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Under the (anti-)self-dual condition for orthonormal components of the Faraday tensor, 
the 3D Einstein–Maxwell system with a negati v e cosmological constant � admits a so- 
lution obtained by Kamata and Koikawa and later by Cataldo and Salgado in the most 
general form. Actually, Clément first obtained this solution and interpreted it as a regu- 
lar particle-like solution without horizon. Ne v ertheless, it has been erroneously stated in 

some literature that this Clément–Cataldo–Salgado (CCS) solution, locally characterized 

by a single parameter, describes a black hole e v en in the charged case as it reduces to the 
extremal rotating Bañados–Teitelboim–Zanelli (BTZ) solution in the vacuum limit and its 
curv ature inv ariants ar e constant. In this paper, we supplement Clément’s interpr etation by 

showing that there appears a parallelly propagated curvature singularity corresponding to 

an infinite affine parameter along spacelike geodesics at the location of the Killing hori- 
zon in the extremal rotating BTZ solution when the (anti-)self-dual Maxwell field is added. 
If the spatial coordinate θ is periodic, closed timelike curves exist near the singularity. It 
is also shown that the CCS solution is of Cotton type N (in contrast to charged rotating 

BTZ black holes which are of type I away from the horizon), and the energy-momentum 

tensor of the Maxwell field is of Hawking–Ellis type II. The metric solves the Einstein- �
equations also with a massless scalar field or a null dust fluid. We explicitly demonstrate 
that it belongs to the Kundt shear-free, nontwisting, and nonexpanding class of geome- 
tries, wher eas extr emal rotating BTZ black holes have expanding principal null directions. 
It means that the CCS metric r epr esents the specific null (i.e. “radiati v e”) Maxwell field 

generated by a singular source, rather than an extremal rotating BTZ black hole dressed in 

an (anti-)self-dual Maxwell field. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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1. Introduction 

Three-dimensional (3D) gravity has been studied v ery intensi v ely so far as a testing ground
for quantum gravity due to its simplicity [ 1 ]. In particular, the Bañados–Teitelboim–Zanelli
(BTZ) vacuum black-hole solution [ 2 ] in the presence of a negati v e cosmological constant � is
expected to provide clues to the description of black holes in quantum gravity. Since the num-
bers of independent components of the Riemann tensor and Ricci tensor are the same in three
dimensions, the BTZ spacetime is locally identical to the maximally symmetric anti-de Sitter
(AdS) spacetime. Ne v ertheless, their global structures are different as the BTZ spacetime is
obtained by identifications in the AdS spacetime [ 3 ]. 
© The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. This is an Open Access article distributed under the 
terms of the Creati v e Commons Attribution License ( https://creati v ecommons.org/licenses/by/4.0/ ), which permits unrestricted reuse, distribution, and 
reproduction in any medium, provided the original work is properly cited. 
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In the 3D Einstein–Maxwell- � system, the charged nonrotating BTZ solution was obtained 

in Ref. [ 2 ] and independently in Ref. [ 4 ]. Then, the charged rotating BTZ solution was obtained
by linear coordinate transformations from the nonrotating solution by Clément [ 5 ]. (See the
introduction in Ref. [ 6 ] for the history of this solution.) Ther efor e, the rotating and nonrotating
charged BTZ solutions are locally identical, b ut a gain, they are globally different if one uses a
periodic coordinate. The charged rotating BTZ solution for � < 0 , which corresponds to the
Kerr–Newman-AdS solution in four dimensions, can be extended for a wider range of � by
coordina te transforma tions [ 6 ]; howe v er, the e xtended solution for � ≥ 0 does not describe a
black hole due to Ida’s theorem [ 7 ]. 

In fact, other exact solutions exist in the 3D Einstein–Maxwell- � system besides the charged
rotating BTZ solution as summarized in Chapter 11 of the textbook [ 8 ]. Among them, there
is a charged solution obtained by Kamata and Koikawa [ 9 ], which reduces to the extremal
rotating BTZ solution in the uncharged limit. Unlike the charged BTZ solution, orthonor-
mal components of the Faraday tensor of the Kamata–Koikawa solution satisfy the so-
called self-dual or anti-self-dual condition 

1 and the curvature invariants are constant. As a
generalization of the Kamata–Koikawa solution, Cataldo and Salgado obtained the known 

most general stationary and axisymmetric solution under the (anti-)self-dual condition on the 
Maxwell field [ 10 ]. The Cataldo–Salgado solution is characterized by four parameters and
its curvature invariants are also constant. For some reason, only the Kamata–Koikawa solu-
tion is mentioned in García-Díaz’s textbook [ 8 ], whereas the Cataldo–Salgado solution is not
included. 

In Ref. [ 5 ], Clément pointed out that the Kamata–Koikawa solution has previously been pre-
sented in Eq. (29) in Ref. [ 11 ]. In fact, as we will show in the present paper, the Cataldo–
Salgado solution, including the Kamata–Koikawa solution as a special case, is also locally
identical to the Clément solution. For this reason, we will refer to this solution as the
Clément–Cataldo–Salgado (CCS) solution. As described in some literature [ 8 , 9 ], one might
expect that the CCS solution describes a black hole since the curvature invariants are con-
stant as the uncharged rotating BTZ solution. In Ref. [ 5 ], Clément interpreted the CCS so-
lution as a perfectly regular particle-like solution without horizon. Howe v er, in this wor k,
we supplement Clément’s interpretation by showing that there appears a parallelly propa- 
gated (p .p .) curvature singularity at the location of the Killing horizon in the extremal ro-
tating BTZ solution if the (anti-)self-dual Maxwell field is added. We also clarify the spe-
cific Cotton type of the spacetime and the Hawking–Ellis type of the energy-momentum
tensor. 

In this paper, we first explain some ma thema tical tools and re vie w the CCS solution and
the charged rotating BTZ solution in Section 2 . Then, we study the CCS solution in detail
in Section 3 . The summary of our main results and final remarks are gi v en in the final section.
Appendix A shows that the Cataldo–Salgado solution and the Clément solution are locally
identical. Appendix B explains the parameters of the Cataldo–Salgado solution. Throughout 
this article, the signature of the Minkowski spacetime is (−, + , +) , and a prime denotes differ-
entiation with respect to the argument. We adopt units such that c = 1 , and the conventions of 
curvature tensors such as [ ∇ ρ, ∇ σ ] V 

μ = R 

μ
νρσV 

ν and R μν = R 

ρ
μρν . We use κ := 8 πG instead 

of the gravitational constant G. 
1 This terminology differs from the usual one for the Maxwell field and will be explained in Section 2.2 . 

2/24 
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2. Preliminaries 
The action of the 3D Einstein–Maxwell- � system for the spacetime metric g μν and the U (1)
gauge field A μ is gi v en by 

S[ g μν, A μ] = 

∫ 

d 

3 x 

√ −g 

(
1 

2 κ
(R − 2�) − 1 

4 

F μνF 

μν

)
, (1) 

where R is the Ricci scalar and F μν := ∇ μA ν − ∇ νA μ is the Faraday tensor satisfying an identity
∇ [ ρF μν] ≡ 0 . We have omitted the boundary term in the action for simplicity. Variation of the
action gi v es the field equations 

G μν + �g μν = κ T μν, 

∇ νF 

μν = 0 , 
(2) 

where G μν is the Einstein tensor and the energy-momentum tensor T μν for the Maxwell field is
gi v en by 

T μν = F μρF 

ρ
ν − 1 

4 

g μνF ρσ F 

ρσ . (3) 

Recently, the field equations in this system have been fully solved without imposing any space-
time symmetry [ 12 ]. 

In this paper, we study stationary and axisymmetric solutions described in the coordinates
(t, r, θ ) by the following metric: 

d s 2 = − r 2 

R 

2 
f d t 2 + 

d r 2 

f 
+ R 

2 
(

d θ + 

h 

R 

2 
d t 

)2 

, (4) 

where f = f (r ) , R = R (r ) , and h = h (r ) . In this spacetime, 
√ −g = r holds, and a regular null

hypersurface r = r h defined by the condition f (r h ) = 0 is a Killing horizon. In the domain
f > 0 , natural orthonormal basis one-forms { E 

(0) 
μ , E 

(1) 
μ , E 

(2) 
μ } in the coordinate system ( 4 ) are

gi v en by 

E 

(0) 
μ d x 

μ = 

√ 

r 2 f 
R 

d t, E 

(1) 
μ d x 

μ = 

1 √ 

f 
d r, E 

(2) 
μ d x 

μ = R 

(
d θ + 

h 

R 

2 
d t 

)
, (5) 

of which the contravariant components are 

E 

(0) μ ∂ μ = 

1 √ 

r 2 f 

(
− R ∂ t + 

h 

R 

∂ θ

)
, E 

(1) μ ∂ μ = 

√ 

f ∂ r , E 

(2) μ ∂ μ = 

1 

R 

∂ θ . (6) 

Howe v er, the coor dinate system ( 4 ) does not cov er the Killing horizons, as the metric and the
natural basis ( 5 ) di v erge for f = 0 . To properly investigate the geometrical and physical prop-
erties, it is necessary to investigate the metric more carefully [ 6 ]. 

2.1. Kinoshita–Gundlach–Bourg–Davey quasi-local mass and angular momentum 

For general axisymmetric spacetimes in three dimensions, Kinoshita–Gundlach–Bourg–Davey 

(KGBD) quasi-local mass m and angular momentum j are defined by [ 13 , 14 ]: 

m := 

π

κ

(− �ψ μψ 

μ + K μK 

μ
)
, (7) 

j := 

1 

κ
ε μρσψ μ∇ ρψ σ

(
= −2 π

κ
ψ μK 

μ
)
, (8) 

where ψ 

μ = (∂ /∂ θ ) μ is the Killing vector generating axisymmetry. Here K 

μ is the generalized
Kodama vector defined in Refs. [ 13 , 14 ] by 

K 

μ := −1 

ε μρσ∇ ρψ σ , (9) 

2 
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where ε μρσ is the totally antisymmetric volume three-form. The vector K 

μ shares the same prop-
erties as the Kodama vector in n (≥ 3) dimensions [ 15 , 16 ]. If ψ 

μ is hypersurface-orthogonal,
j = 0 holds and then m and K 

μ reduce to the Misner–Sharp quasi-local mass [ 17 , 18 ] and the
Kodama vector [ 15 , 16 ] in three dimensions ( n = 3 ), respecti v ely. In the spacetime ( 4 ), the gen-
eralized Kodama vector is given by 

K 

μ∂ μ = 

1 

2 r 

(
2 RR 

′ ∂ t − h 

′ ∂ θ
)
. (10) 

For the rotating BTZ vacuum solution [ 2 ], m and j are constants and the metric is written as
[ 6 ]: 

d s 2 = − f d t 2 + f −1 d r 2 + r 2 
(

d θ − 4 G j 
r 2 

d t 
)2 

, 

f (r ) = −�r 2 − 8 Gm + 

(4 G j) 2 

r 2 
. 

(11) 

Depending on the parameters m and j, the spacetime admits two Killing horizons, at most.
They are located at r = r h determined by f (r h ) = 0 , namely, r h = r ±, where 

r 2 ± := 

4 Gm 

(−�) 

(
1 ±

√ 

1 + �
j 2 

m 

2 

)
. (12) 

The extremal rotating BTZ vacuum solution is realized for 

| m | = 

√ −� | j| . (13) 

In such a case the metric function becomes 

f (r ) = (−�) 
( r 2 − r 2 ex ) 

2 

r 2 
, (14) 

with (assuming j > 0 ) one double-degenerate Killing horizon located at r = r ex , where 

r 2 ex := 

4 G j √ −�
= 

4 Gm 

(−�) 
. (15) 

Recall that, in the rotating ( j � = 0 ) BTZ vacuum solution, r = 0 is a coordinate singularity
and the spacetime can be anal yticall y extended using the coordinate y := r 2 into the region of 
y < 0 . In the coordinates (t, y, θ ) , the metric ( 11 ) is written as 

ds 2 = −(−�y − M )d t 2 − 8 G j d t d θ + 

d y 

2 

4 y f̄ 
+ y d θ2 

= − f̄ d t 2 + 

d y 

2 

4 y f̄ 
+ y 

(
d θ − 4 G j 

y 

d t 
)2 

, 

f̄ (y ) := −�y − M + 

(4 G j) 2 

y 

, 

(16) 

w here M = 8 Gm , w hich gi v e the determinant of the metric det (g) = −1 / 4 , and the nonzero
components of the inverse metric as 

g 

tt = − 1 

f̄ 
, g 

tθ = −4 G j 

y f̄ 
, g 

yy = 4 y f̄ , g 

θθ = −�y + M 

y f̄ 
. (17) 

Because the metric and its inverse are analytic at y (= r 2 ) = 0 for j � = 0 , the spacetime in
the region of y > 0 can be anal yticall y extended beyond y = 0 into the region of y < 0 . As
g 

μν ( ∇ μy )( ∇ νy ) | y =0 = g 

yy | y =0 = 4(4 G j) 2 > 0 , y = 0 is a regular timelike hypersurface. 2 
2 In Ref. [ 19 ], the authors use the singular coordinates (t, r, θ ) of Eq. ( 11 ) and claim that r = 0 is singular 
based on the analysis of the holonomy operator on a closed path (i.e. Wilson loop) around r = 0 . 
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2.2. Clément–Cataldo–Salgado solution 

Cataldo and Salgado obtained the most general stationary and axisymmetric solution known
by assuming a self-dual or anti-self-dual condition imposed on the orthonormal basis compo-
nents of the electric and magnetic fields [ 10 ]. It can be written in the form of the line element ( 4 )
in the coordinates (t, r, θ ) with the metric functions gi v en by Eqs. (40)–(42) in Ref. [ 10 ], namely 

f (r ) = ( −�) 
( r 2 − D ) 2 

r 2 
, 

R (r ) = 

√ 

r 2 + 

κC 

2 
0 

2(−�) 
ln | r 2 − D | , 

h (r ) = ε
(

D 

√ −� + 

κC 

2 
0 

2 

√ −�
ln 

∣∣r 2 − D 

∣∣), 

(18) 

while the gauge field is 

A μ d x 

μ = 

1 

2 

C 0 ln | r 2 − D | 
(
ε d t + 

d θ√ −�

)
. (19) 

Using the useful identities √ 

r 2 f = 

√ −� (r 2 − D ) , 

h + ε
√ 

r 2 f = ε
√ −� R 

2 , 

h − ε
√ 

r 2 f = ε
√ −� R 

2 − 2 ε
√ 

r 2 f 

(20) 

in the region of r 2 > D , the metric can be rewritten in a simple form: 

ds 2 = ( −�) 
[
R 

2 − 2( r 2 − D ) 
]

dt 2 + 2 ε
√ −�

[
R 

2 − (r 2 − D ) 
]

d t d θ + R 

2 d θ2 + 

d r 2 

f 
, (21) 

and the inverse metric is given by 

g 

tt = 

R 

2 

�(r 2 − D ) 2 
, g 

tθ = ε
R 

2 − (r 2 − D ) √ −�(r 2 − D ) 2 
, 

g 

θθ = −R 

2 − 2(r 2 − D ) 
(r 2 − D ) 2 

, g 

rr = f . 

(22) 

The nonzero components of the Maxwell field F μν and F 

μν are gi v en by 

F tr = − ε C 0 r 
r 2 − D 

, F rθ = 

C 0 r √ −� (r 2 − D ) 
, 

F 

tr = ε
C 0 

r 
, F 

rθ = 

√ −�
C 0 

r 
, 

(23) 

and hence the main Maxwell electromagnetic invariant is vanishing, 

F μνF 

μν = 0 . (24) 

As shown in Appendix A , this Cataldo–Salgado solution is locally identical to Clément’s solu-
tion gi v en by Eq. (29) in Ref. [ 11 ], namely, one solution can be obtained by coordinate trans-
formations from the other. For this reason, we will refer to this solution as the CCS solution. 

Apart from the (negati v e) cosmological constant �, the CCS solution contains two continuous
r eal par ameter s , D and C 0 , and also a discr ete par ameter ε = ±1 , introduced alread y in Refs.
[ 9 , 10 ]. In fact, the original form of the solution presented in Ref. [ 10 ] includes two additional
parameters C and E , but we have set C = 1 and E = 0 by using the coordinate freedom and
suitable redefinitions of the other parameters, as shown explicitly in Appendix B . Although
5/24 
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those additional parameters C and E possibly may have global meanings, in this paper we focus
on the local properties of the solution. 

Moreover, one can also set D = 0 in the charged case C 0 � = 0 by coordinate transformations 
as shown in Appendix B , so that C 0 is the only continuous parameter characterizing the CCS
solution. Howe v er, by setting D = 0 , we miss the limit from the CCS solution to the Kamata–
Koikawa solution [ 9 ] for κC 

2 
0 = −2�D . For this reason, we will keep D arbitrary in the follow-

ing analysis. 
Since the CCS solution reduces to the extremal rotating BTZ vacuum solution for C 0 = 0 ,

the parameter C 0 is related to the electric charge Q E 

, while the parameter D corresponds to
the extreme horizon r 2 ex of the vacuum BTZ black hole in view of Eq. ( 14 ). In fact, C 0 = Q E 

holds, as can be immediately seen from the asymptotic behavior r → ∞ of the electric field
component F 

tr gi v en by Eq. ( 23 ) (provided r is the radial distance from the charge). Ther efor e,
the constant factor which occurs in Eq. ( 18 ) is actually κC 

2 
0 = 8 πG Q 

2 
E 

. 
On the other hand, the physical meaning of the discrete parameter ε = ±1 is twofold. First,

since the metric ( 21 ) shows that changing the sign of ε is equivalent to the transformation of 
time re v ersal t ↔ −t , the two possibilities ε = ±1 r epr esent the choices of the time orientation.
Second, it denotes two possible types of the electromagnetic field, namely, 

� ε = +1 : self-dual Maxwell field, 
� ε = −1 : anti-self-dual Maxwell field, 

which is exhibited by the frame components of the Faraday tensor F ( a )( b) := F μν E 

μ

(a ) E 

ν
(b) . With

the orthonormal basis one-forms ( 5 ) in the domain r 2 > D , the nonzero components of F ( a )( b) 

are 

F ( 0)( 1) = −F ( 1)( 0) =: E, 

F ( 2)( 1) = −F ( 1)( 2) =: B, 
(25) 

where the electric component E and the magnetic component B of F ( a )( b) are gi v en by 

E = ε B = −ε
C 0 

R 

. (26) 

Hence, the self-dual condition E = B and the anti-self-dual condition E = −B introduced in 

Ref. [ 9 ] are satisfied for ε = 1 and ε = −1 , respecti v ely, and a self-dual solution is the time
re v ersal of an anti-self-dual solution. 

Using ψ 

μ∂ μ = ∂ θ and Eq. ( 10 ), which for Eq. ( 18 ) is 

K 

μ∂ μ = ∂ t + 

κC 

2 
0 

2 

√ −� | r 2 − D | 
( 1 √ −�

∂ t − ε ∂ θ

)
, (27) 

we compute the KGBD mass ( 7 ) and the KGBD angular momentum ( 8 ) to obtain 

m = −ε
√ −� j = 

1 

8 G 

[ 

2 D (−�) − κC 

2 
0 

(
1 − ln 

∣∣r 2 − D 

∣∣)] 

. (28) 

While the CCS solution ( 18 ) reduces to the extremal rotating BTZ vacuum solution ( 11 ) for
 0 = 0 , it satisfies the extremality condition ( 13 ) independently of the parameters D , C 0 , and ε.

2.3. Char g ed r otating BTZ solution 

In this subsection, for comparison with the CCS solution we re vie w the charged rotating BTZ
solution. In Ref. [ 5 ], Clément obtained the so-called charged rotating BTZ solution in the sys-
tem ( 1 ) with � < 0 . After suitable reparametrizations, the solution is written in the form of the
6/24 
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line element ( 4 ) with the metric functions gi v en by 

f (r ) = −�r 2 − M − κQ 

2 ln r, 

R (r ) = 

√ 

r 2 + 

ω 

2 

(−�)(1 − ω 

2 ) 

(
M + κQ 

2 ln r 
)
, 

h (r ) = − ω √ −� (1 − ω 

2 ) 

(
M + κQ 

2 ln r 
)
, 

(29) 

while the gauge field is 

A μd x 

μ = − Q √ 

1 − ω 

2 
ln r 

(
d t − ω √ −�

d θ

)
. (30) 

We refer to the solution gi v en by Eqs. ( 29 ) and ( 30 ) as the charged rotating BTZ solution in the
Clément form . The nonzero components of the inverse metric are given by 

g 

tt = − ω 

2 f + �r 2 

�r 2 f (1 − ω 

2 ) 
, g 

tθ = 

ω( f + �r 2 ) √ −� r 2 f (1 − ω 

2 ) 
, 

g 

θθ = 

f + ω 

2 �r 2 

r 2 f (1 − ω 

2 ) 
, g 

rr = f . 

(31) 

This solution is parameterized by three constants, namely ω ( � = ±1) , M, and Q , and r equir es
� < 0 in order for the metric to be r eal. (A differ ent parametrization for a wider range of � has
been presented in Ref. [ 6 ].) Since there is a curvature singularity at r = 0 for Q � = 0 , the domain
of r is restricted to r ∈ (0 , ∞ ) . 

The nonzero components of the Maxwell field F μν and F 

μν are gi v en by 

F tr = 

Q √ 

1 − ω 

2 r 
, F rθ = 

ωQ √ 

−�(1 − ω 

2 ) r 
, 

F 

tr = − Q √ 

1 − ω 

2 r 
, F 

rθ = 

ωQ 

√ −�√ 

1 − ω 

2 r 
, 

(32) 

which gi v e the f ollowing main Maxwell electromagnetic in variant as 

F μνF 

μν = −2 Q 

2 

r 2 
. (33) 

We note that, although the gauge field A μ and the Faraday tensor F μν become pure imaginary
if a condition −1 < ω < 1 is not satisfied, the energy-momentum tensor T μν remains real e v en
in such a case. With the orthonormal basis one-forms ( 5 ), the nonzero components of F ( a )( b) 

are 

E := F ( 0)( 1) = −F ( 1)( 0) = 

Q √ 

1 − ω 

2 R 

, 

B := F ( 2)( 1) = −F ( 1)( 2) = −ω 

√ 

f 
−�r 2 

E, 

(34) 

where f (r ) is gi v en by Eq. ( 29 ). As they do not satisfy the relation in Eq. ( 26 ), the charged
rotating BTZ solution is neither self-dual nor anti-self-dual. We note that the solution is purely
electric in the nonrotating limit ω → 0 . In contrast, the CCS solution reduces to the massless
BTZ vacuum solution in the nonrotating limit gi v en by D → 0 and C 0 → 0 . 

The KGBD mass and the KGBD angular momentum are gi v en by 
7/24 
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m = 

1 + ω 

2 

8 G(1 − ω 

2 ) 

(
1 

2 

r f ′ − f 
)

+ 

πQ 

2 

2(1 − ω 

2 ) 

(
1 + 

ω 

2 

2�r 
f ′ 

)

= 

1 + ω 

2 

8 G(1 − ω 

2 ) 
(M + 8 πGQ 

2 ln r ) − πω 

2 Q 

2 

1 − ω 

2 

(
1 + 

2 πGQ 

2 

�r 2 

)
, (35) 

j = 

ω 

4 G 

√ −�(1 − ω 

2 ) 

(
1 

2 

r f ′ − f 
)

= 

ω 

4 G 

√ −�(1 − ω 

2 ) 

(
M + 8 πGQ 

2 ln r − 4 πGQ 

2 ) . (36) 

We note that m and j are nonconstant in general for Q � = 0 . We also observe that j = 0 is
possible for ω = 0 with Q � = 0 . 

In Ref. [ 20 ], the authors identified the global mass M global , charge Q global , and angular mo-
mentum J global as conserved quantities by the Regge–Teitelboim Hamiltonian approach. In the 
units such that 8 πG = κ = 1 / 2 and −� = 1 , our parameters M and Q are identical to 

˜ M and
˜ Q in Ref. [ 20 ], respecti v ely, and hence M global , J global , and Q global are gi v en by 

M global = 

1 

1 − ω 

2 

(
(1 + ω 

2 ) M − 1 

2 

ω 

2 Q 

2 
)

, 

J global = 

2 ω 

1 − ω 

2 

(
M − 1 

4 

Q 

2 
)

, Q global = 

Q √ 

1 − ω 

2 
. 

(37) 

With 8 πG = 1 / 2 and −� = 1 , the KGBD mass ( 35 ) and the KGBD angular momentum ( 36 )
become 

m = 2 π

[
1 

1 − ω 

2 

(
(1 + ω 

2 ) M − 1 

2 

ω 

2 Q 

2 
)

+ 

1 + ω 

2 

2(1 − ω 

2 ) 
Q 

2 ln r + 

ω 

2 Q 

4 

16(1 − ω 

2 ) r 2 

]
, (38) 

j = 2 π

[
2 ω 

1 − ω 

2 

(
M − 1 

4 

Q 

2 
)

+ 

ω 

1 − ω 

2 
Q 

2 ln r 
]
. (39) 

Interestingly, up to the normalization factor 2 π , the constant terms in the right-hand sides are
e xactl y M global and J global , respecti v ely. 

Clément’s charged rotating BTZ solution ( 29 ) admits an extremal Killing horizon if M and Q
satisfy the relation 

M = 4 πGQ 

2 
[

1 − ln 

(
4 πGQ 

2 

−�

)]
. (40) 

The location of the extremal horizon r = r ex is determined by f (r ex ) = f ′ (r ex ) = 0 such as 

r ex = 

√ 

4 πGQ 

2 

−�
. (41) 

Evaluating Eqs. ( 35 ) and ( 36 ) on r = r ex , we obtain 

m (r ex ) = 

πQ 

2 

2(1 − ω 

2 ) 
, j(r ex ) = 0 . (42) 

In particular, the KGBD quasi-local angular momentum j vanishes on the extremal horizon. 
Unfortuna tely, the charged rota ting BTZ solution in the Clément form ( 29 ) cannot treat the

extremal case in vacuum . In the uncharged case Q = 0 , the metric in Eq. ( 4 ) with Eq. ( 29 )
8/24 
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becomes 

ds 2 = −F d t 2 + F 

−1 d R 

2 + R 

2 
(

d θ − Mω √ −� (1 − ω 

2 ) R 

2 
d t 

)2 

, 

F (R ) := 

r 2 

R 

2 
f = −�R 

2 − 1 + ω 

2 

1 − ω 

2 
M + 

M 

2 ω 

2 

( −�) ( 1 − ω 

2 ) 2 R 

2 

= 

[ M + �(1 − ω 

2 ) R 

2 ][ Mω 

2 + �(1 − ω 

2 ) R 

2 ] 
( −�)( ω 

2 − 1) 2 R 

2 

(43) 

in the coordinates (t, R, θ ) , which is locally maximally symmetric and identical to the metric in
Eq. ( 11 ) with Eq. ( 45 ) below. 

The solution admits two Killing horizons (at most) in the region y > 0 (recall that y := R 

2 ),
and their locations y = y 1 and y = y 2 are the roots of F (R ) = 0 , namely 

y 1 = 

Mω 

2 

( −�)( 1 − ω 

2 ) 
, y 2 = 

M 

( −�)( 1 − ω 

2 ) 
. (44) 

As ω 

2 � = 1 is assumed in the Clément form, the extremal case y 1 = y 2 cannot be treated. 
Let us show this fact differently. In the uncharged case Q = 0 , the KGBD mass ( 35 ) and

angular momentum ( 36 ) for Clément’s charged rotating BTZ solution reduce to the following
constants: 

m = 

1 + ω 

2 

8 G(1 − ω 

2 ) 
M, j = 

Mω 

4 G 

√ −� (1 − ω 

2 ) 
. (45) 

The above equations are solved for M and ω to give 

M = ∓8 G 

√ 

m 

2 + � j 2 , ω = 

m ±
√ 

m 

2 + � j 2 √ −� j 
. (46) 

Under the extremality condition ( 13 ), namely m = ±√ −� j , we obtain 

M = 0 , ω = ±1 , (47) 

where the latter is not allowed in the Clément form. In fact, m and j are then undetermined in
Eq. ( 45 ). Hence, the extreme case in vacuum cannot be treated properly under the parametriza-
tion ( 43 ). 

This is also the case under a new parametrization of the charged rotating BTZ solution for a
wider range of � introduced in Ref. [ 6 ]. In Ref. [ 6 ], the gauge field and the metric functions are
written as 

A μdx 

μ = −Q ln r (dt − a dθ ) , (48) 

R (r ) = 

√ 

ζ r 2 + a 

2 (M + κQ 

2 ln r ) , (49) 

f (r ) = −�r 2 − M − κQ 

2 ln r, (50) 

h (r ) = −a (M + κQ 

2 ln r ) , (51) 

which are parametrized by M, a , and Q . While M and Q are the same as in the Clément form,
the rotation parameter a and the constant ζ are related to ω as 

a = 

ω √ −� (1 − ω 

2 ) 
, ζ = 

1 

1 − ω 

2 
. (52) 

Those two constants satisfy 

ζ 2 − ζ + a 

2 � = 0 , (53) 
9/24 
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which shows 

ζ = 

1 

2 

(
1 ±

√ 

1 − 4 a 

2 �
)

. (54) 

In this new parametrization, ther e ar e two branches of solutions depending on the sign in
Eq. ( 54 ). In the uncharged case ( Q = 0 ) for ζ � = 0 , one can write both branches of solutions
in the same form as 

d s 2 = −F d ̄t 2 + F 

−1 d R 

2 + R 

2 
(

d θ − ζaM 

R 

2 
d ̄t 

)2 

, 

F (R ) = −�R 

2 − ζ (2 ζ − 1) M + 

ζ 2 a 

2 M 

2 

R 

2 
, 

(55) 

where t̄ := t/ζ . The solution admits two Killing horizons (at most) in the region of y > 0 , and
their locations y = y ± are roots of F (R ) = 0 , namely 

y ± = 

ζM(2 ζ − 1 ± 1) 
2(−�) 

, (56) 

where we have used Eq. ( 53 ). Clearly, the extremal case y + 

= y − is not possible for ζM � = 0 . 
In the uncharged case Q = 0 , the KGBD mass ( 35 ) and angular momentum ( 36 ) under the

new parametrization become 

m = 

ζ (2 ζ − 1) 
8 G 

M , j = 

ζ

4 G 

aM , (57) 

which gi v e 

m − ε 
√ −� j = 

ζM 

8 G 

(
2 ζ − 1 − 2 εa 

√ −�
)
. (58) 

As the bracket in the right-hand side cannot be zero due to Eq. ( 54 ), the extremality condition
( 13 ), namely m = ε 

√ −� j , with ε = ±1 , in the uncharged case is not satisfied for ζM � = 0 .
Hence, the extremal case in vacuum cannot be treated in the new parametrization as well . 

The results obtained in this subsection are summarized in Fig. 1 . We note that, unlike the
extremal charged rotating BTZ solution in three dimensions, the extremal Kerr–Newman-AdS 

solution in four dimensions reduces to the extremal Kerr-AdS solution in the uncharged limit
Q → 0 . 

3. Properties of the CCS solution 

In this section, we investigate geometrical and physical properties of the CCS solution in detail
to gi v e its physical interpretation. 
10/24 
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3.1. Geodesics and locally AdS infinity 

In the original coordinate system (t, r, θ ) with the metric in Eq. ( 21 ), we consider the domain of 
r gi v en by r ∈ (0 , ∞ ) , in which the metric component g rr or g 

rr di v erges as r → 0 or degenerates
f or an y value of D . Actually, it is a coordinate singularity for D � = 0 and can be removed by
introducing a new radial coordinate y := r 2 . In the new coordinates (t, y, θ ) , the metric ( 21 )
and the gauge field ( 19 ) are written as 

ds 2 = ( −�) 
[
S − 2( y − D ) 

]
dt 2 + 2 ε

√ −�
[
S − ( y − D ) 

]
d t d θ

+ S d θ2 + 

d y 

2 

4( −�)( y − D ) 2 
, 

A μ dx 

μ = 

1 

2 

C 0 ln | y − D | 
(
ε d t + 

d θ√ −�

)
, 

(59) 

where 

S(y ) := y + 

κC 

2 
0 

2(−�) 
ln | y − D | [ = R 

2 (r (y ) 
) ]

. (60) 

The nonzero components of the inverse metric are 

g 

tt = 

S 

�(y − D ) 2 
, g 

tθ = ε
S − (y − D ) √ −�(y − D ) 2 

, 

g 

θθ = −S − 2(y − D ) 
(y − D ) 2 

, g 

yy = 4( −�)( y − D ) 2 . 

(61) 

Because for C 0 = 0 the metric and its inverse are both analytic at y = 0 at D � = 0 , the spacetime
defined in the domain y ≥ 0 can be anal yticall y extended beyond y = 0 into the domain y < 0
in that case. In contrast, as shown in Section 3.2 below, in the nonvacuum case for C 0 � = 0 , y = D
is not a coordinate singularity but a p .p . scalar curvature singularity . Consequently, the domain
of y in the coordinate system ( 59 ) is y ∈ (D, ∞ ) . 

For later use, we deri v e geodesic equations in the coordinates (t, y, θ ) . Consider an affinely
parametrized geodesic γ r epr esented as x 

μ = x 

μ(λ) with its tangent vector v μ (gi v en by
d x 

μ/d λ) , where λ is an affine parameter along γ in the coordinate system ( 59 ). As the space-
time admits two Killing vectors, namely ξμ = (∂ /∂ t) μ and �μ = (∂ /∂ θ ) μ, ther e ar e conserved
quantities E := −ξμv μ and L := �μv μ along γ . Using them and the normalization ε = v μv μ,
where ε = −1 , 0, and 1, corresponds to timelike, null, and spacelike γ , respecti v ely, we can write
down the geodesic equations as 

˙ t = 

ε
√ −�L (S − y + D ) + E S 

( −�)( y − D ) 2 
, 

˙ y 

2 = 4 ε( −�)( y − D ) 2 + 4(E + ε
√ −�L ) 

[
(E + ε

√ −�L ) S − 2 ε
√ −�L (y − D ) 

]
, 

˙ θ = 

−ε
√ −�L 

[
S − 2(y − D ) 

] − E (S − y + D ) 

ε
√ −�(y − D ) 2 

, 

(62) 

where a dot denotes dif ferentia tion with respect to λ. (Notice also the difference between ε and
ε.) 

Since lim y →∞ 

R 

μν
ρσ = �(δμ

ρδ
ν
σ − δμ

σ δν
ρ ) is sa tisfied, the CCS spacetime is asymptotically (a t

least) locally AdS near the coordinate infinity y → ∞ . In fact, null geodesics (ε = 0) with
E 

2 > −�L 

2 or E = −ε
√ −�L and timelike geodesics ( ε = −1 ) cannot reach y → ∞ because

the right-hand side of the radial geodesic equation ( 62 ) becomes negati v e in the limit y → ∞ .
11/24 
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Along other geodesics, we obtain 

˙ y 

2 � 

⎧ ⎪ ⎨ 

⎪ ⎩ 

4(E 

2 + �L 

2 ) y (ε = 0 , E 

2 > −�L 

2 ) 
8 κC 

2 
0 E 

2 ln | y − D | / (−�) (ε = 0 , E = ε
√ −�L � = 0) 

4(−�) y 

2 (ε = 1) 
(63) 

near y → ∞ . In the first and the thir d cases, Eq. ( 63 ) is integrated to gi v e 

y ( λ) � 

{ 

( E 

2 + �L 

2 )( λ − λ0 ) 2 ( ε = 0 , E 

2 > −�L 

2 ) 
e 2 

√ −� (λ−λ0 ) ( ε = 1) 
, (64) 

where λ0 is a constant. Hence, y → ∞ corresponds to an infinite affine parameter λ → ∞ . It is
also true in the second case in Eq. ( 63 ) for ε = 0 with E = ε

√ −�L � = 0 because the left-hand
side blows up in the following inequality: 

lim 

y → D 

∫ y dy 

y 

< lim 

y → D 

∫ y dy √ 

ln y 

. (65) 

Ther efor e, the asymptotically locally AdS region y → ∞ corresponds to both spacelike and null
infinities . 

Lastly, we can also show that the infinity y → ∞ is causally timelike by the conformal com-
pactification of spacetime. The line element of the CCS spacetime (M 3 , g μν ) described by the
metric g μν gi v en by Eq. ( 59 ) can be written as d s 2 = �−2 d ̄s 2 with a conformal factor � = S 

−1 / 2 

tha t sa tisfies lim y →∞ 

� = 0 . Here d ̄s 2 is the line element of the conformally compactified space-
time ( M̄ 3 , ḡ μν ) gi v en by 

d ̄s 2 = (εd θ + 

√ −� d t) 
[
εd θ + 

√ −�

(
1 − 2 

(
y (y ∗) − D ) 

S( y ( y ∗) 
) )

d t 
]

+ d y 

2 
∗, 

y ∗ := 

∫ y dy 

2 

√ −�(y − D ) 
√ 

S 

. 

(66) 

In the asymptotically locally AdS region y → ∞ , ( M̄ 3 , ḡ μν ) which shares the same light-cone
structure with (M 3 , g μν ) is asymptotically flat, 

d ̄s 2 | y →∞ 

= −(−�) d t 2 + d θ2 + d y 

2 
∗. (67) 

Such a boundary y → ∞ is causally timelike because it corresponds to a finite value of y ∗, as
shown by 

lim 

y →∞ 

y ∗ � lim 

y →∞ 

∫ y dy 

2 

√ −� y 

3 / 2 
= C ∞ 

− 1 √ −�
lim 

y →∞ 

y 

−1 / 2 = C ∞ 

, (68) 

where C ∞ 

is an integration constant. 

3.2. Curvature singularity at r 2 (≡ y ) = D 

Here we investigate the properties of y = D . We first show that y = D is causally null by the con-
formal compactification of spacetime. Since S is negati v e near y = D , we write the line element
of the CCS solution ( 59 ) as d s 2 = �−2 d ̄s 2 , but now with a conformal factor � = (−S) −1 / 2 that
also satisfies lim y → D 

� = 0 . The line element d ̄s 2 of such conformally compactified spacetime 
is 

d ̄s 2 = −(εd θ + 

√ −�d t) 
[
εd θ + 

√ −�

(
1 − 2 

(
y (y ∗) − D 

)
S 

(
y (y ∗) 

) )
d t 

]
+ d y 

2 
∗, 

y ∗ := 

∫ y dy 

2 

√ −�(y − D ) 
√ −S 

. 

(69) 
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Near y = D , it reduces to 

d ̄s 2 | y → D 

� −(εd θ + 

√ −� d t) 2 + d y 

2 
∗, (70) 

which is 2D. The boundary y = D is causally null because it corresponds to | y ∗| → ∞ , shown
by 

lim 

y → D 

| y ∗| � lim 

y → D 

∣∣∣∣
∫ y dy √ 

2 κC 

2 
0 (y − D ) 

√ − ln | y − D | 

∣∣∣∣ = lim 

y → D 

√ 

−2 ln | y − D | 
κC 

2 
0 

→ ∞ . (71) 

In Ref. [ 5 ], Clément showed that only a particular class of spacelike geodesics can reach
y = D , and it corresponds to an infinite affine distance . Because the right-hand side of Eq. ( 62 )
becomes negati v e as y → D unless E = −ε

√ −� L due to lim y → D 

S → −∞ , geodesics with
E � = −ε

√ −�L cannot reach y = D . With E = −ε
√ −�L , the geodesic equations ( 62 ) for in-

going γ reduce to 

˙ t = 

E 

( −�)( y − D ) 
, ˙ θ = − E 

ε
√ −�(y − D ) 

, ˙ y = −2 

√ 

ε(−�) (y − D ) , (72) 

which show that only spacelike geodesics ( ε = 1 ) with E = −ε
√ −� L can arri v e at y = D .

Along it, R μνv μv ν = 2� is satisfied, and the radial geodesic equation is integrated to gi v e 

y(λ) = D + e −2 
√ −� (λ−λ0 ) , (73) 

where λ0 is a constant. The abov e e xpression shows that y = D corresponds to an infinite affine
parameter λ → ∞ along such a spacelike γ . For this reason, Clément concluded that the CCS
solution is perfectly regular [ 5 ]. Howe v er, we will show that y = D is not a regular spacelike
infinity but a p .p . curvature singularity . 

It is known that curvature singularities are classified into two main categories [ 21 ]. Al-
though a scalar polynomial (s .p .) curvature singularity is usually examined, it may miss a
p .p . curvature singularity. An s .p . curv ature singularity is defined b y the blowing up of a
scalar, formed as a polynomial in the curvature tensor, such as the Ricci scalar R and the
Kretschmann scalar R μνρσR 

μνρσ . On the other hand, a p .p . curvature singularity is defined by
the blowing up of a component of the Riemann tensor in a p .p . (pseudo-)orthonormal frame
R ( a )( b)( c )( d ) := R μνρσ E 

μ

(a ) E 

ν
(b) E 

ρ

(c ) E 

σ
(d ) with basis vectors E 

μ

(a ) along a curve. An s .p . curvature sin-
gularity is a p .p . curvature singularity but the latter is not always the former. (See Section 3 in
Ref. [ 22 ].) In fact, the following curvature invariants of the CCS solution ( 59 ) are constant: 

R = 6�, R μνR 

μν = R μνρσR 

μνρσ = 12�2 , 

R 

ν
μ R 

ρ
ν R 

μ
ρ = 24�3 , ( ∇ ρR μν )( ∇ 

ρR 

μν ) = 0 . 
(74) 

Ne v ertheless, as shown below, y = D in the CCS spacetime ( 59 ) is a p .p . curvature singularity. 
We consider a spacelike geodesic gi v en by Eq. ( 72 ) with E = 0 = L , of which the tangent

vector is 

v μ∂ μ = −2 

√ −�(y − D ) ∂ y . (75) 

We also introduce p .p . basis vectors { E 

μ

(0) , E 

μ

(1) , E 

μ

(2) } with E 

μ

(2) = v μ along the geodesic as 

E 

μ

(0) ∂ μ = 

1 

2 

√ −� (y − D ) 3 / 2 

[ 

−(S + y − D ) ∂ t + ε
√ −� (S − y + D ) ∂ θ

] 

, 

E 

μ

(1) ∂ μ = 

1 

2 

√ −� (y − D ) 3 / 2 

[ 

−(S − y + D ) ∂ t + ε
√ −� [ S − 3(y − D )] ∂ θ

] 

, 

E 

μ

(2) ∂ μ = −2 

√ −� (y − D ) ∂ y , 

(76) 
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which satisfy E 

(a ) μE (b) μ = diag (−1 , 1 , 1) and E 

ν
(2) ∇ νE 

μ

(a ) = 0 for a = 0 , 1 , 2 . Then, the following 

orthonormal components of the Riemann tensor di v erge as y → D along η for C 0 � = 0 : 

R ( 0)( 2)( 0)( 2) = −� + 

κC 

2 
0 

y − D 

, R ( 1)( 2)( 1)( 2) = � + 

κC 

2 
0 

y − D 

, R ( 0)( 2)( 1)( 2) = 

κC 

2 
0 

y − D 

. (77) 

Ther efor e, y = D is not a spacelike infinity but a p .p . scalar curvature singularity corresponding
to an infinite affine parameter λ. 

To summarize, we have shown the following properties of y = D : 

1. It is causally null. 
2. Among all geodesics, only spacelike geodesics with E = −ε

√ −� L can reach y = D , cor- 
responding to an infinite affine parameter. 

3. Some components of R ( a )( b)( c )( d ) blow up as y → D along a spacelike geodesic with 

E = 0 = L . 

By property 2, y = D is not a null infinity nor a timelike infinity. By property 3, y = D is
a spacelike infinity, and also a p .p . curvature singularity. Howe v er, such a singularity may be
harmless because (i) it is not naked for any observer in the region of y > D , and (ii) no free-
falling causal observer arrives there. 

In spite of the fact that no causal geodesic reaches y = D , causal curves could. 3 However, any
causal curve t = t(y ) with constant θ does not reach y = D with a finite value of t. For such
curves, from Eq. ( 59 ) we obtain (

dt 
dy 

)2 

≥ 1 

4( −�) 2 ( y − D ) 2 [ −S + 2(y − D )] 
(78) 

with equality holding for null curves. For a null curve, we get 

lim 

y → D 

t � ± lim 

y → D 

√ 

−2 ln | y − D | 
(−�) κC 

2 
0 

→ ±∞ . (79) 

Since the right-hand side of Eq. ( 78 ) blows up as y → D , any causal curve with constant θ does
not reach y = D with a finite value of t. 

Similarly, it can be shown that any causal curve θ = θ (y ) with constant t does not reach y = D
with a finite value of θ . Indeed for such curves, we obtain (

dθ

dy 

)2 

≥ 1 

4( −�)( y − D ) 2 (−S) 
(80) 

with equality holding for null curves. For a null curve, we obtain 

lim 

y → D 

θ � ± lim 

y → D 

√ 

−2 ln | y − D | 
κC 

2 
0 

→ ±∞ . (81) 

Since the right-hand side of Eq. ( 80 ) blows up as y → D , any causal curve with constant t does
not reach y = D with a finite value of θ . Generally, there is no null curve y = y (t, θ ) that arrives
at y = D with finite values of t and θ because we obtain 

lim 

y → D 

| ε θ + 

√ −� t| � lim 

y → D 

∫ y dy 

2 

√ −� (y − D ) 
√ −S 

= lim 

y → D 

√ 

−2 ln | y − D | 
κC 

2 
0 

→ ∞ (82) 
3 For example, in the 5D vacuum spacetime obtained in Ref. [ 23 ], there exist timelike curves, corre- 
sponding to accelerated timelike observers, that arri v e at a wormhole throat in spite of the fact that no 

causal geodesic arri v es there. 
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along such curves, cf. Eqs. ( 70 ) and ( 71 ). We note that a curve satisfying ε θ + 

√ −� t = 0 is
spacelike because d s 2 = d y 

2 / [4( −�)( y − D ) 2 ] > 0 is satisfied along it. 
The above facts (do not prove but strongly) suggest that there is no causal curve reaching

y = D , and ther efor e the CCS spacetime cannot be extended along such curves. We thus con-
clude that the CCS solution with the nonvanishing (anti-)self-dual Maxwell field does not admit
a (regular) horizon of a black hole (at y ≡ r 2 = D ), as opposed to the claim in Ref. [ 8 ] that the
solution describes an extremal black hole with mass, angular momentum, and electric charge. 

3.3. Causality violations 
Here we study causality in the CCS spacetime under the assumption that θ is a periodic
coordinate. First, we consider the standard identification (t, y, θ ) = (t, y, θ + 2 π ) in the co-
ordinate system ( 59 ). Then, as g θθ < 0 holds near the curvature singularity y = D due to
lim y → D 

S → −∞ , the Killing vector �μ = (∂ /∂ θ ) μ becomes timelike and ther efor e ther e ar e
closed timelike curves near y = D . 

In fact, under a different way of identification, the CCS spacetime admits closed null
geodesics everyw her e . To show it, we introduce a null coordina te defined by 

u := 

√ −� t + ε θ (83) 

and write the CCS solution ( 59 ) in the new coordinates (u, y, θ ) as 

ds 2 = −[
2(y − D ) − S 

]
du 

2 + 2 ε (y − D ) du dθ + 

dy 

2 

4( −�)( y − D ) 2 
, 

A μ dx 

μ = 

ε C 0 

2 

√ −�
ln | y − D | du. 

(84) 

Since g 

μν ( ∇ μu )( ∇ νu ) = g 

uu = 0 holds, u = u 0 is a null hypersurface. In fact, the constant u 0 

labels privileged null hypersurfaces in the Kundt family, as shown in Eqs. ( 92 ) and ( 105 ) below.
Also, as g θθ = 0 holds, the Killing vector �μ = (∂ /∂ θ ) μ ( � = �μ) is null e v erywhere. 

As the new coordinate system ( 84 ) admits the Killing vectors ζμ = (∂ /∂ u ) μ and
�μ = (∂ /∂ θ ) μ, Ē := −g μνζ

μv ν, L̄ := g μν�
μv ν, and ε = g μνv μv ν are conserved along a 

geodesic γ with its tangent vector v μ, where ε = −1 , 0 , 1 corresponds to timelike, null, and
spacelike γ , respecti v ely. Hence, geodesic equations for γ are gi v en by 

˙ u = 

εL̄ 

y − D 

, 

˙ y 

2 = 4 ε( −�)( y − D ) 2 − 4( −�) ̄L 

[
2( ̄L − εĒ )( y − D ) − L̄ S 

]
, 

˙ θ = 

−εĒ (y − D ) + L̄ 

[
2(y − D ) − S 

]
(y − D ) 2 

. 

(85) 

For null geodesics ( ε = 0 ) with L̄ = 0 , the above geodesic equations are easily integrated to gi v e 

u = u 0 , y = y 0 , θ = − εĒ 

y 0 − D 

λ + θ0 , (86) 

where u 0 , y 0 , and θ0 are constants. Hence, if we identify (u, y, θ ) = (u, y, θ + 2 π ) in the co-
ordinate system ( 84 ), the CCS spacetime admits closed null geodesics everyw her e , which are
described by Eq. ( 86 ) with Ē � = 0 . 

Such causal pathology is circumvented by the r einterpr etation of the CCS solution in terms of 
the related (Kundt-type) coordinate r , which is introduced below in Eq. ( 102 ) and is noncyclic.
K 
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Actually, it is an affine parameter along the privileged quadruple-degenerate Cotton-aligned 

null direction (CAND) k 

μ, as shown in Eq. ( 105 ) below. 

3.4. Cotton and Maxwell algebraic types 
Next, we determine the Cotton type of the CCS spacetime ( 59 ), using the method recently
de v eloped in Refs. [ 24 , 25 ]. It uses fiv e real Cotton scalars �A 

(A = 0 , 1 , · · · , 4) defined by 

�0 := C μνρ k 

μm 

νk 

ρ, 

�1 := C μνρ k 

μl νk 

ρ, 

�2 := C μνρ k 

μm 

ν l ρ, 

�3 := C μνρ l μk 

ν l ρ, 

�4 := C μνρ l μm 

ν l ρ, 

(87) 

where C μνρ is the Cotton tensor [ 26 ], and a null triad { k 

μ, l μ, m 

μ} is properly normalized such
that 

k μk 

μ = 0 = l μl μ, k μl μ = −1 , m μm 

μ = 1 , k μm 

μ = 0 = l μm 

μ. (88) 

Following the convention of Ref. [ 27 ], we define the Cotton tensor as 

C μνρ := 2 

(∇ [ μR ν] ρ − 1 

4 

∇ [ μR g ν] ρ
)
, (89) 

w hich automaticall y satisfies the constraints C (μν) ρ ≡ 0 , C [ μνρ] ≡ 0 , and C 

μ
μν ≡ 0 . The Cotton

scalars �A 

are 3D counterparts of the Newman–Penrose complex Weyl scalars of 4D grav-
ity [ 28 ]. Moreover, for the algebraic classification, it is then convenient to employ the scalar
polynomial invariants [ 24 , 25 ]: 

I := �0 �4 − 2�1 �3 − 3�2 
2 , 

J := 2�0 �2 �4 + 2�1 �2 �3 + 2�3 
2 + �0 �

2 
3 − �4 �

2 
1 , 

G := �1 �
2 
4 − 3�2 �3 �4 − �3 

3 , 

H := 2�2 �4 + �2 
3 , 

N := 3 H 

2 + �2 
4 I . 

(90) 

As the metric ( 59 ) can be written as 

ds 2 = − (√ −� d t + ε d θ
)[

2 

√ −� (y − D ) dt − S ( 
√ −� dt + ε dθ ) 

] + 

dy 

2 

4( −�) ( y − D ) 2 
, (91) 

a natural triad { k μ, l μ, m μ} in the coordinate system ( 59 ) satisfying Eq. ( 88 ) is gi v en by the
one-forms 

k μ dx 

μ = − 1 √ 

2 

(√ −� d t + ε d θ
)

, 

l μ dx 

μ = − 1 √ 

2 

(
2 

√ −�(y − D ) dt − S ( 
√ −� dt + ε dθ ) 

)
, 

m μ dx 

μ = 

dy 

2 

√ −� (y − D ) 
, 

(92) 
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of which the contravariant components are 

k 

μ ∂ μ = 

1 √ 

2 (y − D ) 

( 1 √ −�
∂ t − ε ∂ θ

)
, 

l μ ∂ μ = 

1 √ 

2 (y − D ) 

( S √ −�
∂ t − ε

[
S − 2(y − D ) 

]
∂ θ

)
, 

m 

μ ∂ μ = 2 

√ −� (y − D ) ∂ y . 

(93) 

The null vector k 

μ satisfies the geodesic conditions k 

ν∇ νk 

μ = 0 , whereas l μ does not. Also, as
k μ = −(∇ μu ) / 

√ 

2 is satisfied, where u is defined by Eq. ( 83 ), k 

μ is a normal vector of a null
hypersurface gi v en by u = constant. 

The Cotton scalars ( 87 ) with respect to such a null triad are 

�0 = �1 = �2 = �3 = 0 , �4 = 16 πG 

√ −�C 

2 
0 , (94) 

which gi v e the identically v anishing inv ariants, 

I = J = G = H = N = 0 . (95) 

Ther efor e, according to the flow diagram in Figure 1 in Ref. [ 24 ], or equivalently in Ref. [ 25 ],
the CCS spacetime is of Cotton type N everyw her e (unless we consider the vacuum case C 0 = 0
w hich is conformall y flat, i.e. of type O). This is in striking contrast to the large class of charged
rotating BTZ black holes which are of Cotton type I away from the horizon and type III on the
horizon. (See Corollary 1 in Ref. [ 6 ].) 

As generally explained in detail in Ref. [ 25 ], by a suitable choice of the triad the Cotton
scalars for any type N spacetime can be put into the canonical form in which only the scalar �4 

is nonzero . It is the case of Eq. ( 94 ), and this explicitly demonstrates that the null vector k 

μ ∂ μ

gi v en by Eq. ( 93 ) is the quadruple Cotton-aligned null direction (CAND) of the type N CCS
spacetime. Moreover, Eq. ( 93 ) is the principal null triad . (See Refs. [ 24 , 25 ] for more details on
the definition and multiplicity of CAND.) 

Analogous (Newman–Penrose) scalars for the Maxwell field are computed to give 

φ0 := F μν k 

μ m 

ν = 0 , 

φ1 := F μν k 

μ l ν = 0 , 

φ2 := F μν m 

μ l ν = ε
√ 

2 C 0 . 

(96) 

It proves that the electromagnetic field is aligned with the gravitational field (because φ0 = 0 ),
and it is null , i.e. radiative (because φ0 = 0 = φ1 but φ2 � = 0 ). Expressed geometrically, the
double-degenerate null direction of the type N Maxwell field coincides with the quadruple-
degenerate CAND of the CCS type N gravitational field. In fact, it was observed in Ref. [ 8 ]
that both the Cotton and Maxwell tensors possess the same triple zero eigenvalues, so that
their algebraic types are N (see page 188). Howe v er, these key properties of the alg ebr aically
most special (“null,” i.e. “radiati v e”) type hav e not been taken into account for the physical
(r e-)interpr etations of the CCS solution. 

The geometrically privileged null vector field k 

μ of the principal triad ( 93 ) satisfies the
geodesic conditions ( k 

ν∇ νk 

μ = 0 ). Then, its optical scalars are all zero , in particular the ex-
pansion ρk := (∇ μk ν ) m 

μm 

ν, 

ρk = 0 . (97) 
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It means that the whole CCS family of solutions, including the Kamata–Koikawa solution,
belongs to the Kundt class of spacetimes [ 12 ]. 

3.5. The Kundt canonical form of the solution 

We have thus shown that the CCS spacetime belongs to the Kundt class in three dimensions.
Now we write the metric of this solution in the canonical Kundt form. 

Using a null coordinate u defined by Eq. ( 83 ) instead of t, and renaming the spatial coordi-
nate r as r �→ x , we write the metric ( 21 ) and the gauge field ( 19 ) in the new coordinates (u, x, θ )
as 

d s 2 = 

d x 

2 

P 

2 
+ 2 ε (x 

2 − D ) d u d θ + H d u 

2 , 

A μ dx 

μ = 

ε C 0 

2 

√ −�
ln | x 

2 − D | du, 

(98) 

where 

P (x ) := 

√ −�
x 

2 − D 

x 

, (99) 

H (x ) := 2 D − x 

2 + 

κC 

2 
0 

2(−�) 
ln | x 

2 − D | . (100) 

The Faraday tensor is gi v en by 

F = F μν d x 

μ ∧ d x 

ν = 

ε C 0 √ −�

x 

x 

2 − D 

d x ∧ d u. (101) 

This is a 3D analogue of the 4D metric r epr esenting a family of all type-N Kundt spacetimes
which are the solutions in the Einstein–Maxwell- � system, or in the system with a null dust
fluid instead of the Maxwell field. In four dimensions, such the most general type N Kundt
solution was first presented in Ref. [ 29 ], and later investigated in detail [ 30 ]. (See Chap. 18 of 
the textbook [ 31 ] for a review.) 

Finally, by introducing a new coordinate r K , instead of θ , defined by 

r K := −ε (x 

2 − D ) θ, (102) 

the CCS metric ( 98 ) is written in the canonical Kundt form in the coordinates (u, x, r K ) as 

d s 2 = 

d x 

2 

P 

2 
+ 

4 x r K 
x 

2 − D 

d u d x − 2 d u d r K + H d u 

2 , (103) 

while A μ and F are unchanged. It actually belongs to a special family of deg ener ate Kundt
metrics . (See, e.g. Section 7.1 of the topical re vie w [ 32 ] for the definition and more details.) 

The metric ( 103 ) can be dir ectly compar ed with the complete family of 3D Kundt solu-
tions with a Maxwell field (necessarily aligned) and �, found recently in Ref. [ 12 ]. Com-
paring the metric functions in Eq. ( 103 ) with the general expressions g ux = e + f r K and
g uu = a + b r K + c r 2 

K 
gi v en in Eq. (90) in Ref. [ 12 ], we identify 

e = 0 , f = 

2 x 

x 

2 − D 

� = 0 , a = H, 

b = 0 , c = − 1 
2 κ0 Q 

2 = 0 ⇒ Q = 0 . 

(104) 

The corresponding Maxwell field, gi v en by Eq. (95) in Ref. [ 12 ], is thus F = ξ (x ) dx ∧ du , which
is easily identified with Eq. ( 98 ). It is an aligned null Maxwell field that belongs to subcase (i)
with φ0 = 0 = φ1 . (See Eq. (99) in Ref. [ 12 ].) Moreover, by performing the transformations in
18/24 
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Eqs. ( 83 ) and ( 102 ), the principal null triad ( 93 ) becomes 

k 

μ ∂ μ = 

1 √ 

2 

∂ r K , l μ ∂ μ = 

1 √ 

2 

H ∂ r K + 

√ 

2 ∂ u , m 

μ ∂ μ = P (∂ x + g ux ∂ r K ) . (105) 

After an additional simple boost B k 

μ → k 

μ and B 

−1 l μ → l μ with B = 

√ 

2 , the triad ( 105 ) fully
agrees with Eq. (6) in Ref. [ 12 ]. 

It can also be observed that by introducing a modified spatial coordinate 

z := 

1 

2 

√ −�
ln | x 

2 − D | , (106) 

the metric ( 103 ) of the CCS solution is put into the form 

d s 2 = d z 2 + 4 

√ −� r K d u d x − 2 d u d r K + 

(
D − e 2 

√ −� z + 

κC 

2 
0 √ −�

z 
)

d u 

2 , (107) 

in which the p .p . curvature singularity (originally at r 2 = D ) is located at z → −∞ . In this co-
ordinate system (u, z, r K ) , the Maxwell field ( 101 ) is uniform , namely 

F = ε C 0 dz ∧ du = 

φ2 √ 

2 

dz ∧ du. (108) 

It should finally be noted that the physical interpretation of the famil y of closel y related 4D
Kundt spacetimes of algebraic type N with any � was investigated in Refs. [ 33 , 34 ]. It elucidated
the character of wave surfaces in these spacetimes, and also the related p .p . singularity. It is the
caustics formed as an envelope of the wave surfaces (see Chap. 18 of the textbook [ 31 ] for a
re vie w). 

3.6. Compatible matter fields 
Lastly, we show that the CCS solution ( 59 ) can be a solution not only with the original Maxwell
field but also with a null dust fluid or a massless scalar field . For this purpose, we study the
Hawking–Ellis type of T μν for the solution. With the orthonormal basis one-forms gi v en by 

E 

(0) 
μ = 

1 √ 

2 

(l μ + k μ) , E 

(1) 
μ = 

1 √ 

2 

(l μ − k μ) , E 

(2) 
μ = m μ (109) 

constructed from a triad { k μ, l μ, m μ} in Eq. ( 92 ), the nonzero components of T 

( a )( b) :=
T 

μνE 

(a ) 
μ E 

(b) 
ν are computed to gi v e 

T 

( 0)( 0) = T 

( 1)( 1) = T 

( 0)( 1) ( = T 

( 1)( 0) ) = C 

2 
0 , (110) 

which shows (
T 

( 0)( 0) + T 

( 1)( 1) 
)2 − 4( T 

( 0)( 1) ) 2 = 0 . (111) 

Then, by Lemma 1 in Ref. [ 35 ], T μν for the Maxwell field in the CCS solution is of Hawking–
Ellis type II e v erywhere. 

Additionally, the expression ( 110 ) of T 

( a )( b) shows that the CCS metric also solves the
Einstein- � equations with a null dust fluid, the energy-momentum tensor of which is gi v en
by 

T μν = � k μk ν. (112) 

Here k μ is the null vector in Eq. ( 92 ) and the energy density of the null dust � is a constant
gi v en by 

� = 2 C 

2 
0 . (113) 
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In three dimensions, the field equations ( 2 ) are equivalent to the ones with a massless
scalar field φ instead of the Maxwell field, using the duality. The dual Maxwell one-form is
defined by 

∗F μ := 

1 

2 

ε μνρ F 

νρ
( ⇔ 

∗F μ ε μαβ = −F 

αβ
)
, (114) 

where the totally antisymmetric volume three-form ε μνρ is defined by 

ε μνρ := 

√ −g εμνρ

(⇔ ε μνρ = −εμνρ/ 

√ −g 

)
(115) 

with the Le vi-Ci vita symbol εμνρ satisfying ε012 = 1 and ε012 = 1 . Identifying 

∇ μφ ≡ ∗F μ, (116) 

and using ε μαβε μνρ = −(δα
νδ

β
ρ − δα

ρδ
β
ν ) , we obtain the equation of motion and the energy-

momentum tensors of φ as 

∇ 

2 φ = 0 , (117) 

T μν = F μρF 

ρ
ν − 1 

4 

g μνF ρσ F 

ρσ

= ( ∇ μφ)( ∇ νφ) − 1 

2 

g μν ( ∇φ) 2 , (118) 

where ∇ 

2 φ := ∇ μ∇ 

μφ and ( ∇φ) 2 := ( ∇ αφ)( ∇ 

αφ) . 
For the CCS solution, the dual massless scalar field is gi v en in the coordinate system ( 4 ) as 

φ = C 0 
(√ −� t + ε θ

) + φ0 = C 0 u + φ0 , (119) 

where φ0 is a constant, and u is the null coordinate defined by Eq. ( 83 ). Different from the case
with a Maxwell field or a null dust fluid, the coordinate θ now cannot be periodic, as a periodic
boundary condition φ(t , θ ) = φ(t , θ + 2 π ) is not satisfied unless C 0 = 0 . 

4. Concluding remarks 
In our paper, we have studied in detail the CCS solution ( 59 ) with the metric function given
by Eq. ( 60 ) in the coordinates (t, y, θ ) . It is the most general stationary and axisymmetric solu-
tion known in the 3D Einstein–Maxwell- � system under the so-called self-dual or anti-self-dual
condition on the Maxwell field [ 10 ]. The solution is locally characterized by a single parame-
ter C 0 , and it reduces to the extremal rotating BTZ vacuum solution for C 0 = 0 . Ne v erthe-
less, we have kept an auxiliary parameter D which allows the limit to the Kamata–Koikawa
solution. 

Our results for the char g ed case C 0 � = 0 are summarized as follows. 

1. For any value of D , the domain of the radial coordinate is y ∈ (D, ∞ ) . The spacetime
is asymptotically locally AdS near the spacelike and null infinities gi v en by y → ∞ . At
y = D , there is a p .p . curvature singularity which corresponds to an infinite affine param-
eter along specific spacelike geodesics. 

2. If θ is a periodic coordinate such that (t, y, θ ) = (t, y, θ + 2 π ) , ther e ar e closed timelike
curves near the singularity y = D . 
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3. The spacetime is of Cotton type N e v erywhere. We hav e identified a uniquely chosen
principal null triad and the quadruple CAND. 

4. The Maxwell field is null, namely radiati v e. The doub le-degenerate null direction of the
type N Maxwell field coincides with the quadruple-degenerate CAND of the type N grav-
itational field. 

5. We have written the CCS solution in the canonical Kundt form and identified the privi-
leged null coordinate u gi v en by Eq. ( 83 ) such that u = u 0 = constant labels privileged null
hypersurfaces in the Kundt family. 

6. The energy-momentum tensor of the solution is of Hawking–Ellis type II e v erywhere.
The CCS metric also solves the 3D Einstein- � equations with a null dust fluid gi v en by
Eqs. ( 112 ) and ( 113 ) or a massless scalar field gi v en by Eq. ( 119 ). 

To summarize, the CCS solution is algebraicall y, geometricall y, and physicall y different from
the charged rotating BTZ solution [ 5 ] and does not describe a black hole, unless the Maxwell
field is trivial. 

In the 3D Einstein–Maxwell- � system, many stationary and axisymmetric symmetric solu-
tions have been classified and described by García-Díaz [ 36 , 37 ]. Howe v er, to the best of the
authors’ knowledge, it is still an open problem whether there is a different class of charged ro-
tating asymptotically AdS black-hole solutions other than the charged rotating BTZ solution.
This problem is left for future investigation. 
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Appendix A. Clément’s solution in the 1993 paper 
In this appendix, we show that Clément’s solution gi v en by Eq. (29) in Ref. [ 11 ] with the
Minkowski signature (+ , −, −) is locally identical to the Cataldo–Salgado solution. 4 The orig-
inal solution can be written in the coordinates (t, ρ, θ ) with the Minkowski signature (−, + , +)
as 

d s 2 = ±4 

� 

ρ d t d θ + 

( − b ρ + 2 κq 

2 ln | ρ/ρ0 | 
)

dθ2 + 

� 

2 

4 ρ2 
dρ2 , 

A μdx 

μ = q ln | ρ/ρ0 | dθ, 

(A.1) 

where ρ0 , b, and q are constants, and � is the AdS radius defined by � = 1 / 

√ −�. 
The Cataldo–Salgado solution in the single-null coordinates ( 84 ) is 

ds 2 = −
(

y − 2 D − κC 

2 
0 

2(−�) 
ln | y − D | 

)
du 

2 + 2 ε (y − D ) du dθ + 

dy 

2 

4( −�)( y − D ) 2 
, 

A μ dx 

μ = 

ε C 0 

2 

√ −�
ln | y − D | du. 

(A.2) 
4 Note that Eq. (23) in Ref. [ 11 ] is the charged rotating BTZ solution after the double Wick rotation. 
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By coordinate transformations 

y − D = α ρ, u = β θ̄, θ = (αβ ) −1 2 

� 

t (A.3) 

with constant α and β satisfying 

κC 

2 
0 

2(−�) 
ln | α| = −D − κC 

2 
0 

2(−�) 
ln | ρ0 | , β2 = 

b 

α
(A.4) 

and using the freedom of a gauge constant of A μ, the solution ( A.2 ) is transformed into Clé-
ment’s solution ( A.1 ) with q = εβ C 0 / (2 

√ −�) . 

A ppendix B . P ar ameters of the Cataldo–Salgado solution 

Cataldo and Salgado presented their solution as 

d s 2 = − r 2 

R 

2 
f d t 2 + 

d r 2 

f 
+ R 

2 
(

d θ + 

h 

R 

2 
d t 

)2 
, 

A μd x 

μ = 

C 0 

2 

√ −�
ln 

∣∣∣∣r 2 − D 

C 

∣∣∣∣[ (
ε
√ −� + 

E 

C 

)
d t + d θ

] 

(B.1) 

with the metric functions 

f (r ) = ( −�) 
( r 2 − D ) 2 

r 2 
, (B.2) 

R (r ) = 

√ 

r 2 + 

κC 

2 
0 

2(−�) 
ln 

∣∣∣∣r 2 − D 

C 

∣∣∣∣, (B.3) 

h (r ) = 

E 

C 

r 2 + εD 

√ −� + 

κC 

2 
0 

2 

√ −�

(
ε + 

E √ −�C 

)
ln 

∣∣∣∣r 2 − D 

C 

∣∣∣∣. (B.4) 

See Eqs. (37–39) in Ref. [ 10 ], in which C ( � = 0) , D , C 0 , and E are four arbitrary constants of 
integration, and ε = ±1 . 

Howe v er, without loss of generality we can locally set C = 1 and E = 0 by the following
coordina te transforma tions: 

t = 

t̄ √ 

C 

, r = 

√ 

C r̄ , θ = 

θ̄ − Ē t̄ √ 

C 

(B.5) 

with the reparametrizations E = C Ē , D = C D̄ , and C 0 = 

√ 

C C̄ 0 . Ne v ertheless, the constants 
and E may possibly have global meanings. For example, if one assumes that θ is periodic

as θ ∈ [0 , 2 π ) in the coordinates ( B.1 ) with C � = 1 and E � = 0 , then θ̄ = 0 is not identified with
θ̄ = 2 π at different times. 

With C = 1 and E = 0 , using the useful identities ( 20 ) in the region of r 2 > D , the Cataldo–
Salgado solution can be rewritten in the simple form ( 21 ), 

ds 2 = ( −�) 
[
R 

2 − 2( r 2 − D ) 
]

dt 2 + 2 ε
√ −�

[
R 

2 − (r 2 − D ) 
]

d t d θ + R 

2 d θ2 + 

d r 2 

f 
, 

A μ dx 

μ = 

1 

2 

C 0 ln | r 2 − D | 
(
ε dt + 

dθ√ −�

)
, 

(B.6) 

where R 

2 is gi v en by Eq. ( 18 ). Changing the sign of ε is equivalent to a transformation of time
re v ersal t → −t . Then, without loss of generality we can also locally set D = 0 in the charged
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case C 0 � = 0 by the following coordinate transformations: 

r 2 − D = e −2( −�) D/ ( κC 

2 
0 ) r̄ 2 , t = e ( −�) D/ ( κC 

2 
0 ) t̄ , θ = e ( −�) D/ ( κC 

2 
0 ) θ̄ (B.7) 

with a reparametrization C 0 = e −( −�) D/ ( κC 

2 
0 ) C̄ 0 , which generate a gauge constant for A μ. How-

e v er, setting D = 0 forces us to miss the limit from the Cataldo–Salgado solution ( B.6 ) to the
Kamata–Koikawa solution [ 9 ] for κC 

2 
0 = −2�D . 
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