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Space-based gravitational-wave detectors such as LISA are expected to detect inspirals of stellar-mass
compact objects into massive black holes. Modeling such inspirals requires fully relativistic computations
to achieve sufficient accuracy at leading order. However, subleading corrections such as the effects of the
spin of the inspiraling compact object may potentially be treated in weak-field expansions such as the post-
Newtonian (PN) approach. In this work, we calculate the PN expansion of eccentric orbits of spinning
bodies around Schwarzschild black holes. Then we use the Teukolsky equation to compute the energy and
angular momentum fluxes from these orbits up to the 5PN order. Some of these PN orders are exact in
eccentricity, while others are expanded up to the tenth power in eccentricity. Then we use the fluxes to
construct a hybrid inspiral model, where the leading part of the fluxes is calculated numerically in the fully
relativistic regime, while the linear part in the small spin is analytically approximated using the PN series.
We calculate LISA-relevant adiabatic inspirals and respective waveforms with this model and a fully
relativistic model. Through the calculation of mismatch between the waveforms from both models we
conclude that the PN approximation of the linear-in-spin part of the fluxes is sufficient for lower
eccentricities.

DOI: 10.1103/PhysRevD.110.084061

I. INTRODUCTION AND SUMMARY

A. Extreme mass ratio inspirals

Forthcoming space-based gravitational wave (GW)
detectors such as LISA, TianQin, or Taiji [1–4] will be
able to detect signals from various sources, including
extreme mass ratio inspirals (EMRIs) [5]. These systems
consist of a stellar mass black hole or neutron star in orbit
around a massive black hole with the mass ratio ϵ ¼ μ=M
of the small (secondary) mass μ and large (primary) mass
M between 10−7 and 10−4. Because of gravitational
radiation reaction, the orbit of the small body decays,
and it inspirals into the primary body while radiating GWs
to infinity. Because the secondary body completes many
orbits in the strong gravitational field of the primary body,
the detection of GWs from such systems will give a unique
insight into the strong-field regime around massive black
holes, which will also allow us to test general relativity to
high precision [6,7]. Furthermore, the study of EMRI
populations will provide new insights in cosmology and
astrophysics [5,8].
To achieve the aforementioned goals, the parameters of

the detected systems must be estimated with high precision.
Because signals from EMRIs and other astrophysical

sources will overlap, detection and parameter estimation
will be done through matched filtering, which is based on
the comparison of the received signal with many waveform
templates. For this purpose, the waveforms must be
generated for a wide range of parameters with the phase
accurate to fractions of radian [9]. There are several
methods for modeling binary systems, and the choice of
the most suitable method depends on the parameters of the
system, such as the mass ratio and compactness.

B. Black hole perturbation theory

In particular, for the modeling of EMRIs, black hole
perturbation theory (BHPT) is often employed, where the
spacetime is expanded in the mass ratio around a back-
ground spacetime of the primary [10]. Then, the system can
be effectively described as a point particle moving in the
background spacetime while inducing a perturbation of this
spacetime. This perturbation acts on the particle with the
so-called self-force, which can be expanded in the powers
of the mass ratio. Because the mass ratio and, therefore, the
perturbation is small, the inspiral timescale is much slower
than the orbital timescale. Thus, to efficiently solve the
problem, two-timescale expansion is often used, where the
system is described using a set of orbital parameters J i,
which evolve slowly (J̇ i ¼ OðϵÞ) and a set of phases ψ i

that evolve quickly (ψ̇ i ¼ Oð1Þ) [11]. The phases are
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directly related to the phase of the GW. When we consider
an inspiral that sweeps through some finite range of
frequencies such as a GW detector band, we can use the
separation of scales to expand the phase elapsed during this
process as

ΦGW ¼ ϵ−1Φ0ðtÞ þΦ1ðtÞ þOðϵÞ: ð1Þ

The first term, which is called the adiabatic term, is of the
order of ϵ−1 radians, while the second, postadiabatic term,
is in the order of radians and cannot be neglected to achieve
subradian accuracy. The adiabatic term consists of the
contribution from the time-averaged dissipative (time-
antisymmetric) part of the first order in the mass ratio
self-force, while the postadiabatic term consists of a
number of contributions from different physical effects
[10]. Namely, the postadiabatic term requires the inclusion
of the oscillating part of the dissipative and conservative
(time-symmetric) first-order self-force, time-averaged dis-
sipative part of the second-order self-force, the force caused
by the spin-curvature coupling of the secondary, and
corrections to the dissipative self-force caused by the
secondary spin.
To find all the contributions up to the postadiabatic term,

one in principle has to find the metric perturbation up to the
second order in the mass ratio, regularize it near the
particle, and calculate the self-force from the regular part.
However, thanks to flux-balance laws, the averaged dis-
sipative part of the self-force can often be obtained from the
asymptotic GW fluxes to infinity and through the horizon
of the primary black hole [12–15]. The first-order flux-
balance laws for nonspinning secondaries were obtained by
Mino [12] and Sago et al. [13]. For spinning secondaries,
the flux-balance law was proven only for the evolution of
energy and azimuthal angular momentum [14]. Second-
order flux-balance laws for the energy and azimuthal
angular momentum of nonspinning secondaries on quasi-
circular orbits in Schwarzschild spacetime were derived by
Miller and Pound [16]; these derivations are expected to
straightforwardly generalize to generic orbits. The cur-
rently open question is a concrete formulation of some sort
of flux-balance law for the so-called Carter constant at
second order in the mass ratio and under secondary spin
corrections to the motion (see Ref. [17] for some recent
effort in this direction). A less obvious quantity that did not
have a flux-balance law to date was the aligned component
of the secondary spin sk; this question is resolved by us in
Sec. III.
The first-order adiabatic fluxes must be calculated with

high accuracy since the error will be enhanced by ϵ−1

compared to the postadiabatic terms. As a general rule, the
error of the adiabatic term must be OðϵÞ smaller than the
error of the postadiabatic term. This opens up the pos-
sibility of using various approximations for the calculation
of the postadiabatic effects.

C. Post-Newtonian expansions

As mentioned above, there are other techniques to model
binary systems with different mass ratios and separations.
One such technique is the post-Newtonian (PN) theory
[18], which is valid for systems with large separations and
low relative velocities. This method relies on expanding the
Einstein equations in the inverse square of the speed of light
in vacuum 1=c2, thus assuming that quantities such as the
dimensionless speed squared v2=c2 or the dimensionless
gravitational potential GM=ðrc2Þ are small. Currently, the
state-of-the-art results for the dissipative effects in compa-
rable-mass spinning binaries on eccentric orbits are expan-
sions of the energy and angular momentum fluxes to 3PN
order [19] beyond the Newtonian quadrupole formula [20]
and for nonspinning objects on circular orbits to
4.5PN [21].
The regime in which both PN theory and BHPTare valid

offers the possibility of cross-validating the results of both
theories. In particular, when the results of BHPT are
analytically expanded in a PN parameter (see a review
of older results in [22,23]), direct comparisons can be made
with pure PN computations truncated at the first order in the
mass ratio. Furthermore, the BHPT computations can
typically be expanded to higher PN orders than the existing
PN computations at finite mass ratio. Finally, careful
considerations of the symmetries of the mass ratio expan-
sion of the PN series reveal that the BHPT results can often
have a “strategic” importance for obtaining unknown
pieces of the equations of motion of binaries at any mass
ratio [24–27].
Such results can also be utilized to calibrate effective-

one-body models, which is an approach to binary modeling
that takes input from numerical relativity, PN theory, and
BHPT [28–30]. In particular, the dynamics of spinning
test particles in black hole spacetimes proved to also be
useful in the development of effective-one-body models
(see, e.g., [31–33]).
The PN expansion of the BHPT results was first used by

Poisson [34], where the energy fluxes to infinity from
circular orbits in the Schwarzschild spacetime were
expanded to 1.5PN orders beyond the Newtonian order.
These results were then extended to higher PN orders,
to fluxes through the horizon, and to the Kerr spacetime
[35–40]. The latest results are infinity fluxes and horizon
fluxes from circular orbits in the Schwarzschild spacetime to
22PN [41] and in the Kerr spacetime to 11PN order [42].
The effects of the spin of the secondary body were first

incorporated into the fluxes from circular orbits around a
Kerr black hole by Tanaka et al. [43] to 2.5PN order, and
later by Nagar et al. [32] and Akcay et al. [14] for circular
orbits in the Schwarzschild spacetime to the 5.5PN order.
The formalism was also extended to generic orbits of

nonspinning bodies in Kerr spacetime, where one needs the
evolution of three constants of motion, namely the energy,
angular momentum, and the Carter constant [13,44,45].
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The latest results, i.e., 5PN fluxes with expansions in
eccentricity to e10 were used by Isoyama et al. [46] to
generate generic adiabatic inspirals and waveforms.
Another direction in which this technique was utilized

was to calculate PN expansions of energy and angular-
momentum fluxes from highly eccentric orbits in the
Schwarzschild spacetime. In Ref. [47] the authors identi-
fied singular factors in the form ð1 − e2Þ−k yielding
convergent series in eccentricity after the factorization
of such terms. In addition, they used highly accurate
numerical calculations to find the coefficients of the series
in eccentricity and the PN series to 7PN order. Later, an
analytical form for the leading and subleading logarithmic
terms was found by Munna and Evans [48,49]. Finally,
the energy and angular momentum fluxes to infinity
and through the horizon were found up to the 19PN order
[50–52].
These expansions not only provided validation of the

results of the PN theory, but were used by Burke et al. [53]
in the calculation of adiabatic inspirals, where the authors
also tested the possibility of using the waveforms derived
from such inspirals for accurate parameter estimation. It
was found that the 9PN adiabatic fluxes from eccentric
orbits in Schwarzschild spacetime introduce bias on the
system parameters and, therefore, cannot be used instead of
the fully relativistic fluxes. However, in the same work, a
hybrid model with fully relativistic adiabatic (first order in
the mass ratio) fluxes and 3PN expansion of postadiabatic
fluxes (second order in the mass ratio) was used, which was
proven to be sufficient for accurate parameter estimation in
some cases.
The secondary spin corrections to the fluxes are of the

order of the mass ratio and, consequently, contribute at
postadiabatic order, the same as the PN-expanded pieces
used in Burke et al. [53]. Therefore, it may be possible to
approximate them using PN expansion and avoid computa-
tionally expensive numerical calculations of the fully
relativistic fluxes such as was done in Refs. [14,54–58].

D. Summary of results

The main results of this work are:
(1) In this work, we PN-expanded the analytical ex-

pressions for eccentric, precessing trajectories of
spinning bodies in Schwarzschild spacetime that
were recently found by Witzany and Piovano [59].
The expanded trajectories and other relevant
quantities can be found in the Supplemental
Material [60].

(2) Then, we employed the Teukolsky equation to find
the energy and angular momentum fluxes from these
orbits as a closed-form series in the PN parameter
and eccentricity. We linearized the fluxes in the
secondary spin and found the linear-in-spin correc-
tion up to 5PN and at least tenth power in eccen-
tricity. We were able to fully factorize and resum the

fluxes as a finite series in eccentricity up to 2.5PN
with partial resummation results also at higher
orders. We demonstrated that the resulting
eccentricity series converges even up to e → 1 in
Figs. 1 and 2. The resulting spin corrections to fluxes
are in Eqs. (55) and (56) and Appendix A as well as
the Supplemental Material.

(3) We tested the convergence of the PN series by
analytically integrating the phase evolution of qua-
sicircular inspirals with the result in Eq. (69). Using
this general result, we computed the phase contri-
butions of LISA-band inspirals of 100M⊙ spinning
black holes into massive black holes of mass 106M⊙
in Table I. This demonstrated that the 5PN expansion
is not sufficiently accurate for the nonspinning part
of the flux, but it is sufficient for the spin correction
in the case of quasicircular inspirals.

(4) Hence, we then used these flux corrections in a
hybrid inspiral model, where the nonspinning part
was calculated numerically in a fully relativistic
regime and the linear-in-spin part is expressed
analytically as a PN series. To be able to do so,
we also derived that the aligned component of the
secondary spin sk will stay conserved during
generic EMRIs.

(5) Using the hybrid model, we computed fiducial
LISA-band eccentric inspirals using the same binary
masses as for the quasicircular case. Additionally,
we used the FEW package [61–64] to generate
relativistic waveforms corresponding to the inspi-
rals. As a test of the formalism, we computed
mismatches of the hybrid-model waveforms with
waveforms corresponding to fully relativistic inspi-
rals. The mismatches presented in Fig. 8 imply that
the hybrid model should be adequate for the detec-
tion of the vast majority of LISA EMRIs. Addition-
ally, it should not introduce significant biases for
parameter estimates of less eccentric events.

E. Organization of paper

This paper is organized as follows. Section II reviews the
motion of spinning bodies in Schwarzschild spacetime and
introduces PN and eccentricity expansions of these trajec-
tories. This is followed by Sec. III where the self-torque
acting on the spin vector is presented, which is then used to
derive the adiabatic evolution of the parallel component
of the secondary spin. Next, Sec. IV examines the GW
fluxes from orbits described in the previous section. First,
the Teukolsky formalism is presented, which is then
used to calculate the PN expansions of the fluxes. Next,
Sec. V presents the hybrid model for the adiabatic inspirals
that includes the PN expansion of the fluxes and the
calculation of inspirals using this model. Finally, Sec. VI
provides a discussion of the importance of the results and
outlooks.
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F. Notation

Geometrized units, where the gravitational constant and
the speed of light in vacuum are set to unity (G ¼ c ¼ 1),
are used throughout this paper. Spacetime indices
are denoted with Greek letters, while tetrad indices are
denoted with Latin letters. The signature of the metric is
ð−;þ;þ;þÞ, while the Riemann tensor is defined as
aν;κλ − aν;λκ ≡ Rμ

νκλaμ, where the semicolon denotes the
covariant derivative and aμ is a covector. The sign of the
Levi-Civita pseudotensor is defined as ϵtrθϕ=

ffiffiffiffiffiffi−gp ¼
−ϵtrθϕ ffiffiffiffiffiffi−gp ¼ 1.

II. PN EXPANSIONOF ECCENTRIC EQUATORIAL
TRAJECTORIES OF SPINNING BODIES

A. Spinning-particle trajectory

Let us briefly summarize the properties of the closed
analytical solution of the bound motion of spinning
particles near Schwarzschild black holes as presented in
Ref. [59]. We consider the motion in Schwarzschild
spacetime given as

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð2Þ

where fðrÞ ¼ 1–2M=r. The motion of the spinning particle
is described by Mathisson-Papapetrou-Dixon equations
under the Tulczyjew-Dixon or covariant spin supplemen-
tary condition sμνPν ¼ 0, where Pμ is the particle momen-
tum and sμν is the spin tensor per unit particle mass. The
solution is valid up to OðsÞ corrections to the orbital
motion, and to leading order in the spin sector. In this
truncation one has Pμ ¼ μuμ þOðs2Þ, where μ is the
particle mass and uμ is the four velocity. One then
equivalently parametrizes the spin by the spin vector and
the spin tensor

sμ ¼ −
1

2
ϵμνκλsνκuλ; ð3Þ

sμν ¼ ϵμνκλuκsλ; ð4Þ

where ϵμνκλ is the Levi-Civita pseudotensor.
Note that the definition of sλ depends on the orientation

of the basis. This is further complicated by the fact that
raising or lowering indices formally changes the orienta-
tion. Here we fix the convention by

ϵtrθϕ ¼ −ð−gÞϵtrθϕ ¼ ffiffiffiffiffiffi
−g

p
; ð5Þ

which yields a right-handed basis for upper-index quan-
tities under the assumption of a conventional transforma-
tion from r; θ;ϕ to Cartesian coordinates. However, this
also means that our formulas have a relative minus sign in
front of any spin correction as compared to Ref. [59].
The three rotational symmetries of the Schwarzschild

spacetime around the x, y, z axes generate a conserved total
angular momentum vector of the generically inclined
spinning particle. Upon rotation of the coordinate equator
θ ¼ π=2 into the plane perpendicular to this vector, the
generic motion becomes near equatorial in the resulting
frame, θ ¼ π=2þ δθ þOðs2Þ. As a result, the Mathisson-
Papapetrou-Dixon equations fully separate, and the solu-
tions are parametrized by the three constants of motion:

E ¼ −uμξ
μ
ðtÞ þ

1

2
ξðtÞμ;νsμν; ð6Þ

Jz ¼ uμξ
μ
ðϕÞ −

1

2
ξðϕÞμ;ν sμν; ð7Þ

sk ¼
sμlμffiffiffiffiffiffiffiffi
lαlα

p ¼ Yμνsμuν

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kαβuαuβ

q ; ð8Þ

lμ
∂

∂xμ
≡ rθ̇

sin θ
∂

∂ϕ
− r sin θϕ̇

∂

∂θ
; ð9Þ

where E has the meaning of total orbital and spin-orbital
energy per unit mass, Jz the orbital and spin-orbital angular
momentum, and sk is the component of spin aligned
with the orbital angular momentum. Furthermore, Yμν ¼
−Yνμ; Yμν;κ ¼ −Yμκ;ν is the Killing-Yano tensor of the
Schwarzschild spacetime, which means that sk is related
to the more general Rüdiger constants in Kerr spacetime
and the separation constant for spinning particles in Kerr
found by separation of the Hamilton-Jacobi equation
[65,66]. It should also be noted that in the aligned frame
the magnitude of the total angular momentum is by
construction equal to the single component Jz.
The solution is parametrized by Carter-Mino time

dλ ¼ dτ=r2, where τ is proper time. The radial solution
is then expressed in the form

TABLE I. Contributions of various terms to the final phase a of
a quasicircular EMRI entering band at 1 mHz at primary mass
M ¼ 106M⊙ and secondary mass μ ¼ 100M⊙ with a maximally
spinning and aligned secondary.

PN order Geodesic Δϕ Spin Δϕ

0 325 402 0
1 74 454.5 0
1.5 −158 135 0.629199
2 18 877.6 0
2.5 −47 387.3 −2.2748
3 6578.54 0.978466
3.5 2312.36 −0.0365018
4 2420.03 0.087333
4.5 −1172.24 −0.0000844637
5 688.9 0.00572313
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rðλÞ ¼ r3ðr1 − r2Þsn2ðKðkÞπ qr; kÞ − r2ðr1 − r3Þ
ðr1 − r2Þsn2ðKðkÞπ qr; kÞ − ðr1 − r3Þ

; ð10Þ

k2 ¼ ðr1 − r2Þr3
ðr1 − r3Þr2

; ð11Þ

qr ≡ϒrλþ qr0; ð12Þ

whereKðkÞ is the complete elliptic integral of the first kind,
snðÞ is the Jacobi sn function, and qr0 is an integration
constant determined by initial conditions. ϒr is given in
Ref. [59] and represents the fundamental frequency of
motion with respect to Mino time. The radii r1 > r2 > r3
are then the nonzero roots of the polynomial RðrÞ appear-
ing in the radial equation of motion

dr
dλ

¼ �
ffiffiffiffiffiffiffiffiffi
RðrÞ

p
; ð13Þ

RðrÞ≡ r½r3ðE2 − 1Þ − rJzðJz − 2skEÞ
þ 2Mðr2 þ JzðJz − 3skEÞÞ�

¼ ð1 − E2Þrðr1 − rÞðr − r2Þðr − r3Þ: ð14Þ

The roots r1, r2 are the physical turning points of the bound
motion and are conventionally parametrized by the orbital
parameters’ dimensionless semilatus rectum p and eccen-
tricity e defined through the relation

r1 ¼
Mp
1 − e

; r2 ¼
Mp
1þ e

: ð15Þ

One can then express Eðp; e; skÞ; Jzðp; e; skÞ; r3ðp; e; skÞ
in closed form by examining Eq. (15).
The t;ϕ degrees of freedom are then given as

tðλÞ ¼ qt þ ΔtðqrÞ; ϕðλÞ ¼ qϕ; ð16Þ

qt ≡ϒtλþ qt0; qϕ ≡ϒϕλþ qϕ0 ; ð17Þ

ΔtðqrÞ ¼ T̃r

�
am

�
qr

π
KðkÞ; k

��
−
T̃rðπÞ
2π

qr; ð18Þ

where amðÞ is the Jacobi amplitude, T̃r is given in Eq. (49)
of Ref. [59], ϒt;ϒϕ are the t;ϕ Mino frequencies, and
qt0; q

ϕ
0 are integration constants. It is interesting to note that

unlike in Kerr, in Schwarzschild spacetime the Carter-Mino
time λ is simply proportional to ϕ, which means that the ϕ
counterpart of ΔtðqrÞ vanishes in Eq. (16).
Finally, the spin degree of freedom and δθ depend on a

precession angle ψ with the evolution

ψðλÞ ¼ qψ þ Ψ̃r

�
am

�
qr

π
KðkÞ; k

��
−
Ψ̃rðπÞ
2π

qr; ð19Þ

qψ ≡ϒψλþ qψ0 ; ð20Þ

whereϒψ ; qψ0 again have analogous meanings as above and
Ψ̃r is a known function.
The deviation from the equatorial plane is then given as

δθ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2 − s2kÞðJ2z þ r2Þ

q
sinψ

Jzr
; ð21Þ

and the spin vector can be expressed as

st ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − s2k

fðJ2z þ r2Þ

s �
EJz cosψffiffiffi

f
p þ ṙr sinψ

�
; ð22aÞ

sr ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − s2k

q �
Jzṙ cos ψ

r
þ Er sin ψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J2z þ r2
p �

; ð22bÞ

sϕ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2 − s2kÞðJ2z þ r2Þ

q
cosψ

r2
; ð22cÞ

sθ ¼ − sk
r
; ð22dÞ

where ṙ is the proper-time derivative of r expressed as
r2

ffiffiffiffiffiffiffiffiffi
RðrÞp

. Note that even though the spin is parametrized
by sk, the orientation of the spin vector is generic, and we
are thus dealing with absolutely generic bound orbits of
spinning test particles in Schwarzschild spacetime in
this paper.

B. PN expansion of the trajectory

The constants of motion, orbital frequencies, and tra-
jectory ðt; r;ϕÞ as a function of the phase qr can be
expanded in a formal PN parameter. In this work we use
the parameter

v ¼
ffiffiffiffi
1

p

s
: ð23Þ

Other choices include, e.g., the gauge independent param-
eter x ¼ ðMΩϕÞ2=3; however, the parameter v is convenient
when the orbit is parametrized with p and e and one can
reexpress the final result in different PN parameters. Every
order in v corresponds to one half of the PN order, that is,
the expansion to 7 orders in v next to the leading order
(NLO) corresponds to 3.5PN orders NLO.
Since the expansions of the geodesic quantities were

calculated before and are available in the literature [45],
here we present only the PN expansion of the linear-in-spin
correction of any given quantity. We write the expansion as
E ¼ EðgÞ þ skδE=M and Jz ¼ JzðgÞ þ skδJz=M, where
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EðgÞ; JzðgÞ are the geodesic expressions at fixed orbital
parameters e, v. Then it is straightforward to expand the
linear-in-spin part of energy δE and angular momentum δJz
from Eqs. (32) and (33) in Ref. [59]. The results read as

δE ¼ −
ð1 − e2Þ2v5

2

X∞
k¼0

�−3=2
k

�
ð−ð3þ e2Þv2Þk; ð24Þ

δJz
M

¼ 1 − 2v2 −
27þ 34e2 þ 3e4

8
v4

−
81þ 131e2 þ 39e4 þ 5e6

8
v6 þOðv8Þ: ð25Þ

δE was expanded to the order v14 which corresponds to 9
orders NLO, while δJz was expanded to v11 (here we show
only the expansion to v6 for simplicity; the full expressions
can be found in the Supplemental Material [60]).
Since the parameter of the elliptic integrals K, E, and Π

in Eqs. (S22)–(S24) in Ref. [59] is k2 ∼Oðev2Þ, we can
expand the expression in k2. We then write the linear-in-
spin parts of the orbital frequencies in Carter-Mino time as
ϒ ¼ ϒðgÞ þ skδϒ=M and obtain

δϒt

M
¼ e2

ð1 − e2Þ3=2 v
−1 þ

�
9þ 8e2

2ð1 − e2Þ3=2 − 6

�
v

−
�
48þ 9e2

2
−
330þ 255e2 − 88e4 þ 9e6

ð1 − e2Þ3=2
�
v3

þOðv5Þ; ð26Þ

δϒr ¼ 1

2
ð3 − e2Þv2 þ 1

4
ð−3e4 þ 4e2 þ 33Þv4

þ 1

16
ð−15e6 − 23e4 þ 357e2 þ 693Þv6

þOðv8Þ; ð27Þ

δϒϕ ¼ ðe2 þ 3Þ
�
−
1

2
v2 −

1

4
ð3e2 þ 5Þv4

−
1

16
ð15e4 þ 50e2 þ 63Þv6 þOðv8Þ

�
: ð28Þ

From the Mino time frequencies, we can calculate the
coordinate time frequencies

Ωi ¼
ϒi

ϒt ; ð29Þ

and their linear-in-spin parts

δΩi ¼
δϒiϒt

ðgÞ −ϒi
ðgÞδϒ

t

ðϒt
ðgÞÞ2

; ð30Þ

where i ¼ r;ϕ. A nice special formula is that δΩϕ ¼
−3v6=2 to all orders in v for e ¼ 0.
We expand the expressions to 9 orders in v beyond the

leading order while keeping the eccentricity dependence
exact. The results are then expanded to e10 for later
calculations. Similarly to δJz, here we show only the
expansion to 4 orders NLO. The full expressions can be
found in the Supplemental Material [60].
By expanding the Jacobi elliptic function snðu; kÞ in k2

in Eq. (10), we find the radial coordinate parametrized with
qr as a series in v and e and extract the linear-in-spin part
δrðqrÞ. Again, due to the length of the expression, it is not
included here but can be found in the Supplemental
Material [60].
Next, we focus on ΔtðqrÞ, which is the oscillating part of

t ¼ ðϒt=ϒrÞqr þ ΔtðqrÞ. Note that the oscillating part of
ϕ ¼ ðϒϕ=ϒrÞqr is zero. Since the expression for tðqrÞ is
too long, its PN expansion is computationally expensive.
Instead, we expand the equation

dt
dqr

¼ dt
dλ

dλ
dqr

¼ dt
dλ

ϒ−1
r ð31Þ

in v and e, where

dt
dλ

¼ r2E
f

− sk
Jzf0r2

2f
ð32Þ

[cf. Eq. (29) in Ref. [59]]. In this way, we obtain a Fourier
series of cosðnqrÞ that is trivial to integrate to obtain tðqrÞ.
Then we extract the linear-in-spin part δΔtðqrÞ, which is
available in the Supplemental Material.

III. ADIABATIC EVOLUTION OF THE
CONSTANTS OF MOTION

The metric perturbations sourced by the spinning sec-
ondary will lead to a self-torque and a self-force, which will
drive its motion away from the motion of the spinning test
body in the Schwarzschild metric. In this section, we derive
the equations governing the leading-order secular evolution
of the spinning-secondary orbit under this perturbation.
The evolution of the secondary under self-force and self-

torque can be cast in the form of MPD equations in the
effective regularized metric ĝμν ¼ gμν þ hμν [14,57,67,68]
(we drop the conventional “R” index on the regularized
metric perturbation hμν here for notational simplicity). As a
result, under the assumption that the spin tensor sμν is
unchanged in the perturbed metric, using Eq. (3) we obtain
different definitions of the spin vector sμ with respect to the
Schwarzschild metric, and ŝμ with respect to the effective
metric. The two definitions are related as follows:

sμ ¼ ŝμ − ϵ

�
1

2
hααŝμ þ

1

2
hαβuαuβŝμ − hμνŝν

�
: ð33Þ
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Because the spin tensor ŝμ is parallel transported in the
effective metric, the spin vector on the Schwarzschild
metric sμ then experiences the self-torque

Dsμ

dτ
¼ −

1

2
hαβ;ρNμαβρ; ð34Þ

Nμαβρ¼2gμαu½βsρ�−gμρuαsβþgαβuρsμþuαuβuρsμ: ð35Þ

The Tulczyjew-Dixon SSC in the effective metric uμŝμ ¼ 0

is conserved up toOðs2Þ due to the general properties of the
MPD equations in any metric. From Eq. (33) it can be seen
that ŝμ is always OðϵsÞ close to sμ without secularly
growing terms. As a result, uμsμ ¼ Oðϵs; s2Þ will also
hold during evolution. Similarly, the spin magnitude with
respect to the effective metric ŝμŝμ is conserved up to
higher-order terms. The background spin magnitude
will then also be conserved up to Oðsϵ; s2Þ terms at
all times.
The energy and angular momentum of the spinning

secondary are generated by the Killing symmetries of the
background, so it is not surprising that their evolution
averaged over the orbital timescale balances the corre-
sponding gravitational-wave fluxes [14,57]

�
dE
dτ

�
¼ −FE;

�
dJz
dτ

�
¼ −F Jz : ð36Þ

In other words, to obtain the leading secular order, we do
not need to go through the computationally demanding
procedure of sourcing the full metric perturbation by the
motion of the pole-dipole particle and then regularizing it to
obtain the local equations of motion. Instead, we can use
the pole-dipole stress energy tensor of the spinning particle
evolving along the orbit described in Sec. II as a source of
curvature perturbations in the Teukolsky equation. From
these we can then compute the fluxes by reconstructing the
metric at infinity (and, starting from a certain PN order, also
at the horizon), as we will do in Sec. IV. This should allow
us to drive the evolution of the large mass ratio binary and
obtain the full spin contribution to the 1PA phase.
However, the generic bound motion of the spinning

particle has an additional degree of freedom in the form of
the direction of the spin vector sμ. Specifically, it is
conceivable that the self-torque drives the spin vector
toward a more aligned, counteraligned, or orthogonal
configuration with respect to the angular momentum of
the orbit. In other words, we need to derive the evolution of
the constant sk.
Using the definition of sk from Eq. (8) we express the

time derivative as

ṡk ¼
l̇νsνffiffiffiffiffiffiffiffi
lαlα

p þ lνṡνffiffiffiffiffiffiffiffi
lαlα

p −
lνsν

ðlαlαÞ3=2
lσ l̇

σ: ð37Þ

We now average the relation above over orbital timescales
to obtain the secular contribution to the evolution. We also
discard terms of order Oðs2; ϵ2Þ but keep terms of order
Oðs; ϵs; ϵÞ as is consistent with the order of the scheme.
After averaging, only the parallel part of spin remains

since it can be seen from Eq. (22) that all the other
components of sμ are fully oscillating on the orbital
timescale. Additionally, the third term can be written
using sk:

hṡki ¼
� l̇νsνkffiffiffiffiffiffiffiffi

lαlα
p þ lνṡνffiffiffiffiffiffiffiffi

lαlα
p −

sk
lαlα

lσ l̇
σ

�
: ð38Þ

The parallel part of the angular-momentum vector is
expressed as sμk ¼ sklμ=

ffiffiffiffiffiffiffiffi
lαlα

p
, which yields

hṡki ¼
�
sk l̇νlν

lαlα
þ lνṡνffiffiffiffiffiffiffiffi

lαlα
p −

sk
lαlα

lσ l̇
σ

�
: ð39Þ

The first and third terms above subtract. Finally, we
substitute the self-torque ṡμ from Eq. (34) to obtain

hṡki ¼
�

lνṡνffiffiffiffiffiffiffiffi
lαlα

p
�

¼ −
1

2

�
−lμ D

dτ bμ þ lμhμβ;ρuβsρ − lρhαβ;ρuαsβffiffiffiffiffiffiffiffi
lαlα

p
�
; ð40Þ

bμ ≡ ðgμαsβ − sμðgαβ þ uαuβÞÞhαβ: ð41Þ

Because l̇μ ¼ OðϵÞ þOðsÞ and bμ ¼ OðϵsÞ, the first term
together with the denominator can be written as a total
derivative that does not contribute to the average.
Additionally, since sμk and lμ are colinear, the second

and third terms cancel under the average, and we
obtain hṡki ¼ 0þOðϵ2; s2Þ.
In conclusion, the leading-order adiabatic evolution of

the spinning secondary orbit will be only due to the decay
of E and Jz as given by Eq. (36), and s and sk can be treated
simply as constants for the purposes of 1PA inspirals.
This derivation holds for generic orbits in the Kerr

spacetime and extends the same result for circular orbits
in Schwarzschild spacetime in [57]. This is because lμ ≡
Yμνuν is parallel transported also along Kerr geodesics, and
thus all the derivation steps above apply without any
change also for the motion near spinning primary
black holes.

IV. GRAVITATIONAL-WAVE FLUXES

A. Teukolsky formalism

For the calculation of the PN expansion of GW fluxes in
the framework of black hole perturbation theory, we use a
similar approach to the one we used in Refs. [56,58,69]
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where we solved the Teukolsky equation in the frequency
domain. Because the radial motion is periodic, the strain at
infinity h ¼ hþ − ih× can be written as a sum over l, m
multipoles and harmonic modes n and j as

h ¼ 2

r

X
lmnj

Cþ
lmnj

ω2
mnj

−2YlmðθÞe−iωmnjðt−r�Þþimϕ; ð42Þ

where we sum over 2 ≤ l < þ∞, −l ≤ m ≤ l, −∞ <
n < þ∞, and −1 < j < 1, Cþ

lmnj are the Teukolsky ampli-
tudes at infinity,ωmnj ¼ mΩϕ þ nΩr þ jΩψ is the frequency
of the given mode, −2YlmðθÞ is the spin-weighted spherical
harmonic, ðt; r; θ;ϕÞ are the coordinates of the observer, and
r� ¼ rþ 2M logðr=ð2MÞ − 1Þ is the tortoise coordinate.
The orbit-averaged energy and angular momentum

fluxes to infinity can be expressed as sums over the l,
m, n, j modes in the form

FE ¼
X
lmnj

jCþ
lmnjj2

4πω2
mnj

; ð43aÞ

F Jz ¼
X
lmnj

mjCþ
lmnjj2

4πω3
mnj

: ð43bÞ

Because the amplitudes for j ¼ �1 are proportional to s⊥ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − s2k

q
and for j ¼ 0 are independent of s⊥, to linear

order in spin the fluxes are independent of s⊥, and we can
sum only over l,m, and n with j ¼ 0 [43,58]. Therefore, we
will write Cþ

lmn ≡ Cþ
lmn0 and ωmn ≡ ωmn0. Furthermore, as

discussed later in this section, the horizon fluxes are of
higher PN order, and we do not consider them here.
The asymptotic amplitudes can be found from the

integral over the radial phase qr:

Cþ
lmn ¼

1

Wlmnϒt

Z
2π

0

IþlmnðqrÞeiψmnðqrÞdqr; ð44Þ

where IþlmnðqrÞ is a certain moment of the spinning particle
source

Iþlmn ¼ r2
X
ab

�
B0
abF

ab
lmn þ Br

ab
∂Fab

lmn

∂r

�
; ð45Þ

ψmnðqrÞ ¼ ωmnΔtðqrÞ −mΔϕðqrÞ þ nqr; ð46Þ

with the sum over Kinnersley tetrad legs λμa, ab ¼
nn; nm̄;mm. Note that we have rearranged the expression
for Iþlmn in Eq. (52) from [58] and introduced quantities

Fab
lmn ¼

XIab
i¼0

ð−1ÞifðiÞab
diR−

lmn

dri
; ð47Þ

B0
ab ¼ Am

ab þ Ad
ab þ iðωmnBt

ab −mBϕ
abÞ: ð48Þ

The functions Fab
lmn depend on the spin-weighted spherical

harmonics 2Ylm through the functions fðiÞab defined in
Eq. (B4) in [58], and on the solution of homogeneous radial
Teukolsky equation R−

lmn ≡ R−
lmωmn

satisfying a purely out-
going boundary condition at the horizon (sometimes called
the “in” solution). The quantities Am;d

ab and Bμ
ab are calculated

from the dynamical stress energy tensor of the spinning
particle to the pole-dipole order as

Am
ab ¼ μuaub;

Ad
ab ¼ μscduðbγaÞdc þ μscðaγbÞdcud;

Bρ
ab ¼ μsρðavbÞ

with the spin coefficients

γadc ¼ λaμ;ρλ
μ
dλ

ρ
c:

In other words, the source receives contributions both from
the dipole term in the particle stress-energy computed from
the spin tensor, and the modified spinning-particle trajectory
on the level of the monopole term.
Similarly to Ref. [69], we expand the expression for Cþ

lmn
in the secondary spin sk. However, here the amplitudes and
fluxes are expanded with fixed orbital parameters p and e
as opposed to fixed orbital frequencies Ωr;ϕ. The linear-in-
spin part of the amplitude can be written as

δCþ
lmn ¼ −

�
δϒt

ϒt
ðgÞ

þ ∂ωWlmnδωmn

WðgÞ
lmn

�
CðgÞþ
lmn

þ 1

WðgÞ
lmnϒ

t
ðgÞ

Z
2π

0

ðδIþlmn þ iIðgÞþlmn δψmnÞeiψ
ðgÞ
mnðqrÞdqr;

ð49Þ
where

δIþlmn¼ r2ðgÞ

��
2δr
rðgÞ

Am
ðgÞabþδB0

ab

�
FðgÞab
lmn

þðBr
abþAm

ðgÞabδrÞ
∂FðgÞab

lmn

∂r
þAðmÞ

ðgÞab
∂FðgÞab

lmn

∂ωmn
δωmn

�
;

ð50Þ
δψmn ¼ δωmnΔtðgÞ þ ωðgÞ

mnδΔt ð51Þ
with

δB0
ab ¼ δAm

ab þ Ad
ab þ iðωBt

ab −mBϕ
abÞ; ð52Þ

δAm
ab ¼ uμuν∂rðλμaλνbÞδrþ 2uμδuνλ

ðμ
a λ

νÞ
b : ð53Þ
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Then, the fluxes can be separated into the geodesic and
spin part as FE;Jz ¼ FE;Jz

ðgÞ þ skδFE;Jz=M to obtain

δFE ¼
X
lmn

ωmnRefCðgÞþ
lmn δC

þ
lmng − jCðgÞþ

lmn j2δωmn

2πω3
mn

; ð54aÞ

δF Jz ¼
X
lmn

m
ωmn2RefCðgÞþ

lmn δC
þ
lmng−3jCðgÞþ

lmn j2δωmn

4πω4
mn

:

ð54bÞ

B. PN expansion of the fluxes

The geodesic amplitude CðgÞþ
lmn and the linear-in-spin part

δCþ
lmn can be calculated as a PN series and series in e by

substituting the expansions of the trajectory from Sec. II B.
However, we also need a weak-field and low-velocities
expansion of the radial function R−

lmn and WronskianWlmn.
This has been done in [35,37] where these quantities were
expanded in z ¼ ωr ¼ OðvÞ and ϵ ¼ 2Mω ¼ Oðv3Þ (see
[23] for a review). Therefore, after substituting these
variables, we obtain the expansion of the function
R−
lmnðrðqrÞÞ in v and e.
After the expansion in v and e, the integrals for the

geodesic part CðgÞþ
lmn in Eq. (44) and for the linear-in-spin

part δCþ
lmn (49) consist of a finite Fourier series in qr;

therefore, they are trivial to integrate. In this way, we obtain
the amplitudes with their linear-in-spin parts from which
we calculate the fluxes and their linear-in-spin parts.
In the PN approximation and after expansion in eccen-

tricity, the sums over l, m, and n in the geodesic fluxes (43)
and their linear-in-spin parts (54) are finite, since higher
terms contribute only to higher order in v and e. Unlike the

geodesic parts of the l, m multipoles of the fluxes, which
start at ðl − 2ÞPN order for even lþm and at ðl − 1ÞPN
order for odd lþm, the linear-in-spin parts start at
ðl − 1=2ÞPN order for both even and odd lþm. Since
the linear-in-spin parts of the fluxes start at 1.5PN order,
which corresponds to the spin-orbit coupling, we need to
expand them to 3.5PN order NLO to obtain a 5PN
expansion. Therefore, the fluxes and their linear-in-spin
parts are summed over 2 ≤ l ≤ 5 and −l ≤ m ≤ l to obtain
the geodesic fluxes in the 3.5PN order and the linear-
in-spin parts to 5PN order. Because the n modes of the
fluxes F lmn behave as Oðe2nÞ and thanks to the symmetry
F l;m;n ¼ F l;−m;−n, we sum over n in the range
−m < n ≤ 5

1 to obtain expansion to e10.
Therefore, when the geodesic fluxes are completed to the

5PN order from, e.g., [50], we obtain the full 5PN energy
and angular momentum fluxes from a spinning body
orbiting a Schwarzschild black hole up to linear order in
spin. Note that during the calculation of the linear-in-spin
part, nonzero terms appear in the 1PN position, which
cancel out, and the series then start at the 1.5PN term.
Therefore, because of the subtraction of the leading term,
the trajectory must be expanded to one order higher than is
the order of the final series. Furthermore, because the
horizon fluxes for nonspinning secondary in Schwarzschild
spacetime start at 4PN order, the linear-in-spin contribution
to the horizon fluxes starts at 5.5PN order. Thus, we do not
need to consider them here.
As discussed in [47], each PN term contains a factor with

a certain power of 1 − e2. When the fluxes are expressed
using the parameter v, this factor reads as ð1 − e2Þ3=2 for all
orders and can be factored out [45]. The resulting linear-in-
spin parts of the energy and angular-momentum fluxes
have the form

δFE ¼ FE
Nð1 − e2Þ3=2

�
δf3v3 þ δf5v5 þ δf6v6 þ δf7v7 þ δf8v8 þ

�
δf9 þ δflog v

9

�
γ −

35π2

107
þ log v

��
v9

þ δf10v10 þOðv11Þ
�
; ð55Þ

δF Jz ¼ F Jz
N ð1 − e2Þ3=2

�
δg3v3 þ δg5v5 þ δg6v6 þ δg7v7 þ δg8v8 þ

�
δg9 þ δglog v9

�
γ −

35π2

107
þ log v

��
v9

þ δg10v10 þOðv11Þ
�
; ð56Þ

where

FE
N ¼ 32

5

�
μ

M

�
2

v10; F Jz
N ¼ 32

5

μ2

M
v7 ð57Þ

are the Newtonian fluxes, and γ is the Euler–Mascheroni constant. The δfiðeÞ, δgiðeÞ are functions of eccentricity similar to
the enhancement functions of Peters and Mathews and can be found in Appendix A.

1Modes with n ¼ −m contribute to the fluxes with higher PN order, and we do not need to calculate them here.
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Similarly to the geodesic part, we were able to resum the
leading term δf3 (δg3), the 1PN and 2PN contributions δf5,
δf7 (δg5, δg7), and the logarithmic term δflog v9 (δglog v9 ) and
write them in closed form.
After expansion to e12 and factorization of ð1 − e2Þ3=2, in

the functions δf3, δg3, δf
logðvÞ
9 , and δglogðvÞ9 , some of the last

terms vanish. In particular, the series δf3 ends at e6, δg3 at

e4, δflogðvÞ9 at e10, and δglogðvÞ9 at e8. Furthermore, after

subtracting terms proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
from δf5, δg5,

δf7, and δg7, in the remaining series, similarly, some terms
vanish. These series end at e8, e6, e10, and e8, respectively.
Therefore, we have not verified some of the resummations
to all orders in eccentricity, but we assume that they are true
from the similar behavior of the geodesic part [48,49].
In Figs. 1 and 2 we plot the coefficients of the PN series

of the linear-in-spin parts of the energy and angular
momentum flux. Each line shows the coefficients of the
series in e for a given PN order. The coefficients seem to
decrease with eccentricity for all PN orders, which suggests
that the truncation of the eccentricity series does not cause a

large error. However, it may be improved by fitting and
subtracting unknown terms proportional to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
or

logð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
Þ, which we know to appear in geodesic

fluxes [48,49].
Fluxes can also be expressed using the gauge-invariant

quantity x ¼ ðMΩϕÞ2=3. Then, they can be linearized as

F ðx; e; skÞ ¼ F ðgÞðx; eÞ þ skδF jx;eðx; eÞ; ð58Þ

where the linear-in-spin part with fixed x and e can be
obtained from the linear-in-spin part with fixed v and e as

δF jx;eðx; eÞ ¼ δF jv;eðvðgÞðx; eÞ; eÞ þ
∂F gðv; eÞ

∂v
δv; ð59Þ

where vðgÞðx; eÞ and δvðx; eÞ can be found from Ωϕ as an

inverse series of the series x ¼ ðMðΩðgÞ
ϕ ðvðx; eÞ; eÞ þ

skδΩϕðvðx; eÞ; eÞÞÞ2=3=M. The results for δv and
δF jx;eðx; eÞ are given in the Supplemental Material.
After this transformation, the energy flux for zero

eccentricity agrees with the results of Nagar et al. [32],
where the PN expansion of energy fluxes from spinning
bodies on circular orbits of a Schwarzschild black hole was
derived.
To verify our results, we compare them with the results

of Henry and Khalil [19], where the energy and angular
momentum fluxes from eccentric spinning binaries were
calculated using the PN theory. Their results to 3PN and e8

are given as functions of x and the time eccentricity et,
which is used in the quasi-Keplerian parametrization
described in Eq. (2.26) in [19]. Therefore, we had to
transform their fluxes to functions of x and e using a
relation between et and e derived in Appendix B. After the
transformation, the linear parts of the energy and angular
momentum fluxes derived in [19] agree with our results up
to the 3PN order, e8 and the first order in the mass ratio.
To further validate our results, we compare the PN series

with the fully relativistic numerically calculated linear parts
of the fluxes calculated in [69]. We calculate the relative
errors

				1 − δF PN

δF num

				 ð60Þ

for δFE and δF Jz and plot them in Fig. 3 as functions of p
for different values of the eccentricity. These plots verify
that the relative difference decreases with increasing p. For
comparison, we also plot the behavior p−4 since it is the
behavior of the first neglected PN term (because the fluxes
are expanded to 3.5PN orders NLO). The relative
differences seem to decrease with a higher power of p
which is probably caused by the smaller magnitude of the
4PN NLO term compared to the 4.5PN NLO term.

FIG. 1. Coefficients in the PN expansion and eccentricity
expansion of the linear part of the energy flux δFE from Eq. (55).

FIG. 2. Coefficients in the PN expansion and eccentricity
expansion of the linear part of the angular momentum flux
δF Jz from Eq. (56).
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For higher p, the relative difference is dominated by the
interpolation error of the numerical fluxes.

V. FLUX-DRIVEN INSPIRALS

Once we obtained the energy and angular momentum
fluxes, we can calculate the inspiral, i.e., the evolution of
the orbital parameters. As discussed in Sec. III, the fluxes of

energy and angular momentum are sufficient to calculate
the evolution of p and e since sk is conserved.

A. Analytical integration of quasicircular inspirals

To obtain a first understanding of the convergence
of the PN expansion, it is useful to examine the dynamics
analytically. This is achieved by using the PN expansion of
Schwarzschild geodesic fluxes as obtained in Refs. [50,52]
and implemented in the PostNewtonianSelfForce Mathematica
package [70] along with the spin fluxes derived here. While
it is in principle possible to analytically integrate the
dynamics at generic eccentricity, the symbolic computa-
tions become prohibitively expensive. For this reason, we
restricted ourselves to quasicircular inspirals for the ana-
lytical convergence exploration (thus essentially restricting
ourselves to the earlier flux formulas of Refs. [32,37,40];
see also Ref. [71] for a similar setup).
In that case, we can evolve the inspiral only in terms of

the PN expansion parameter v. Furthermore, we can
reparametrize the evolution with the azimuthal phase ϕ

dv
dϕ

				
e¼0

¼ 1

2

ffiffiffiffiffi
M
p3

s �
dE
dp

�
−1
FEΩϕ

¼ dv
dϕ

				
ðgÞ

þ sk
M

dv
dϕ

				
ðsÞ
; ð61Þ

where the relations for the fluxes, frequencies, and EðpÞ are
evaluated at e ¼ 0 and receive Oðsk=MÞ corrections as
described above. For the quasicircular inspiral, one could
equivalently use the F Jz flux and a JzðpÞ relation due to the
identity E ¼ JzΩϕ at zero eccentricity.
Then, we get the equation for the evolution of the

azimuthal phase as a function of v by ϕ0ðvÞ ¼
ðdv=dϕÞ−1 as

ϕ0ðvÞ¼ 5M
32μv6

�
1þ743

336
v2−4πv3þ3

2

sk
M
v3þ3058673

1016064
v4−

7729π

672
v5þ743

224

sk
M
v5þΦ6v6−6π

sk
M
v6

−
15419335π

1016064
v7þ3058673

677376

sk
M
v7þΦ8v8−

7729π

448

sk
M
v8þΦ9v9þΦs9

sk
M
v9þΦ10v10−

15419335π

677376

sk
M
v10

�
; ð62Þ

where the Φ coefficients are defined as

Φ6 ≡ −
10817850546611

93884313600
þ 1712

105
ðγ þ log vÞ þ 32

3
π2 þ 3424

105
log 2; ð63Þ

Φ8 ≡ −
2500489942240134443

3690780136243200
þ 9203

210
ðγ þ log vÞ þ 9049

252
π2 þ 50551

882
log 2þ 47385

1568
log 3; ð64Þ

Φ9 ≡ π

�
90036665674763

187768627200
−
6848

105
ðγ þ log vÞ − 64

3
π2 −

13696

105
log 2

�
; ð65Þ

FIG. 3. Relative difference between the PN expansion of the
linear-in-spin part of the energy (top) and angular momentum
(bottom) flux δF PN and the fully relativistic value of δF num for
different eccentricities. The dashed lines show dependence
Oðp−4Þ which should be the order of the error.
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Φ9s ≡ −
10270192050611

62589542400
þ 856

35
ðγ þ log vÞ þ 16π2 þ 1712

35
log 2; ð66Þ

Φ10≡−
1417220168422461061151

505226791983513600
þ6470582647

110020680
ðγþ logvÞþ578223115

12192768
π2þ53992839431

220041360
log2−

5512455

87808
log3: ð67Þ

This relation can then be easily integrated term by term to obtain the change in ϕ between two referential values of v. We
can take the end of the inspiral to be at the innermost stable circular orbit, which is at

vISCO ¼
ffiffiffi
1

6

r
þ 1

18

sk
M

: ð68Þ

Furthermore, we want to parametrize the initial condition by a referential initial frequency where the signal enters the band,
Ωϕ ¼ Ωϕ

i . The perturbative inversion of the relation ΩϕðvÞ yields v ¼ Ω1=3
ϕ þ skΩ

4=3
ϕ =ð2MÞ. As a result, we get the inspiral

phase as

ΔϕISCO ¼ M

32μω5=3
i

�
1þ 3715

1008
ω1=3
i − 10πωi þ

15293365

1016064
ω4=3
i þ Δ5=3ω

5=3
i þ Δ2ω

2
i þ

77096675π

2032128
ω7=3
i

þ Δ8=3ω
8=3
i þ Δ3ω

3
i þ Δ10=3ω

10=3
i

�
þ sk
M

5

128ω2=3
i

�
1þ Δs2=3ω

2=3
i þ 32πωi −

15293365

1016064
ω4=3
i

þ 7729π

168
ω5=3
i þ Δs2ω

2
i þ

3083867π

63504
ω7=3
i

�
þOðω6=3

i Þ; ð69Þ

where we have defined ωi ≡MΩϕ
i as the initial frequency in units of M. The Δ coefficients then read as

Δ5=3 ≡ −
223791298249051766200631

163693480602658406400
ffiffiffi
6

p þ 377580814447

3960744480
ffiffiffi
6

p γ þ 383368458940043π

5407736463360
−
428πγ

189
þ 28366605835π2

438939648
ffiffiffi
6

p

−
20π3

27
þ 136763321753

990186120
ffiffiffi
6

p log 2þ 102239π

4032
log 2 −

5198370032377

126743823360
ffiffiffi
6

p log 3þ 51643π

1728
log 3

þ 38645

672
π logðω1=3

i Þ; ð70Þ

Δ2 ≡ 12348611926451

18776862720
−
1712

21
ðγ þ logðω1=3

i ÞÞ − 160π2

3
−
3424

21
log 2; ð71Þ

Δ8=3 ≡ 2554404624135128353

2214468081745920
−
9203

126
ðγ þ logðω1=3

i ÞÞ − 45245π2

756
−
252755

2646
log 2 −

78975

1568
log 3; ð72Þ

Δ3 ≡ π

�
−
93098188434443

150214901760
þ 1712

21
ðγ þ logðω1=3

i ÞÞ þ 80π2

3
þ 3424

21
log 2

�
; ð73Þ

Δ10=3 ≡ 474387630222958367413

168408930661171200
−
6470582647

110020680
ðγ þ logðω1=3

i ÞÞ − 578223115π2

12192768
−
53992839431

220041360
log 2

þ 5512455

87808
log 3; ð74Þ

Δs2=3 ≡ −
5881840409277979019197

245540220903987609600
−
310713839464837π

5069752934400
ffiffiffi
6

p þ 8765086219π2

1975228416
−
32

81

ffiffiffi
2

3

r
π3

þ ð112087291999 − 7175443968
ffiffiffi
6

p
πÞγ

17823350160
þ 43923447107

17823350160
log 2 −

1712π

2835

ffiffiffi
2

3

r
log

�
8

3

�

−
5159694245689

570347205120
log 3 −

743

56
logðω1=3

i Þ; ð75Þ
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Δs2 ≡ 10747149910451

26824089600
−
856

15
ðγ þ logðω1=3

i ÞÞ − 112π2

3
−
1712

15
log 2: ð76Þ

Let us now plug numbers corresponding to LISA EMRIs
into this formula to investigate its convergence (we will use
the same numbers in Sec. V C). We use a primary mass
106M⊙, initial frequency of the l ¼ 2,m ¼ 2mode equal to
fm¼2 ¼ 2Ωϕ

i =ð2πÞ ¼ 1 mHz, and a secondary mass of
μ ¼ 100M⊙, and thus ϵ ¼ 10−4. The spin is also chosen
as sk ¼ 100M⊙, which corresponds to a maximally spin-
ning and aligned secondary black hole. We evaluate each
term separately and summarize the results in Table I. In
general alignment with the observations made by Burke
et al. [53] and Isoyama et al. [72] for nonspinning
secondaries, we see that even though the geodesic adiabatic
terms are far from subradian accuracy at 5PN, the spin
terms are suppressed by a mass ratio factor and have
converged well below radians in this scenario. This sup-
ports the hybrid approach which we will use for the
evolution of eccentric inspirals in the next section.

B. Evolution equations for eccentric inspirals

To evolve the orbital parameters p, e, we must first use
Eq. (36) to derive their (average) time derivatives. From the
relation between the constants of motion E and Jz and the
p, e, the evolution equations can be written as

�
ṗ

ė

�
≡

� dp
dt
de
dt

�
¼ −J−1

�
FE

F Jz

�
; ð77Þ

where J is the Jacobian

J ¼
�

∂pE ∂eE

∂pJz ∂eJz

�
; ð78Þ

which is known analytically and can be found in
Appendix C. Equation (77) can be expanded in the
secondary spin as

�
ṗ

ė

�
¼−J−1ðgÞ

�FE
ðgÞ

F Jz
ðgÞ

�

þ sk
M

�
J−1ðgÞδJJ

−1
ðgÞ

�FE
ðgÞ

F Jz
ðgÞ

�
−J−1ðgÞ

�
δFE

δF Jz

��
; ð79Þ

where we used the relation for the derivative of inverse
matrix. The geodesic energy and angular momentum
fluxes FE;Jz

ðgÞ can be written using the geodesic evolution

of p and e as

�
ṗ

ė

�
¼

�
ṗðgÞ
ėðgÞ

�
þ sk
M

�
J−1ðgÞδJ

�
ṗðgÞ
ėðgÞ

�
− J−1ðgÞ

�
δFE

δF Jz

��
:

ð80Þ

Note that the first term is associated with the adiabatic term
while the second term contributes only to the postadiabatic
term. Therefore, the requirements for the accuracy of the
first term are much higher than the requirements for the
accuracy of the second term. Thus, we can use the PN
expansion of the linear-in-spin parts of the energy and
angular momentum fluxes. The geodesic evolution of p and
e in the fully relativistic regime was calculated numerically
and subsequently interpolated on a grid in the p-e plane
in [69]. Therefore, the evolution equations we use in this
work read as

�
ṗ

ė

�
¼
�ṗnum

ðgÞ
ėnumðgÞ

�
þ sk
M

�
J−1ðgÞδJ

�ṗnum
ðgÞ

ėnumðgÞ

�
−J−1ðgÞ

�
δFE

PN

δF Jz
PN

��
;

ð81Þ

where the superscript “num”means fully relativistic results,
subscript “PN” denotes the PN expansion, and the Jacobian
and its sk-derivative are fully relativistic as well because
they can contain some nontrivial behavior near the last
stable orbit. The explicit form of the matrix product J−1ðgÞδJ
can be found in Appendix C.
After the evolution of pðtÞ and eðtÞ is obtained, the

inspiral waveform from two-timescale expansion can be
calculated as

h ¼ 1

r

X
lmn

AlmnðtÞYlmðθÞe−iΦmnðt−r�Þþimϕ; ð82Þ

where the amplitude and phase read, respectively, as

AlmnðtÞ ¼
2Cþ

lmnðpðtÞ; eðtÞÞ
ω2
mnðpðtÞ; eðtÞÞ

; ð83Þ

ΦmnðtÞ ¼ mΦϕðtÞ þ nΦrðtÞ; ð84Þ

Φr;ϕðtÞ ¼
Z

t

0

Ωr;ϕðpðuÞ; eðuÞ; skÞdu: ð85Þ

C. LISA band inspirals

To verify the validity of the hybrid model (81) containing
the PN expansions, in this section we compare inspirals
calculated using this model and a fully relativistic model for
astrophysically relevant EMRIs that will be possible to
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detect with LISA. Similarly to Sec. VA, the primary mass
is chosen as M ¼ 106M⊙. For this primary mass, the
frequency of the dominant mode l ¼ m ¼ 2, n ¼ 0 in
the innermost stable circular orbit is f20 ¼ ω20=ð2πÞ ¼
2Ωϕ=ð2πÞ ¼ 4.4 mHz, which is close to the minimum
of the LISA noise curve. The mass of the secondary
and parallel spin is chosen as μ ¼ sk ¼ 100M⊙.
Therefore, the mass ratio is ϵ ¼ 10−4, and the secondary
corresponds to a maximally spinning Kerr black hole. We
evolved the inspirals in a range where the frequency
is 2Ωϕ=ð2πÞ ≥ 1 mHz.
The inspirals cannot be evolved all the way to the

separatrix in our setup. This is caused by the fact that
the grid, on which we interpolated the numerical fluxes,
starts at a finite distance from the separatrix, and, also,
because some quantities linear in the secondary spin
diverge there. Therefore, we need to choose a consistent
condition to end the inspirals. In our setup, this condition
reads as

dΩr
dt

Ω2
r
¼ 10−2; ð86Þ

which corresponds to a radial inverse adiabaticity param-
eter (we draw inspiration from a similar parameter defined
in Ref. [29]). This quantity is small for adiabatic inspirals
and grows near the separatrix where the two-timescale
expansion breaks.
In this setup, we found values of p that satisfy the

condition (86) for e between 0.05 and 0.4 and evolved
the inspirals backward using the fully relativistic
model. The evolution was stopped when the condition f ¼
2Ωϕ < 1 mHz was reached. Then, we used the hybrid
model (81) to evolve the inspirals from the end points of the
previous calculation. In this way, we obtained two sets of
evolutions of p and ewith different models for comparison.
The results in the p-e plane are depicted in Fig. 4.

In the next step, we used the analytic formulas for the
orbital frequencies Ωr and Ωϕ to calculate the phases Φr
and Φϕ from Eq. (85). In Fig. 5 we plot the absolute
difference between the phases calculated with the hybrid
and fully relativistic model. We can see that the phase
differences are below unity.
To calculate both the evolution of the orbital parameters

and the phases, we used the NDSolve function in
Mathematica with Adams’s method. The resulting time
series pðtÞ, eðtÞ, and Φr;ϕðtÞ were then used to calculate
the waveform using the FastEMRIWaveforms (FEW) package
[61–64]. The distance of the observer was chosen as 1 Gpc,
and the viewing angle was chosen as θ ¼ π=3,
ϕ ¼ π=4 in the source frame. FEW calculates the waveforms

(82) with the geodesic amplitudes CðgÞþ
lmn , which introduces

Oðsk=MÞ error in the amplitudes. However, this is not an
issue, since the requirements for the accuracy of the
amplitudes are lower than the requirements for the accuracy
of the phases [73]. In Figs. 6 and 7 we show a comparison
of the waveforms calculated with the two models for two
inspirals ending at e ¼ 0.1 and e ¼ 0.3.
From the obtained waveforms we calculated the mis-

match between the fully relativistic model and the hybrid
model with PN linear-in-spin parts. Mismatch is defined
from the overlap O as

FIG. 4. Adiabatic inspirals in the p-e plane. The black line
shows the separatrix p ¼ 6þ 2eþOðskÞ. The two models are
indistinguishable in this plot (see Fig. 5 for phase differences).

FIG. 5. Absolute differences between the azimuthal (top) and
radial (bottom) phases obtained from the PN model and fully
relativistic model for different final eccentricities.
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Mðh1; h2Þ≡ 1 −Oðh1; h2Þ

¼ 1 −
hh1; h2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1; h1ihh2; h2i

p ; ð87Þ

where h·; ·i is the L2 product. When the two waveforms are
identical, the mismatch is zero. We plot the mismatches for
different final eccentricities in Fig. 8. To test whether the
ending criterion (86) influences the mismatches, we calcu-
lated the inspirals for two ending criterion, namely
Ω̇r=Ω2

r ¼ 10−2 and 10−3 and compared them in Fig. 8.
In this plot, we can see that the mismatch is consistent for
the two ending criteria and is lower than 10−2 for the lower
final eccentricities.

VI. DISCUSSION AND OUTLOOKS

In the previous sections, we calculated the PN expan-
sions of the trajectories of spinning bodies on eccentric
orbits around Schwarzschild black holes. Then, we found
the PN expansions of the energy and angular momentum
fluxes from the aforementioned orbits. The linear-in-spin
parts of the fluxes were then used in a hybrid model, where
the subleading secondary-spin effects were analytically
approximated by using the PN series. Mismatches between
waveforms from the fully relativistic model and our hybrid
model showed that for lower eccentricities the models are
indistinguishable. This result shows that in some cases the
linear-in-spin part of the fluxes can be approximated as an
analytical PN series without the need to numerically
calculate the fully relativistic contribution.
However, we only computed the L2 mismatches and did

not minimize them with respect to time shifts between the
waveforms, which could be easily improved. Nevertheless,
the insights gained by these improvements would be minor;
to accurately assess the possible biases introduced by the
hybrid model across the parameter space, a Fisher-matrix or
Markov-chain Monte Carlo analysis such as those carried
out by Burke et al. [53] and Piovano et al. [74] should be
performed with this model.
Figure 8 shows that the mismatch is greater for inspirals

with higher eccentricity. This could be improved by
expanding to higher order in eccentricity or by finding
exact (or arbitrary order in eccentricity) formulas, such as
in [48,49]. However, in Fig. 4 we can see that the inspirals
with higher eccentricity enter the LISA band in stronger
field at lower p. Therefore, expanding to higher PN order
may also improve accuracy. Nevertheless, the computations
at higher PN order increase in complexity. For example,

FIG. 6. Waveforms of the þ polarization of an inspiral ending
at e ¼ 0.1 calculated with the hybrid model (blue) and with the
fully relativistic (numerical) model (yellow). The inspiral is
observed from the distance of 1 Gpc at the viewing angle
θ ¼ π=3, ϕ ¼ π=4 in the source frame.

FIG. 7. Waveforms of the þ polarization of an inspiral ending
at e ¼ 0.3 calculated with the hybrid model (blue) and the fully
relativistic (numerical) model (yellow). The distance and viewing
angle are the same as in Fig. 6.

FIG. 8. Mismatches between inspirals calculated with the
hybrid model and the fully relativistic model for different final
eccentricities ef. The blue points show inspirals which end at
Ω̇r=Ω2

r ¼ 10−2 while the yellow points show inspirals ending at
Ω̇r=Ω2

r ¼ 10−3. Small differences between these cases indicate
that the mismatches are almost independent of the ending
criterion.
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modes with n ¼ −m and higher l modes must be included
starting from 5.5PN and higher for the spin fluxes.
Additionally, the horizon fluxes will be needed as well,
since they start at 4PN for the geodesic part and at 5.5PN
for the linear-in-spin part. To extend the results to higher
PN or eccentricity order, more computational resources or
more systematic treatment of the Fourier series at each PN
eccentricity order would be needed.
Poor convergence of the PN series for higher eccen-

tricities can be caused by the fact that the secondary body
reaches a stronger field at the pericenter r2 ¼ Mp=ð1þ eÞ
even for high p (i.e., small v). However, the convergence of
the series in v is better than the convergence of the series
in x since at fixed x the pericenter approaches zero when
e → 1 and the fluxes diverge there. This is connected to the
cancellation of the divergent factors ð1 − e2Þ−k=2 appearing
in the x series when it is reparametrized by v.
Nevertheless, other nonanalytical terms of the type

ð1 − e2Þk=2 with k > 0 systematically appear in the flux
series. The factorization of such terms on a case-to-case
basis allowed us to resum the otherwise infinite e series for
a number of terms. However, at high PN orders additional
terms with higher k appear, and the resummations con-
sequently require more and more terms in the e series to be
verified. Additionally, Figs. 1 and 2 show that the higher-
PN terms are clearly not as well converged as lower-order
terms at e10.
On the other hand, the requirement 2Ωϕ > 10−3 Hz we

impose for the starting point of inspirals works best only for
circular or low-eccentricity inspirals; it may be too crude
for the highly eccentric cases. This is because for higher
eccentricities, higher n modes are present, thus introducing
higher-frequency harmonics into the spectrum, which then
enter the LISA band earlier than our cutoff. Thus, a more
sophisticated analysis of LISA mismatches of extended
waveforms without such simplifications is needed.
Therefore, conclusions about highly eccentric inspirals

should not be drawn from the results for quasicircular
inspirals. We see this also in Table I, where the contribution
to the phase from the last, 5PN, term is of the order of 10−2.
Such a truncation error would be sufficient for LISA
waveforms, but this convergence property unfortunately
does not generalize to eccentric inspirals. We can extrapo-
late our observations using secondary spin even to the
hybrid model of Burke et al. [53], where 3PN approx-
imations of second-order fluxes and conservative self-force
were used in quasicircular inspirals of nonspinning binaries
with encouraging results (see also the earlier work of

Isoyama et al. [72]). We do not expect these encouraging
results to generalize to eccentric inspirals. What is more, we
do not expect even 5PN-e10 expansions of the second-order
fluxes and conservative self-force to be sufficient for LISA
parameter estimates of highly eccentric inspirals in hybrid
models.
How could the results of this paper be further generalized

or expanded? One possibility would be to compute metric
perturbations sourced by the spinning test particle instead
of just curvature perturbations and fluxes. This was done
numerically by Mathews et al. [57] in a fully relativistic
setting, and it would be interesting to obtain PN-expanded
analytical counterparts to their work. Another possible
extension would be to calculate the PN expansion of energy
and angular momentum fluxes from generic orbits of
spinning bodies in Kerr spacetime. This could be achieved
by expanding the equations of motion obtained from the
Hamilton-Jacobi equation [66] in a PN series and solving
them order by order. We are already preparing a work in
which we solve for the fundamental frequencies of motion
of the spinning particle in Kerr in closed form and expand
them in a PN series [75] (see also [76]), but the full
trajectories pose more of a technical challenge.
Nonetheless, generic orbits of spinning test particles in

Kerr are parametrized by one additional constant of motion,
the Rüdiger (Carter-like) constant KR. Hence, to calculate
the inspirals, the evolution of this constant must first be
derived, similarly to the evolution of sk presented here in
Sec. III. Until then, one can only evolve equatorial inspirals
as done in [69]. Another loophole possibility to drive
inspirals without the need for the evolution of KR turns out
to be when one restricts to the inspirals of nearly spherical
orbits with e ≈ 0; we are also working on this topic [77].
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APPENDIX A: LINEAR-IN-SPIN PARTS OF THE
PN-EXPANDED FLUXES

In this appendix, we present the results for the linear
parts of the energy and angular momentum fluxes as series
in the PN parameter v ¼ ffiffiffiffiffiffiffiffi

1=p
p

and eccentricity e with
some terms expressed in closed form.
The linear part of the energy flux reads as

δFE

FE
Nð1 − e2Þ3=2 ¼ δf3ðeÞv3 þ δf5ðeÞv5 þ δf6ðeÞv6 þ δf7ðeÞv7 þ δf8ðeÞv8

þ
�
δf09ðeÞ þ δflogðnÞ9 ðeÞ þ δflogðvÞ9 ðeÞ

�
γ −

35π2

107
þ logðvÞ

��
v9 þ δf10v10 þOðv11Þ; ðA1Þ
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where

FE
N ¼ 32

5

�
μ

M

�
2

v10 ðA2Þ

is the Newtonian flux from circular orbits and δfiðeÞ are functions of eccentricity which take the form

δf3 ¼ −
�
25

4
þ 151e2

4
þ 443e4

16
þ 355e6

192

�
; ðA3Þ

δf5 ¼
2403

112
þ 16435e2

112
þ 6701e4

224
−
78383e6

896
−
108813e8

14336
þ 329e10

512
þOðe12Þ; ðA4Þ

δf6
π

¼ −
187

6
−
32257e2

96
−
67141e4

128
−
9184435e6

55296
−
663581e8

110592
−
1761277e10

35389440
þOðe12Þ; ðA5Þ

δf7 ¼
285211

4536
þ 1027841e2

1134
þ 182196563e4

72576
þ 187711757e6

145152
−
12275083e8

129024
þ 599257e10

258048
þOðe12Þ; ðA6Þ

δf8
π

¼ 62471

672
þ 1525357e2

1344
þ 65526409e4

43008
−
110900285e6

774144
−
15548354173e8

49545216
−
1021275631e10

117964800
þOðe12Þ; ðA7Þ

δf09 ¼ −
29174232523

34927200
−
7994937281e2

436590
−
389472520471e4

6652800
−
1184172237779e6

22353408
−
15468420403e8

698544

−
351984359281e10

30105600
þOðe12Þ; ðA8Þ

δf10
π

¼ 86803

216
þ 758931497e2

96768
þ 5808116575e4

193536
þ 2774132820133e6

83607552
þ 6683237111993e8

668860416

þ 524219611964239e10

1070176665600
þOðe12Þ: ðA9Þ

The various logarithmic terms are then given as

δflogðnÞ9 ≡ δflogð2Þ9 logð2Þ þ δflogð3Þ9 logð3Þ þ δflogð5Þ9 logð5Þ þ δflogð7Þ9 logð7Þ ðA10Þ

δflogðvÞ9 ¼ 15943

105
þ 37985e2

14
þ 39804e4

5
þ 172163e6

28
þ 1088725e8

896
þ 257121e10

8960
ðA11Þ

δflogð2Þ9 ¼ 19153

63
þ 243853e2

630
þ 44397296e4

315
−
3518430389e6

2268
þ 4038595503577e8

362880
−
1099970344876951e10

18144000

þOðe12Þ; ðA12Þ

δflogð3Þ9 ¼ 702027e2

140
−
147191661e4

2240
þ 427378437e6

1120
þ 591272646381e8

573440
−
1574559880088247e10

57344000
þOðe12Þ; ðA13Þ

δflogð5Þ9 ¼ 31138671875e6

72576
−
50939732421875e8

9289728
þ 56782099609375e10

1769472
þOðe12Þ; ðA14Þ

δflogð7Þ9 ¼ 56067099797765e10

5308416
þOðe12Þ: ðA15Þ

The term δf5 can be resummed in eccentricity as
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δf5 ¼
1731

112
þ 15399e2

112
þ 11811e4

224
−
81743e6

896
−
139613e8

14336
þ 6ð1 − e2Þ3=2

�
1þ 73

24
e2 þ 37

96
e4
�
; ðA16Þ

which is consistent with the results of Henry and Khalil [19]. We managed to resum also the term δf7 in the form

δf7 ¼ −
473

648
þ 848905e2

1296
þ 193342649e4

72576
þ 237963833e6

145152
−
25289371e8

129024
−
10496681e10

258048

þ ð1 − e2Þ3=2
�
1781

28
þ 38839e2

112
þ 21935e4

64
þ 15179e6

448

�
: ðA17Þ

The angular momentum fluxes can be expressed as

δF Jz

F Jz
N ð1 − e2Þ3=2 ¼ δg3ðeÞv3 þ δg5ðeÞv5 þ δg6ðeÞv6 þ δg7ðeÞv7 þ δg8ðeÞv8

þ
�
δg09 þ δglogðnÞ9 ðeÞ þ δglogðvÞ9

�
γ −

35π2

107
þ logðvÞ

��
v9 þ δg10v10 þOðv11Þ; ðA18Þ

where

F Jz
N ¼ 32

5

μ2

M
v7 ðA19Þ

is the Newtonian flux from circular orbits and the functions δgiðeÞ read as

δg3 ¼ −
19

4
−
683e2

48
−
403e4

96
; ðA20Þ

δg5 ¼
3559

224
þ 30509e2

672
−
135161e4

5376
−
1251e6

64
þ 15e8

32
þ 99e10

512
þOðe12Þ; ðA21Þ

δg6
π

¼ −
151

6
−
3671e2

24
−
21607e4

192
−
102199e6

13824
þ 88799e8

442368
−

27779e10

44236800
þOðe12Þ; ðA22Þ

δg7 ¼
1006711

18144
þ 2535215e2

5184
þ 1709749e4

2304
þ 1212805e6

13824
−
795497e8

18432
þ 38149e10

4096
þOðe12Þ; ðA23Þ

δg8
π

¼ 100369

1344
þ 296213e2

896
−
7426709e4

28672
−
620472319e6

1548288
−
728183081e8

33030144
þ 42902045527e10

4954521600
þOðe12Þ; ðA24Þ

δg09 ¼ −
19353142307

27941760
−
258040969517e2

27941760
−
39004110703e4

2540160
−
7526116434163e6

1117670400
−
19004463748957e8

5960908800

−
953163710537e10

425779200
þOðe12Þ; ðA25Þ

δg10
π

¼ 1068677

3024
þ 6760111e2

1344
þ 113252009e4

9216
þ 56647762139e6

10450944
−
104974004267e8

95551488
þ 174401161771e10

44590694400

þOðe12Þ: ðA26Þ

The various logarithmic terms are then

δglogðnÞ9 ≡ δglogð2Þ9 logð2Þ þ δglogð3Þ9 logð3Þ þ δglogð5Þ9 logð5Þ þ δglogð7Þ9 logð7Þ; ðA27Þ
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δglogðvÞ9 ¼ 2675

21
þ 347429e2

252
þ 1090651e4

504
þ 6934349e6

10080
þ 105823e8

4480
; ðA28Þ

δglogð2Þ9 ¼ 80357

315
−
615143e2

1260
þ 181175503e4

2520
−
63567501707e6

90720
þ 18959825303e8

4480
−
3138557026727e10

162000
þOðe12Þ;

ðA29Þ

δglogð3Þ9 ¼ 1794069e2

560
−
21138813e4

560
þ 196801569e6

1024
þ 136487855331e8

573440
−
1881487783393587e10

229376000
þOðe12Þ; ðA30Þ

δglogð5Þ9 ¼ 14503515625e6

82944
−
877191015625e8

442368
þ 503789897265625e10

49545216
þOðe12Þ; ðA31Þ

δglogð7Þ9 ¼ 8289498036460823e10

2654208000
þOðe12Þ: ðA32Þ

The second and fourth term in Eq. (A18) can be again resummed as

δg5 ¼
2215

224
þ 33029e2

672
−
104921e4

5376
−
1401e6

64
þ 6ð1 − e2Þ3=2

�
1þ 7

8
e2
�
; ðA33Þ

δg7 ¼
56743

18144
þ 2111585e2

5184
þ 2036089e4

2304
þ 1977175e6

13824
−
1549517e8

18432
þ ð1 − e2Þ3=2

�
733

14
þ 35897e2

224
þ 2215e4

28

�
: ðA34Þ

The linear parts of the fluxes as functions of alternate
x − e parametrization are given in the Supplemental
Material [60].

APPENDIX B: COMPARISON WITH REF. [19]

In this Appendix, we show the derivation of the trans-
formation between time eccentricity et and Darwin eccen-
tricity e which is needed for the comparison between our
results and the results of [19].
In the quasi-Keplerian parametrization and harmonic

coordinates ðtH; rH;ϕHÞ ¼ ðt; r −M;ϕÞ, the orbit is given
as [19]

rH ¼ arð1 − er cos uÞ; ðB1Þ

ΩrtH ¼ u − et sin uþ fv−uðv − uÞ þ fv sin v; ðB2Þ

2π

Φ
ϕH ¼ vþ g2v sin 2vþ g3v sin 3v; ðB3Þ

tan
v
2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ eϕ
1 − eϕ

s
tan

u
2
; ðB4Þ

where ar is the semimajor axis, u is the eccentric anomaly,
Φ is the total phase between two successive periastron
passages, v is the true anomaly, and fv−u, fv, g2v, and g3v
are functions given in [19].

To derive the transformation, we first find the relation
between ðar; erÞ and ðp; eÞ parametrization from the
expression for the turning points r1;2 and rH1;2:

rH1;2 ¼ arð1� erÞ ¼ r1;2 −M

¼ Mp=ð1 ∓ eÞ −M: ðB5Þ

The parameters ar, x ¼ ðMΩϕÞ2=3, er, and et are given
in the Supplemental Material of [19] as functions of
Ẽ ¼ −ðE −Mc2Þ=μ and h ¼ L=ðGMμÞ. By inverting the
PN series to obtain Ẽ and h, we were able to express
the time eccentricity using the Darwin eccentricity e and
the PN parameter x as

e2t =e2 ¼ ðe2t =e2ÞðgÞ þ
sk
M

δðe2t =e2Þ; ðB6Þ

δðe2t =e2Þ ¼
2x3=2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p þ 6ðe2 − 2þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
Þx5=2

ð1 − e2Þ3=2
þOðx7=2Þ: ðB7Þ

The geodesic part ðe2t =e2ÞðgÞ can be found in Eq. (4.38)
of [47].
Alternatively, one can solve the equation for t as a

function of the eccentric anomaly u and collect all the terms
that generate et, as was done in [51]; however, this process
is long and difficult, and we leave it for future work.
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APPENDIX C: EVOLUTION OF THE ORBITAL
PARAMETERS

In this appendix we present the formulas for the
evolution of the orbital parameters p and e used in the
hybrid model in Eq. (81). The elements of the geodesic part
of the inverse Jacobian

J−1ðgÞ ¼
�
∂Ep ∂Jzp

∂Ee ∂Jze

�
ðC1Þ

read as

∂Ep ¼ −2p3=2 ffiffiffiffiffiffiffiffiffiffiffi
P3P2

p
P1

; ðC2Þ

∂Jzp ¼ 2ðp − 4Þ2 ffiffiffiffiffiffi
P3

p
P1

; ðC3Þ

∂Ee ¼ ðp − 6 − 2e2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pP2P3

p
eP1

; ðC4Þ

∂Jze ¼ −
ð1 − e2Þððp − 2Þðp − 6Þ þ 4e2Þ ffiffiffiffiffiffi

P3

p
peP1

; ðC5Þ

where we introduced the polynomials

P1 ¼ ðp − 6Þ2 − 4e2; ðC6Þ

P2 ¼ ðp − 2Þ2 − 4e2; ðC7Þ

P3 ¼ p − 3 − e2: ðC8Þ

Note that the polynomial P1 vanishes at the separatrix
p ¼ 6þ 2e; therefore the inverse Jacobian diverges there.
We can factor out some terms from the matrix product

J−1ðgÞδJ and express it in the form

J−1ðgÞδJ ¼ 1

P1P3

ffiffiffiffiffiffiffiffiffiffi
P2p3

p M; ðC9Þ

where

M1;1 ¼ −4e6pþ e4ðpðpðpþ 8Þ − 36Þ þ 96Þ − 4e2ðpð4p2 − 30pþ 83Þ − 48Þ − ðp − 6Þðp − 2Þðpð4p − 15Þ þ 24Þ;
ðC10Þ

M1;2 ¼ epð−ððe2 − 21Þp3Þ − 8ðe2 þ 25Þp2 þ 4ðe4 þ 10e2 þ 165Þp − 768Þ; ðC11Þ

M2;1 ¼
1 − e2

4ep
ð16e6ðp − 3Þ − 4e4ððp − 4Þpðpþ 14Þ þ 60Þ þ e2ðpðpðpð5p − 12Þ − 96Þ þ 336Þ − 144Þ

þ 3ðp − 6Þ2ðp − 2Þ2Þ; ðC12Þ

M2;2 ¼ ðe2 − 1Þð4e4p − e2ðp3 þ 16p2 − 120pþ 96Þ þ 2p4 − 13p3 − 24p2 þ 228p − 288Þ: ðC13Þ
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