ¼ ðd− 1Þðd− 2Þ
16πl2

;

Πβ ¼
ðd− 4Þωd−2ed=2β3−d

2πdrþ
: ð20Þ

With these at hand, it is easy to verify that the following
extended first law holds:

δM ¼ TδSþ ϕδQþ VδPþ Πβδβ; ð21Þ

which reduces to the standard first law upon fixing the
cosmological constant Λ and the coupling constant β. The
above first law is accompanied by the corresponding
extended Smarr relation, which reads

ðd− 3ÞM ¼ ðd− 2ÞTSþ ðd− 3ÞϕQ− 2PV −
1

2
Πββ; ð22Þ

with the two related by Euler’s scaling argument. Note that
a conjugate quantity to the coupling constant β, Πβ, was
introduced in these relations. Such a quantity is necessary
for the validity of the Smarr relation, as is the case with
other theories characterized by dimensionful couplings, the
Born-Infeld theory, for example [30]. The physical mean-
ing of Πβ, which has dimensions of Ld−5=2, remains to be
explored.

B. Conformally charged BTZ black hole

Contrary to Maxwell’s case (see Appendix A), many of
the above formulas remain also valid in d ¼ 3 dimensions.
Let us state these explicitly for future reference. Namely, in
d ¼ 3, the conformal electrodynamics reduces to

LðCÞ
3 ¼ 2

3
βð−SÞ3=4; ð23Þ
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and admits the following charged BTZ black hole
solution [31–33] (see also [34] for its holographic studies):

ds2 ¼ −fCdt2 þ
dr2

fC

þ r2dφ2;

AC ¼ −
e
r
dt; ð24Þ

where the metric function reads

fC ¼ −mþ 4βe3=2

3r
þ r2

l2
: ð25Þ

It demonstrates a typical Reissner-Nordström-AdS-like
behavior with two, one extremal, or no black hole
horizons. In particular, in Fig. 1 we display an example
of a black hole with two horizons and compare it to other
charged BTZ black holes studied in this paper.
The solution is characterized by the following thermo-

dynamic charges:

Q ¼
ffiffiffi
e

p
β

2
; ϕ ¼ e

rþ
; M ¼ m

8
;

S ¼ πrþ
2

; T ¼ f0CðrþÞ
4π

¼ rþ
2πl2

−
βe3=2

3πr2þ
;

P ¼ 1

8πl2
; V ¼ πr2þ; Πβ ¼ −

e3=2

3rþ
: ð26Þ

Note that, contrary to what happens in Maxwell’s electro-
dynamics, cf. (A9), thermodynamic volume V here is the

“standard” 2D geometric volume. One can then easily
verify that the above thermodynamic quantities obey the
generalized first law (21) and the Smarr formula (22),
which now reduces to a simple relation,

TS ¼ 2PV þ 1

2
Πββ; ð27Þ

without explicit M and ϕQ terms.

IV. REGULARIZED CONFORMAL
ELECTRODYNAMICS

A. Constructing the theory

Let us now construct a theory that minimally regularizes
the conformal electrodynamics. More precisely, we seek a
theory whose vector potential of a pointlike charge in flat
space (written in spherical coordinates) takes the following
minimally regularized form in any number of dimensions:

ARC ¼ −
e

rþ r0
dt; r0 ¼

ffiffiffi
e

p
α

: ð28Þ

Here we have introduced a dimensionful Born-Infeld-like
parameter α, which plays the role of a maximum field
strength and has dimensions 1=

ffiffiffiffi
L

p
; the conformal electro-

dynamics is recovered upon setting

α → ∞: ð29Þ

Calculating the field invariant for the above field, we find

S ¼ −
α4e2

ðαrþ ffiffiffi
e

p Þ4 : ð30Þ

The generalized Maxwell equation (9) in d dimensions
then reads

�
LS

α2e
ðαrþ ffiffiffi

e
p Þ2 r

d−2
�

;r
¼ 0: ð31Þ

Upon integrating this equation and expressing r in terms of
S via (30), we recover

LS ¼ csd−4

ð1 − sÞd−2 ; ð32Þ

where c is some (rescaled) integration constant, and we
introduced a shorthand

s ¼
�
−
S
α4

�1
4

∈ ð0; 1Þ: ð33Þ

Expanding (32) for large α and comparing it to (14) fixes
the integration constant to c ¼ − 1

2
β4−dαd−4, giving

FIG. 1. Charged BTZ-like black holes. Here we display the
behavior of the metric function f (determining the horizons) for
charged BTZ-like black holes in various theories. Namely, the
solid black curve corresponds to the Reissner-Nordström-like
RegConf black hole, the red dash-dotted curve to a charged black
hole in conformal electrodynamics, and the blue dashed curve to
the charged BTZ black hole in Maxwell’s theory. The figure is
displayed for e ¼ 1, β ¼ 1, Λ ¼ −0.1, and α ¼ 1.
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LS ¼ −
1

2
β4−dαd−4

sd−4

ð1 − sÞd−2 : ð34Þ

The full Lagrangian is then obtained by integration

L ¼ −4α4
Z

s3LSds: ð35Þ

This yields the following regularized conformal (RegConf)
theory,

L ¼ 2αdβ4−dsd

d 2F1½d; d − 2; dþ 1; s� þ const; ð36Þ

where 2F1 is a hypergeometric function and the integration
constant needs to be fixed so that we recover the conformal
electrodynamics in the large α limit.
In particular, in the lowest dimensions d ¼ 3, 4, 5, 6, we

recover

L3 ¼ −α3β
�
s2 þ 2sþ 2 logð1 − sÞ

�
;

L4 ¼ −α4
�
s3 þ 3s2 − 6s

1 − s
− 6 logð1 − sÞ

�
;

L5 ¼ −
α5

β

�
s4 þ 4s3 − 18s2 þ 12s

ð1 − sÞ2 þ 12 logð1 − sÞ
�
;

L6 ¼ −
α6

β2

�
s5 þ 5s4 − 110s3=3þ 50s2 − 20s

ð1 − sÞ3

− 20 logð1 − sÞ
�
: ð37Þ

Obviously, L4 is nothing else than the regularized Maxwell
Lagrangian studied in [13–16,19].

B. Three dimensions

In what follows we shall focus on the regularized
conformal electrodynamics in d ¼ 3 dimensions. Let us
summarize here the corresponding formulas. The theory is
described by the following Lagrangian:

L ¼ −2βα3
�
sþ s2

2
þ lnð1 − sÞ

�
;

s≡
�
−
S
α4

�1
4

∈ ð0; 1Þ: ð38Þ

In addition to the dimensionful parameter β of the con-
formal electrodynamics, the theory is characterized by a
new dimensionful parameter α > 0, ½α2� ¼ ðlengthÞ−1, and
reduces to the conformal electrodynamics in 2þ 1 dimen-
sions upon setting

α → ∞: ð39Þ

Namely, we have

L ¼ 2

3
βð−SÞ34 − 1

2
β
S
α
þ 2βð−SÞ5=4

5α2
þOðα−3Þ; ð40Þ

the limit β → 0 yields the vacuum case. So the two
parameters α, β play two different roles: β is a coupling
constant controlling the strength of interaction of electro-
magnetic and gravitational fields, while α controls the
deviation of the Lagrangian from the conformal case. The
first and second derivatives of L with respect to S, which
are important for the field equations and the optical metric,
are given by

LS ¼ −
1

2

β

α

1

sð1 − sÞ ; LSS ¼
β

8α5
ð2s − 1Þ
s5ðs − 1Þ2 : ð41Þ

It is interesting to compute the trace of energy-
momentum tensor (12) using (38) and (41) in the α → ∞
expansion

T ¼ Tμ
μ ¼

1

8π

β

α
SþOðα−2Þ: ð42Þ

Evidently, the parameter α is controlling the breaking of
conformal invariance for the model. In the limit of α ¼ ∞
we have T ¼ 0 which naturally corresponds to recovering
the original conformal model. Vanishing trace can also be
achieved by β ¼ 0, but that corresponds to a vacuum case,
which makes it a trivial statement.
We shall now turn to constructing simple (black hole)

solutions in this theory.

V. GENERALIZED CHARGED BTZ BLACK HOLE

Let us first show that the regularized conformal electro-
dynamics in d ¼ 3 dimensions admits a charged BTZ-like
black hole solution, generalizing (24). It takes the following
simple form:

ds2 ¼ −fRCdt2 þ
dr2

fRC
þ r2dφ2; ð43Þ

ARC ¼ −
αe

αrþ ffiffiffi
e

p dt; ð44Þ

where the metric function fRC reads

fRC ¼ 2αβe −m − 4
ffiffiffi
e

p
α2βrþ r2

l2

þ 4α3βr2 log

�
αrþ ffiffiffi

e
p

rα

�
: ð45Þ
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The corresponding field strength

F ¼ dARC ¼ Edr ∧ dt; E ¼ eα2

ðαrþ ffiffiffiffiffijejp Þ2 ; ð46Þ

approaches a finite value in the origin, E0¼Eðr¼ 0Þ¼ α2.
For large α (or alternatively large r) we recover the
conformal electrodynamics metric function

fRC ¼ fC −
βe2

r2α
þOð1=α2Þ: ð47Þ

On the other hand, near the origin, r → 0, we find3

fRC ¼ 2αβe −m − 4
ffiffiffi
e

p
α2βrþOðr2Þ: ð48Þ

Although the metric function remains finite at the origin,
the black hole solution possesses a singularity at r ¼ 0, as
can be seen, for example, by expanding the Ricci scalar. In
particular, setting Λ ¼ 0 for the moment, we find the
following expansions for the Ricci and Kretschmann
scalars:

R ¼ −
8

ffiffiffi
e

p
α2β

r
þOðlog rÞ;

K ¼ RαβγδRαβγδ ¼ 32eα4β
r2

þO

�
log r
r

�
: ð49Þ

This is to be compared to the vanishing Ricci scalar of the
conformal BTZ black hole (24), as well as to its (signifi-

cantly more divergent) Kretschmann scalar, KC ¼ 32e3β2

3r6
.

In order to have a black hole, we have to have Λ < 0.
Dependent on the choice of parameters, we then obtain
three types of black holes, see Fig. 2. Namely, since at
r ¼ 0 the metric function fRC remains finite,

fRC ¼ mc −m; mc ¼ 2αβe > 0; ð50Þ

if m < mc, we have the Reissner-Nordström branch, with
timelike singularity and two, one extremal, or no black hole
horizons. If m > mc, we have the Schwarzschild branch
with spacelike singularity and one black hole horizon.
Finally, m ¼ mc is the marginal case, characterized by
fRCðr ¼ 0Þ ¼ 0. Formally, the origin becomes a “horizon,”
though the curvature scalars still diverge there. At the same
time, this “place” is pointlike since we use the area gauge for
the coordinate r. This behavior is similar to what happens in
the scalar field spacetimes in four-dimensional general

relativity [35], where a notion of the so-called “black point”
is used for its description. This type of null pointlike
singularity prevails also for scalar field spacetimes in the
presence of nonlinear electrodynamics [36].
The above generalized BTZ black hole can be assigned

the following thermodynamic quantities:

M ¼m
8
; S¼ πrþ

2
; V ¼ πr2þ;

T ¼ f0RCðrþÞ
4π

; ϕ¼ αe
αrþ þ ffiffiffi

e
p ; Q¼ β

ffiffiffi
e

p
2

; ð51Þ

together with

Πβ ¼
r2þα3

2
log

�
1þ

ffiffiffi
e

p
αrþ

�
−
eαð2α2r2þ þ αrþ

ffiffiffi
e

p þ eÞ
4ðαrþ

ffiffiffi
e

p þ eÞ ;

Πα ¼
3

2
r2þα2β log

�
1þ

ffiffiffi
e

p
αrþ

�

þ βðe2 − 9eα2r2þ − 2e3=2αrþ − 6
ffiffiffi
e

p
α3r3þÞ

4ðα2r2þ þ 2αrþ
ffiffiffi
e

p þ eÞ : ð52Þ

It is easy to verify that these obey the following extended
first law:

δM ¼ TδSþ ϕδQþ VδPþ Παδαþ Πβδβ; ð53Þ

together with the corresponding Smarr relation

FIG. 2. Three types of RegConf black holes. Based on the
behavior of the metric function fRC near the origin, we distin-
guish three types of black holes: (i) Reissner-Nordström branch
(dot-dashed blue), (ii) Schwarzschild branch (dotted red), and
(iii) marginal casem ¼ mc (solid black). This is also compared to
a (naked singularity) m ¼ 0 solution in the Reissner-Nordström
branch (green dashed). The figure is displayed for e ¼ 1, β ¼ 1,
Λ ¼ −0.1, and α ¼ 1.

3Note that even though the Lagrangian (38) possesses
a logarithmically divergent term (for s → 1, when maximum
field strength is approached) both electromagnetic field [con-
sidering (46) or the invariant (30)] and metric function fRC
remain finite. This behavior corresponds to the four-dimensional
regularized Maxwell theory analyzed in [15].
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TS ¼ 2PV þ 1

2
Παδαþ 1

2
Πβδβ: ð54Þ

Unfortunately, contrary to their four-dimensional cousins,
the three-dimensional RegConf black holes do not seem to
admit any remarkable thermodynamic behavior.
So far we have focused on static RegConf black holes.

However, the rotating ones can easily be obtained by a
“boost trick” à la [37–39]—we present such solutions in
Appendix B. Here, we focus on a more interesting solution:
a solution describing RegConf accelerated black holes.

VI. NOVEL CHARGED C METRIC IN 2+ 1
DIMENSIONS

Recently there has been a lot of interest in the three-
dimensional Cmetric [40,41], see, e.g., [42,43] for analysis
of the solution and [44–46] for attempts at its thermody-
namic interpretation. Since its first discovery, the vacuum
solution [40,41] has been generalized to include the scalar
field [47] and most recently also to conformal electrody-
namics [48]. While the solution may not exist in Maxwell’s
theory (see below), in this section we generalize it to the
regularized conformal electrodynamics.

A. Accelerated BTZ black hole

The (2þ 1)-dimensional vacuum Cmetric is most easily
written in the so-called x − y coordinates [40–42] and reads

ds2 ¼ 1

Ω2ðx; yÞ
�
−FðyÞdt2 þ dy2

FðyÞ þ
dx2

GðxÞ
�
; ð55Þ

where the conformal factor is

Ω ¼ gðxþ yÞ; ð56Þ

with g an acceleration parameter (of dimensions of 1=L)
and the metric functions F and G that take the following
form:

F ¼ 1

2
c1y2 þ c2yþ c3 þ

1

g2l2
;

G ¼ −
1

2
c1x2 þ c2x − c3: ð57Þ

Such a metric can describe accelerated particlelike solu-
tions or black holes. Focusing on accelerated black holes
that are smoothly connected to a BTZ black hole, we set

c1 ¼ −2; c2 ¼ 0; c3 ¼ 1; ð58Þ

upon which

G ¼ x2 − 1; F ¼ 1 − y2 þ 1

g2l2
; ð59Þ

and (to preserve the signature of the spacetime) we have to
have x > 1 (or alternatively x < −1). More concretely, let
x∈ ðxmin; xmaxÞ be the appropriate range of coordinate x,
with xmin > 1. The zeros of the metric function F determine
the position of the black hole (yþ) and Rindler (yR)
horizons; explicitly, these are given by

yþ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2l2

p
gl

; yR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2l2

p
gl

: ð60Þ

We can now distinguish two cases: (i) the case of rapid
acceleration, which happens for xmax > yR, and in which
case both horizons are present and (ii) the case of slowly
accelerating black holes with no Rindler horizon, for
which xmax < yR.
To make connections with the four-dimensional C

metric, e.g., [49,50], let us perform the following change
of coordinates [42]:

r¼−
1

Ay
; x¼ coshðmϕÞ; t¼m2Aτ

ω
; A¼ g

m
; ð61Þ

upon which the metric takes a more familiar form,

ds2 ¼ 1

Ω2

�
−f

dτ2

ω2
þ dr2

f
þ r2dϕ2

�
; ð62Þ

where

f ¼ r2

l2
−m2ð1 −A2r2Þ;

Ω ¼ 1þAr coshðmϕÞ: ð63Þ

Here, m ¼ arccoshðxmaxÞ=π regulates the tension of the
wall pulling the black hole and ensures that ϕ∈ ð−π; πÞ,
and ω is not an independent parameter, but rather a
combination of other parameters, ensuring the proper
normalization of the proper time of an asymptotic observer.
We shall not attempt to review more properties of the

above solution here and refer the interested reader to the
original literature above. Instead, we proceed directly to
finding the corresponding charged generalization in regu-
larized conformal electrodynamics.

B. Regularized charged C metric

To find the charged generalization of the above vacuum
solution in regularized conformal electrodynamics, we
employ the Ansätze (55) and (56), and accompany it with
the following Ansatz for the vector potential:

A ¼ ψðyÞdt: ð64Þ

The Einstein equations together with the generalized
Maxwell equation then yield the following solution for

REGULARIZED CONFORMAL ELECTRODYNAMICS: NOVEL C … PHYS. REV. D 110, 064054 (2024)

064054-7



the metric functions appearing in the general form of the C
metric (55):

F ¼ 4βα3

g2
log

�
yþ α

g
ffiffiffi
e

p
�
þ c1

2
y2 þ c2yþ c3 þ

1

l2g2
;

G ¼ −
4βα3

g2
log

�
α

g
ffiffiffi
e

p − x

�
−
c1
2
x2 þ c2x − c3; ð65Þ

and

A ¼ αey
αþ ffiffiffi

e
p

gy
dt: ð66Þ

The solution looks remarkably similar to its four-
dimensional cousin in this theory, cf. Sec. VA in [15].
In particular, note that, when the cosmological constant
vanishes, the functions FðyÞ and GðxÞ have the following
property: FðwÞ ¼ −Gð−wÞ. Similar to the vacuum case, to
maintain a Lorentzian signature of the metric (55), it is
necessary that G > 0, which implies restrictions on the
domain of coordinate x. We postpone the detailed dis-
cussion of this solution to a future study. Here we only
make two remarks.
First, in the large α limit we recover the charged Cmetric

in conformal electrodynamics studied in [48], namely,

F ¼ 4

3
e3=2gβy3 þ c1

2
y2 þ c2yþ c3 þ

1

g2l2
;

G ¼ 4

3
e3=2gβx3 −

c1
2
x2 þ c2x − c3; ð67Þ

together with

A ¼ eydt: ð68Þ

Second, one can easily check that, while we were able to
construct the charged C metric for the conformal electro-
dynamics and its regularized generalization, the Ansatz (55)
together with (64) are incompatible with many other
theories of NLE, including the Maxwell theory. Namely,
starting with any NLE, and using the Ansatz (64), the
time component of the modified Maxwell equation,
ð∇ ·DÞt ¼ 0, can be once integrated, to yield

ψ ;y ¼
cðxÞ

Ωðx; yÞLSðy; xÞ
; ð69Þ

where c ¼ cðxÞ is an integration constant, a function of the
x coordinate only. However, since the corresponding Tμν

obeys Txy ¼ 0, we must also have Gxy ∝ Ω;xy ¼ 0, that is,
Ω has to be separable,

Ω ¼ ΩxðxÞ þ ΩyðyÞ: ð70Þ

Moreover, for the spacetime to describe the C metric, as we
know it, both such parts have to be nontrivial. Thus, the
Eq. (69) imposes a very strict restriction on the form of LS
for a given theory, namely,

LSðx; yÞ ¼
cðxÞhðyÞ
Ωðx; yÞ ; ð71Þ

for some function h ¼ hðyÞ. Obviously, for Maxwell, LS ¼
−1=2 and the previous equation cannot be satisfied.
Remarkably, for the regularized C-metric solution above,
we find

LS ¼
β

2gα
ffiffiffi
e

p ðyg ffiffiffi
e

p þ αÞ2
ðxþ yÞðxg ffiffiffi

e
p

− αÞ ; ð72Þ

which is precisely of the form above. It remains to be seen
whether the regularized conformal electrodynamics is the
most general theory for which Eq. (71) can be satisfied.

VII. SUMMARY

Conformal electrodynamics is a very interesting exam-
ple of a power Maxwell theory characterized by preserv-
ing the Weyl symmetry in any number of dimensions. In
four dimensions it coincides with the Maxwell theory,
while it breaks the principle of correspondence in any
other dimension.
In this paper, we have generalized the recently studied

four-dimensional RegMax electrodynamics to any number
of dimensions. A foundational feature of the new theory
(inherited from its four-dimensional cousin) is that it
minimally regularizes the field of a point charge—it is
characterized by a dimensionful Born-Infeld-like parameter,
which imposes a maximal bound on the field strength at the
position of the charge. In addition, we have designed our
theory so that in any number of dimensions it reduces to
the conformal electrodynamics (and, in particular, to the
Maxwell theory in four dimensions) in theweak field limit—
thence the name regularized conformal electrodynamics.
The newly introduced parameter α facilitates the regulari-
zation of the point charge field as can be seen from (46) and
at the same time directly controls the deviation of this new
theory from exact conformality as can be seen from (42).
Moreover, focusing on three dimensions, we have shown

that the new theory admits charged BTZ-like black holes
with vanishing at infinity vector potential, giving rise to a
much simpler thermodynamic interpretation than is the case
for the Maxwell charged BTZ black holes whose potential
logarithmically diverges at infinity. Even more remarkably,
the theory admits a three-dimensional generalization of a
charged C metric, thus providing a nontrivial example of
charged accelerating black holes in three dimensions, a
property it shares with its four-dimensional RegMax cousin.
We suspect that regularized conformal electrodynamics may
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be the most general theory for which the accelerated
charged black holes can be found in the above studied form.
The extension of the RegMax theory beyond four

dimensions is, of course, not unique. For example, instead
of demanding that the theory in the weak field limit
approaches that of the conformal electrodynamics, we
might have required it to approach the Maxwell electro-
dynamics instead, giving rise to genuine RegMax electro-
dynamics in all dimensions. Such a generalization is
presented in Appendix C. We shall return to it in our
future investigations.
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APPENDIX A: CHARGED BLACK HOLE
IN MAXWELL THEORY

The charged AdS black holes in Maxwell theory in
d > 3 number of spacetime dimensions take the following
standard form, e.g., [30]:

ds2 ¼ −fMdt2 þ
dr2

fM

þ r2dΩ2
d−2;

AM ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d − 2

2ðd − 3Þ

s
q

rd−3
dt; ðA1Þ

where dΩ2
d stands for the standard element on Sd, and the

metric function fM reads

fM ¼ 1 −
m
rd−3

þ q2

r2ðd−3Þ
þ r2

l2
: ðA2Þ

Here, the electric charge Q is given by

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd − 2Þðd − 3Þp

8π
ωd−2q; ðA3Þ

and the mass M reads

M ¼ d − 2

16π
ωd−2m: ðA4Þ

The remaining thermodynamic quantities are

T ¼ f0MðrþÞ
4π

; S ¼ ωd−2rd−2þ
4

;

ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d − 2

2ðd − 3Þ

s
q

rd−3þ
; V ¼ ωd−2rd−1þ

d − 1
: ðA5Þ

Together, they obey the standard first law of thermody-
namics,

δM ¼ TδSþ ϕδQþ VδP: ðA6Þ

The above solution is valid in d > 3 dimensions. For
d ¼ 3, one has instead the charged BTZ black hole [51,52].
It reads as follows:

ds2 ¼ −fMdt2 þ
dr2

fM

þ r2dφ2;

AM ¼ −Q logðr=r0Þdt; ðA7Þ

where

fM ¼ −m −
Q2

2
logðr=r0Þ þ

r2

l2
: ðA8Þ

Here, r0 is a dimensionful constant with dimensions of
length; often in the literature r0 is simply associated with
the AdS length scale, r0 ¼ l, e.g., [53]. The logarithmic
divergence renders calculation of the asymptotic mass a bit
problematic, see, e.g., [54] for a possible renormalization
procedure. In any case, the solution can be assigned the
following thermodynamic quantities [53]:

M ¼ m
8
; T ¼ f0MðrþÞ

4π
; S ¼ πrþ

2
; P ¼ 1

8πl2
;

ϕ ¼ −
Q
8
logðr=lÞ; V ¼ πr2þ −

Q2πl2

4
; ðA9Þ

note the departure of V from the standard geometric
volume. In any case, the above thermodynamic quantities
obey the above standard first law (A6).

APPENDIX B: ROTATING CHARGED BTZ
BLACK HOLES

Rotating charged BTZ-like black holes (in any NLE)
can be obtained from nonrotating ones by the following
trick [38,39]. Start from a static solution

ds2 ¼ −fdt2 þ dr2

f
þ r2dφ2;

A ¼ ψdt; ðB1Þ

and apply the following boost:

t ¼ T − ωϕffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p ; φ ¼ ϕ − ωTffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p : ðB2Þ

This, upon the right identification of the new coordinate
ϕ, yields the rotating and charged BTZ-like black hole
solution
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ds2 ¼ −N2FdT2 þ dR2

F
þ R2ðdϕþ NϕdTÞ2;

A ¼ ψffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p ðdT − ωdϕÞ; ðB3Þ

where

R2 ¼ r2 − ω2f
1 − ω2

; F ¼
�
dR
dr

�
2

f;

Nϕ ¼ −
ωðr2 − fÞ
R2ð1 − ω2Þ ; N ¼ r

R

�
dr
dR

�
: ðB4Þ

APPENDIX C: REGULARIZED MAXWELL’S
THEORY IN ALL DIMENSIONS

Regularization of Maxwell theory in d dimensions can
be achieved using the following prescription for the electric
field (thus avoiding logarithm in potential for three dimen-
sions) of a point charge:

EðrÞ ¼ e

ðrþ r0Þðd−2Þ
; r0 ¼

e
1

d−2

α
; ðC1Þ

which yields the following expression for derivative of the
Lagrangian:

LS ¼ −
1

2

1

ð1 − sÞd−2 ; s ¼ ð−SÞ 1
2ðd−2Þ

α
: ðC2Þ

Upon integration we arrive at

L ¼ −
S
2 2F1½d − 2; 2ðd − 2Þ; 2ðd − 2Þ þ 1; s�; ðC3Þ

where 2F1 is a hypergeometric function. Limit of the above
expression for α → ∞ gives the same (Maxwell)
Lagrangian irrespective of the dimension

lim
α→∞

L ¼ −
1

2
S; ðC4Þ

as desired. In few lower dimensions, we obtain the
following explicit results from (C3):

L3 ¼ −α2ðsþ log ð1 − sÞÞ; ðC5Þ

with s ¼
ffiffiffiffiffi
−S

p
α ,

L4 ¼ −α4
�
s3 þ 3s2 − 6s

1 − s
− 6 logð1 − sÞ

�
; ðC6Þ

with s ¼
ffiffiffiffiffi−S4

p
α [notice that it coincides with the correspond-

ing case in (37)], and

L5 ¼ −
1

2
α6
�
2s5 þ 5s4 þ 20s3 − 90s2 þ 60s

ð1 − sÞ2

þ60 logð1 − sÞ
�
; ðC7Þ

with s ¼
ffiffiffiffiffi−S6

p
α .

We have checked that contrary to RegConf presented in
the main text, the theory (C5) does not seem to give rise to
the (standard) C-metric solution in three dimensions.
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