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The criterion for existence of gravitational radiation at conformal infinity in the presence of a positive
cosmological constant is applied to a general family of exact solutions representing generic (pairs of) black
holes of algebraic type D. Our analysis shows that only accelerating black holes generate gravitational
radiationmeasurable at infinity. This very satisfactory result confirms the goodness of the criterion. To that
end, a new metric form of the family of exact type D black holes is constructed—including any
cosmological constant and a (double-aligned) non-null electromagnetic field—whose expression is suitable
for investigation of the asymptotic structure of this large family of spacetimes. The family depends on seven
physical parameters, namely m, a, l, α, e, g, and Λ that characterize mass, specific angular momentum
parameter, NUT parameter, acceleration, electric and magnetic charges, and the cosmological constant,
respectively.
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I. INTRODUCTION

Gravitational waves and black holes are two of the most
outstanding predictions of Einstein’s general relativity.
There is a wide acceptance in the scientific community
that these two features of Einstein’s gravity theory match
real physical phenomena in our universe. This consensus,
laying on a solid theoretical background, is strongly
supported by the first direct detection of a gravitational
wave produced by a binary black hole merger, confirmed in
2016 [1], and the observation of the shadow of super-
massive black hole at the center of M87, reported in
2019 [2]. These two recent discoveries, milestones of a
new era of gravitational-wave astronomy and black hole
imaging, provide observational data of physical processes
under extreme conditions that are of great interest. On top
of this, there is the third crucial observational evidence that
traces back to the late nineties: the accelerated expansion of
the universe [3,4] driven by a (maybe effective) positive
cosmological constant Λ > 0.
For over a century now, the theory has developed a solid

description of the gravitational-radiation physics. In the full
nonlinear regime, much progress crystallized in the late
fifties and sixties [5–9], leading to a rigorous formulation
that served to understand gravitational radiation in asymp-
totically flat regions of a spacetime, bringing into a robust

mathematical basis [10] concepts such as the energy
emitted by generic sources via gravitational waves, or
the characterization of its existence (at infinity) based
on the well-known News criterion. Unfortunately, this
mathematical formulation only applied to the case
Λ ¼ 0, thus excluding the description of gravitational
radiation and the asymptotic structure of spacetimes with
Λ > 0, which remained an open problem [11,12] until
recently—last decade—when new advances in that direc-
tion appeared [13–16].
In particular, now there is a general framework devel-

oped in [17] to study the asymptotic structure of spacetimes
with a positive Λ—see [18] for a review of this work,
references to other approaches and the relation to the
traditional case with Λ ¼ 0. This framework provides a
neat criterion, based on the commutator of the canonical
electric and magnetic parts of the rescaled Weyl tensor at
conformal infinity J , for the existence or absence of
gravitational radiation escaping from the spacetime (reach-
ing J þ). This criterion was tested on several examples to
lead to correct results, and to reduce to the traditional News
criterion in the case of vanishing Λ.1
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1Apart from that, there is further work to be done as application
of this framework. For example, to test the quadrupole formulas
with Λ > 0, memory effects and other works carried out in the
linearized regime [19–21], to see the connection with different
notions of mass such as the one in [14], or to test the Bondi-like
form of the metric with Λ > 0 [22]. All these applications are of
high interest too, but they are out of the scope of the present work.
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This work encompasses the investigation of the afore-
mentioned two aspects of the theory: gravitational radiation
and black-hole exact solutions with a positive cosmological
constant Λ > 0. Our goal here is to further test the radiation
criterion developed in [17] in a sufficiently general class
of exact black-hole solutions. Actually, the black-hole
fauna has been getting larger recently with new possibilities
[23–28]. Let us recall, however, that the simplest (and first)
identification of gravitational radiation for black-hole
spacetimes withΛwas obtained for the accelerated solution
called C-metric [15,29–32], extending previous studies of
radiation in the C-metric in asymptotically flat settings.
This solution is included in the wider class of type D exact
solutions found by Plebański and Demiański [33,34]—
see [35,36] for review and further references, and thus this
wider class is a perfect arena to put our ideas to test.
To that end, a new form presented in [37,38] will be

further improved herein, so that it is amenable to a proper
analysis of future infinity J þ. This new form may be of
interest on its own. The conclusion that we reach is very
satisfactory: gravitational radiation exists only if the black
holes are accelerating.
The case with Λ ¼ 0 can be equally studied, and is

actually implicitly included, by taking the appropriate
limit [39], while the case Λ < 0 is postponed for later
investigation.

A. Conventions and notation

The conventions used throughout this paper are the same
ones as employed in [17], together with some notation
from [16,38]. For reader’s convenience, the key symbols
and some definitions are summarized in Table I.
Signature, indices and curvature
(i) Spacetime metric signature: ð−;þ;þ;þÞ.
(ii) Spacetime indices: α, β, γ, etc; three-dimensional

space-like hypersurfaces indices: a, b, c, etc.
(iii) Riemann tensor, Ricci tensor, and scalar curvature:

Rαβγ
δvδ ≔ ð∇α∇β −∇β∇αÞvγ ,

Rαβ ≔ Rαμβ
μ, R ≔ Rμνgμν.

(iv) Orientation: in an orthonormal basis η0123 ¼ 1,
ϵ123 ¼ 1; in a null basis η0̂ 1̂ 2̂ 3̂ ¼ i.

Relevant fields and decorations
(i) Conformal factor Ω. Conformal infinity J ≔

fΩ ¼ 0g. Conformal gauge-transformed quantities
T → T̃.

(ii) In general, quantities in physical spacetime ðM̂; ĝαβÞ
carry a hat (T̂), to distinguish them from those in
conformal (unphysical) spacetime ðM; gαβÞ.

(iii) Conformal and physical Weyl tensor are Cαβγ
δ ¼

Ĉαβγ
δ, and the rescaled version is

dαβγδ ≔ Ω−1Cαβγ
δ:

(iv) Normal to the hypersurfacesΩ ¼ const, in particular
to J ,is Nα ≔ ∇αΩ. Unit normal to those hyper-
surfaces and to J are

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−NμNμ

p
nα ≔ Nα.2

(v) Projector to J : Pα
β ¼ δαβ þ nαnβjJ .

(vi) Basis of vector fields tangent to J : feαag. They can
be used to pullback tensors to J .

(vii) Electric Dαβ ≔ dαμβνnμnν and magnetic 2Cαβ ≔
2�dαμβνnμnν ¼ dρσβνηρσαμnμnν parts of the rescaled
Weyl tensor dαβγδ with respect to the unit, timelike nα.
Their pull-backed versions, defined only on J , are

Dab ¼ Dαβeαaeβb; Cab ¼ Cαβeαaeβb:

II. NEW FORM OF THE METRIC AND
CONFORMAL COMPACTIFICATION

In [37,38], a convenient representation of the family of
type D black holes was found. The metric—recalled in
Appendix A as Eqs. (A1)–(A5)—nicely represents this
large class of exact spacetimes.3 Moreover, it naturally
generalizes the standard forms of famous (rotating,

TABLE I. Some key symbols used in the paper. See the bullet points in the text for related definitions.

Physical
spacetime M̂

Conformal
spacetime M

Conformal infinity
J (Λ > 0)

Metric ĝαβ gαβ hab
Volume form η̂αβγδ ηαβγδ ϵabc
Covariant derivative ∇̂α

∇α ∇a

Riemann tensor R̂αβγ
δ Rαβγ

δ R̄abc
d

Weyl tensor Ĉαβγ
δ (¼Cαβγ

δ) Cαβγ
δ ¼ Ωdαβγδ � � �

Projector � � � � � � Pα
β

Orthonormal tetrad ðt̂; q̂; r̂; ŝÞ ðt;q; r; sÞ � � �
Null complex tetrad ðk̂; l̂; m̂Þ ðk; l;mÞ � � �

2This is well defined at J and in its neighborhood, as it is
assumed that Λ > 0. See the main text for more details on this.

3Except that it fails to include a special degenerate subcase of
accelerating purely NUT black holes because vanishing spin
parameter (a ¼ 0) implies vanishing acceleration (α ¼ 0) of the
black hole. An improved set of physical parameters which circum-
vents this problem has been recently found by Astorino [27,28].

FERNÁNDEZ-ÁLVAREZ, PODOLSKÝ, and SENOVILLA PHYS. REV. D 110, 104029 (2024)

104029-2



charged, accelerating) black hole solutions, with two black-
hole horizons (outer and inner) and two cosmological/
acceleration horizons, namely the Kerr-Newman-(A)dS
black holes, charged Taub-NUT-(A)dS, their accelerated
versions, and other black holes. These can immediately
be obtained as direct subcases by setting the correspond-
ing physical parameter(s) to zero. As shown in [37,38],
various physical and geometrical properties can more easily
be studied, such as their singularities, horizons, ergore-
gions, global structure, cosmic strings, or thermodynamics.
However, investigation of the asymptotic structure of this

large family of important spacetimes is quite involved. The
global extension across all horizons can be performed, and the
Penrose conformal diagrams can be constructed by employing
a sophisticated set of transformations. But the conformal
infinity, whose character is crucial for determining the radi-
ative properties of these black holes, is not readily identified
even in the improved form of the metric (A1)–(A5). Here,
an alternative metric which overcomes this problem is
presented—for its derivation from the original one and further
details seeAppendixA. In coordinatesft; q; θ;φgwith ranges
t∈ ð−∞;∞Þ, q∈ ð−∞;∞Þ, θ∈ ½0; π�, and φ∈ ½0; 2πCÞ,4
this new form of the metric reads

dŝ2 ¼ 1

Ω2

�
−
Q
ρ2

�
dt−

�
asin2θþ 4lsin2

θ

2

�
dφ

�
2

þ ρ2

Q
dq2

þ ρ2

P
dθ2 þ P

ρ2
sin2θ½aq2dt− ð1þ ðaþ lÞ2q2Þdφ�2

�
;

ð2:1Þ

where

Ωðq; θÞ ¼ q −
αa

a2 þ l2
ðlþ a cos θÞ; ð2:2Þ

ρ2ðq; θÞ ¼ 1þ q2ðlþ a cos θÞ2; ð2:3Þ

and

PðθÞ ¼ 1 − 2

�
αa

a2 þ l2
m −

Λ
3
l

�
ðlþ a cos θÞ

þ
�

α2a2

ða2 þ l2Þ2 ða
2 − l2 þ e2 þ g2Þ þ Λ

3

�
× ðlþ a cos θÞ2; ð2:4Þ

QðqÞ ¼ ½1 − 2mqþ ða2 − l2 þ e2 þ g2Þq2�

×

�
qþ αa

a − l
a2 þ l2

��
q − αa

aþ l
a2 þ l2

�

−
Λ
3

�
1þ 2α al

a2 − l2

a2 þ l2
qþ ða2 þ 3l2Þq2

�
: ð2:5Þ

There are two independent Killing vector fields, ∂φ and
∂t. The functionQðqÞ has up to 4 different roots which give
the black-hole and cosmo-acceleration horizons [38]. They
happen to be Killing horizons for a particular Killing
vector. The spacetime depends on seven physical param-
eters, whose interpretation is [37,38]

m … mass parameter;

a … spin parameter ðor Kerr-like rotationÞ;
l … NUTparameter;

e … electric charge;

g … magnetic charge;

α … acceleration parameter;

Λ … cosmological constant:

For e, g nonzero the black holes are charged, with their
electromagnetic field represented by the 1-form potential

A ¼ −
eqþ gðlþ a cos θÞq2
1þ ðlþ a cos θÞ2q2 dt

þ ðeqþ glq2ÞRþ gS cos θ
1þ ðlþ a cos θÞ2q2 dφ; ð2:6Þ

see (A10) and (A11), where the auxiliary functions are

RðθÞ ¼ asin2θ þ 2lð1 − cos θÞ; ð2:7Þ

SðqÞ ¼ 1þ ðaþ lÞ2q2: ð2:8Þ

Interestingly,

ρ2 ¼ S − aq2R: ð2:9Þ

Using the factorized forms (A6) and (A7) of the metric
functions, alternative expressions for P and Q are

PðθÞ ¼
�
1 −

αa
a2 þ l2

rΛþðlþ a cos θÞ
�

×

�
1 −

αa
a2 þ l2

rΛ−ðlþ a cos θÞ
�
; ð2:10Þ

4The range of q is as shown for the general case with l ≠ 0.
However, for some special cases with l ¼ 0 the range might have
to be restricted to q∈ ð0;∞Þ. On the other hand, the parameter C
is related to the deficit angle along the axes, or conicity. See
[34,38] for further details on this.
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QðqÞ ¼ ð1 − rΛþqÞð1 − rΛ−qÞ

×

�
qþ αa

a − l
a2 þ l2

��
q − αa

aþ l
a2 þ l2

�

−
Λ
3

�
1þ ða2 þ l2Þ2

α2a2
q4
�
; ð2:11Þ

where the constants rΛ� are defined in (A8).
Let us remark again that, due to the form of our metric,

the vanishing of a implies the absence of α—except when
one sets l ¼ 0 first, leading to the accelerating Kerr-
Newman-(A)dS black holes and its subcases (see
Appendix A 1), in which the parameter-space degeneracy
disappears. The generic parameter-space degeneracy,
which prevents us to identify the accelerating purely
NUT black holes, is improved in a recent new paramet-
rization and coordinate representation of the complete
family of type D black holes due to Astorino [27,28].
Now, the corresponding conformal metric gαβ can readily

be obtained from (2.1).

A. Conformal metric and conformal boundary J

The next task is to explicitly derive the corresponding
metric hab on the conformal boundary J . First, recall that
the physical metric (2.1) is related to the conformal one
through the conformal factor Ω > 0,

gαβ ≔ Ω2ĝαβ; ð2:12Þ

so that the unphysical line-element reads

ds2 ¼ −
Q
ρ2

½dt − Rdφ�2 þ P
ρ2

sin2θ½aq2dt − Sdφ�2

þ ρ2

Q
dq2 þ ρ2

P
dθ2: ð2:13Þ

Conformal infinity J is located at

Ω ¼ 0: ð2:14Þ

In view of (2.2) this is now simply given by the condition

J ∶ q ¼ Aþ B cos θ; ð2:15Þ

where the convenient combinations of the three physical
parameters are

A ≔
αal

a2 þ l2
and B ≔

αa2

a2 þ l2
; ð2:16Þ

implying the relations

Aþ B ¼ αa
a2 þ l2

ðaþ lÞ and aA ¼ lB: ð2:17Þ

For any angular coordinate θ∈ ½0; π�, the value (2.15) of the
coordinate q corresponding to J is thus finite. This
circumvents the problem with the original form of the
conformal factor (A2). We also immediately see that
whenever αa ¼ 0, i.e., for black holes without acceleration
(α ¼ 0) or without the Kerr-like rotation (a ¼ 0), the
conformal infinity J is simply located at

J ∶ q ¼ 0; ð2:18Þ

or, in the reciprocal coordinate r ≔ 1=q, at r ¼ ∞. This is,
of course, the expected result for the Kerr-Newman-(anti-)
de Sitter and also NUT-(anti-)de Sitter black holes.
Evaluation on J of the metric functions (2.3) and (2.5),

using the condition (2.15), yields compact explicit expres-
sions (we use a subscript J to denote the restriction of any
object to J )

ρ2J ðθÞ ¼ 1þ ða2 þ l2Þ2
α2a2

ðAþ B cos θÞ4

¼ 1þ α2a2

ða2 þ l2Þ2 ðlþ a cos θÞ4; ð2:19Þ

QJ ðθÞ¼−
Λ
3
ρ2J ðθÞ−

α2a4

ða2þ l2Þ2PðθÞsin
2θ

¼−
Λ
3
−

α2a2

ða2þ l2Þ2
�
Λ
3
ðlþacosθÞ4þa2PðθÞsin2θ

�
:

ð2:20Þ

Because PðθÞ is independent of q, it remains the same
on J ,

PJ ðθÞ ≔ PðθÞ: ð2:21Þ

It is given by (2.4), or by its special factorized form (2.10),
that is

PðθÞ ¼ ð1 − rΛþðAþ B cos θÞÞð1 − rΛ−ðAþ B cos θÞÞ:
ð2:22Þ

The important relation (2.20) can be rewritten as

ðQþ B2Psin2θÞJ ¼ −
Λ
3
ρ2J ; ð2:23Þ

which enables us to simplify the last two terms in the
conformal metric (2.13) to the form

�
ρ2

Q
dq2 þ ρ2

P
dθ2

�
J
¼ −

Λ
3

�
ρ4

PQ

�
J
dθ2: ð2:24Þ

In order to do the pullback to J , and obtain the induced
metric there, this must be combined with the first terms
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containing dt and dφ in (2.13). Using (2.15) and (2.23),
they take the form

Λ
3

�
dt−

�
asin2θþ4lsin2

θ

2

�
dφ

�
2

þ P
ρ2J

sin2θ

×

�
B2

�
dt−

�
asin2θþ4lsin2

θ

2

�
dφ

�
2

þ½aðAþBcosθÞ2dt− ð1þðaþ lÞ2ðAþBcosθÞ2Þdφ�2
�
:

ð2:25Þ

Employing the relations (2.17) and the identities

asin2θþ4lsin2
θ

2
≡ ð1− cosθÞ½ðaþ lÞþðlþacosθÞ�≡R;

ð2:26Þ

B½ðaþ lÞ þ ðlþ a cos θÞ�≡ a½ðAþ BÞ þ ðAþ B cos θÞ�;
ð2:27Þ

a2ð1 − cos θÞ2 ≡ ða2 þ l2Þ2
α2a2

½ðAþ BÞ − ðAþ B cos θÞ�2;
ð2:28Þ

ðAþ BÞ2 þ ðaþ lÞ2ðAþ B cos θÞ4 ≡ αB
ðaþ lÞ2
a2 þ l2

ρ2J ;

ð2:29Þ

the big square bracket in the second and the third line of
(2.25) factorizes and simplifies considerably to

ρ2J

�
B2dt2 − 2Bαa

ðaþ lÞ2
a2 þ l2

dt dφþ C2dφ2

�
; ð2:30Þ

where

C2 ¼ 1

ρ2J

�
B2ð1 − cos θÞ2½ðaþ lÞ þ ðlþ a cos θÞ�2

þ ½1þ ðaþ lÞ2ðAþ B cos θÞ2�2
�
; ð2:31Þ

or equivalently

C2 ¼ 1

ρ2J

�
a2ð1 − cos θÞ2½ðAþ BÞ þ ðAþ B cos θÞ�2

þ ½1þ ðaþ lÞ2ðAþ B cos θÞ2�2
�
: ð2:32Þ

Quite surprisingly, this complicated-looking function can
be simplified to the following constant

C2 ¼ 1þ α2a2
ðaþ lÞ4
ða2 þ l2Þ2 : ð2:33Þ

Putting all the terms of (2.13) together, the conformal
metric hab on the Λ > 0 J is

h ¼ Λ
3
½dt − ðasin2θ þ 2lð1 − cos θÞÞdφ�2

þ Psin2θ

�
B2dt2 − 2Bαa

ðaþ lÞ2
a2 þ l2

dtdφþ C2dφ2

�

−
Λ
3

ρ4J
PQJ

dθ2: ð2:34Þ

The metric coefficients are thus

htt ¼
Λ
3
þ B2Psin2θ;

htφ ¼ −
Λ
3
R − αa

ðaþ lÞ2
a2 þ l2

BPsin2θ;

hφφ ¼ Λ
3
R2 þ C2Psin2θ; hθθ ¼ −

Λ
3

ρ4J
PQJ

; ð2:35Þ

where P is given by (2.4) or in the factorized form (2.22),
ρJ is given by (2.19), QJ is given by (2.20), and R is
defined in (2.7). The constants B and C are determined by
(2.16) and (2.33), respectively. Therefore, the metric (2.34)
can be explicitly written as

h ¼ Λ
3
½dt − ðasin2θ þ 2lð1 − cos θÞÞdφ�2

þ Psin2θ
�
dφ2 þ α2a2

ða2 þ l2Þ2 ðadt − ðaþ lÞ2dφÞ2
�

−
Λ
3

ρ4J
PQJ

dθ2: ð2:36Þ

This metric is everywhere regular, except on the inter-
section with the horizons (given by Q ¼ 0) and at the axes
(given by sin θ ¼ 0, that is at θ ¼ 0 and θ ¼ π). For a
suitable choice of the physical parameters and the range of
the angular coordinate φ, these axes of symmetry can be
regularized, as described in detail in Secs. VG–V I of [38].
The metric (2.36) can also be expressed in the following

convenient form

h ¼ ω2½ðdtþ AdφÞ2 þW2dφ2 þH2dθ2�; ð2:37Þ

with

ω2 ≔
Λ
3
þ B2Psin2θ; ð2:38Þ

A ≔ −ω−2
�
Λ
3
Rþ αa

ðaþ lÞ2
a2 þ l2

BPsin2θ
�
; ð2:39Þ
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H2 ≔ −ω−2 Λ
3

ρ2J
PQJ

; ð2:40Þ

W2 ≔ ω−4Psin2θ

�
B2Psin2θ þ Λ

3

�
C2 −

α2a3

ða2 þ l2Þ2
�

× ½ðaþ lÞ2 þ ðlþ a cos θÞ2�R
�
; ð2:41Þ

depending on θ only. The advantage of the metric form
(2.37) is that one can directly use the explicit formulas in
Lemma 4.1 of [40] to compute the Cotton-York tensor of
ðJ ; hÞ, which basically coincides with the magnetic part of
the rescaled Weyl tensor at J .
Next we also need to evaluate the causal character of the

conformal infinity J . To this end we consider the normal to
the hypersurfacesΩ ¼ const,Nα ≔ ∇αΩ. Its vector form is
just defined as Nα ≔ gαβNβ. Since the differential of Ω
given by (2.2) is dΩ ¼ dqþ B sin θdθ, and the conformal
metric is (2.13), we get

N ¼ ρ−2ðQ∂q þ BP sin θ∂θÞ: ð2:42Þ

Its norm is gαβNαNβ ¼ ρ−2ðQþ B2P sin2 θÞ, and apply-
ing the identity (2.23) valid on J it immediately fol-
lows that

ðgαβNαNβÞJ ¼ −
Λ
3
: ð2:43Þ

Thus (as is well known) the causal character of J is fully
determined by the sign of the cosmological constant Λ: it is
null for Λ ¼ 0, spacelike for Λ > 0, and timelike for Λ < 0.
Since the case of interest in the upcoming analysis isΛ > 0,
the unit timelike normal

n ≔
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−NμNμ

p N ð2:44Þ

to the hypersurfacesΩ ¼ const in a neighborhood ofJ will
be used, which is future-pointing.

B. Principal null directions and the Weyl
and Ricci scalars

Applying the transformation (A12) and the rescalings
(A14) on Eqs. (85) and (86) in [38], we obtain the preferred
null tetrad for the new physical metric (2.1), namely

k̂ ¼ 1ffiffiffi
2

p Ω
ρ

�
1ffiffiffiffi
Q

p ðS∂t þ aq2∂φÞ −
ffiffiffiffi
Q

p
∂q

�
;

l̂ ¼ 1ffiffiffi
2

p Ω
ρ

�
1ffiffiffiffi
Q

p ðS∂t þ aq2∂φÞ þ
ffiffiffiffi
Q

p
∂q

�
;

m̂ ¼ 1ffiffiffi
2

p Ω
ρ

�
1ffiffiffiffi

P
p

sin θ
ðR∂t þ ∂φÞ þ i

ffiffiffiffi
P

p
∂θ

�
; ð2:45Þ

where RðθÞ and SðqÞ are defined by (2.7) and (2.8),
respectively. In this tetrad, the only nontrivial Newman-
Penrose scalar representing the Weyl curvature tensor is

Ψ2 ¼
Ω3

½1þ iðlþ a cos θÞq�3
�
−ðmþ ilÞ

�
1 − iαa

a2 − l2

a2 þ l2

�
− i

Λ
3
lða2 − l2Þ

þ ðe2 þ g2Þ
1 − iðlþ a cos θÞq

�
qþ αa

a2 þ l2
½a cos θ þ ilðlþ a cos θÞq�

��
: ð2:46Þ

This explicitly confirms that the spacetime is of algebraic
type D, and both vectors k̂ and l̂ are the principal null
directions (PNDs). Also, with respect to (2.45) the electro-
magnetic field, whose coordinate form is explicitly given in
Eq. (A11), has the Newman-Penrose scalars Φ0 ¼ 0 ¼ Φ2

and

Φ1 ¼
1
2
ðeþ igÞΩ2

½1þ iðlþ a cos θÞq�2 : ð2:47Þ

Hence, the electromagnetic field is non-null, and double-
aligned with both PNDs. It also follows that the Ricci
tensor is Φ11 ¼ 2Φ1Φ̄1. Notice that this expression evalu-
ated on J depends on the acceleration of the black hole
because the condition (2.15), that is q ¼ Aþ B cos θ,
involves α.

The null tetrad (2.45) is defined only when Q > 0. In
order to investigate the radiative properties near (Λ > 0)
conformal infinity J , which is located in the region
“above” the cosmoacceleration horizon Hc [38], we have
to consider the nonstationary region with Q < 0 with the
following modified version of the null tetrad

k̂ ¼ 1ffiffiffi
2

p Ω
ρ

�
1ffiffiffiffiffiffiffi
−Q

p ðS∂t þ aq2∂φÞ þ
ffiffiffiffiffiffiffi
−Q

p
∂q

�
;

l̂ ¼ 1ffiffiffi
2

p Ω
ρ

�
−1ffiffiffiffiffiffiffi
−Q

p ðS∂t þ aq2∂φÞ þ
ffiffiffiffiffiffiffi
−Q

p
∂q

�
;

m̂ ¼ 1ffiffiffi
2

p Ω
ρ

�
1ffiffiffiffi

P
p

sin θ
ðR∂t þ ∂φÞ þ i

ffiffiffiffi
P

p
∂θ

�
: ð2:48Þ
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Interestingly, it is convenient to define the vector fields

T ≔ S∂t þ aq2∂φ; R ≔ ∂φ þ R∂t; ð2:49Þ

for which, using the identity (2.9), it can be shown that

T ·T¼−Q
ρ2

Ω2
; R ·R¼Psin2θ

ρ2

Ω2
; T ·R¼ 0: ð2:50Þ

Hence, the vector field T is timelike in the regions Q > 0,
spacelike in the regions Q < 0, and it is null on the
horizons where Q ¼ 0 (these are the Killing horizons).
On the other hand, the vector field R is everywhere
spacelike, except at θ ¼ 0 and θ ¼ π where its norm
vanishes, defining thus geometrically the axes of axial
symmetry. Moreover, these vector fields T and R are
mutually orthogonal. For the static case a ¼ 0 ¼ l we get
simply T ¼ ∂t and R ¼ ∂φ, i.e., the usual generators of
time translation isometry and the axial symmetry.
Using the relations (2.50) it is now easy to check that

both the tetrads (2.45) and (2.48) satisfy the normalization
conditions k̂ · l̂ ¼ −1 and m̂ · ˆ̄m ¼ 1 (with all other scalar
products vanishing). The null tetrad (2.48) adapted to both
double-repeated PNDs k̂ and l̂ is directly related to a
special orthonormal tetrad ðt̂; q̂; r̂; ŝÞ via the usual alge-
braic relations

k̂≔
1ffiffiffi
2

p ðt̂þ q̂Þ; l̂≔
1ffiffiffi
2

p ðt̂− q̂Þ; m̂≔
1ffiffiffi
2

p ðŝþ ir̂Þ; ð2:51Þ

that is explicitly

t̂ ¼ Ω
ρ

ffiffiffiffiffiffiffi
−Q

p
∂q; q̂ ¼ Ω

ρ

1ffiffiffiffiffiffiffi
−Q

p T;

r̂ ¼ Ω
ρ

ffiffiffiffi
P

p
∂θ; ŝ ¼ Ω

ρ

1ffiffiffiffi
P

p
sin θ

R: ð2:52Þ

For the metric (2.1) these vectors are normalized as
t̂ · t̂ ¼ −1 and q̂ · q̂ ¼ r̂ · r̂ ¼ ŝ · ŝ ¼ 1 (with all other
scalar products vanishing).
It can be concluded that the timelike unit vector t̂ is not

collinear with the unit vector n (2.44) and (2.42) normal to
J , unless B ¼ 0, i.e., for the vanishing acceleration α.5 In
fact, n is not coplanar with the two PNDs k̂ and l̂, unless
B ¼ 0. This already implies that such spacetimes will have
gravitational radiation arriving at J only if the black holes
are accelerating, as follows from the discussion in [15,17]
(see Remark IV.4 in [17]). A detailed quantitative study of
the radiative properties of these spacetimes is presented in
Sec. III.

C. Strongly oriented null tetrads adapted
to the conformal boundary

Let us now consider a geometrically privileged class of
null tetrads adapted to a Λ > 0 scri J which has a spatial
character. Concretely, one requires two properties:
(1) The couple of null vectors k and l span a timelike

plane containing the normal n to J .
(2) At least one of them is aligned with a repeated

principal null direction of the re-scaled Weyl ten-
sor dαβγδ.

Such tetrads are called strongly oriented following the
nomenclature used in [17]. Of course, the second require-
ment is only possible if the spacetime is algebraically special
at J . In the particular case when the rescaled Weyl tensor
dαβγδ has two different repeated null directions (algebraic
type D) at J , as on the spacetimes under consideration here,
there is a general construction (see Appendix B for full
details) that can be conveniently used, as follows.
For the unphysical metric (2.13), first rescale by Ω−1 the

elements of the natural tetrad (2.48) and invert the ori-
entation of k and l so that they become future-pointing,

k ¼ −
1ffiffiffi
2

p 1

ρ

�
1ffiffiffiffiffiffiffi
−Q

p ðS∂t þ aq2∂φÞ þ
ffiffiffiffiffiffiffi
−Q

p
∂q

�
;

l ¼ −
1ffiffiffi
2

p 1

ρ

�
−1ffiffiffiffiffiffiffi
−Q

p ðS∂t þ aq2∂φÞ þ
ffiffiffiffiffiffiffi
−Q

p
∂q

�
;

m ¼ 1ffiffiffi
2

p 1

ρ

�
1ffiffiffiffi

P
p

sin θ
ðR∂t þ ∂φÞ þ i

ffiffiffiffi
P

p
∂θ

�
: ð2:53Þ

Next, the prescriptions (B1) and (B2) of Appendix B can be
applied, giving the functions

b2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2

Q
P
sin2θ

r
; ð2:54Þ

c ¼ −i
αa2

ffiffiffiffi
P

p
sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−α2a4Psin2θ − ða2 þ l2Þ2Q
p : ð2:55Þ

At J , using the explicit form (2.16) of B in identity (2.23),
the expression for c reduces to

c¼J − i

ffiffiffiffi
3

Λ

r
B

ffiffiffiffi
P

p
sin θ
ρJ

; ð2:56Þ

where ρJ ðθÞ is given by (2.19). Then, the related strongly
oriented tetrad is obtained by6

sk ¼ b2k;

sl ¼
1

b2
lþ cmþ c̄ m̄þcc̄b2k;

sm ¼ mþ c̄b2k: ð2:57Þ

5In order to evaluate t̂ at J , rescale it first with Ω−1, obtaining
ρ−1

ffiffiffiffiffiffiffi
−Q

p
∂q.

6Observe that there is no freedom to do a null rotation keeping
k fixed because this is fixed by the coplanarity condition.
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Explicitly, in coordinates (where all the functions are evaluated at J ),

sk ¼
ffiffiffiffi
Λ
6

r �
S
Q
∂t − ∂q þ

α2a3ðlþ a cos θÞ2
ða2 þ l2Þ2Q ∂ϕ

�
;

sl ¼
ffiffiffiffi
Λ
6

r �
−
S
Q
∂t −

3

Λ
α2a4Psin2θ − ða2 þ l2Þ2Q

ρ2ða2 þ l2Þ2 ∂q −
αa2ðlþ a cos θÞ

ða2 þ l2ÞQ ∂ϕ þ
3

Λ
2αa2P sin θ
ða2 þ l2Þ2ρ2 ∂θ

�
;

sm ¼
ffiffiffiffi
P

pffiffiffi
2

p ða2 þ l2Þρ

�ða2 þ l2ÞQRþ iαa2PSsin2θ
QP sin θ

∂t − iαa2 sin θ∂q

þ ða2 þ l2Þ3Qþ iα3a5ðlþ a cos θÞ2Psin2θ
ða2 þ l2Þ2QP sin θ

∂ϕ þ iða2 þ l2Þ∂θ
�
; ð2:58Þ

with RðθÞ and SðθÞ given as

R ¼ a sin2θ þ 2lð1 − cos θÞ; ð2:59Þ

S¼J 1þ α2a2
ðaþ lÞ2
ða2 þ l2Þ2 ðlþ a cos θÞ2: ð2:60Þ

Observe that, due to (2.56), a nonvanishing c at J
requires α ≠ 0. In general asymptotic type D scenarios,
c ≠ 0 thus implies the presence of gravitational radiation.
This is the case for the spacetimes considered here, and it
will be shown explicitly in the following section.

III. GRAVITATIONAL RADIATION GENERATED
BY ACCELERATING BLACK HOLES

Asymptotically, the Weyl tensor Cαβγ
δ of the unphysical

metric (2.13) vanishes—in agreement with a general result,
see for example [10,17,41]. Hence, to study the content of
gravitational radiation in the corresponding conformal
spacetime M, a rescaled version of this tensor,

dαβγδ ≔
1

Ω
Cαβγ

δ; ð3:1Þ
has to be used.7 For the metric (2.13), in the natural tetrad
(2.53) the only nonvanishing scalar of the rescaled Weyl
tensor reads

ϕ2 ¼
1

½1þ iðlþ a cos θÞq�3
�
−ðmþ ilÞ

�
1 − iαa

a2 − l2

a2 þ l2

�
− i

Λ
3
lða2 − l2Þ

þ ðe2 þ g2Þ
1 − iðlþ a cos θÞq

�
qþ αa

a2 þ l2
½a cos θ þ ilðlþ a cos θÞq�

��
: ð3:2Þ

Notice that it is Ψ2 of Eq. (2.46) multiplied by Ω−3. This,
together with the function c of Eq. (2.56), can be used to
compute the corresponding scalars sϕ4, sϕ3, and sϕ2 ¼ ϕ2

associated with the strongly oriented tetrad (2.53) and
(2.57) according to expressions (B8)—which are standard
known formulas (see the Appendices in [45], for instance).
Then, one can use the general formulas of [17], or those of
Appendix B, to compute the electric Dab and magnetic Cab
parts on J (recall the notation summarized in Sec. I) of the
rescaled Weyl tensor in terms of ϕ2. The matrix commu-
tator of these two tensors,8

P̄a ≔ 2ϵrsaCreDe
s; ð3:3Þ

defines the asymptotic super-Poynting vector field P̄a on
J . This is the key object, as it vanishes if and only if there is
no gravitational radiation at J according to the gravita-
tional radiation condition introduced in [17]. Actually, P̄a

is the tangential part to the spacelike J of the canonical
asymptotic supermomentum Pα,

Pα ¼ Wnα þ P̄aeαa; ð3:4Þ

where W is the canonical asymptotic superenergy
density [15], defined by

W ≔ DrsDrs þ CrsCrs ≥ 0: ð3:5Þ

The asymptotic supermomentum is intrinsically defined [15]
from the rescaled version of the Bel-Robinson tensor [6]
(see [46–48] and references therein for further details on
these kind of tensors)

7It has to be pointed out that this tensor is one of the key
variables entering in the so called conformal Einstein field
equations—see, e.g., [42–44].

8Following the conventions of previous works [15,17], the
notation P̄a is adopted. Observe that (3.3) is a real quantity; the
bar should not be confused with the one used to indicate complex
conjugation of complex functions, such as the rescaled Weyl
scalars ϕi, the null tetrad vector fieldmα, or the function c defined
in Appendix B that appears in Sec. III A.
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Dαβγδ ≔ dαμγνdδνβμ þ� dαμγν �dδνβμ; ð3:6Þ

as

Pα ≔ −Dα
βγδnβnγnδ:

In our case W is explicitly given by

W ¼
�
1 −

6α2a4ða2 þ l2Þ2PQsin2θ
½α2a4Psin2θ þ ða2 þ l2Þ2Q�2

�
6ϕ2ϕ̄2; ð3:7Þ

while the spacetime version of the asymptotic super-
Poynting four-vector field at J is

P̄α ¼ P̄aeαa ¼J SðθÞðδαθ − B sin θδαqÞ; ð3:8Þ

where

SðθÞ ≔ 54

Λ
αa2

PQ½α2a4Psin2θ − ða2 þ l2Þ2Q�
ρ3½−α2a4Psin2θ − ða2 þ l2Þ2Q�3=2

× ϕ2ϕ̄2 sin θ: ð3:9Þ

It is tangential to J , and its explicit form for the
conformal metric (2.13) can be computed by the pull-back
corresponding to the map J → ∂M ⊂ M. Denoting the
coordinates on J as ya ≡ ðt̄; φ̄; θ̄Þ and the coordinates on
M as xα ≡ ðt;φ; θ; qÞ, with the natural choice t ¼ t̄;
φ ¼ φ̄; θ ¼ θ̄ and using the relation q ¼ Aþ B cos θ̄
following from (2.15), the frame eαa ≡ ∂xα

∂ya reads

eα t̄¼ δαt ; eαφ̄ ¼ δαφ; eαθ̄ ¼ δαθ −B sin θ̄ δαq: ð3:10Þ

Using (3.8), and rewriting θ̄ on J simply as θ, we thus
obtain

P̄a ¼ SðθÞδaθ : ð3:11Þ

Moreover, one can use the identity (2.23) to put these key
expressions to more compact forms

P̄aðθÞ¼
ffiffiffiffi
3

Λ

r
162

Λ2
αa2

PQJ ð−QJ þB2Psin2θÞ
ða2þ l2Þρ6J

ϕ2ϕ̄2 sinθδaθ ;

ð3:12Þ

WðθÞ ¼
�
1 −

54

Λ2
α2a4

PQJ sin2θ
ða2 þ l2Þρ4J

�
6ϕ2ϕ̄2; ð3:13Þ

where the functions ρJ , QJ , P, evaluated at J , are given
by (2.19)–(2.21), respectively.
In this form, it is evident thatW is positive (as it has to be),

given that Q < 0 at J (which is always true in the nonsta-
tionary region between J and the cosmo-acceleration

horizon, see [38]) and P > 0. From (3.12) it is manifest
that (for a generic a)

α ¼ 0 ⇔ absence of gravitational radiation atJ ð3:14Þ

(recall the end of Sec. II B). Thus, in the investigated family
of exact spacetimes, only accelerating black holes generate
gravitational radiation.
This agrees with the result mentioned earlier, namely that

the repeated principal null directions given in Eq. (2.53) are
not coplanar with the normal to J (2.42). Equivalently, for
a type D rescaled Weyl tensor at J , there is no gravitational
radiation if and only if the two-dimensional space orthogo-
nal to both repeated principal null directions is fully
tangential to J [i.e., when c ¼ 0, see Eq. (B2)].
For black holes without the NUT parameter (l ¼ 0), the

key quantities (3.12) and (3.13) simplify to

P̄aðθÞ ¼
ffiffiffiffi
3

Λ

r
162

Λ2
α
PQJ ð−QJ þ α2Psin2θÞ

ρ6J
ϕ2ϕ̄2 sin θδaθ ;

ð3:15Þ

WðθÞ ¼
�
1 −

54

Λ2
α2a2

PQJ sin2θ
ρ4J

�
6ϕ2ϕ̄2: ð3:16Þ

Again, for vanishing acceleration of such a black-hole source
the asymptotic super-Poynting vector is zero, and there is
no radiation at J (located at q ¼ 0). The corresponding
asymptotic superenergy density is W ¼ 6m2.
The norm of the asymptotic super-Poynting vector P̄a is

plotted in Fig. 1 for values of p ≔ cos θ ranging from −1
to 1. It can be seen that in all the three cases there is a slight
asymmetry with respect to p ¼ 0. This lack of equatorial
symmetry makes physical sense as there are conical
singularities that cannot be regularized simultaneously at
both poles/axes, so that if one regularizes one pole, the
other one shows a conical singularity (see [34,38] for
the description of this regularization procedure using the
conicity parameter C in the range of the coordinate φ).
Actually, this is confirmed in Fig. 2where thevalues of the

physical parameters are chosen in a very special way: they
satisfy the condition given by Eq. (190) in [38] for the
regularity of both axes. In this case the norm of the
asymptotic super-Poynting vector is symmetric with respect
to p ¼ 0, which further reinforces the goodness of the
radiation criterion employed and investigated in this work.
It can be noticed that the super-Poynting vector (3.12)

also vanishes for a ¼ 0. However, in view of the recent
works [27,28], this seems to be rather an effect of
degeneracy of the parameters α and a in the general metric
(2.1). The acceleration parameter α always appears to be
multiplied by the spin parameter a, so that a ¼ 0 effectively
removes α from the metric. Therefore, accelerating purely
NUT black holes are not described by the metric (2.1),
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although such black holes exist in the whole family of
type D spacetimes. Clarification of this subtle point will be
presented elsewhere.

A. Further characterization of radiation
using null directions

It is also possible to further characterise the gravitational
radiation arriving at J by associating its components to a

null tetrad [16]. In the language of [17,39], this can be done
in connection with the radiation condition by using the so
called radiant superenergy quantities, i.e., lightlike pro-
jections of the rescaled Bel-Robinson tensor. These objects
follow from the definition of the radiant supermomentum
for a particular future lightlike vector field l,

Qα½l� ≔ −Dα
μνρlμlνlρ; ð3:17Þ

whose components, denoted by

W½l� ≔ −lμQμ½l� and Z½l� ≔ −kμQμ½l�; ð3:18Þ

correspond to ϕ4ϕ̄4 and ϕ3ϕ̄3 in a null basis using ðk; lÞ as
the null vector fields—see Sec. 2 of [17] for general
definitions and useful formulas. In addition, one has

Qα½l� ¼ 0 ⇔ W½l� ¼ 0 ¼ Z½l� ⇔ ϕ4 ¼ 0 ¼ ϕ3: ð3:19Þ

In this context, there are two convenient null tetrads that
we can use. One of them ðsk; sl; smÞ is the strongly oriented
tetrad (2.58); the other one ðsk̃; s l̃; sm̃Þ has s l̃ as the other
(so far not used) repeated principal null direction—observe
that the corresponding sk̃ is then rotated with respect to
Eq. (2.53) and no longer aligned with a PND. Using the
results from Appendix B, this new strongly oriented tetrad
ðsk̃; s l̃; sm̃Þ can be constructed by computing the corre-
sponding parameters of Eqs. (B2) and (B14),

b̃2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2

Q
P
sin2θ

r
; ð3:20Þ

c ¼ −i
αa2

ffiffiffiffi
P

p
sin θ

ða2 þ l2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Q − B2Psin2θ

p ; ð3:21Þ

respectively. Observe that for this particular case b̃ ¼ b, but
this is not necessarily the case in general. Then, the radiant
superenergy quantities can be computed for both strong
orientations

Z½sl� ¼ Z½sk̃� ¼
108

Λ
B2

Psin2θ
ρ2

ϕ2ϕ2; ð3:22Þ

W½sl� ¼ W½sk̃� ¼
1296

Λ2
B4

P2sin4θ
ρ4

ϕ2ϕ2; ð3:23Þ

W½sk� ¼ 0 ¼ Z½sk�; W½sl̃� ¼ 0 ¼ Z½s l̃�; ð3:24Þ

and

FIG. 1. The norm jP̄j ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habP̄aP̄b

p
of the asymptotic super-

Poynting vector is plotted here as a function of p ≔ cos θ. The
parameters have been set such that: e ¼ g ¼ 1=8; a ¼ 1=6; l ¼
1=20 for the general type-D case; e ¼ g ¼ 1=8; a ¼ 1=6; l ¼ 0
for the accelerating Kerr-Newman metric; e ¼ g ¼ 0; a ¼ 0; l ¼
0 for the C-metric (Λ ¼ 1=100, m ¼ α ¼ 1=4 for all of them).
Observe that the three cases feature the same type of asymmetry
with respect to p ¼ 0. This is caused by conical singularities that
cannot be regularized simultaneously at both poles, and are the
physical cause of the acceleration.

FIG. 2. The norm jP̄j of the asymptotic super-Poynting vector
plotted for a general black hole of type D with both axes regular.
Here the complete regularization is achieved by “precisely tuned”
values e ¼ g ¼ 1=8; a ¼ 1=60; l ¼ 20, m ¼ α ¼ 1=4 and Λ ¼
1931475=190096. The curve is perfectly symmetric with respect
to p ¼ 0.
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Qα½sk̃� ¼ −
54

Λ

ffiffiffi
2

p
α2a4Psin2θ

ða2 þ l2Þ3ρ3 ϕ2ϕ2

�
−
S
Q
δαt þ

3

Λ
α2a4Psin2θ − ða2 þ l2Þ2Q

ða2 þ l2Þ2ρ2 δαq

−
α2a3ðlþ a cos θÞ2

ða2 þ l2Þ2Q δαφ þ
6

Λ
αa2P sin θ
ða2 þ l2Þρ2 δ

α
θ

�
; ð3:25Þ

Qα½sl� ¼ −
54

Λ

ffiffiffi
2

p
α2a4Psin2θ

ða2 þ l2Þ3ρ3 ϕ2ϕ2

�
S
Q
δαt þ

3

Λ
α2a4Psin2θ − ða2 þ l2Þ2Q

ða2 þ l2Þ2ρ2 δαq

þ α2a3ðlþ a cos θÞ2
ða2 þ l2Þ2Q δαφ þ

6

Λ
αa2P sin θ
ða2 þ l2Þρ2 δ

α
θ

�
: ð3:26Þ

Again, these radiation quantities vanish when α ¼ 0
(implying B ¼ 0), that is in the absence of acceleration.
The related geometrical parameter β, defined in

Eq. (B34) of Appendix B, gives the relative orientation
between the spatial parts of the radiant supermomenta
Qα½sl� andQα½sk̃� with respect to J . Intuitively, this can be
interpreted as measuring the angle between the spatial
components of the “tidal momentum” of gravitational
waves as experienced by an observer oriented along sl,
with respect to the detection of a different observer aligned
with sk̃. In a fully general case representing the whole
family of type D black holes, one gets the expression

β ¼ 1 −
2ðQJ þ B2P sin2θÞ3

QJ ðQJ − 3B2P sin2θÞ2 : ð3:27Þ

Without acceleration (α ¼ 0, so that B ¼ 0), this parameter
reduces to

β ¼ −1; ð3:28Þ

while for black holes without the NUT parameter (l ¼ 0,
implying B ¼ α) we get

β ¼ 1 −
2ðQJ þ α2P sin2θÞ3

QJ ðQJ − 3α2P sin2θÞ2 : ð3:29Þ

In particular, for the C-metric without rotation (a ¼ 0)
and charges (e ¼ 0 ¼ g), the metric functions onJ take the
form

P ¼ 1 − 2αm cos θ; QJ ¼ −
Λ
3
− α2P sin2θ; ð3:30Þ

so that

c¼J − iα

ffiffiffiffi
3

Λ

r ffiffiffiffi
P

p
sin θ: ð3:31Þ

In Fig. 3, the parameter β given by (3.29) is plotted as a
function of p ≔ cos θ for fixed values of α andm, and three

values of the positive cosmological constant Λ. As one can
see, there are three possible regimes, described in
Appendix B, depending on whether β is positive (the
projected radiant supermomenta form an acute angle),
negative (the projected radiant supermomenta form an
obtuse angle) or zero (the projected radiant supermomenta
form exactly a π=2 angle).
A discussion of the gravitational radiation propagating

along the PNDs sk and s l̃, emitted by the accelerating black-
holes, represented by the C-metric with Λ > 0, can be
found in [17] and, in relation to the directional structure of
radiation, also in [16,30].

IV. RELATION TO ASYMPTOTIC DIRECTIONAL
STRUCTURE OF RADIATION

Finally, we can relate these results to our previous studies
concerning the structure of radiation in spacetimes with any
cosmological constant Λ, presented in [16,32,49,50].

FIG. 3. The parameter β of Eq. (B34) for the C-metric with
fixed values of the mass m ¼ 1=4, the acceleration α ¼ 1=4, and
three distinct values of the cosmological constant Λ > 0. De-
pending on the strength of Λ, the angular parameter β takes
different values in J . If Λ is sufficiently large, β is always
negative. Notice also a slight asymmetry of the curves with
respect to p ¼ 0. This is the same feature observed in the norm of
the asymptotic super-Poynting vector in Fig. 1.
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A. Supermomentum vector orientation
on J with Λ > 0

Recall that the asymptotic super-Poynting four-vector
P̄α is explicitly given by (3.8), namely

P̄¼J Sð∂θ − B sin θ ∂qÞ; ð4:1Þ

where SðθÞ is given by (3.9) and B ¼ αa2=ða2 þ l2Þ, see
(2.16). This key radiation quantity can be expressed with
respect to any null tetrad. In particular, in [17] an equivalent
statement of the radiation condition was presented in terms
of the rescaled-Weyl scalars in any null tetrad coplanar
with the normal to J , namely

8ϕ1ϕ̄1 − 8ϕ3ϕ̄3 − 4ϕ4ϕ̄4 þ 4ϕ0ϕ̄0 ¼ 0; ð4:2Þ

ϕ3ϕ̄4 þ ϕ0ϕ̄1 − 3ϕ1ϕ̄2 − 3ϕ2ϕ̄3 ¼ 0: ð4:3Þ

Indeed, if a strong orientation such as Eq. (2.57) is chosen,
then the radiation condition for asymptotically type-D
spacetimes reduces to

P̄a ¼ 0 ⇔ ϕ4 ¼ 0 ¼ ϕ3 ðunder strong orientationÞ:

As a next task, we aim to elucidate the relation between
the spatial direction of the asymptotic super-Poynting
vector and the maximum in the directional pattern of the
dominant Ψi

4 scalar on J derived for any type D spacetime
in a suitable basis called “interpretation tetrad” in [16]. To
do so, it is convenient to start from the algebraically
privileged null tetrad (2.48) for which both vectors k̂ and l̂
are the double-repeated principal null directions of the
type D spacetime. In order to employ a frame that is
closest to the strongly oriented null tetrad adapted to the
conformal boundary J—as introduced in Sec. II C—we
will consider the null frame (2.53) in the unphysical
(conformal) spacetime (2.13). Such a frame is obtained
from (2.48) via k ¼ −k̂=Ω, l ¼ −l̂=Ω, m ¼ m̂=Ω. The
associated special orthonormal tetrad ðt;q; r; sÞ, is
obtained using the relations

k¼ 1ffiffiffi
2

p ðtþqÞ; l¼ 1ffiffiffi
2

p ðt−qÞ; m¼ 1ffiffiffi
2

p ðsþ irÞ: ð4:4Þ

Notice that the role of the transversal spatial vectors r, s and
r̂, ŝ, as introduced in (2.51), are swapped with respect to
those employed in [32,50]—where such a special tetrad is
denoted as ðts;qs; rs; ssÞ.9 This tetrad here reads

t ¼ −
1

ρ

ffiffiffiffiffiffiffi
−Q

p
∂q; q ¼ −

1

ρ

1ffiffiffiffiffiffiffi
−Q

p T;

r ¼ 1

ρ

ffiffiffiffi
P

p
∂θ; s ¼ 1

ρ

1ffiffiffiffi
P

p
sin θ

R; ð4:5Þ

in which the spacelike vector field T ¼ S∂t þ aq2∂φ and
the spacelike vector field R ¼ ∂φ þ R∂t are mutually
orthogonal, see (2.49)–(2.52). The vectors (4.5) are nor-
malized as t · t ¼ −1 and q · q ¼ r · r ¼ s · s ¼ 1 (all
other scalar products vanish).
Expressed in terms of this tetrad, the asymptotic super-

Poynting four-vector (4.1) has the form

P̄ ¼ SρJffiffiffiffi
P

p
�
rþ B

ffiffiffiffiffiffiffiffiffiffiffi
P

−QJ

s
sin θ t

�
: ð4:6Þ

By comparing the timelike vectors t ∝ ∂q and n ∝
Q∂q þ BP sin θ∂θ [given by (2.44) and (4.5), respectively]
it is now obvious that t is not normal to J , unless B ¼ 0.
Because t ∝ kþ l, and as stated in Sec. III, this means that
the plane spanned by the two (double-degenerate) principal
null directions k and l is not perpendicular to J when the
black holes are accelerating (α ≠ 0) and generate gravita-
tional radiation.
To determine the spatial direction on J in which the

gravitational radiation propagates—that is to geometrically
identify the direction of the asymptotic super-Poynting
vector tangential to the three-dimensional conformal infin-
ity J—it is useful to choose another orthonormal tetrad
ðto;qo; ro; soÞ, which may be called a reference tetrad. It is
defined by the property that the timelike (unit) vector to is
collinear with the normal n to J . Such a reference tetrad
can be obtained from the special orthonormal tetrad (4.5)
adapted to both PNDs by a suitable Lorentz transformation,
namely the simple boost in the ðt; rÞ plane

to ¼ coshψ stþ sinhψ sr;

ro ¼ sinhψ stþ coshψ sr;

qo ¼ q; so ¼ s; ð4:7Þ

where the rapidity parameter ψ s has a special value

tanhψ s ≔ B

ffiffiffiffiffiffiffi
P
−Q

r
sin θ; ð4:8Þ

which using the identity (2.23) on J implies

coshψ s ¼
ffiffiffiffi
3

Λ

r ffiffiffiffiffiffiffi
−Q

p
ρ

: ð4:9Þ

Therefore,9Such a swapping corresponds to the change m ↔ −im.
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to ¼
ffiffiffiffi
3

Λ

r ffiffiffiffiffiffiffi
−Q

p
ρ

�
tþ B

ffiffiffiffiffiffiffi
P
−Q

r
sin θ r

�
;

ro ¼
ffiffiffiffi
3

Λ

r ffiffiffiffiffiffiffi
−Q

p
ρ

�
rþ B

ffiffiffiffiffiffiffi
P
−Q

r
sin θ t

�
; ð4:10Þ

and the reference tetrad in the coordinate frame explicitly
reads

to ¼
ffiffiffiffi
3

Λ

r
1

ρ2
ðQ∂q þ BP sin θ ∂θÞ;

ro ¼
ffiffiffiffi
3

Λ

r
1

ρ2
ffiffiffiffiffiffiffiffiffiffiffi
−PQ

p
ð∂θ − B sin θ ∂qÞ;

qo ¼ −
1

ρ

1ffiffiffiffiffiffiffi
−Q

p T; so ¼
1

ρ

1ffiffiffiffi
P

p
sin θ

R: ð4:11Þ

It is now obvious from (2.44) that

to ¼ n; ð4:12Þ

as plotted in Fig. 4, and the spatial unit vectors ðqo; ro; soÞ
span the tangent space to J . Moreover, in view of the
relation (4.10), the asymptotic super-Poynting four-vector
(4.6) expressed in the reference tetrad is

P̄ ¼
ffiffiffiffi
Λ
3

r
Sρ2Jffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−PQJ

p ro: ð4:13Þ

This is the unique spatial direction of propagation of the
gravitational radiation in the reference frame. Notice that it
is geometrically privileged, because at any point on J it is

the intersection of the conformal infinity J with the plane
spanned by t and r, which is the “symmetry plane” of the
two PNDs k and l, see Fig. 4.
As discussed in Sec. III, in the absence of gravitational

radiation the plane spanned by the two (double-degenerate)
principal null directions k and l is perpendicular to J
(ψ s ¼ 0). Indeed, there is the following general relation
between the fundamental complex function c of Eq. (B2)
and the rapidity parameter ψ s

c ¼ −i sinhψ s: ð4:14Þ

Using Eq. (4.8) is easy to check that Eq. (4.14) gives
Eq. (2.56). There is thus no radiation when c ¼ 0 ⇔
ψ s ¼ 0. Also, the asymptotic super-Poynting vector P̄
vanishes when S ¼ 0 ⇔ α ¼ 0.

B. Asymptotic structure of radiation in general
type D spacetimes with Λ > 0

Finally, we can relate the four-dimensional geometric
scheme of Fig. 4 to the directional spatial structure of the
specific Weyl scalar Ψi

4 at any point on J , summarized
in [16]. To this end, let us first observe that the rapidity
parameter ψ s of the boost is uniquely related to the
rotational parameter Θs in the spatial section of J spanned
by the vectors ðqo; roÞ as

tanhψ s ¼ sinΘs ⇔ sinhψ s ¼ tanΘs ⇔ coshψ s ¼
1

cosΘs
:

ð4:15Þ

Clearly, ψ s ¼ 0 corresponds to Θs ¼ 0, which equivalently
occurs in the absence of acceleration, and thus no radiation.
In fact, any unit spatial direction v on the Λ > 0 scri J

can by parametrized by two spherical angles Θ and Φ via
the standard relation

v ¼ cosΘqo þ sinΘðcosΦ ro þ sinΦ soÞ: ð4:16Þ

Using such a framework and formalism, in [16,30,49]—and
in [50] specifically inmore detail for typeD spacetimes—the
formula

jΨi
4j ¼

3

2jηj
jϕ2j

cos2Θs
AðΘ;Φ;ΘsÞ ð4:17Þ

wasderived,whereΨi
4 is thedominant part of theWeyl tensor

expressed in a parallel-propagated “interpretation” null
frame approaching J , η is an affine parameter along the
concrete null geodesic ending at a given point at J , and

AðΘ;Φ;ΘsÞ ≔ ðsinΘþ sinΘs cosΦÞ2
þ sin2Θs cos2Θ sin2Φ ð4:18Þ

FIG. 4. The scheme of various frames, in particular the
orthonormal reference tetrad ðto;qo; ro; soÞ and the orthonormal
tetrad ðt;q; r; sÞ associated to the PNDs k and l. Their relation is
given by the rapidity parameter ψ s, uniquely corresponding to the
angle Θs. Coplanarity with the unit normal n to the conformal
infinity J can be seen and understood.
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is the specific function determining the directional structure
of Ψi

4 in any type D spacetime with the Λ > 0 conformal
infinity J . Such a directional structure is absent in asymp-
totically flat spacetimes.
This pattern is represented on Fig. 5 (adapted from

[30,50]). The global maximum of A occurs for Θ ¼ π=2,
Φ ¼ 0, that is along the spatial direction v ¼ ro. This is
consistent with (4.13) determining the spatial direction of
the asymptotic supermomentum vector P̄ at J .
Let us also recall another result reviewed in [16,50],

namely that there is no radiation arriving at J from the
spatial directions exactly opposite to principal null direc-
tions. On Fig. 5, the spatial projections on J of the double-
degenerate PNDs are indicated by two bold “incoming”
double arrows Θ ¼ Θs, Φ ¼ 0, and Θ ¼ π − Θs, Φ ¼ 0.
The zeros of the function (4.18) occur at Θ ¼ π − Θs,
Φ ¼ π, and Θ ¼ Θs, Φ ¼ π, which are the two antipodal
spatial directions to these PNDs.
As shown in [50], this picture applies to any spacetime of

algebraic type D with a spacelike J . A specific exact
solution of this type, namely the C-metric with Λ > 0, was
studied in considerable detail [30] proving that the zeros of
the function A geometrically correspond to the two spatial
directions which are opposite to the directions of accel-
erating pair of black holes, as observed from J . Such an
analysis was subsequently generalized in [32] to a complete
family of accelerating, charged and rotating black holes
with any value of the cosmological constant (and double-
aligned non-null electromagnetic field), which belong to
the type D class spacetimes. In fact, the metrics and the

frames employed here, and those used previously, are
closely related. [For example, the tetrads (2.48) and
(2.52) are analogues of Eqs. (13) and (28) in [32], the
Weyl scalar (2.46) corresponds to Eq. (14) therein, etc.]
This last conclusion is also in agreement with [15,17]
where the radiant supermomentum associated to a PND l
by Eq. (3.17) is argued to vanish if there is no radiation
propagating along the antipodal orientation of the spatial
projection to J of l, and indeed this happens if and only if l
is a repeated PND.
In the present work we have employed a much more

explicit form of the general metric, leading to a clearer
physical interpretation of the whole class of such black-
hole spacetimes. Moreover, our main results, based on the
evaluation of the asymptotic supermomentum and super-
Poynting vectors, together with the new criterion for the
presence of gravitational radiation, resolve a previous
apparent “paradox” in [50], namely that the leading term
(4.17) of the Weyl tensor is nonzero even for α ¼ 0, that is
also for nonaccelerating black holes. It is now clear that the
presence/absence of gravitational radiation cannot be iden-
tified, in general, just from the leading Weyl term Ψi

4

(proportional to ϕ2) evaluated with respect to an interpre-
tation tetrad along null geodesics arriving at J , but
the existence of radiation actually depends on the key
parameter

c ¼ −i sinh ψ s ¼ −i tan Θs;

FIG. 5. Directional pattern AðΘ;ΦÞ, for a fixed Θs, of Ψi
4 which is the dominant Weyl component at J , as given by Eq. (4.17) in a

generic type D spacetime with Λ > 0. It applies to the class of black hole solutions studied in this paper, in particular to the C-metric
(left, Θs ≠ 0) and the Schwarzschild-de Sitter solution (right, Θs ¼ 0). These plots alone do not demonstrate the presence/absence of
gravitational radiation at J because Ψi

4 represents the asymptotic value of the gravitational field with respect to arbitrarily oriented
interpretation null tetrad, parallel propagated along various null geodesics reaching the given point at conformal infinity. However, they
clearly show that Ψi

4 has its maximal value along the spatial direction ro—which is caused by the asymmetry with respect to the plane
ðqo; soÞ when Θs ≠ 0, that is for accelerating black holes. According to (4.13), ro is exactly the direction of the asymptotic super-
Poynting vector P̄.
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see (B7) and (B11). The deeper geometric and physical
reason is that the new criterion is based on the more subtle
quadratic combination of the Weyl tensor (Bel-Robinson
tensor, super-Poynting vector, superenergy density), not
just on separate linear components of the Weyl tensor.
In summary, we have demonstrated that

P̄a ¼ 0 ⇔ c ¼ 0 ⇔ ψ s ¼ 0 ⇔ Θs ¼ 0 ⇔ α ¼ 0: ð4:19Þ

V. CONCLUSIONS

The recent covariant and gauge-invariant characteriza-
tion of asymptotic gravitational radiation [17] has been put
to test by studying an improved form of the large family of
type D black holes [38] for the case of a positive
cosmological constant Λ > 0. In doing so, the metric
has been conveniently adapted to investigate its conformal
asymptotic structure, deriving the induced metric of the
Λ > 0 conformal boundary J .
It has been shown that the characterization in terms of the

asymptotic super-Poynting vector field P̄a—that had been
tested for other exact solutions [17] already—successfully
accounts for the presence of gravitational radiation
(P̄a ≠ 0) in this class of spacetimes, establishing that this
is only possible if the black holes are accelerating (α ≠ 0).
Furthermore, we have shown that the asymptotic super-
Poynting vector is sensible to asymmetries of the pair of
black holes’ configurations, enhancing the relevance of this
quantity to characterize and study the existence of radiation
at infinity.
Thus, our study covers the characterization of gravita-

tional radiation at J for a general class of type D (pairs of
accelerating, charged, rotating, and NUTted) black holes in
the case with Λ > 0. The limit to Λ ¼ 0 can be taken
appropriately [39]. The next step is to investigate the
radiative properties of more general black-hole exact
solutions with Λ, including recently found type I black
holes [23–28], and also to consider the complementary
case Λ < 0. While this is left for a future work, we
conjecture that the result will be consistent: only accel-
erating cases will have a nonvanishing asymptotic super-
Poynting vector field.
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APPENDIX A: DETAILS ON THE DERIVATION
OF THE NEW METRIC

The recent improved form of the metric representing the
family of type D black holes, investigated here, which was
presented in [37,38], reads

ds2¼ 1

Ω2

�
−
Q
ρ2

�
dt−

�
asin2θþ4lsin2

θ

2

�
dφ

�
2

þρ2

Q
dr2

þρ2

P
dθ2þ P

ρ2
sin2θ½adt− ðr2þðaþ lÞ2Þdφ�2

�
; ðA1Þ

where

Ωðr; θÞ ¼ 1 −
αa

a2 þ l2
rðlþ a cos θÞ; ðA2Þ

ρ2ðr; θÞ ¼ r2 þ ðlþ a cos θÞ2; ðA3Þ

PðθÞ¼ 1−2

�
αa

a2þ l2
m−

Λ
3
l
�
ðlþacosθÞ

þ
�

α2a2

ða2þ l2Þ2 ða
2− l2þe2þg2ÞþΛ

3

�
ðlþacosθÞ2;

ðA4Þ
QðrÞ ¼ ½r2 − 2mrþ ða2 − l2 þ e2 þ g2Þ�

×

�
1þ α a

a − l
a2 þ l2

r

��
1 − αa

aþ l
a2 þ l2

r

�

−
Λ
3
r2
�
r2 þ 2α al

a2 − l2

a2 þ l2
rþ ða2 þ 3l2Þ

�
; ðA5Þ

and the seven physical parameters m, a, l, e, g, α, Λ are
described in Sec. II.
When Λ ¼ 0, both the metric functions P and Q are

factorized [37]. With Λ ≠ 0, it is possible to explicitly
factorize the functionP, and to compactify the functionQ as

PðθÞ ¼
�
1 −

αa
a2 þ l2

rΛþðlþ a cos θÞ
�

×

�
1 −

αa
a2 þ l2

rΛ−ðlþ a cos θÞ
�
; ðA6Þ

QðrÞ ¼ ðr − rΛþÞðr − rΛ−Þ

×

�
1þ αa

a − l
a2 þ l2

r

��
1 − αa

aþ l
a2 þ l2

r

�

−
Λ
3

�
r4 þ ða2 þ l2Þ2

α2a2

�
; ðA7Þ

using the two specific constants

rΛ� ≔ μ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ l2 − a2 − e2 − g2 − λ

q
; ðA8Þ

where
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μ ≔ m −
Λ
3
l
a2 þ l2

αa
; λ ≔

Λ
3

ða2 þ l2Þ2
α2a2

: ðA9Þ

This is achievable provided μ2 þ l2 > a2 þ e2 þ g2 þ λ, in
which case the expressions (A8) yield two distinct real

constants (or a double root of P given by rΛþ ¼ rΛ− ¼ μ in
the specific situation when μ2 þ l2 ¼ a2 þ e2 þ g2 þ λ).
The general spacetime (A1) contains electromagnetic field

represented by the Maxwell tensor Fab, forming F ¼
1
2
Fabdxa ∧ dxb ¼ dA. Its 1-form potential A ¼ Aadxa is

A ¼ −
erþ gðlþ a cos θÞ
r2 þ ðlþ a cos θÞ2 dtþ

ðerþ glÞða sin2θ þ 4l sin2 1
2
θÞ þ gðr2 þ ðaþ lÞ2Þ cos θ

r2 þ ðlþ a cos θÞ2 dφ: ðA10Þ

Non-zero components of Fab ¼ Ab;a − Aa;b are thus

Frt ¼ ρ−4½eðr2 − ðlþ a cos θÞ2Þ þ 2grðlþ a cos θÞ�;
Fφθ ¼ ρ−4½gðr2 − ðlþ a cos θÞ2Þ − 2erðlþ a cos θÞ�ðr2 þ ðaþ lÞ2Þ sin θ;

Fφr ¼
�
a sin2θ þ 4l sin2

θ

2

�
Frt;

Fθt ¼
a

r2 þ ðaþ lÞ2 Fφθ: ðA11Þ

The electromagnetic field thus vanishes if (and only if)
e ¼ 0 ¼ g.10

To derive the new form (2.1) of the metric, convenient for
investigation of an asymptotic structure of this large family
of black-hole spacetimes, first we relabel the metric
functions Ω, ρ, Q to Ω0; ρ0; Q0, and then perform a simple
transformation from r to its reciprocal coordinate

q ¼ 1

r
; ðA12Þ

so that the metric (A1) becomes

ds2¼ 1

Ω02

�
−
Q0

ρ02

�
dt−

�
a sin2θþ4l sin2

θ

2

�
dφ

�
2

þ ρ02

q4Q0dq
2

þρ02

P
dθ2þ P

q4ρ02
sin2θ½aq2 dt−ð1þðaþlÞ2q2Þ dφ�2

�
:

ðA13Þ

Next we introduce new metric functions by the following
rescaling

Ω ≔ qΩ0; ρ2 ≔ q2ρ02; Q ≔ q4Q0: ðA14Þ

A straightforward calculation then leads to the metric

ds2 ¼ 1

Ω2

�
−
Q
ρ2

�
dt−

�
a sin2θþ 4l sin2

θ

2

�
dφ

�
2

þ ρ2

Q
dq2

þ ρ2

P
dθ2 þ P

ρ2
sin2θ½aq2dt− ð1þ ðaþ lÞ2q2Þ dφ�2

�
;

ðA15Þ
with the functions (2.2)–(2.5).

1. Particular subcases of the metric
on the conformal boundary J

The particular subcases of the metric h given by
Eq. (2.34), equivalent to (2.36) or (2.37), are:

(i) For α ¼ 0: Kerr-Newman-NUT-(A)dS black hole
without acceleration

B ¼ 0; C2 ¼ 1:

(ii) For a ¼ 0: charged-NUT-(A)dS without acceleration

B ¼ 0; C2 ¼ 1:

(iii) For l ¼ 0: accelerating Kerr-Newman-(A)dS black
hole

B ¼ α; C2 ¼ 1þ α2a2:

(iv) For α ¼ 0 ¼ l: Kerr-Newman-(A)dS black hole

B ¼ 0; C2 ¼ 1:

An important special case is the class of Kerr-(A)dS
black holes (α, l, e, g ¼ 0), for which qJ ¼ 0, ρ2J ¼ 1,

10It should be emphasized that the correct complete version
of the electromagnetic field potential (A10) including both the
electric and magnetic charges was first presented in paper [25] by
Astorino andBoldi, see Eq. (3.31) andmore detailed explanation in
Appendix A therein. Explicit relation to (A10) is obtained by the
identification p ¼ g, x ¼ cos θ,R2 ¼ ρ2,Δr ¼ Q,Δx ¼ P sin2 θ,
and also (A11) agrees with (A.8)–(A.11) in [25] when the opposite
convention Fab → −Fab is taken into account.
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QJ ¼ − Λ
3
, P ¼ 1þ Λ

3
a2cos2θ, so that the metric (2.36)

reduces to

h ¼ Λ
3
dt2 þ

�
1þ Λ

3
a2
�
sin2θ dφ2 − 2

Λ
3
a sin2θ dt dφ

þ
�
1þ Λ

3
a2 cos2θ

�
−1
dθ2: ðA16Þ

Another prominent metric is the C-metric with Λ (a, l, e,
g ¼ 0). In such a case qJ ¼ α cos θ, ρ2J ¼ 1, QJ ¼
− Λ

3
− α2P sin2θ, P ¼ 1–2αm cos θ, and (2.36) thus sim-

plifies to

h ¼
�
Λ
3
þ α2P sin2θ

�
dt2 þ P sin2θ dφ2

þ Λ
3

�
Λ
3
þ α2P sin2θ

�
−1 dθ2

P
: ðA17Þ

Without acceleration α ¼ 0, we get the Schwarzschild-
(A)dS metric on J , namely

h ¼ Λ
3
dt2 þ dθ2 þ sin2θ dφ2: ðA18Þ

APPENDIX B: GENERAL CONSIDERATIONS
FOR TYPE D SPACETIMES

For spacetimes with algebraically special, double-
degenerate type D rescaled Weyl tensor dαβγδ at J—as it
is the case of the metric (2.13)—it is possible to prescribe a
general construction of strongly oriented tetrads. Let n be
the unit (n · n ¼ −1), future-pointing normal to J ,
cf. (2.44),11 and consider the tetrad ðk; l;mÞ, where k
and l are future-oriented and aligned with the two double
PNDs. Next, we define a real and a complex scalar, b and
c, as

b2 ≔ −
1ffiffiffi
2

p 1

kαnα
; ðB1Þ

c ≔
ffiffiffi
2

p
m̄αnα: ðB2Þ

With the scalar b, let us perform a boost of the null directions
to an auxiliary tetrad

ak ¼ b2k;

al ¼
1

b2
l;

am ¼ m; ðB3Þ

and subsequently, with the complex scalar c, apply a null
rotation around ak,

sk ¼ ak;

sl ¼a lþ camþ c̄am̄þ cc̄ak;

sm ¼ amþ c̄ak: ðB4Þ

Since

n ¼ 1ffiffiffi
2

p ðkþ lÞ; ðB5Þ

at J the strong orientation is given by the space-like unit
vector field

M≔J
1ffiffiffi
2

p ðsl−skÞ¼s n−
ffiffiffi
2

p
sk; M ·M¼ 1; n ·M¼ 0:

ðB6Þ

From here, one can already make an observation about the
content of gravitational radiation at J . As follows from
results of [17], for a type D rescaled Weyl tensor at J , the
gravitational radiation condition is equivalent to the copla-
narity of the normal to J and the two PNDs. Hence,

P̄a ¼ 0⇔ no gravitational radiation atJ ⇔ c¼ 0: ðB7Þ

This shows that the complex scalar c of Eq. (B2)—or,
equivalently, the components of the normal n projected
to the two-dimensional plane orthogonal to the PNDs—
encodes the information about gravitational radiation.
To see more explicitly the role played by c in the

radiation condition, one can write the Cotton-York tensor—
which up to a constant factor coincides with the magnetic
part Cαβ of the rescaled Weyl tensor of dαβγδ—and the
electric part Dαβ. First observe that in the “natural” tetrad
ðk; l;mÞ the only nonvanishing Weyl scalar of dαβγδ is ϕ2.
Then, in the strongly oriented tetrad ðsk;s l;s mÞ, the non-
vanishing scalars are12

sϕ4 ¼ 6c2ϕ2;

sϕ3 ¼ 3cϕ2;

sϕ2 ¼ ϕ2: ðB8Þ

Following the formulas of Sec. II and Appendix D of [17],
we can write13

11Which is well defined at J and in its neighborhood.

12The boost b does not affect ϕ2, whereas the null rotation c
produces the rest of the scalars.

13Latin indices could be used instead, as the fields involved in
these expressions are all completely tangent to J .
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Dαβ ¼ ℜðϕ2Þð3MαMβ − hαβÞ þ ½−3
ffiffiffi
2

p
cϕ2MðαsmβÞ

− 3
ffiffiffi
2

p
c̄ϕ̄2Mðαsm̄βÞ þ 3c2ϕ2 smα smβ

þ 3c̄2ϕ̄2sm̄αsm̄β�; ðB9Þ

Cαβ ¼ ℑðϕ2Þð3MαMβ − hαβÞ þ i½−3
ffiffiffi
2

p
cϕ2Mðα smβÞ

þ 3
ffiffiffi
2

p
c̄sϕ̄2Mðα sm̄βÞ þ 3c2ϕ2smαsmβ

− 3c̄2ϕ̄2 sm̄α sm̄β�: ðB10Þ

Notice that ðM; sm; sm̄Þ is a basis on J . A couple of results
from [17] implies that for type D spacetimes there is no
gravitational radiation if and only if Dαβ and Cαβ are
proportional to ð3MαMβ − hαβÞ. From Eqs. (B9) and (B10)
we thus conclude that this occurs if and only if c ¼ 0—
excluding the conformally flat type O case. Thus, whenever
c ¼ 0 the electric and magnetic parts of the rescaled Weyl
tensor are proportional, implying the vanishing of their
matrix commutator—that is the vanishing of the asymptotic
super-Poynting vector P̄a.
Observe that ϕ2 on its own does not contain the

information about gravitational radiation at J . It is possible
to have no gravitational radiation with ϕ2 ≠ 0 at J if c ¼ 0.
The case ϕ2 ¼ 0 is trivial and corresponds to vanish-
ing dαβγδ.
Indeed, the asymptotic super-Poynting vector field reads

P̄a ¼ −9
ffiffiffi
2

p
ϕ2ϕ̄2ð1þ 2cc̄Þ½csma þ c̄sm̄a þ

ffiffiffi
2

p
cc̄Ma�:

ðB11Þ

It is thus clear that, for ϕ2 ≠ 0 (i.e., dαβγδ ≠ 0), P̄a ¼ 0 iff
c ¼ 0. Hence, in agreement with [17], the superenergy
cannot propagate in directions orthogonal to Ma. Observe
also that

MaP̄a ≤ 0: ðB12Þ

The expression for the asymptotic super-energy density is

W ¼ 6ϕ2ϕ̄2ð1þ 6cc̄þ 6c2c̄2Þ; ðB13Þ

which can be different from zero for c ¼ 0. In particular, for
the Schwarzschild-de Sitter black hole (the solution by
Kottler), we get W ¼ 6m2. This is completely fine, as the
gravitational radiation is determined by the super-Poynting
vector.
One could also choose the other strong orientation

complementary to (B1), by defining

b̃2 ≔ −
1ffiffiffi
2

p
lαnα

; ðB14Þ

and keeping the same c. Thus, the tetrad adapted to such
strong orientation reads

sk̃ ¼ ak̃þ camþ c̄am̄þ cc̄al̃;

sl̃ ¼ al̃;

sm̃ ¼ am̃þ c̄al̃; ðB15Þ

where now

ak̃ ¼ 1

b̃2
k;

a l̃ ¼ b̃2l;

am ¼ m: ðB16Þ

One defines the new vector field tangent to J as

M̃≔J
1ffiffiffi
2

p ðsl̃ − sk̃Þ ¼ sn −
ffiffiffi
2

p
sk̃;

M̃ · M̃ ¼ 1; n · M̃ ¼ 0: ðB17Þ

Using Eq. (B5) and its version with tildes, it follows that

cc̄ ¼ γð1 − 2γÞ þ 1

γð1þ 2γÞ ðB18Þ

where the coefficient

γ ≔ ðbb̃Þ2 ∈ ð0; 1� ðB19Þ

has been introduced. The range follows from the normali-
zation condition on the lightlike PNDs, namely k · l ¼ −1.
With Eq. (B18), it is possible to write

M · M̃ ¼ 2γ − 1: ðB20Þ

Notice that γ ¼ 1 is the only root of the numerator in
Eq. (B18) allowed by the range of γ, and thus

M · M̃ ¼ 1 ⇔ γ ¼ 1 ⇔ P̄a ¼ 0; ðB21Þ

as expected.

1. Radiant superenergy

Using the same definitions from above, the radiant
superenergy associated with the lightlike directions read,
respectively

Z½sl� ¼ Z½sk̃� ¼ 36cc̄ϕ2ϕ2; ðB22Þ

W½sl� ¼ W½sk̃� ¼ 144c2c̄2ϕ2ϕ2; ðB23Þ

Qα½sl̃� ¼ 0 ¼ Qα½sk�; ðB24Þ

Qα½sk̃� ¼ 36cc̄ϕ2ϕ2ð4cc̄s l̃
α þs k̃

α − 2csm̃α − 2c̄s
¯̃mαÞ;
ðB25Þ
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Qα½sl� ¼ 36cc̄ϕ2ϕ2ð4cc̄skαþ slα−2csmα−2c̄sm̄αÞ: ðB26Þ

It can be easily verified that the radiant supermomenta
Qα½sl� and Qα½sk̃� are lightlike. Their tangent part to J ,
denoted here with an overline, can be expressed as

Q̄α½sk̃� ¼ 18
ffiffiffi
2

p
cc̄ϕ2ϕ2½ð1 − 4cc̄ÞM̃α − 2

ffiffiffi
2

p
csm̃α

− 2
ffiffiffi
2

p
c̄s
¯̃mα�; ðB27Þ

Q̄α½sl� ¼ 18
ffiffiffi
2

p
cc̄ϕ2ϕ2½ð1 − 4cc̄ÞMα − 2

ffiffiffi
2

p
csmα

− 2
ffiffiffi
2

p
c̄sm̄α�: ðB28Þ

It is a matter of direct calculation using the relations
between the different tetrads to arrive at

Qμ½sl�Qμ½sk̃� ¼ −ð36cc̄ϕ2ϕ̄2Þ2γ ≤ 0; ðB29Þ

equality holding if and only if there is no gravitational
radiation. Also,

T≔ nμQμ½sk̃� ¼ nμQμ½sl� ¼ 36
ffiffiffi
2

p
cc̄ϕ2ϕ̄2

�
3

2
−
2

γ

�
; ðB30Þ

and then

Q̄μ½sk̃�Q̄μ½sk̃� ¼ Q̄μ½sl�Q̄μ½sl� ¼ T2: ðB31Þ

One can write

Qα½sl� ¼ −TðNα þ q̄α½sl�Þ; q̄μ½sl�q̄μ½sl� ¼ 1;

q̄μ½sl�Nμ½sl� ¼ 0; ðB32Þ

Qα½sk̃� ¼ −TðNα þ q̄α½sk̃�Þ; q̄μ½sk̃�q̄μ½sk̃� ¼ 1;

q̄μ½sk̃�Nμ½sl� ¼ 0; ðB33Þ

where the unit vector fields q̄½sl� and q̄½sk̃� give the spatial
component of propagation of the tidal momentum as
measured by sl and sk̃, respectively. To characterise their
relative orientation, it is useful to introduce the coefficient

β ≔ q̄μ½sl�q̄μ½sk̃� ¼ 1 −
2γ3

ð3γ − 4Þ2 : ðB34Þ

Observe that β∈ ½−1; 1Þ. The condition β ¼ 0 gives only
one real root, namely γ ¼ 0.918….
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