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Abstract
Extreme mass ratio inspirals (EMRIs), where a compact object orbits a
massive black hole, are a key source of gravitational waves for the future
Laser Interferometer Space Antenna (LISA). Due to their small mass ratio,
(ϵ∼ 10−4–10−7), the binary evolves slowly and EMRI signals will be in-band
for years. Additionally, astrophysical EMRIs are expected to have complex
dynamics featuring both spin-precession and eccentricity. A standard approach
to modelling these inspirals is via the method of osculating geodesics (OG)
which we employ along with a toy model for the gravitational self-force.
Using this method requires resolving tens of thousands radial and polar orbital
librations over the long duration of the signal which makes the inspiral tra-
jectory expensive to compute. In this work we accelerate these calculations
by employing Near-Identity (averaging) Transformations. However, this aver-
aging technique breaks down at orbital resonances where the radial and polar
frequencies are an integer ratio of each other. Thus, we switch to a partial
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averaging transformation in the vicinity of the resonance where the dynam-
ics are characterised by the slow evolution of the so-called ‘resonant phase’.
Additionally, we develop an optimal switching criterion to minimise the com-
putation time while maximising accuracy. We find the error in the waveform
phase is improved from O(ϵ−1/2) in the fully averaged scheme to O(ϵ4/7) in
the switching scheme. At the same time, this scheme improves the scaling of
the computation time from being inversely proportional to ε using OG, to a
very weak scaling with ε. This results in a speed-up of at least two orders of
magnitude for LISA EMRIs with room for further optimisation.

Keywords: generic, extreme mass ratio inspirals, resonance,
near-identity averaging transformations, LISA, gravitational waves

1. Introduction

Spaced based gravitational wave (GW) detectors, such as the Laser interferometer space
antenna (LISA) [1, 2], will be sensitive to much lower frequency GWs than the current ground
based detectors of LIGO-Vigro-Kagra collaboration. This will enable it to detect entirely new
sources of GWs involving heavier masses and sources at larger separation than those detected
by ground-based observatories [3].

One particularly intriguing class of such sources are extreme mass ratio inspirals (EMRIs)
[4]. These consist of a massive black hole (MBH) primary with a mass M∼ 105–107M⊙ and
a stellar mass compact object (CO) secondary (either a black hole or neutron star) with a
mass µ∼ 1–102M⊙, resulting in a binary with (small) mass ratio ϵ := µ/M∼ 10−4–10−7. The
secondary loses energy and angular momentum due to the emission of GWs, which leads to
the gradual decay of the orbit and its final plunge into the central MBH. LISA will be sensitive
to the outgoing GWs for months or years during the slow inspiral [5], resulting in a precise
mapping of the spacetime of the MBH [6]. Detection and analysis of these signals will result
in unrivalled precision in MBH parameter estimation and our most rigorous strong-field tests
of general relativity to date [7, 8].

To achieve these aims EMRI waveform models need to meet three important criteria [9].
They must be fast to compute, ideally in a fraction of a second, so that they can be used
with Markov chain Monte Carlo Bayesian inference methods [10]. They must extend through-
out the entire EMRI parameter space, including the spins of the primary and the secondary,
eccentricity and orbital inclination with respect to the plane of the primary [5, 10, 11]. Finally,
they must be accurate enough not to bias parameter estimation, which means maintaining
phase accuracy to within a fraction of a radian throughout the entire inspiral. Using a two-
timescale analysis [12] one can show that the orbital (and thus GW) phase elapsed during the
inspiral between a referential orbital state and the plunge can bewritten as a post-adiabatic (PA)
expansion:

φ = ϵ−1φ0PA + ϵ−1/2φres +φ1PA +O
(
ϵ1
)
. (1)

The leading order adiabatic (0PA) contribution can be determined by balancing the fluxes of
energy, angular momentum and Carter constant lost by the binary with the flux radiated to
infinity and down the horizon of the primary [13–17]. Currently, there exist fast and extens-
ive kludge models [18–22] which have found use in mock LISA data challenges [23–25].
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However, they use non-relativistic assumptions that limit their utility for LISA data analysis
[26]. Fully-relativistic, adiabatic models that cover the entire parameter space have been
computed [18, 27–33] but fast and practical implementations of these models currently only
cover eccentric, Schwarzschild (non-spinning primary) inspirals [34, 35], or quasi-circular
Kerr inspirals (spinning primary) [36] thus far. A fast, analytic model that is extensive in the
parameter space also exists, but the model relies on a slow velocity (post-Newtonian) expan-
sion that is ill-suited to modelling the late-inspiral [37].

To obtain the sub-radian accuracy we require, one must go beyond adiabatic models and
develop post-adiabatic (1PA) waveforms. This necessitates knowledge of the local force on
the secondary induced by its own gravitational field. This back-reaction force known as the
gravitational self-force (GSF) [38, 39]. It is calculated via a perturbative expansion in the small
mass ratio of the system (ε) and, to obtain the 1PA contribution to the phases, one requires the
complete first-order GSF along with an orbit averaged contribution from the second-order GSF
[12].

Calculations of the GSF require knowledge of the entire past history of the inspiral, which
makes these computations highly non-trivial. One approach is to assume the secondary is
on a fixed geodesic and calculate the first order gravitational self-force for that geodesic in
the frequency domain. This has yielded results for quasi-circular [40] and eccentric [41–43]
Schwarzschild orbits and eccentric [44], inclined [45] and generic Kerr orbits [46]. To compute
an inspiral, these numerical results can be interpolated over the parameter space of geodesic
orbits so that they can be rapidly evaluated when solving for the inspiral dynamics [47, 48].

This approach must be modified at second order in mass ratio, and current calculations
make use of a two-timescale approximation which can account for the slow inspiral of the
source [49]. Currently, the complete list of contributions necessary for 1PA-accurate phasing
is available only for the simplest case of quasi-circular, Schwarzschild inspirals [50–55], but
recent work has also included the effects of an (anti-)aligned spinning secondary [10].Methods
are under development to extend these calculations to Kerr space-time [56] and to include
eccentricity and generic secondary spins in the inspirals [57–60].

With a fast to evaluate model for the force, inspiral trajectories can be computed using
the method of osculating geodesics (OG) [61, 62]. This method models the inspiral traject-
ory as a smooth evolution through geodesic orbits which are instantaneously tangent to the
inspiralling motion. As a result the equations of motion are recast as a series of coupled first
order differential equations for the evolving orbital elements Pj and orbital phases qi. This
technique has been utilised for modelling inspirals with orbital eccentricity [47, 48, 63] and/or
inclination [45, 64], but the resulting models are very slow to evaluate. Since the solutions to
the equations of motion oscillate with the orbital phases and one has to model ∼ϵ−1 orbital
cycles, these equations of motion can take minutes to hours to solve numerically for a single
EMRI.

To overcome this problem, the long-standing technique of near-identity (averaging) trans-
formations has been applied to EMRI systems to great effect [65–67]. One applies a small
transformation to the variables to be solved such that the resulting equations for the new vari-
ables, P̃j and q̃i, are independent of the orbital phases while accurately capturing the long-
term secular behaviour of the system. The result is 1PA accurate EMRI models which can
incorporate eccentricity and/or inclination that can be numerically evaluated in a fraction of a
second. NITs have been successfully applied to Schwarzschild inspirals with low eccentricity
(e⩽ 0.2) [65] and high eccentricity (e⩽ 0.75) [68], as well as Kerr inspirals with eccentri-
city (e⩽ 0.5) [63], inclination [45], and both (generic) with GW fluxes and the Mathisson–
Papapetrou–Dixon (MPD) force of a spinning secondary [69]. The use of NITs for more gen-
eral perturbations of EMRIs was discussed in [70, 71].
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One of the leading formation channels for EMRIs predicts binaries which are both highly
eccentric and inclined with respect to the orbital plane while in the LISA band [5, 6], and so the
focus of this work is to accurately and efficiently incorporate both of these effects. For eccentric
and inclined (generic) orbits, one finds that there are subspaces of the parameter space where
the radial frequency Υ

(0)
r becomes an integer ratio of the polar frequency Υ

(0)
θ , i.e. Υ⊥ = κ⃗ ·

Υ⃗ = κrΥ
(0)
r +κθΥ

(0)
θ = 0, where κr,κθ ∈ Z. As a result, in this region the so-called resonant

phase given as q⊥ = κrqr+κθqθ, where qr,qθ are the radial and orbital phases respectively,
stops evolving, and this state is resolved only by the slow drift of frequencies due to radiation
reaction. Since quantities such as energy and angular-momentum flux depend also on the value
of q⊥ [72], the inspiral generally leaves the resonance with an O(ϵ1/2) spread of possible
energies and angular momenta depending on the precise of value of q⊥ at which it crossed the
resonance [73]. Even though this is a smooth evolution that transpires over O(ϵ−1/2) orbital
periods, this is sometimes viewed as an O(ϵ1/2) ‘jump’ in energies and angular momenta
when resolving the inspiral overO(ϵ−1) orbital cycles. Finally, when evolved over theO(ϵ−1)
inspiral timescale, the phase contribution of the resonant ‘jump’ generally accumulates with
a scaling of O(ϵ−1/2) [73]. Failing to accurately model these passages through resonances
will bias parameter estimation and lead to a loss of detection of EMRI signals by LISA [74].
Therefore, understanding and modelling these effects accurately is a top priority [72, 75–77].

Note that the resonances we are dealing with here should not be confused with tidal tran-
sient resonances due to the presence of a third body perturber when the radial, polar, and
azimuthal frequencies are a small integer ratio of each other [78, 79]. Tidal resonances have
been efficiently modelled along with 0PA effects radiation reaction effects [80]. Similarly, the
scalings we assume also preclude the modelling of inspirals through resonances under other
perturbations such as non-Kerr multipoles of the massive primary or other external or internal
perturbations (see, e.g. [81–83]). In this work, we focus purely on resonance effects that arise
out of the orbital dynamics and the GSF, and aim to model these in a way that is both compu-
tationally efficient and maintains sub-radian phase accuracy.

We do this by introducing four separate models. The first uses the OG equations with a
model for GSF to drive the inspiral. Unfortunately, our generic Kerr first order GSF code [46]
is too computationally expensive to tile even a small subsection of the generic Kerr parameter
space, and so we use a toy model that combines information from interpolated eccentric [63]
and quasi-circular inclined [45] orbits. We also emulate the second order GSF by rescaling
our first order toy model and multiplying by an additional factor of the mass ratio. The OG
equations driven with a toy model can be used to simulate resonant effects, but the evolution
is very slow to evaluate when directly integrated by standard numerical integration methods.
Though the resulting inspiral trajectories are not to be taken as physically valid, for the pur-
poses of this work we treat these as the ‘true’ inspirals against which we test faster models.

The second model averages away all dependence on the orbital phases from the OG
equations of motion, which we denote the ‘Full NIT’. While this model can rapidly produce
inspiral trajectories in less than a second for any mass ratio, it has terms in both the aver-
aged equations of motion and the transformation terms that become singular when a low-order
orbital resonance is encountered. Thus, formally, this model cannot evolve through a reson-
ance, though due to our use of interpolation, in practice our numerical integrator can cross
resonant surfaces but with a severe loss of accuracy.

This necessitates the production of a third model that removes all phase dependence apart
from combinations of the resonant phase q⊥ (and multiples there of) which we denote the
‘Partial NIT’. This accurately captures the resonant effects but is not as fast as the Full NIT.
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Finally we combine these two models into a fourth model which we denote the ‘Switch
NIT’, where the Full NIT is used away from resonances and the Partial NIT is used to evolve
through the resonance. A critical component of this model is our novel criterion for switch-
ing, which follows the general arguments laid out in [70] and which is designed to maximize
the ε-scaling in accuracy while minimizing the integration spent in the relatively expensive
Partial NIT. This final model accurately captures the effects of the orbital resonance while
dramatically decreasing the computation time of the trajectory calculation.

We start by restating the form of the OG equations for generic Kerr inspirals in section 2.We
then give a brief overview of the phenomenon of orbital transient resonances in Kerr spacetime
in section 3. In section 4.1, we summarize the details of the Full NIT applied the case of generic
Kerr inspirals in the absence of any low order orbital resonances. We then outline the Partial
NIT procedure in section 4.2 before describing our Switch NIT procedure in section 4.3. In
section 5 describe our practical implementation of the online and offline steps required for
these three NIT variants and discuss howwe generate and evaluate waveforms.We then present
the numerical results of our implementation by examining the convergence of the error induced
by the Full, Partial, and Switch NITs as a function of mass ratio. We then discuss how the
time for the trajectory calculation varies with mass ratio for each procedure. Once, we are
satisfied with the accuracy and speed of our Switch NIT procedure, we test it on a pair of
year-long EMRIs, one which evolves through a single low order resonance in section 6.5 and
one which evolves through two low order resonances in section 6.6.While this implementation
must be optimised further before it could be recommenced for data analysis applications, these
tests confirm that the Switch NIT can accurately capture resonance crossings while drastically
speeding up EMRI trajectory calculations.

Throughout this work, we use a toy force model which is informed by eccentric and spher-
ical GSF. Details of its construction can be found in appendix A. A full derivation of the
partial NIT can be found in appendix B. Finally, the derivation of the switching condition and
the associated error scalings can be found in appendix C. This work uses geometrized units
where c= G= 1.

2. Inspirals in Kerr spacetime

We wish to describe the motion of a secondary of mass µ into a rotating black hole of massM
and spin parameter a= |J|/M, where J is its spin angular momentum. For this, we make use
of the method of osculating geodesics (OG) which has been very successful in describing both
Schwarzchild [61] and Kerr [62] inspirals. One assumes the inspiral is smoothly evolving from
one geodesic orbit to the next, which allows for the recasting of the forced geodesic equation
into a system of first order ordinary differential equations for the ‘orbital elements’ which
uniquely identify the geodesic orbit that is instantaneously tangent to the inspiral.

There are many possible choices of orbital elements and in this work we use the quantities
P⃗= {p,e,x}, where p is the semilatus rectum, e is eccentricity and x is a measure of orbital
inclination. These can be defined in terms of the minimum and maximum values of the radial
(r) and polar (θ) Boyer–Lindquist coordinates via:

p=
2rmaxrmin

(rmax + rmin)M
, e=

rmax − rmin

rmax + rmin
, and x=±

√
1− cos2 θmin, (2a-c)

where x is positive for prograde orbits and negative for retrograde orbits. We also use (Carter-)
Mino time, λ, as our time parameter as this decouples the radial and polar geodesic motion
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[13, 84]. This is related to proper time, τ , via:

dτ =
(
r2 + a2 cos2 θ

)
dλ. (3)

With this in hand, we parametrize the radial and polar motion using the Mino time action
angles for the geodesic motion q⃗= (qr,qθ). For geodesic motion these are simply described
by:

qr =Υ(0)
r λ+ qr,0,qθ =Υ

(0)
θ λ+ qθ,0, (4a-b)

where qr,0 and qθ,0 are the initial values of the phases at λ= 0.We also denoteΥ(0)
r andΥ(0)

θ

as the Mino time fundamental radial and polar frequencies respectively, which have known
analytic expressions in terms of p,e and x [85]. This allows us to make use of the analytic
solutions for the radial, r(a,p,e,x,qr), and polar, θ(a,p,e,x,qθ), coordinates which are given
in [85, 86] and implemented in the KerrGeodesics package [87] as part of the Black Hole
Perturbation Toolkit [88]. Finally, we also require evolution equations for ‘extrinsic quantities’
that do not show up on the right hand side of the equations of motion due to the symmetry of
Kerr spacetime, but are still necessary to compute the waveform. In this case, these are the
time and azimuthal coordinates of the secondary which, as a set, we denote by S⃗= {t,ϕ}.

For this work we assume our secondary is under the influence of a force that resembles the
GSF and experiences an acceleration away from geodesic motion with the form aµ = ϵa(1)µ +

ϵ2a(2)µ +O(ϵ3). As such the OG equations of motion accurate to 1PA order can be expressed
as:

Ṗj = ϵF(1)
j

(
P⃗, q⃗
)
+ ϵ2F(2)

j

(
P⃗, q⃗
)
+O

(
ϵ3
)
, (5a)

q̇i =Υ
(0)
i

(
P⃗
)
+ ϵfi

(1)
(
P⃗, q⃗
)
+O

(
ϵ2
)
, (5b)

Ṡk = sk
(
P⃗, q⃗
)
+O

(
ϵ2
)
. (5c)

For the full form and derivation of these equations see [63]. Note that an alternative form
of these equations exist that are parametrized in terms of quasi-Keplerian angles [62]. As
that form is more computationally efficient, for our numerical comparisons we solve those
equations instead and then convert to the Mino-time action angles after the fact.

Before we can calculate inspirals, we first need a model for the secondary’s four-
acceleration. Creating an interpolated GSFmodel for generic Kerr inspirals is computationally
unfeasible at this time, due to the cost of computing the generic Kerr self-force for a single
point in the parameter space and the need to tile in three dimensions instead of two dimensions
required for the equatorial and spherical cases (after fixing the spin of the primary to a single
value). Instead we construct a self-force inspired toy model for generic orbits by combining
our interpolated self-force models for eccentric [63] and spherical [45] orbits in such a way
that we have radial and polar cross terms in the Fourier expansion of the force components
which will give rise to resonant effects. The resulting model is an analytic expression in terms
of p,e,x,qr, and qθ. Since one will need to compute derivatives of the equations of motion
with respect to these variables, this model allows for analytic calculations for these derivat-
ives which are computationally cheaper and more accurate than taking numerical derivatives.
Further details on the model’s construction can be found in appendix A.

We also compare the size of resonant effects on the integrals of motion induced by the
purely dissipative parts of the toy model at different orbital resonances and found that toy
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model produces qualitatively comparable behaviour to that observed in in [72] using GW flux
calculations. However, our model has a tendency to overestimate the effect of the lowest order
resonance and underestimate higher order resonances.

3. Transient orbital resonances in Kerr spacetime

A resonant orbit occurs whenever the radial phase is related to the polar phase by a small
number integer ratio, i.e. κ⃗res · Υ⃗(0) = κrΥ

(0)
r +κθΥ

(0)
θ = 0 for κr,κθ ∈ Z. We denote a spe-

cific orbital resonance using the fraction Υ(0)
θ /Υ

(0)
r = |κθ|/|κr|.

As illustrated in figures 1(a) and (b), if a generic orbit is allowed to evolve for infinitely
many orbits, it will eventually fill the entirety of the (r,z= cosθ) space bounded between rmax

and rmin, and zmax and−zmax. Such an orbit is said to be ergodic in the phase space. This allows
us to equate the infinite Mino-time average for a geodesic with an integral over the 2-torus of
the action angles qr and qθ [89], i.e.

⟨A⟩= lim
λ→∞

1
2λ

ˆ λ

−λ

A(λ ′)dλ ′ =
1

(2π)2

ˆ 2π

0

ˆ 2π

0
A(qr,qθ)dqrdqθ = A0,0, (6)

where A0,0 is the zeroth Fourier coefficient. We also define the purely oscillatory piece of a
function to be Ă := A−⟨A⟩.

However, as seen in figures 1(d) and (f), a resonant orbit does not fill the r,z space and
instead repeatedly traces out the same trajectory in this space. Moreover, the dissimilarity
between these figures demonstrates that the phase space trajectory is affected by the initial
conditions for the phases, i.e. qr,0 and qz,0. Thus, one cannot equate the infinite Mino-time
average for a resonant geodesic with the 2-torus average of the action angles and instead one
gets [72, 90]

⟨A⟩res = lim
λ→∞

1
2λ

ˆ λ

−λ

A(λ ′)dλ ′ =
∑
N∈Z

ANκr,Nκθ
eiN(κrqr,0+κθqθ,0). (7)

As such, any averaging procedure done in the presence of an orbital resonance will have to
account for this new definition of orbit average.

However, notice that since the Fourier coefficients of a C∞-function fall-off exponentially,
the difference between ⟨A⟩res and ⟨A⟩ is exponentially suppressed for smooth functions A and
growing resonant order, in other words

⟨A⟩res −⟨A⟩≲ Cexp [−B(|κr|+ |κθ|)] , for |κr|+ |κθ| ≫ 1 , (8)

where B,C are some constants. Thus, even though rational numbers are dense in the real num-
bers, and hence there are an infinite number of potential orbital resonances, one only has to
worry about a finite number of resonances with a low order. In practice we take this cut off to
be max(|κr|, |κθ|)≲ 10. This will be justified a posteriori by our results.

One should also note that there is a subtlety when evaluating the order of the resonance due
to the symmetries of the problem [91]. The abstract space of Kerr geodesics has the reflection
symmetry about the plane θ = π/2 in the sense that when we take any initial polar phase
qθ,0 and shift it by π, we get the same orbit, just reflected by the plane θ = π/2. Indeed, for
generic orbits, this new orbit is essentially the same geodesic as before the shift. On the other
hand, for resonant orbits the θ = π/2 reflected orbit is generally a topologically disparate orbit.

7
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Figure 1. Parametric plots of r vs z for a generic orbit and resonant orbits which all have
a= 0.9M, e= 0.45 and x= 0.8, with initial phases qr,0 = qθ,0 = 0. The non-resonant
orbit has p= 7 and the resonant orbits has p= 6.171 which is the location of the 2/3
orbital resonance. The two resonant orbits differ only by their initial phases.

Since to leading order the GSF is a functional computed along such geodesics, it inherits this
symmetry, and it will be π-periodic in the polar qθ angle, whereas it will generically be only
2π-periodic in radial angle qr. This results in the odd Fourier modes of the GSF with respect to
qθ (or even modes in the case of Fθ) being zero, as demonstrated in figures 9–12 of [46]. This
means that any resonance with a ratio with an odd polar number κθ would be more accurately
described as having twice that ratio, as there are no odd powered polar modes contributing to

8
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Figure 2. The locations of the resonant surfaces through (p, e) space for a= 0.9M and
x= 0.8 along with the location of the last stable orbit (LSO). The curves are coloured
such that the lower order the resonance, the darker the colour.

the strength of the resonance. For example: in the 1/2 resonance, the leading order contribution
comes from the ∥κθ∥= 2 and ∥κr∥= 4modes, making it effectively a 2/4 resonance. As such,
throughout this paper we will adopt this convention for naming the resonances as it more
accurately conveys their actual strength, e.g. 1/2= 2/4,3/4= 6/8, etc.

Generally, inspirals in Kerr space-time are very likely to pass through at least some low-
order resonances, which can be seen as follows [75]. The ratio κθ/κr corresponds to the fre-
quency ratio as |κθ/κr|=Ωr/Ωθ at resonance. In the Newtonian limit, obtained by taking
p→∞, the geodesics become closed Keplerian ellipses which all have Ωr/Ωθ = 1. In the last
stage of the inspiral the orbit reaches the surface of the last stable orbits (LSOs) characterized
by Ωr = 0 while Ωθ stays finite, or Ωr/Ωθ = 0. As a result, in an ideal inspiral reaching from a
p→∞ orbit to its LSO, the frequencies are guaranteed to pass through every resonance with
κr > κθ. In particular, every inspiral has to pass through the 2/3 resonance on its way to the
last stable orbit. Practically, however, one needs to ask whether such resonant passages will
happen while the inspiral is in LISA band, and the answer seems to be affirmative for most
LISA EMRIs [74, 75].

The precise characterization of resonances is non-trivial, since they form a 3D hyper-surface
in the 4D generic Kerr orbit parameter space [92]. To get an idea of where these resonances
occur in the parameter space, figure 2 illustrates the location in (p, e) space in a 2D slice of
the parameter space where we fixed a= 0.9M and x= 0.8. As we can see, most low order
resonances occur near the location of the LSOs, which can be understood from the convergence
of Ωr to zero at the LSOs as mentioned above. Since our inspiral models start to break down
in this region anyway, these resonances are not the biggest concern. What is more concerning
are the resonances that occur at a significant distance from the last stable orbit, as the effect
of inaccurately modelling these resonances can accumulate over a large number of orbits. As
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such, the lowest order resonance of concern that we expect most EMRIs to pass through is the
2/3 resonance. Any averaging procedure employed to efficiently model EMRI trajectories will
have to carefully account for the presence of these resonances in order to maintain subradian
accuracy in the orbital phases.

The size of the resonant effects at a given orbital resonance will also vary throughout the
parameter space since they scale with the magnitude of the Fourier modes of the forcing terms
in the equations ofmotion. Radial modes scale with eccentricity as eκr , while polar modes scale
with (acos(θmin))

κθ . As such, we see that the scaling of the resonant terms in the self-force
will be

⟨A⟩res −⟨A⟩
⟨A⟩

≲ C̃eκr (acos(θmin))
κθ , for e→ 0 , and θmin →

π

2
or a→ 0 . (9)

Since the 1 : 1 resonance is not present in the epicyclic oscillations of near-circular and near-
equatorial Kerr geodesics apart from p→∞ [93], resonant effects will smoothly vanish as one
approaches near-equatorial and near-circular motion, and harmonics corresponding to higher-
order resonances will vanish faster5.

We can also use equation (9) to deduce that resonances are suppressed in the weak field
as follows. The first power of a appears at the 1.5PN order in the spin–orbital term, the a2 in
the 2PN spin-spin terms and the pattern is such that any appearance of an is in a term of at
least n-PN order (see, e.g. [95]). Even more, the equations of motion of spinning binaries have
recently been shown to be integrable to 2PN order [96], which implies that all resonant terms
in the equations of motion vanish at 2PN. Nevertheless, the scaling is complicated by the fact
that radiation-reaction itself is suppressed in the weak-field and appears only at 2.5PN in the
equations of motion. In other words, if the resonance takes place at a larger p, the orbit spends
more cycles evolving through the resonance [75, 94], which also contributes to the overall size
of the resonance effects.

Another factor to consider is that EMRIs will pass through multiple low order resonances
before plunge. Since the resonance crossing is not perfectly resolved, the resulting phase error
will propagate to the next resonance, compounding the phase error with each resonance cross-
ing. Specifically, if the inspiral accumulates a phase error of order O(1) or higher, we lose all
predictive power about the resonant effects when evolving through the next resonance since
we are randomly picking a trajectory on the resonant torus for the evolution. While we can
estimate and control the error through a single resonance crossing, the presence of multiple
resonance crossings make these estimates much more difficult, reinforcing the need to model
each resonance crossing as accurately as possible.

4. Near identity averaging transformations for generic Kerr inspirals

4.1. Review of non-resonant averaging transformations (Full NIT)

Averaging transformations for a generic EMRI system in the absence of transient resonances
was first given in [65] where a full derivation can be found. We now summarize the main
findings of that work.

5 Note that these properties were not taken into account in [94] when parameterizing the size of the resonant terms,
which probably led to overestimates of the importance of resonances for orbits at low eccentricity and inclination.
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The NIT variables, P̃j, q̃i and S̃k, are related to the OG variables Pj, qi and Sk via

P̃j = Pj+ ϵY(1)j

(
P⃗, q⃗
)
+ ϵ2Y(2)j

(
P⃗, q⃗
)
+O

(
ϵ3
)
, (10a)

q̃i = qi + ϵX(1)
i

(
P⃗, q⃗
)
+ ϵ2X(2)

i

(
P⃗, q⃗
)
+O

(
ϵ3
)
, (10b)

S̃k = Sk+Z(0)k

(
P⃗, q⃗
)
+ ϵZ(1)k

(
P⃗, q⃗
)
+O

(
ϵ2
)
. (10c)

Here, the transformation functions Y(n)j , X(n)
i , and Z(n)k are required to be smooth, periodic

functions of the orbital phases q⃗. We also make the choice that the orbit averaged pieces of

these functions:
〈
Y(n)j

〉
=
〈
X(n)
i

〉
=
〈
Z(n)k

〉
= 0. Other choices for these pieces can be made,

resulting in different equations of motion, as explored in [65]. At leading order, equation (10)
are identity transformations for Pk and qi but not for Sk due to the presence of a zeroth order
transformation term Z(0)k .

The inverse transformations can be found for Pk and qi by requiring that their composition
with the transformations in equation (10) must give the identity transformation. Expanding
order by order in ε, this gives us

Pj = P̃j+ ϵỸ(1)j

(
⃗̃P,⃗̃q
)
+ ϵ2Ỹ(2)j

(
⃗̃P,⃗̃q
)
+O

(
ϵ3
)
, (11a)

qi = q̃i + ϵX̃(1)
j

(
⃗̃P,⃗̃q
)
+ ϵ2X̃(2)

j

(
⃗̃P,⃗̃q
)
+O

(
ϵ3
)
, (11b)

where the inverse transformation vectors are

Ỹ(1)j =−Y(1)j

(
⃗̃P,⃗̃q
)
, (12a)

Ỹ(2)j =−Y(2)j

(
⃗̃P,⃗̃q
)
+

∂Y(1)j

(
⃗̃P,⃗̃q
)

∂P̃k
Y(1)k

(
⃗̃P,⃗̃q
)
+

∂Y(1)j

(
⃗̃P,⃗̃q
)

∂q̃k
X(1)
k

(
⃗̃P,⃗̃q
)
, (12b)

X̃(1)
i =−X(1)

i

(
⃗̃P,⃗̃q
)
, (12c)

X̃(2)
i =−X(2)

i

(
⃗̃P,⃗̃q
)
+

∂X(1)
i

(
⃗̃P,⃗̃q
)

∂P̃j
Y(1)j

(
⃗̃P,⃗̃q
)
+

∂X(1)
i

(
⃗̃P,⃗̃q
)

∂q̃k
X(1)
k

(
⃗̃P,⃗̃q
)
. (12d)

To find the equations of motion for the NIT variables P̃j, q̃i and S̃k, one takes the time deriv-
ative of equation (10), substitutes in the equations of motion equation (5), then uses the inverse
transformations equation (11) to make sure the right hand side is in terms of only the trans-
formed variables. Then one uses the oscillatory parts of Y(n)j , X(n)

i , and Z(n)k to cancel out all
of the oscillatory terms at each order of ε. The result is equations of motion which take the
following form:

dP̃j
dλ

= ϵF̃(1)
j

(
⃗̃P
)
+ ϵ2F̃(2)

j

(
⃗̃P
)
+O

(
ϵ3
)
, (13a)

dq̃i
dλ

=Υ
(0)
i

(
⃗̃P
)
+ ϵ̃f(1)i

(
⃗̃P
)
+O

(
ϵ2
)
, (13b)

dS̃k
dλ

=Υ
(0)
k

(
⃗̃P
)
+ ϵs̃(1)k

(
⃗̃P
)
+O

(
ϵ2
)
. (13c)

11
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Crucially, these equations of motion are now independent of the orbital phases q⃗. The terms
in the averaged equations of motion are related to the terms in the OG equations of motion via

F̃(1)
j =

〈
F(1)
j

〉
, f̃(1)i =

〈
f(1)i

〉
, Υ

(0)
k =

〈
s(0)k

〉
, (14a-c)

F̃(2)
j =

〈
F(2)
j

〉
+

〈
∂Y̆(1)j

∂q̃i
f̆(1)i

〉
+

〈
∂Y̆(1)j

∂P̃k
F̆(1)
k

〉
, (14.d)

s̃(1)k =−

〈
∂s̆(0)k

∂P̃j
Y̆(1)j

〉
−

〈
∂s̆(0)k

∂q̃i
X̆(1)
i

〉
. (14.e)

In deriving these equations of motion, we have constrained the oscillating pieces of the first
order NIT transformation functions to be

Y(1)j =
∑
κ̸⃗=0⃗

i

κ⃗ · Υ⃗(0)
F(1)
j,κ⃗e

i κ⃗·⃗q, (15)

X(1)
i =

∑
κ̸⃗=0⃗

 i

κ⃗ · Υ⃗(0)
f(1)i,κ⃗ +

1(
κ⃗ · Υ⃗(0)

)2 ∂Υi

∂Pj
F(1)
j,κ⃗

ei κ⃗·⃗q. (16)

For our purposes, we only need the second order transformation of the orbital elements which
we constrain to be

Y(2)j =
∑
κ̸⃗=0⃗

i ei κ⃗·⃗q

κ⃗ · Υ⃗(0)

F(2)
j,κ⃗ +

∂
〈
Y(1)j

〉
∂P̃k

F(1)
k,κ⃗ − i

∂
〈
F(1)
j

〉
∂P̃k

F(1)
k,κ⃗

κ⃗ · Υ⃗(0)

+
∑
κ⃗ ′ ̸=0⃗

i F(1)
k,κ⃗−κ⃗ ′

κ⃗ ′ · Υ⃗(0)

∂F(1)
j,κ⃗ ′

∂P̃k
−

F(1)
j,κ⃗ ′

κ⃗ ′ · Υ⃗(0)

∂
(
κ⃗ ′ · Υ⃗(0)

)
∂P̃k

−
κ⃗ ′ · f⃗(1)κ⃗−κ⃗ ′

κ⃗ ′ · Υ⃗(0)
F(1)
j,κ⃗ ′

 .

(17)

The average of Y(2) above is chosen to be zero here so the corresponding term does not need to
be included. Substituting these expressions for the transformation terms into the expressions
for the sub-leading terms in the averaged equations of motion allows us to express them in the
simplified form:

F̃(2)
j =

〈
F(2)
j

〉
+NFull

(
F(1)
j

)
, s̃(1)k =NFull

(
s(0)k

)
. (18a)

The contribution from the κ⃗ Fourier modes to the NFull operator are given by

Nκ⃗ (A) :=
i

κ⃗ · Υ⃗(0)

iAκ⃗

(
κ⃗ · f⃗(1)−κ⃗

)
+

∂Aκ⃗

∂P̃j
F(1)
j,−κ⃗ −

Aκ

κ⃗ · Υ⃗(0)

∂
(
κ⃗ · Υ⃗(0)

)
∂P̃j

F(1)
j,−κ⃗

 ,
(19)

12
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and thus the NFull operator is given by the sum over these contributions

NFull :=
∑
κ̸⃗=0⃗

Nκ⃗ (A) . (20)

After numerically solving the equations of motion, computing a waveform only requires know-
ledge of the transformations in equation (10) to zeroth order in the mass ratio so that the error
is O(ϵ), i.e.

Pj = P̃j+O (ϵ) , (21a)

qi = q̃i+O (ϵ) , (21b)

Sk = S̃k−Z(0)k

(
⃗̃P,⃗̃q
)
+O (ϵ) . (21c)

where the zeroth order transformation term for the extrinsic quantities Z̆(0)k is known analyt-
ically as it is related to the analytic solutions for the geodesic equations for t and ϕ derived in
[85] by

Z̆(0)k =−S̆k,r (qr)− S̆k,θ (qθ) . (22)

Furthermore, to be able to directly compare between OG and NIT inspirals, we will need to
match their initial conditions to sufficient accuracy. In [45, 63, 69] it was stated that, since
we only require the result to be accurate to 1PA order, we only need to calculate the initial
conditions of the phases and extrinsic quantities to within an O(ϵ) error and the initial condi-
tions of the orbital elements to within O(ϵ2) error. While this is still true, our calculation for
the near-resonant switching criteria assumes that we carry out the transformation to the orbital
elements and phases through one order higher in the mass ratio. Thus, to make our initial
condition calculation consistent with this, we always calculate the initial conditions via:

P̃j (0) = Pj (0)+ ϵY(1)j

(
P⃗(0) , q⃗(0)

)
+ ϵ2Y(2)j

(
P⃗(0) , q⃗(0)

)
+O

(
ϵ3
)
, (23a)

q̃i (0) = qi (0)+ ϵX(1)
i

(
P⃗(0) , q⃗(0)

)
+O

(
ϵ2
)
, (23b)

S̃k (0) = S̃k (0)−Z(0)k

(
⃗̃P(0) ,⃗̃q(0)

)
+O (ϵ) . (23c)

4.2. Partial NIT when near orbital resonances

As discussed in section 1, the Full NIT can only be applied for generic orbits away from low-
order resonances. In the presence of one of the low order resonances, F̃(2)

j (equation (14d)),

Y(1)j (equation (15)) and X(1)
i (equation (16)) all exhibit singular behaviour. As such, we adopt a

‘Partial NIT’ formulation when in the vicinity of an orbital resonance. The concept of partially
averaging for a resonant system is a long standing approach in classical mechanics [66, 97],
but was first introduced in the EMRI context in [98]. While the resulting inspirals will not be
as quick to compute as the Full NIT (but still much faster than the OG equations), the resulting
inspiral quantities should still be accurate to the OG inspiral to linear order in mass ratio. We
present the full derivation of Partial NIT in appendix B and summarize the main results below.

The Partial NIT variables, P̂j, q̂i and Ŝk, are related to the OG variables Pj, qi and Sk via

P̂j = Pj+ ϵŶ(1)j

(
P⃗, q⃗
)
+ ϵ2Ŷ(2)j

(
P⃗, q⃗
)
+O

(
ϵ3
)
, (24a)
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q̂i = qi + ϵX̂(1)
i

(
P⃗, q⃗
)
+ ϵ2X̂(2)

i

(
P⃗, q⃗
)
+O

(
ϵ3
)
, (24b)

Ŝk = Sk+ Ẑ(0)k

(
P⃗, q⃗
)
+ ϵẐ(1)k

(
P⃗, q⃗
)
+O

(
ϵ2
)
. (24c)

In summary, the equations of motion for the partial NIT variables now take the form

dP̂j
dλ

= ϵF̂(1)
j

(
⃗̂P, q̂⊥

)
+ ϵ2F̂(2)

j

(
⃗̂P, q̂⊥

)
+O

(
ϵ3
)
, (25a)

dq̂i
dλ

=Υ
(0)
i

(
⃗̂P
)
+ ϵ̂f(1)i

(
⃗̂P, q̂⊥

)
+O

(
ϵ2
)
, (25b)

dŜk
dλ

=Υ
(0)
k

(
⃗̂P
)
+ ϵŝ(1)k

(
⃗̂P
)
+O

(
ϵ2
)
. (25c)

Crucially, these equations of motion only depend on the slowly evolving orbital elements ⃗̂P
and the resonant phase q̂⊥ but not on any of the other rapidly oscillating orbital phases q⃗.

We still choose the average pieces of the transformation terms to be ⟨Ŷ(1)j ⟩= ⟨Ŷ(2)j ⟩=
⟨X̂(1)

i ⟩= ⟨Ẑ(0)k ⟩= ⟨Ẑ(1)k ⟩= 0 and so the transformed forcing functions are related to the ori-
ginal functions by

F̂(1)
j =

∑
N

F(1)
j,Nκ⃗res

eiNq⊥ , f̂(1)i =
∑
N

f(1)i,Nκ⃗res
eiNq⊥ , Υ

(0)
k =

〈
s(0)k

〉
, (26a-c)

F̂(2)
j =

∑
N

F(2)
j,Nκ⃗res

eiNq⊥ +

〈
∂Ŷ(1)j

∂q̃i
f̆(1)i

〉
+

〈
∂Ŷ(1)j

∂P̃k
F̆(1)
k

〉
, (26.d)

ŝ(1)k =−

〈
∂ f̆(0)k

∂P̃j
Ŷ(1)j

〉
−

〈
∂ f̆(0)k

∂q̃i
X̂(1)
i

〉
. (26.e)

In deriving these equations of motion, we have constrained the oscillating pieces of the
partial NIT transformation functions to be

Ŷ(1)j :=
∑
κ⃗∈R

i

κ⃗ · Υ⃗
F(1)
j,κ⃗e

i κ⃗·⃗q, (27)

X̂(1)
i :=

∑
κ⃗∈R

 i

κ⃗ · Υ⃗
f(1)i,κ⃗ +

1(
κ⃗ · Υ⃗

)2 ∂Υi

∂Pj
F(1)
j,κ⃗

ei κ⃗·⃗q, (28)

where R is the set {κ⃗ ∈ Z2|κ⃗ ̸= Nκ⃗res,∀N ∈ Z} of all non-resonant 2-tuples and κres = (κr,κθ)

is such that κres · Υ⃗(0) = 0.
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The second order transformations terms for the orbital elements is given by:

Ŷ(2)j =
∑
κ⃗∈R

i ei κ⃗·⃗q

κ⃗ · Υ⃗(0)

F(2)
j,κ⃗ +

∂
〈
Y(1)j

〉
∂P̃k

F(1)
k,κ⃗ − i

∂
〈
F(1)
j

〉
∂P̃k

F(1)
k,κ⃗

κ⃗ · Υ⃗(0)

+
∑
κ⃗ ′∈R

i F(1)
k,κ⃗−κ⃗ ′

κ⃗ ′ · Υ⃗(0)

∂F(1)
j,κ⃗ ′

∂P̃k
−

F(1)
j,κ⃗ ′

κ⃗ ′ · Υ⃗(0)

∂
(
κ⃗ ′ · Υ⃗(0)

)
∂P̃k

−
κ⃗ ′ · f⃗(1)κ⃗−κ⃗ ′

κ⃗ ′ · Υ⃗(0)
F(1)
j,κ⃗ ′

 .

(29)

Substituting these expressions for the transformation terms into the expressions for the sub-
leading terms in the averaged equations of motion allows us to write them in the simplified
form

F̂(2)
j =

∑
N

F(2)
j,Nκ⃗res

eiNq⊥ +NPartial

(
F(1)
j

)
, (30)

where NPartial is similar to the NFull operator but one only sums over the contributions form
the non-resonant modes, i.e.

NPartial :=
∑
κ⃗∈R

Nκ⃗ (A) . (31)

Since the rates of change of the extrinsic quantities (s(0)t and s(0)ϕ ) decouple into a purely radial
piece and purely polar piece, there are no cross terms that would be effected by evolving
through the resonance. As a result, the leading-order transformation terms and the terms in
averaged equations of motion remain unchanged from the Full NIT case, i.e. Ẑ(0)k = Z(0)k and

ŝ(1)k = s̃(1)k .
Furthermore, to be able to directly compare between OG and NIT inspirals, we will need

to match their initial conditions to sufficient accuracy. For the same reasons as with the Full
NIT, we use the following prescription for the initial conditions:

P̂j (0) = Pj (0)+ ϵŶ(1)j

(
P⃗(0) , q⃗(0)

)
+ ϵŶ(2)j

(
P⃗(0) , q⃗(0)

)
+O

(
ϵ3
)
, (32a)

q̂i (0) = qi (0)+ ϵX̂(1)
i

(
P⃗(0) , q⃗(0)

)
+O

(
ϵ2
)
, (32b)

Ŝk (0) = Sk (0)−Z(0)k

(
⃗̃P(0) ,⃗̃q(0)

)
+O (ϵ) . (32c)

4.3. Switching from Full NIT to Partial NIT (Switch NIT)

The Partial NIT allows us to evolve inspirals at the same accuracy as the OG evolution, includ-
ing through the resonance, while greatly speeding up the calculation in the vicinity of the res-
onance where q⊥ varies slowly. Far away, from the resonance q⊥ resumes varying rapidly on
the orbital time scale producingO(ϵ−1) oscillations, significantly slowing the calculation of a
full inspiral.

One way this can be sped-up further is by using the Full NIT when far away from a res-
onance and then switching to the Partial NIT equations of motion when in the vicinity of the
resonance. We call this approach the ‘Switch NIT’. While this observation may seem obvious,
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deciding exactly when to transition between the two equations of motion is highly non-trivial,
and is explored in full in appendix C.

Summarizing the results of that analysis, we conclude that one should transition from the
Full NIT to the Partial NIT when

∥Υ⊥∥⩽ C∥ϵβ ∂Υ⊥

∂Pj
F̃(1)
j T∥= C∥ϵβΥ ′

⊥T∥, (33)

where C is a dimensionless constant and we have introduced the prime for any function A as

A ′ ≡ ∂A
∂Pj

〈
F(1)
j

〉
+O (ϵ) . (34)

In C, we derive that β = 2/7 and the optimal switching timescale T is given by

T=

 δ2

(Υ ′
⊥)

5

(
Υ

(0)
i

)2
F̃(1)
j

F̃ ′(2)
j + F̃(1)

j f̃(1)i


1/7

. (35)

Here δ is the ratio of the resonant harmonic modes to the orbit average of the forcing terms.
We calculate this using the oscillatory L2 norm divided by the orbit average which is given
by:

δ =
∑
j

1

F(1)

j,⃗0

√ˆ 2π

0

(
F̆(1)
j

)2
dq⊥

=
∑
j

1

F(1)

j,⃗0

√√√√ ∞∑
N=−∞

F(1)
j,Nκ⃗res

F(1)
j,−Nκ⃗res

 . (36)

With this definition for the transition region, we find empirically that the choice ofC= 1 works
very well for the region of parameter space explored in this work. However, other choices for
the definition of δ can be made which require fitting C to recover the same results.

When transitioning from the Full NIT to the Partial NIT we must apply a near-identity
transformation to the orbital elements and orbital phases in order to capture the change in the
averaging transformation used in each region. When entering the near-resonance region, we
employ the inverse transformation equation (11) to go from Full NIT variables to OG variables,
and then use the Partial NIT equation (24) to go from OG variables to Partial NIT variables.
Combining these two steps gives the following transformation:

P̃j → P̃j− ϵ
(
Y(1)j − Ŷ(1)j

)
− ϵ2

(
Y(2)j − Ŷ(2)j −

∂Y(1)j

∂P̃k
Y(1)k −

∂Y(1)j

∂q̃i
X(1)
i

)
+O

(
ϵ3
)

(37a)

q̃i → q̃i − ϵ
(
X(1)
i − X̂(1)

i

)
+O

(
ϵ2
)
. (37b)

Similarly, when exiting the near-resonance region, we apply the inverse partial transform-
ation equation (B.2) to go from Partial NIT variables to OG variables, and then use the Full
NIT equation (10) to go from OG variables to Full NIT variables:
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P̃j → P̃j+ ϵ
(
Y(1)j − Ŷ(1)j

)
+ ϵ2

(
Y(2)j − Ŷ(2)j +

∂Ŷ(1)j

∂P̂k
Ŷ(1)k +

∂Ŷ(1)j

∂q̂i
X̂(1)
i

)
+O

(
ϵ3
)

(38a)

q̃i → q̃i + ϵ
(
X(1)
i − X̂(1)

i

)
+O

(
ϵ2
)
. (38b)

Note that since there is no change to either the averaging transformation or the averaged
equations of motion of the extrinsic quantities t and ϕ when entering or leaving the resonance
region, we do not need to apply a transformation to these variables.

In appendix C, we derive that the error induced in the orbital elements by using the Switch
NIT with this switching condition that should scale as∼ ϵ11/7. Thus when evolved for a times-
cale∼ ϵ−1, the resulting phase error scales as∼ ϵ4/7. For a typical EMRI detectable by LISA,
this error scaling in the phase should be acceptable for achieving the sub-radian accuracy goal
required of LISA data science.

We will demonstrate in section 6 that using the prescription for the Switch NIT can signi-
ficantly reduce the runtime for an EMRI trajectory while introducing no significant error in the
waveform, and that we can repeat this procedure to account for multiple resonance crossings.
Since the evolution through the resonance is sensitive to the orbital phases when crossing the
resonance, the effect of the phase error resulting from each resonance crossing will amplify
with the next one. However, since δ is expected to be small in practice, we expect the Switch
NIT procedure to keep the phase error small enough we are able to maintain an accuracy that
is sufficient for LISA data analysis.

5. Implementation

Combining the GSF inspired toy model along with our action angle formulation of the OG
equations gives us all the information required to calculate the Full, Partial, and Switch
NIT equations of motion. We first evaluate and interpolate the various terms in the averaged
equations of motion across the parameter space. While this offline process can be expensive,
it only needs to be completed once and sets up all three NIT formulations. The main differ-
ences between these formulations are most evident in their online steps which we will outline
separately.

5.1. Offline steps

(i) We begin by selecting a grid which covers the section of parameter space we are inter-
ested in. For this work we fix the spin of the primary to be a= 0.9M and choose an
equally spaced grid of P⃗= (p,e,x) values on which to evaluate the terms in the NIT
equations of motion. We pick p to range from 3.75 to 7.25 in steps of 0.05, e to range
from 0.25 to 0.41 in steps of 0.01, and x range from 0.79 to 0.81 in steps of 0.005 for a
total of 1020 grid points.

(ii) For each of these grid points we evaluate the functions F(1)
j ,F(2)

j , f(1)i , and s(0)k , along
with their derivatives with respect to Pj, for 21 equally spaced values of both qr and qθ
ranging from 0 to 2π each for a total of 441 evaluations for each function and partial
derivative.
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(iii) We then perform a fast Fourier transform on the output data to obtain the Fourier coef-
ficients of the forcing functions and their derivatives. With 21 equally spaced points in
both phases, one obtains Fourier coefficients up to and including order ±10.

(iv) We repeat this across the parameter space and store the values of each of these Fourier
coefficients.

(v) We then interpolate the Fourier coefficients of F(1\2)
j and f(1)i using Hermite polyno-

mials. This allows us to construct not only the transformation terms Y(1)j and X(1)
i ,

but will also allow us to quickly evaluate the semi-oscillating terms in the Partial NIT∑
NF

(1\2)
j ,Nkr,Nκθ

eiNq⊥ and
∑

N f
(1)
i ,Nκr,Nκθ

eiNq⊥ .
(vi) Using the rest of the stored Fourier coefficients, one can then use the definition of the

NFull operator given by equation (20) to construct values of F̃(2)
j , f̃(1)i , and s̃(1)k and at

each grid point, which are then interpolated using Hermite polynomials and stored to
use with the Full NIT.

(vii) Similarly, using the definition of the near-resonance Npartial operator given by

equation (31), we construct the remaining averaged parts of F̂(2)
j at each grid point, which

are then interpolated using Hermite polynomials and stored for use with the Partial NIT.
(viii) The above step can be repeated if we wish to interpolate the Partial NIT functions for a

different orbital resonance.

We implemented the above algorithm inMathematica 13.1 and find that when parallelized
across 40 Intel Xeon E5-2698V4s @ 2.20GHz, the calculation takes about 7 h to calculate the
Fourier coefficients, about an 30 min to interpolate the Fourier coefficients of F(1\2)

j and f(1)i
and then about an hour to interpolate the Partial NIT terms for a single resonance.

5.1.1. Full NIT online steps.

(i) We load in the interpolants for F̃(2)
j ,̃f(1)i , and s̃(1)k , and define the Full NIT equations of

motion given in equation (14).
(ii) In order to make comparisons between OG and Full NIT inspirals we also load inter-

polants of the Fourier coefficients of F(1\2)
j and f(1)i and their derivatives with respect to

Pj in order to construct Y
(1\2)
j and X(1)

i .
(iii) We then state the initial conditions of the OG inspiral (p(0),e(0),x(0),qr(0),qθ(0)) and

use equation (23) to set initial conditions of the Full NIT inspiral.
(iv) We then evolve the full NIT equations of motion using an ODE solver (in this work we

always use Mathematica’s NDSolve function).

As with the offline steps we implement the online steps in Mathematica 13.1. Note that
steps (ii) and (iii) are only necessary because we want to make direct comparisons between
Full NIT and OG inspirals with the same initial conditions. Away from resonance, the dif-
ference between the NIT and OG variables will always be O(ϵ), and so performing the NIT
transformation or inverse transformation to greater than zeroth order in mass ratio will not be
necessary when producing waveforms to 1PA accuracy.
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5.1.2. Partial NIT online steps.

(i) For the partial NIT we import the interpolants for the orbit average pieces of F̂(1\2)
j , f̂(1)i

and s̃(1)k .

(ii) We also import interpolants of the Fourier coefficients of F(1\2)
j and f(1)i and their derivat-

iveswith respect to p,e and x. This allows us to both define the transformation terms, Ŷ(1\2)j

and X̂(1)
i , and the oscillatory pieces of the Partial NIT equations of motion (equation (26)).

(iii) We then state the initial conditions of the OG inspiral (p(0),e(0),x(0),qr(0),qθ(0)) and
use equation (32) to set initial conditions of the Partial NIT inspiral.

(iv) We then evolve the Partial NIT equations of motion using an ODE solver.

As before, step (iii) is only necessary because we want to make direct comparisons between
Partial NIT and switch NIT or OG inspirals with the same initial conditions.

5.2. Switch NIT

(i) For the Switch NIT, we first load in all of the interpolants that we have calculated.
(ii) We define the right-hand side (RHS) of the Switch NIT equations of motion as the b times

RHS of the Full NIT equations of motion +(1− b) times the RHS of the Partial NIT
equations of motion where b is a binary parameter that is set to 1 if outside the resonance
region and set to 0 if inside the resonance region.

(iii) We then state the initial conditions of the inspiral (p(0),e(0),x(0),qr(0),qθ(0)) and check
using equation (33) to see if the inspiral is starting inside the near-resonance region or not
and use either equations (23) or (32) respectively to set the initial conditions and our
starting value of b.

(iv) We again solve the equations of motion numerically using NDSolve, but make use of the
method WhenEvent to switch the equations of motion at two events for each resonance
we wish to model:
(a) When ∥Υ⊥∥⩽ ∥ϵβΥ ′

⊥T∥, we have entered the resonance region and so we apply the
transformations equations (37) and set b= 0.

(b) When ∥Υ⊥∥⩾ ∥ϵβΥ ′
⊥T∥, we have exited the resonance region and so we apply the

transformations equations (38) and set b= 1.

5.3. Waveform generation

In order to generate waveforms, one must first parametrize the orbit in terms of the coordinate
time variable t. This can be done by performing an additional transformation to the equations
of motion and solving these new equations as was first prescribed in [39] and implemented in
[45] and [69]. However, since we make use of the Partial NIT where one still has to include the
orbital phases in the equations of motion, one would have to find an invertible transformation
between the Mino-time action angles and the Boyer–Lindquist coordinate time action angles
which is currently unknown (see [99] for a perturbative construction in Schwarzschild). For
this reason, we opt to instead take our solution for t(λ) and resample it in steps of δλ= 0.01
in order to produce an interpolant for λ(t). With this, one can reparametrize the remaining
solutions for the orbital elements as functions of t.

We currently do not have access to interpolated Teukolsky amplitudes for generic Kerr
inspirals to produce waveforms from our calculated the trajectories. Thus we use the same
method as the numerical kludge EMRI model [20] and use the quadrupole formula where
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one makes the approximation of equating flat space spherical polar coordinates with Boyer–
Lindquist coordinates. While this process does not perfectly capture the waveform from a
source that is deep in the strong field, it has still been shown to fare surprisingly well against
Teukolsky waveforms [20, 68].We sample our waveforms every δt= 2Mwhich for the 106M⊙
MBHprimary corresponds to once every ~ 10 s.We use this samewaveform generation scheme
for all of our inspirals so that any difference between the resulting waveforms is purely a result
of the difference in the trajectories.

We calculate the waveform mismatch M between our two waveforms which varies from
0 (perfectly overlapping signals) to 1 (completely orthogonal signals). We make use of the
SimulationTools Mathematica package to calculate our waveform mismatches [100] and
use a flat noise curve.

6. Results

We now present the results of our inspiral evolution schemes. We start by demonstrating the
convergence with mass ratio of the Full NIT compared to OG both away from and in the
presence of an orbital resonance. We then demonstrate the convergence of the Partial NIT
compared to OG near the 2/3 resonance. We then look at the convergence of the Switch NIT
compared with the Partial NIT and show that the errors are consistent with the error scalings
we derived for our choice of transition region. Finally, we look at two examples of year long
EMRI signals, one which evolves through just a 2/3 resonance and one that evolves through
the 2/3 and 2/4 resonance which tests the effectiveness of our Switch NIT compared to using
either the Partial NIT or OG.

6.1. Full NIT convergence

In order to test that we have implemented the NIT equations of motion correctly, we examine
how the differences between the OG and NIT inspiral quantities vary with the mass ratio. If
implemented correctly, the difference in the phases and extrinsic quantities should scale lin-
early while the difference in the orbital elements (after inverting the transformation to leading
order) should scale quadratically. Any deviation from this would indicate either a bug in our
code, a large interpolation error for the terms in our NIT equations of motion, or error in the
numerical solver.

As such, we start an inspiral at (p(0),e(0),x(0)) = (9.5,0.2,0.8) and evolve the inspiral
until p= 9 using both the OG and Full NIT equations ofmotion and varying themass ratio from
10−1 to 10−4. We examine these mass ratios not because we believe our models to be accurate
in this entire range. Instead, we explore this range because it is sufficient for demonstrating
the scaling of the residuals between the OG and NIT models while avoiding the computational
cost of the OG model at extreme mass ratios. The initial conditions were specifically chosen
to avoid encountering any low order resonances during the inspiral.

As shown in figure 3, the differences between the OG and NIT orbital elements generally6

scale quadratically while the phases and the extrinsic values generally scale linearly with the
mass ratio. This demonstrates that in the absence of low order orbital resonances, the full

6 The smallest values of mass ratio tested here do not align with this trend as the error due to the NIT becomes
subdominant to the errors in the interpolating functions used for the terms in the equations of motion and/or the
numerical error in the ODE solver.
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Figure 3. The absolute difference in the quantities of an inspiral with a= 0.9M and
initial conditions (e0,x0) = (0.2,0.8) and evolved from p= 9.5 to p= 9 for different
values of themass ratio when calculated using either the OG or NIT equations of motion.
As expected, the differences in the phases and extrinsic quantities scale linearly with the
mass ratio while the orbital elements scale quadratically.

NIT formulation is valid and the equation implemented correctly in the code for generic Kerr
inspirals.

When we repeat this same analysis in a part of the parameter space near a low-order reson-
ance the above scaling is not observed, as expected due to presence of the resonance crossing.
In particular, keeping the initial values of e and x the same, we now evolve p from 6.5 to 5.8
so that the inspirals now pass through the 2/3 orbital resonance. As seen in figure 4, when
the NIT inspiral crosses a resonance we encounter different scalings with the mass ratio. This
results in an error in the orbital elements that scales as ϵ1/2 and an error in the orbital phases
and extrinsic quantities that scales as ϵ−1/2, as predicted in [73]. Interestingly, one does not
see this scaling for all values of the mass ratio. For mass ratios larger than 10−2, the inherent
ε or ε2 error of performing the NIT is the dominant source of error. This suggests that reson-
ant effects need to be included in order to obtain accurate models for both IMRI and EMRI
systems.

6.2. Partial NIT convergence

As before, we now test the implementation of the Partial NIT by investigating how the dif-
ferences between the OG and NIT orbital elements should scale quadratically with mass ratio
and the phases and extrinsic quantities should scale linearly with the mass ratio. We start each
inspiral at (p(0),e(0),x(0)) = (6.5,0.2,0.8) and evolve the system until p= 5.8 while varying
the mass ratio from 10−1 to 10−4, which ensures that the inspirals always pass through the
2/3 orbital resonance.

The differences between using the OG and Partial NIT equations of motion are displayed
in figure 5. In figure 5(a), we see that the difference in the orbital elements (after perform-
ing the first order inverse transformation) generally scales quadratically with the mass ratio,
which is accordance with the error scaling seen in equation (24). The differences in the orbital
phases and extrinsic quantities still generally scale linearly with the mass ratio. This is due
to these quantities being more sensitive than the orbital elements to the dependence on the
Partial NIT equations of motion on the resonant phase q⊥. Overall, this test demonstrates that
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Figure 4. The absolute difference in the quantities of an inspiral with a= 0.9M and
initial conditions (e0,x0) = (0.2,0.8) and evolved from p= 6.5 to p= 5.8 for difference
values of themass ratio when calculated using either the OG or NIT equations of motion.
The orbit now evolves through the 2/3 orbital resonance and so now the difference in the
orbital elements scales as ϵ1/2 while the difference in the orbital phases scales as ϵ−1/2.

Figure 5. The absolute difference in the quantities of an inspiral with a= 0.9M and
initial conditions (e0,x0) = (0.2,0.8) and evolved from p= 6.5 to p= 5.8 for difference
values of the mass ratio when calculated using either the OG or Partial NIT equations
of motion. As expected, the differences scale in the phases and extrinsic quantities scale
linearly with the mass ratio while the orbital elements scale quadratically.

the differences scale as expected and assures us that we have implemented the Partial NIT
correctly.

6.3. Switch NIT convergence

We look to verify the convergence of the Switch NIT with our choice of transition condition.
Note that we have opted not to compare against the OG solutions. While this reduces the
computational cost of the comparison, the primary reason is that for larger mass ratios, the
differences are dominated by the ε2 and ε scalings we saw in the previous subsections from
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Figure 6. The absolute difference in the quantities of an inspiral with a= 0.9M and
initial conditions (e0,x0) = (0.2,0.8) and evolved from p= 7 to p= 4.5 for difference
values of the mass ratio when calculated using either the switch NIT or the partial NIT.
At each value of ε we equally sample the initial value of q⊥ 15 times from 0 to 2π and
display the L2 of the data as the central dot while the error bars display the minimum
and maximum value obtained for the value obtained.

applying any sort of averaging scheme. This makes it difficult to discern the scaling of the
differences which arise solely from the switching procedure. As such, we compare the inspiral
solutions from the Switch NIT to those from the Partial NIT.

We set our initial eccentricity and inclination to be (e0,x0) = (0.2,0.8) and evolve inspir-
als from an initial orbital separation of p= 7 to p= 4.5 while varying the mass ratio from
ϵ= 10−1–10−4 such that we should encounter the 2/3 resonance about half way through the
inspiral. Note that this is wider than before as it is important to start and end the inspirals
outside the near-resonance region.

We found the differences to be very oscillatory as the difference is dependent on the value
of the resonant phase q⊥ when crossing the resonance. While we cannot directly control this
value, we can change its initial value q⊥,0 and have found that the resulting error behaves like
a sinusoidal function of q⊥,0. Thus, for each value of mass ratio, we take 15 equally spaced
values of q⊥,0 from 0 to 2π. and calculate L2 norm of the differences for that value of mass
ratio and along with the minimum and maximum value obtained, to give the reader an idea of
the variance in the differences.

We display the results in figure 6, with the central point representing the L2 norm and the
error bars showing the minimum and maximum error obtained for each mass ratio. These
results are consistent with the theoretical scalings of ϵ11/4 for the orbital elements and ϵ4/7 for
the phases and extrinsic quantities.

6.4. Runtime

Having demonstrated that our various NIT schemes obtain the accuracy we would expect,
we now investigate the effect that each of them have on the time required to calculate a
single inspiral for different values of the mass ratio. We set the initial conditions to be
(p0,e0,x0) = (7,0.2,0.8) and evolve the inspiral until p= 4.5, passing through the 2/3 reson-
ance roughly halfway through the inspiral. We repeat this for several values of the mass ratio
in the range 10−5 ⩽ ϵ⩽ 10−1 (with the exception of the OG inspirals as they take too long to
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Figure 7. Runtime as recorded on an Apple M1Max chip as a function of mass ratio for
the OG, Partial NIT, Switch NIT and Full NIT while evolving from p= 7 to p= 4.5 and
passing through the 2/3 resonance with (e0,x0) = (0.2,0.8).

finish beyond ϵ⩽ 10−4). In each case we useMathematica’s NDSolve with PrecisionGoal
(relative accuracy) set to ∞ and AccuracyGoal (absolute accuracy) set to 7 running on an
Apple M1 Max @ 3.22 GHz.

The results are displayed in figure 7. First we note that the OG is by far the slowest. Its
timing is inversely proportional to the mass ratio as the number of cycles the solver has to
resolve scales inversely with the mass ratio over a fixed frequency window. We also note that
the fastest timing comes from the Full NIT, whose timing is independent of the mass ratio as
it does not resolve any orbital cycles. However, as we have seen this scheme is not accurate
when crossing an orbital resonance.

As such, we must rely on the Partial NIT which provides a consistent order of magnitude
speed up over the OG calculations. However, it suffers from the same scaling with mass ratio
as OG. Even though resonant oscillations are be easier to resolve, the number of oscillations
still increases as the mass ratio gets smaller.

Finally, we see that the timing of the Switch NIT still increases mildly as mass ratio
decreases. Nevertheless, it has a much more favourable scaling. Within the resonance region,
the resonant phase evolves on a semi-fast timescale as opposed to a fast timescale, resulting
in fewer integration steps needed to resolve the oscillations. However, this contribution to the
computation time is much smaller than the constant O(10s) of overhead caused by the event
locator used to find the location of the resonance region during the evolution. This means that
for larger mass ratios the Switch NIT is significantly slower than the Partial NIT and only
becomes faster for mass ratios ≲ 10−3.75 in our implementation. This current iteration of the
Switch NIT provides at least two orders of magnitude of speed up over using the OG equations
for EMRIs with ϵ < 10−4. However, this is still too slow for LISA data analysis, but it is the
most viable procedure out of the ones explored in this work, especially if the computational
overhead of the switching procedure can be reduced.
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6.5. Evolving through a single low-order resonance

We now examine the case of a canonical EMRI consisting of a 106M⊙ primary and a 10M⊙
secondary for a mass ratio of ϵ= 10−5. The inspiral has initial conditions (p0,e0,x0) =
(7.045,0.45,0.8) and evolved until the semilatus rectum reaches the value p= 4.74. These
values were chosen so that the inspiral would last a little over one year, and so that the inspiral
passes through the low-order |κθ|/|κr|= 2/3 resonance. It is worth noting that the inspiral also
crosses through the 6/10 and 4/7 resonances. Technically, there are infinitely many resonance
crossings since natural numbers are dense in the reals. However, we only list resonances for
which max(κr,κθ)⩽ 10 since we truncate our Fourier expansions after the 10th coefficient
and higher order resonances are exponentially suppressed, as discussed in section 3. Thus, in
our numerical implementation, the terms in the NIT and averaged equations of motion are not
directly effected by any resonance with a value larger than 10. Moreover, the lowest order
resonance is the 2/3 resonance and so we expect that to have the largest effect on the inspiral.
As such, we only use the Partial NIT to account for the 2/3 resonance and neglect all others
in order to understand the effect this will have on the accuracy of our inspiral calculations.

We first compute the year long inspiral using the OG equations using NDSolve with the
AccuracyGoal and PrecisionGoal settings set to 13.5. This took just over two days to
compute on a single core of an Intel Xeon E5-2698V4 @ 2.20GHz. Using this as our point of
comparison, we evolved inspirals with equivalent initial conditions and accuracy and precision
goals utilizing the Partial NIT and the Switch NIT. We also evolved an adiabatic inspiral in
order to subtract this contribution (i.e. pAd,eAd, and xAd) away from the post-adiabatic inspirals
to highlight the effect of the resonance crossing on ∆p= p− pAd, ∆e= e− eAd, and ∆x=
x− xAd [73]. Our results are presented in figure 8. While the inspiral also crosses through
other resonances, figure 8 makes it clear that the 2/3 resonance has by far the largest effect
on the orbital elements, with the effects of the other resonance crossings being far too small
to resolve. Furthermore, this figure demonstrates how the Partial NIT and the Switch NIT
capture the ‘resonance jump’ experienced by the OG inspiral while including far fewer orbital
oscillations.

We also examine the effect that including a resonance transition has on the accuracy of
the orbital phases and extrinsic quantities which is displayed in figure 9. We see a natural
growth in the phase error over time. This may be due to accumulating numerical error from
the numerical integrator, but may also be due to neglecting the effects of the other resonance
crossings besides the 2/3 resonance. Importantly, we see no significant difference in accuracy
when using either the Partial NIT or the Switch NIT. Moreover, the end of a year-long inspiral
the difference in the phases is<2× 10−2 and the difference in t/M is less than 1, which should
be accurate enough produce 1PA waveforms fit for LISA data science.

This is confirmed by table 1, which displays the time required to calculate inspirals using
either the Full NIT, the Partial NIT or the Switch NIT and the associated mismatches between
the semi-relativistic quadrupole waveforms generated from these inspirals when compared to
the waveform produced from the OG inspiral. We find the Full NIT to be the most compu-
tationally efficient but the resulting inspirals would not be sufficient for accurate parameter
estimation for the LISA mission. The Partial NIT produces inspirals and waveforms that are
accurate enough for LISA data science even when neglecting all other resonance crossings.
Unfortunately, with a single inspiral taking 257 s (or 4 min 17 s) to compute, the Partial NIT is
substantially faster than the OG inspiral but still much too slow for practical waveform gener-
ation for data analysis. Finally, we note the Switch NIT combines the best of both approaches,
producing inspirals and waveforms that are almost as accurate as the Partial NIT while only
taking 21.1 s to compute an inspiral. This is still slower than the sub-second computation time
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Figure 8. The difference between the evolution of orbital elements ∆P⃗= P⃗− P⃗Ad,
where P⃗= (p,e,x), as a function of Mino time λ for a year long inspiral with a= 0.9M,
ϵ= 10−5 and initial conditions (p0,e0,x0) = (7.045,0.45,0.8). One can see that all
three methods for evolving the inspiral accurately capture the effect of the 2/3 orbital
resonance, but the switch NIT does so without resolving as many oscillations.

that one would need for data analysis, but this can likely be reduced further by optimising the
resonance condition and using more efficient numerical methods.

In conclusion, this test case has confirmed two important insights. First, one does not need
to account for every orbital resonance to produce waveforms that are sufficiently accurate for
LISA science. Modelling the lowest order ones will suffice. Second, this demonstrates that
the Switch NIT is the best strategy so far for accurately capturing resonant behaviour while
reducing the computation time for calculating 1PA inspiral trajectories.

6.6. Evolving through multiple low-order resonances

Armed with these two insights, we now look to a case where there is more than one low-order
resonance crossing. We wish to see if one can produce sufficiently accurate waveforms if one
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Figure 9. The absolute difference in the phases and extrinsic quantities between the
OG and NIT equations of motion for a year long inspiral with a= 0.9M, ϵ= 10−5 and
initial conditions (p0,e0,x0) = (7.045,0.45,0.8). We observe that there is no difference
in accuracy between using the partial NIT and the switch NIT.

Table 1. A table of the time taken to compute a year long inspiral with mass ratio
10−5 and initial conditions (p0,e0,x0) = (7.045,0.45,0.8) using different equations of
motion as calculated numerically using NDSolve with AccuracyGoal of 7 as implemen-
ted in Mathematica 13 on an Apple M1 Max chip. The mismatches between the semi-
relativistic quadrupole waveforms generated from these inspirals and the OG inspiral
are also listed.

Inspiral Runtime Mismatch

Full NIT 0.544 s 0.343
Partial NIT 257 s 6.78× 10−5

Switch NIT 21.1 s 2.99× 10−4

only employs a resonance transition for the 2/3 resonance or if one needs to account for both
the 2/3 and 2/4 resonances. We pick a canonical EMRI mass ratio of ϵ= 10−5, and chose
initial conditions (p0,e0,x0) = (6.8,0.45,0.8) and evolve until p= 3.75 such that the resulting
inspiral lasts for just over 1 year. This time, however, the inspiral passes through the following
of orbital resonances: 2/3,6/10,4/7,2/4, and 4/9. With the results of our last test in mind, we
neglect all of the resonance crossings bar the 2/3 and 2/4 resonances. Using this inspiral, we
wish to investigate if we can accurately transition through more than one resonance, and how
much accuracy is lost if one accounts for the 2/3 resonance but neglects the 2/4 resonance.

We first compute the year long inspiral using the quasi-Keplerian OG equations using
NDSolve with accuracy and precision goals set to 13.5 which took just over three days to
compute on a single core of an Intel Xeon E5-2698V4 @ 2.20GHz. Using this as our point of
comparison, we evolved inspirals with equivalent initial conditions and accuracy and precision
goals utilizing the Switch NIT with either a single switch for the 2/3 resonance, or a switch
for both the 2/3 and 1/2 resonances.

To demonstrate the effect of the two resonances on the evolution of the semilatus rectum p,
we match an adiabatic inspiral to the OG inspiral after the 2/3 resonance but before the 2/4
resonance and evolve it both forward and backwards in time. We then subtract the adiabatic
solution for the semilatus rectum pAd from the post-adiabatic inspirals solutions to illustrate
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Figure 10. The difference between the evolution of orbital elements ∆P⃗= P⃗− P⃗Ad as
a function of Mino time λ for a year long inspiral with a= 0.9M, ϵ= 10−5 and ini-
tial conditions (p0,e0,x0) = (6.8,0.45,0.8) using the OG equations of motion, the NIT
equations of motion with a transition through the 2/3 resonance and the NIT equations
of motion with transitions for both the 2/3 and 2/4 resonances.

the effects of both the 2/3 and 2/4 resonances as seen in figure 10. The figure shows how
the 2/3 has a significantly larger effect on the evolution of p than the 2/4 resonance, and that
while there is an error induced by neglecting the 2/4 resonance, it is comparably small.

This is further supported when we look at the differences in the orbital phases and extrinsic
quantities in figure 11. We see that neglecting the 2/4 resonance induces a small but noticeable
error in the orbital phases and extrinsic quantities towards the end of the inspiral. Since the
inspiral terminates shortly after the 2/4 resonance crossing, this error remains small. However,
if the inspiral were to be evolved for longer, this error will accumulate and may become sub-
stantial. This suggests that while incorporating the 2/4 resonance may not provide a significant
increase in accuracy for this particular inspiral, in general one may still need to account for it.
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Figure 11. The absolute difference in the phases and extrinsic quantities between the
OG and NIT equations of motion for a year long inspiral with a= 0.9M, ϵ= 10−5 and
initial conditions (p0,e0,x0) = (6.8,0.45,0.8). Around λ= 120,000, one can clearly
see the effect of neglecting the 2/4 resonance.

Table 2. A table of the time taken to compute a year long inspiral with mass ratio 10−5

and initial conditions (p0,e0,x0) = (6.8,0.45,0.8) using NIT equations of motion with
different numbers of resonant transitions as calculated using NDSolve with an accuracy
goal of 7 as implemented inMathematica 13 on anAppleM1MaxChip. Themismatches
between the semi-relativistic quadrupole waveforms generated from these inspirals and
the OG inspiral are also listed.

Inspiral Runtime Mismatch

Full NIT 4.0 s 0.569
Single Switch NIT 22.1 s 5.30× 10−5

Double Switch NIT 57.8 s 4.93× 10−5

Table 2 shows the runtime and the waveform mismatch of each inspiral as compared with
the waveform generated by the OG inspiral. We see that neglecting the 2/3 resonance produces
a waveform which agrees very poorly with the OG waveform. Including the transition through
the 2/3 resonance produces a waveform with a mismatch of only 5.3× 10−5 which is signi-
ficantly smaller than the 3× 10−3 requirement to produce a waveform bank that can capture
90% of signals [101]. Including the transition through the 2/4 resonance slightly decreases the
mismatch to 4.93× 10−5. From the differences in the phases and extrinsic quantities shown
in figure 11, if one were to run the inspiral for longer, one would expect to see the error from
neglecting the 2/4 resonance have a larger effect. As it stands, it does not seem justifiable to
more than double the runtime from 22.1 s to 57.8 s to include such a small resonance effect.

Both this and the previous test indicate that of the resonance crossings that we have
examined, the most important to account for is the 2/3 resonance. One may also need to
account for other low order resonances such at the 2/4 and 2/6 resonances, but our preliminary
results suggest that the 2/3 resonance might be the only resonance that one must include to
produce post-adiabatic waveforms accurate enough for LISA science. However, our toy force
model has a tendency to overestimate the 2/3 resonance effects while underestimating the rest
and so a more robust study of inspirals throughout more of the parameter space with a more
accurate model for the GSF is needed before such a strong conclusion can be drawn.
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7. Discussion and conclusions

In this work, we present the first application of near-identity averaging transformations to
generic Kerr inspirals in the vicinity of low-order orbital resonances. Generic Kerr GSF codes
are too computational expensive to feasibly create an interpolated self-force model as was
done in [45, 63]. We circumvent this by combining the interpolated models for the eccentric
equatorial GSF and the spherical GSF to create a toy model for the generic GSF which is
quick to evaluate and has the qualitative behaviour one would expect of the generic GSF as
one approaches the quasi-circular and equatorial limits. It is this toy model, along with the OG
equations, that we use to drive our generic Kerr inspirals. We use this toy model as a proof of
concept of the methods we have developed for rapidly calculating Kerr inspirals. A follow on
study with the GSF to post adiabatic order is needed to provide quantitative predictions for the
transient resonances experienced by astrophysical EMRIs.

We then use near-identity averaging transformations to speed up these calculations. We
investigate how the accuracy and speed-up scales with the mass ratio and confirm that this
technique works as expected, so long as one is not in the presence of a low order orbital reson-
ance. Since the ‘Full’ NIT becomes singular in the event of an orbital resonance, we implement
a ‘Partial’ NIT to be used in the vicinity of an orbital resonance for the first time and test the
scaling of the accuracy and speed-up with the mass ratio in the presence of the 2/3 resonance.
From this, we find that while the phase difference between the Partial NIT and OG inspirals
scales linearly with the mass ratio, as we would expect, and the Partial NIT provides an order
of magnitude worth of speed-up, it would still be much too slow for data analysis applications.

We note that this could be reduced further by utilizing the Full NIT when far from a res-
onance and then switching to the Partial NIT when in the vicinity of a resonance, which we
refer to as the ‘Switch’ NIT. We test the convergence of this method against the partial NIT
and find that our error is consistent with the predicted scalings of ϵ11/4 for the orbital elements
and ϵ4/7 for both the phases and the t and ϕ coordinates. We test this procedure using two dif-
ferent, year-long EMRI trajectories; one which only evolves through the 2/3 resonance, and
one which also evolves through the 2/4 resonance. From these tests, we confirm that one can
use the Switch NIT with no significant loss of accuracy compared to only using the Partial
NIT. Moreover, our tests suggests that one can safely neglect higher order resonances without
any significant loss of accuracy. Our results even suggest that one might be able to ignore all
resonances bar the 2/3 resonance since it has by far the largest impact on the inspiral, though
further investigation is needed to ensure that this is really the case across the parameter space.
Moreover, it is not clear how representative our toy model for the generic orbit GSF is for these
results.

However, even with at least two orders of magnitude of speed-up from utilising the Switch
NIT, our current implementation still takes O(10) seconds to compute a year long EMRI
evolving through a single resonance, which, while a drastic improvement over the days
required to solve the OG equations, is still not fast enough for LISA data analysis. This can be
reduced further by investigating and optimising evaluation of the transformation terms when
the switch is made or by implementing the above procedure in a compiled language such as
C/C++, though this still may not be fast enough. It is possible that a NITmodel with an empir-
ically fitted resonant ‘jump’ derived from the Partial NIT could account for resonances while
minimising runtime, but this will be left as future work.
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Appendix A. Gravitational self-force inspired toy model

The prohibitive computational cost of the generic GSF code presented in [46] necessitates that
we produce a toy model for the force. The model we chose to construct is informed by GSF
data in the equatorial and spherical limits and we impose that it recovers these limits exactly.
Moreover, we impose that the model has a similar form to generic GSF data when Fourier
decomposed as this is important for producing the effects from orbital resonances. However,
the source data provides no direct information about the magnitude of the mixed radial-polar
modes which are crucial for resonances. The mixed radial-polar modes are generated purely by
the outer-product Ansatz described below. As a counter-example, the source data would also
allow for fully separable Ansätze with no mixed modes, which would produce no resonances
at all. Hence we refer to our choice as a toy model.

To construct our toy model, we must first recall that our first order eccentric orbit self-force
model takes the form:

a(1)µ = A0
µ (a,p,e)+

15∑
n=1

Anµ (a,p,e)cos(nqr)+Bnµ (a,p,e)sin(nqr) , (A.1)

where we have absorbed a rescaling factor described in [63] into the coefficients Anµ and Bnµ.
Note that these coefficients only depend on (a,p,e) while for the generic orbit GSF, these
would also depend on x. We truncate the series at n= 15 as this provides sufficient accuracy.
Furthermore, our first order spherical orbit self-force model takes the form:

a(1)µ = C0
µ (a,p,x)+

24∑
m=1

Cmµ cos(mqθ)(a,p,x)+Dm
µ (a,p,x)sin(mqθ) (A.2)

where again we have absorbed the rescaling factor described in [45] into the coefficients Cmµ
and Dm

µ. Again, these coefficients only depend on (a,p,x) while for the generic orbit GSF,
these would also depend on e.
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While it would be easier to combine these terms together to get cross terms if the Fourier
series was expressed as a complex exponential series instead of a sin and cos series, it is pos-
sible to derive a Fourier series for a real valued 2D function my making use of trigonometric
identities and simplifying:

a(1)µ (qr,qθ) =
∞∑
n=0

∞∑
m=0

Anm
µ cos(nqr)cos(mqθ)+

∞∑
n=0

∞∑
m=0

Bnm
µ cos(nqr)sin(mqθ)

+
∞∑
n=0

∞∑
m=0

Cnmµ sin(nqr)cos(mqθ)+
∞∑
n=0

∞∑
m=0

Dnm
µ sin(nqr)sin(mqθ) .

In our toy model, we make a simplification by defining the cross terms using an outer
product, meaning that the coefficients Anm

µ , Bnm
µ , Cnmµ , and Dnm

µ are given by:

Anm
µ := AnµC

m
µ (A.4a)

Bnm
µ := AnµD

m
µ (A.4b)

Cnmµ := BnµC
m
µ (A.4c)

Dnm
µ := BnµD

m
µ (A.4d)

from our equatorial and spherical GSF models. Using what we know from the n= 0 and
m= 0 cases, we express our generic orbit force components as:

a(1)µ (qr,qθ) = A0
µ +C0

µ +
15∑
n=1

Anµ cos(nqr)+Bnµ sin(nqr)+
24∑
m=1

Cmµ cos(mqθ)+Dm
µ sin(mqθ)

+
15∑
n=1

24∑
m=1

AnµC
m
µ cos(nqr)cos(mqθ)+

15∑
n=1

24∑
m=1

AnµD
m
µ cos(nqr)sin(mqθ)

+
15∑
n=1

24∑
m=1

BnµC
m
µ sin(nqr)cos(mqθ)+

15∑
n=1

24∑
m=1

BnµD
m
µ sin(nqr)sin(mqθ) .

Note that all of the inclined orbit terms will vanish in the equatorial limit except for C0
µ and

all the eccentric orbit terms will vanish in the circular limit except for A0
µ. We wish to weight

these orbit averaged terms so that we can recover the two limit cases accurately.
To do this, we note that our equatorial model covers eccentricities ranging from 0< e< 0.5.

Our spherical model is tiled in terms of a parameter v where v= cos2 θmin = 1− x2 such that
our model covers 0< v< 0.5. This similarity will come in handy. We want the weighting
factors to be smooth, recover the two limit factors, and we make the choice that when e= v
that the weighting factors are both 0.5 so that the orbit averaged piece will be the mean of the
equatorial and spherical contributions. As such, we chose following weighting functions:

α(e,v) =

{
e

e+v e⩽ v
1− v

e+v e> v
, β (e,v) =

{
v

e+v e⩽ v
1− e

e+v e> v
. (A.6)
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Despite their piecewise definition, these functions are smooth and continuous everywhere
except for the point (e,v) = (0,0). We can now write our generic force components as

a(1)µ (qr,qθ) = αA0
µ +βC0

µ +
15∑
n=1

Anµ cos(nqr)+Bnµ sin(nqr)+
24∑
m=1

Cmµ cos(mqθ)+Dm
µ sin(mqθ)

+
15∑
n=1

24∑
m=1

AnµC
m
µ cos(nqr)cos(mqθ)+

15∑
n=1

24∑
m=1

AnµD
m
µ cos(nqr)sin(mqθ)

+
15∑
n=1

24∑
m=1

BnµC
m
µ sin(nqr)cos(mqθ)+

15∑
n=1

24∑
m=1

BnµD
m
µ sin(nqr)sin(mqθ) .

Before now, we only ever needed the orbit averaged contribution from the second order self-
force, which in the absence of any results for Kerr inspirals, we simply set to zero. However,
when evolving near an orbital resonance, equation (26.d) involves the oscillatory part of the
second order self-force. Since we are already using a toy model for the first order self-force,
we choose to also create a toy model for the second order self-force a(2)µ . However, we do not
have any data for generic Kerr inspirals that can help inform such a model. Thus, we have
opted to use this first order toy model to inform the second order toy model, which we take to
be:

a(2)µ =
a(1)µ

r2
√
1− cos2 θ

, (A.8)

where the factor of 1/r2 is used to ensure that the second order self-force corresponds to the
correct post-Newtonian order and the factor 1/

√
1− cos2 θ prescribes the effect of the inclin-

ation, and implicitly spin of the primary, on the second order self-force. With both of these
terms, we express the self-force as aµ = a(1)µ + ϵa(2)µ .

Finally, in order for this toy model to work with the method of osculating geodesics, we
require that it must satisfy the orthogonality condition with the geodesic four velocity, i.e.
aµuµ = 0. To enforce this relationship we project off any parts of the force that violate this
condition using the following relationship:

a⊥µ = aµ + aνu
νuµ. (A.9)

Using the projected force components with our osculating geodesic equations of motion we
find inspirals that have qualitatively correct p,e, and x evolution for an EMRI under the effect
of the gravitational self-force as well as strong resonant effects.

To verify this, we derive the variation of the flux for the constants of motion J⃗ = {E ,L,Q}
where E is the orbital energy per unit rest mass µ, L is the z-component of the angular
momentum per unit mass µ and K is the Carter constant divided by µ2. To obtain the rate
of change of these quantities, we use the expressions for these constants as a function of P⃗
derived in [102] and use the chain rule, i.e.

dJi

dt
= J̇i =

∂Ji

∂Pj

dPj
dλ

dλ
dt

=
∂Ji

∂Pj

F(1)
j

st
. (A.10)
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Table A1. Variation in flux for orbits with e= 0.3 and θmin = 70◦ about a black hole
with spin a= 0.9M calculated from our toy GSF model and compared with the values
obtained in [72]. Our toy model tends to overestimate the variation for the 2/3 reson-
ance and significantly underestimate the variation for the higher order 2/6,2/4, and 6/8
resonances.

p/M Ωr/Ωθ ∆⟨Ė⟩res ∆Ė [72] ∆⟨L̇⟩res ∆L̇ [72] ∆⟨Q̇⟩resToy ∆Q̇ [72]

2.9112 1/3(2/6) 0.028% 0.056% 0.035% 0.070% 0.149% 0.310%
3.5560 1/2(2/4) 0.084% 0.131% 0.063% 0.179% 0.203% 0.046%
5.3414 2/3 0.332% 0.102% 0.116% 0.067% 0.687% 0.208%
7.4198 3/4(6/8) 5× 10−8% 0.001% 5× 10−9% 0.001% 8× 10−6% 0.006%

We are interested in how the flux of J⃗ varies over an orbital resonance and so using our notion
of a partial average, we obtain:

〈
J̇i

〉
res

=
∂Ji

∂Pj

F̂(1)
j,diss (q⊥)

Υ
(0)
t

. (A.11)

Note that we look to only include dissipative effects from the force, as so we make use of the
dissipative-conservative split derived in [12] i.e. F(1)

j,diss =
1
2 (F

(1)
j (qr,qθ)+F(1)

j (2π − qr,2π −
qθ)). In line with the analysis performed in [72], we define the variation ∆ of a function X
to be

∆X=
|Xmax| − |Xmin|

(|Xmax|+ |Xmin|)/2
, (A.12)

where the minimum and maximum values of the function are found via numerical root finding.
In table A1, we show the values of∆⟨J̇ ⟩res from our toy model against the values obtain in

table IV of [72] which was obtained from combining the Teukolsky fluxes down the horizon
of the black hole and out to infinity. From this comparison, we see that our toy model pro-
duces variations in the fluxes that are at least qualitatively in line with what one would obtain
from a realistic self-force model with the values all being within an order of magnitude of the
values reported in [72] (with the exception of the 6/8 resonance). Our model has a tendency
to overestimate the effect of the lowest order 2/3 resonance while underestimating the effects
of higher order resonances.

Appendix B. Partial NIT derivation

The Full NIT will break down in the presence of orbital resonances where the radial and polar
frequencies become commensurate i.e. κrΥ

(0)
r +κθΥ

(0)
θ = 0 where κr,κθ ∈ Z. As such, we

will introduce a new averaging procedure which averages almost all dependence on the orbital
phases, except for the resonant phase q⊥ := κrqr+κθqθ, which we call the Partial NIT. This
will mean that our equations will oscillate, and so will be slower to solve than the Full NIT
equations of motion. However, q⊥ oscillates on a timescale between that of the slow evolution
of the orbital elements and the rapidly oscillating orbital phases, and so can be thought of as
a ‘semi-fast’ variable. This appendix serves to recast the appendix C of [98] in the notation of
[65].
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B.1. Near identity transformation

We will first focus on the evolution of the orbital elements and orbital phases and so we once
again introduce the transformation

P̂j = Pj+ ϵŶ(1)j

(
P⃗, q⃗
)
+ ϵ2Ŷ(2)j

(
P⃗, q⃗
)
+O

(
ϵ3
)
, (B.1a)

q̂i = qi + ϵX̂(1)
i

(
P⃗, q⃗
)
+ ϵ2X̂(2)

i

(
P⃗, q⃗
)
+O

(
ϵ3
)
, (B.1b)

q̂⊥ = q⊥ + ϵŴ(1)
(
P⃗, q⃗
)
+ ϵ2Ŵ(2)

(
P⃗, q⃗
)
+O

(
ϵ3
)
, (B.1c)

where we have implicitly imposed that none of the functions of the right hand side depend on
the resonant phase q⊥. This transformation has an inverse that is given by

Pj = P̂j− ϵŶ(1)j

(
⃗̂P,⃗̂q
)

− ϵ2

Ŷ(2)j

(
⃗̂P,⃗̂q
)
−

∂Ŷ(1)j

(
⃗̂P,⃗̂q
)

∂P̂k
Ŷ(1)k

(
⃗̂P,⃗̂q
)
−

∂Ŷ(1)j

(
⃗̃P,⃗̃q
)

∂q̃k
X̂(1)
k

(
⃗̂P,⃗̂q
)+O

(
ϵ3
)
,

(B.2a)

qi = q̂i− ϵX̂(1)
i

(
⃗̂P,⃗̂q
)

− ϵ2

X̂(2)
i

(
⃗̂P,⃗̂q
)
−

∂X̂(1)
i

(
⃗̂P,⃗̂q
)

∂P̂j
Ŷ(1)j

(
⃗̂P,⃗̂q
)
−

∂X̂(1)
i

(
⃗̂P,⃗̂q
)

∂q̂k
X̂(1)
k

(
⃗̂P,⃗̂q
)+O

(
ϵ3
)

(B.2b)

q⊥ = q̂⊥ − ϵŴ(1)
i

(
⃗̂P,⃗̃q
)

− ϵ2

Ŵ(2)
i

(
⃗̂P,⃗̂q
)
−

∂Ŵ(1)
i

(
⃗̂P,⃗̂q
)

∂P̂j
Ŷ(1)j

(
⃗̂P,⃗̂q
)
−

∂Ŵ(1)
i

(
⃗̂P,⃗̂q
)

∂q̂k
X̂(1)
k

(
⃗̂P,⃗̂q
)+O

(
ϵ3
)
.

(B.2c)

B.2. Transformed equations of motion

By taking the time derivative of the NIT (B.1), substituting the EMRI equations of motion (5)
and inverse NIT (B.2), and expanding in powers of εwe obtain the NIT transformed equations
of motions

dP̂j
dλ

= ϵF̂(1)
j

(
⃗̂P,⃗̂q, q̂⊥

)
+ ϵ2F̃(2)

j

(
⃗̂P,⃗̂q, q̂⊥

)
+O

(
ϵ3
)
, (B.3a)

dq̂i
dλ

=Υ
(0)
i

(
⃗̂P
)
+ ϵ̂f(1)i

(
⃗̂P,⃗̂q, q̂⊥

)
+O

(
ϵ2
)
, (B.3b)

dq̂⊥
dλ

= κ⃗res · Υ⃗(0)
(
⃗̂P
)
+ ϵκ⃗res ·⃗̂f(1)

(
⃗̂P,⃗̂q, q̂⊥

)
+O

(
ϵ2
)
, (B.3c)
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where

F̂(1)
j = F(1)

j +
∂Ŷ(1)j

∂q̂i
Υ

(0)
i , f̂(1)i = f(1)i +

∂X̂(1)
i

∂q̂k
Υ

(0)
k − ∂Υ

(0)
i

∂P̂j
Ŷ(1)j , (B.4a-b)

and

F̂(2)
j = F(2)

j +
∂Ŷ(2)j

∂q̂i
Υ

(0)
i +

∂Ŷ(1)j

∂q̂i
f(1)i +

∂Ŷ(1)j

∂P̂k
F(1)
k −

∂F̂(1)
j

∂P̂k
Ŷ(1)k −

∂F̂(1)
j

∂q̂i
X̂(1)
i −

∂F̂(1)
j

∂q̂⊥
Ŵ(1).

(B.5)

Note that all functions on the right hand side are evaluated at ⃗̂P, ⃗̂q and q̂⊥.

B.3. Cancellation of oscillating terms at O(ϵ)

We note that we can decompose any 2π periodic function into its averaged, resonant oscillatory
and non-resonant oscillatory pieces using a Fourier expansion:

A
(
P⃗, q⃗,q⊥

)
= ⟨A⟩

(
P⃗
)
+
∑
N̸=0

ANκ⃗res

(
P⃗
)
eiNq⊥ +

∑
κ⃗∈R

Aκ⃗

(
P⃗
)
ei κ⃗·⃗q. (B.6)

where R is the set {κ⃗ ∈ Z2|κ⃗ ̸= Nκ⃗res,∀N ∈ Z} of all non-resonant 2-tuples and κres = (κr,κθ)

is such that κres · Υ⃗(0) = 0. Applying this decomposition to F̂(1)
j , one obtains

F̂(1)
j = F(1)

j +
∂Ŷ(1)j

∂q̂i
Υ

(0)
i = F(1)

j +
∂Ŷ(1)j

∂q̂i
Υ

(0)
i

=
〈
F(1)
j

〉
+
∑
N̸=0

F(1)
j,Nκ⃗res

eiNq⊥ +
∑
κ⃗∈R

(
F(1)
j,κ⃗ + i

(
κ⃗ · Υ⃗(0)

)
Ŷ(1)j,κ⃗

)
ei κ⃗·⃗q.

(B.7)

As such, we can cancel the non-resonant oscillatory pieces of F̂(1)
j by choosing the oscillatory

part of Ŷ(1)j to be

Ŷ(1)j,κ⃗ :=
i

κ⃗ · Υ⃗(0)
F(1)
j,κ⃗

(
P⃗
)
. (B.8)

For κ⃗ ̸= Nκ⃗res and 0 when κ⃗= Nκ⃗res. Using the above choice for Ŷ(1)j , the equation for f̂(1)i
becomes

f̂(1)i =f(1)i − ∂Υ
(0)
i

∂P̂j
Ŷ(1)j +

∂X̂(1)
i

∂q̂k
Υ

(0)
k

=
〈
f(1)i

〉
− ∂Υ

(0)
i

∂P̃j

〈
Ŷ(1)j

〉
+
∑
N̸=0

f(1)i,Nκ⃗res
eiNq̂⊥

+
∑
κ⃗∈R

(
f(1)i,κ⃗ − i

κ⃗ · Υ⃗(0)

∂Υ
(0)
i

∂P̂j
Fj,κ⃗ + i

(
κ⃗ · Υ⃗(0)

)
X(1)
i,κ⃗

)
ei κ⃗·⃗q.

(B.9)
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As a result, we can remove the oscillating pieces of f̂(1)i by choosing

X̂(1)
i,κ⃗ :=

i

κ⃗ · Υ⃗(0)
f(1)i,κ⃗ +

1(
κ⃗ · Υ⃗(0)

)2 ∂Υ(0)
i

∂Pj
F(1)
j,κ⃗ . (B.10)

For κ⃗ ̸= Nκ⃗res. Moreover, we can determine the transformation term W by examining the

equation the equation for κ⃗res ·⃗̂f(1):

κ⃗res ·⃗̂f(1) =κ⃗res · f⃗(1) −
∂κ⃗res · Υ⃗(0)

∂P̂j
Ŷ(1)j +

∂Ŵ(1)

∂q̂k
Υ

(0)
k

=
〈
κ⃗res · f⃗(1)

〉
−

∂
(
κ⃗res · Υ⃗(0)

)
∂P̂j

〈
Ŷ(1)j

〉
+
∑
N̸=0

(
κ⃗res · f⃗(1)

)
Nκ⃗res

eiNq̃⊥

+
∑
κ⃗∈R

(κ⃗res · f⃗(1)
)
κ⃗
− i

κ⃗ · Υ⃗(0)

∂
(
κ⃗res · Υ⃗(0)

)
∂P̂j

Fj,κ⃗ + i
(
κ⃗ · Υ⃗(0)

)
Ŵκ⃗

ei κ⃗·⃗q̂.

(B.11)

As such, to remove the oscillating pieces of κ⃗ · Υ⃗(1), the oscillatory piece of Ŵ(1) must take
the form

Ŵ(1)
κ⃗ :=

i

κ⃗ · Υ⃗(0)

(
κ⃗res · f⃗(1)

)
κ⃗
+

1(
κ⃗ · Υ⃗(0)

)2 ∂
(
κ⃗res · Υ⃗(0)

)
∂Pj

F(1)
j,κ⃗ = κ⃗res · ⃗̂X(1)

κ⃗ . (B.12)

For κ⃗ ̸= Nκ⃗res. Note that this derivation is consistent with the fact that since q̃⊥ = κ⃗ · ⃗̃q then

by equation (B.1), Ŵ(1)
κ⃗ = κ⃗ · ⃗̂X(1). Note that in practice, this means we not need to include a

separate equation to evolve q̂⊥ if we are already evolving q̂i separately.

B.4. Cancellation of oscillating terms at O(ϵ2)

Using the above choice for the oscillatory part of Ŷ(1)j , we can express the non-resonant oscil-

latory part of the expression for F̂(2)
j as

˘̂F(2)
j =F̆(2)

j +
∂Ŷ(2)j

∂q̂i
Υ

(0)
i +

{
∂Ŷ(1)j

∂q̂i
f(1)i

}
+

{
∂Ŷ(1)j

∂P̂k
F(1)
k

}
−

∂
〈
F(1)
j

〉
∂P̂k

˘̂Y(1)k

=
∑
κ⃗∈R

(
F(2)
j,κ⃗ + i

(
κ⃗ · Υ⃗(0)

)
Ŷ(2)j,κ⃗ +

∂
〈
Ŷ(1)j

〉
∂P̂k

F(1)
k,κ − i

∂
〈
F(1)
j

〉
∂P̂k

F(1)
k,κ⃗

κ⃗ · Υ⃗(0)

+
∑
κ⃗ ′∈R

(
i
F(1)
k,κ⃗−κ⃗ ′

κ⃗ ′ · Υ⃗(0)

(
∂F(1)

j,κ⃗ ′

∂P̂k
−

F(1)
j,κ⃗ ′

κ⃗ ′ · Υ⃗(0)

∂(κ⃗ ′ · Υ⃗(0))

∂P̂k

)
−

κ⃗ ′ · f⃗(1)κ⃗−κ⃗ ′

κ⃗ ′ · Υ⃗(0)
F(1)
j,κ⃗ ′

))
ei κ⃗·⃗q̂,

(B.13)

37



Class. Quantum Grav. 41 (2024) 225002 P Lynch et al

where {·} is used to denote the non-resonant oscillatory part of a product of functions. Thus
we can remove the oscillatory part of F̂(2)

j by choosing

Ŷ(2)j,κ⃗ =
i

κ⃗ · Υ⃗(0)

F(2)
j,κ⃗ +

∂
〈
Ŷ(1)j

〉
∂P̂k

F(1)
k,κ⃗ − i

∂
〈
F(1)
j

〉
∂P̂k

F(1)
k,κ⃗

κ⃗ · Υ⃗(0)

+
∑
κ⃗ ′∈R

i F(1)
k,κ⃗−κ⃗ ′

κ⃗ ′ · Υ⃗(0)

∂F(1)
j,κ⃗ ′

∂P̂k
−

F(1)
j,κ⃗ ′

κ⃗ ′ · Υ⃗(0)

∂
(
κ⃗ ′ · Υ⃗(0)

)
∂P̂k

−
κ⃗ ′ · f⃗(1)κ⃗−κ⃗ ′

κ⃗ ′ · Υ⃗(0)
F(1)
j,κ⃗ ′

 .

(B.14)

B.5. Freedom in the averaged pieces

With the non-resonant oscillatory pieces of the NIT equations of motion removed, terms in the
equations of motion become

F̂(1)
j =

〈
F(1)
j

〉
+
∑
N̸=0

F(1)
j,Nκ⃗res

eiNq̂⊥ , f̂(1)i =
〈
f(1)i

〉
+
∑
N ̸=0

f(1)i,Nκ⃗res
eiNq̂⊥ − ∂Υ

(0)
i

∂P̃j

〈
Y(1)j

〉
,

(B.15a-b)

and

F̂(2)
j =

〈
F(2)
j

〉
+
∑
N ̸=0

F(2)
j,Nκ⃗res

eiNq̂⊥ +

〈
∂Y̆(1)j

∂q̂i
f̆(1)i

〉
+

〈
∂ ˘̂Y(1)j

∂P̂k
F̆(1)
k

〉

+
∂
〈
Ŷ(1)j

〉
∂P̂k

〈
F(1)
k

〉
−

∂
〈
F(1)
j

〉
∂P̂k

〈
Ŷ(1)k

〉
.

(B.16)

Note that we still have freedom to set the averaged pieces of the transformation func-

tions
〈
Ŷ(1)j

〉
,
〈
Ŷ(2)j

〉
,
〈
X̂(1)
i

〉
, and

〈
Ŵ(1)

〉
to be anything we choose. As before, we make

the simplest choice:
〈
Ŷ(1)j

〉
=
〈
Ŷ(2)j

〉
=
〈
X̂(1)
i

〉
=
〈
Ŵ(1)

〉
= 0, as this makes it easy to com-

pare between OG and NIT inspirals. It also has the benefit of drastically reducing the terms in
our equations of motion to

F̃(1)
j =

〈
F(1)
j

〉
+
∑
N̸=0

F(1)
j,Nκ⃗res

eiNq⊥ , Υ
(1)
i =

〈
f(1)i

〉
+
∑
N ̸=0

f(1)i,Nκ⃗res
eiNq⊥ ,

(B.17a-b)

and

F̃(2)
j =

〈
F(2)
j

〉
+
∑
N̸=0

F(2)
j,Nκ⃗res

eiNq⊥ +

〈
∂Y̆(1)j

∂q̃i
f̆(1)i

〉
+

〈
∂Y̆(1)j

∂P̃k
F(1)
k

〉
. (B.18)
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B.6. Evolution of extrinsic quantities

The last thing to add this formulation is the evolution of the extrinsic quantities. Thankfully,
both the t and ϕ geodesic equations are separable with respect to r and z and so

s(0)k =
∑
κ⃗∈ZN

s(0)k,κ⃗e
i κ⃗·⃗q =

∑
N

(
s(0)k,(N,0)e

iNqr+ s(0)k,(0,N)e
iNqz
)
. (B.19)

This means that the geodesic rates of change of the extrinsic quantities s(0)k have no depend-
ence on q⊥. Thus any term in the NIT transformations or equations of motion proportional to
1/
(
κres ·Υ(0)

)
will be multiplied by 0 and so all of our terms remain finite. As such, we can

continue using the Full NIT expressions for these terms.

Appendix C. Switch NIT transition condition

In this section we give the derivation of the switching criterion between the Partial NIT and the
Full NIT equations of motion. The criterion is chosen so that no more accuracy can be gained
by prolonging numerical integration of the Partial NIT.

We only give a brief description of the derivation as applicable strictly to the algorithm
and system of equations considered here. It is important to stress that the scalings discussed
here change when one considers a different scheme which, for instance, has access to different
orders of the GSF (or a different approximation scheme for the equations of motion altogether),
executes NITs to different orders for the variables involved, or optimizes different quantities
such as the accuracy of the variables when leaving the resonance rather than the global inspiral
phase. Amore general and detailed discussion allowing for other algorithm choices will appear
in a forthcoming paper.

C.1. Singularities in the inverse NIT

We begin by examining the structure of the inverse NIT given in equation (11). The most
important feature is that the denominators ∼ κ⃗res · Υ⃗(0) =Υ⊥ become small near resonance
and the series starts to diverge for some constant integer vector κ⃗res.

One needs to decide where to make the switch to the Partial NIT equations where such
divergences do not appear. We define a power index β > 0 so that the switch is executed when
κ⃗res · Υ⃗(0) ∝ ϵβ . This is equivalent to saying that we switch to the partial NIT at a (Mino) time
∼ ϵβ−1T before hitting the exact point κ⃗res · Υ⃗(0) = 0, where T is a dimensionful factor with
the dimension of Mino time (1/length in G= c= 1 units). This is because at that point we
have

κ⃗res · Υ⃗(0) ∼−ϵβκ⃗res ·
∂Υ⃗(0)

∂Pj

〈
F(1)
j

〉
T∼−ϵβΥ ′

⊥T (C.1)

where all functions are evaluated on the resonance where κ⃗res · Υ⃗(0) = 0.
By examining the divergences in equations (15), (16), and (17), we see that the highest-

order divergences are 1/(κ⃗res ·Υ(0)) for Ỹ(1), 1/(κ⃗res · Υ⃗(0))2 for X̃(1), and 1/(κ⃗res · Υ⃗(0))3 for

Ỹ(2). One can show that the largest divergence in Ỹ(n) ∼ 1/(κ⃗res · Υ⃗(0))2n−1 and the largest
divergence in X̃(n) ∼ 1/(κ⃗res · Υ⃗(0))2n, where n is the order of the inverse NIT. As such, we
see that the NIT series carried out to infinite order necessarily diverges unless β < 1/2. Even
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though the optimal value of β will be determined later, it is important to remember that β ∈
(0,1/2) in any case to understand the weighing of terms appearing in later expansions.

Note also that even though the leading-order terms can be in principle computed, already
at this order there will appear sub-leading singular terms corresponding to unknown orders of
the self-force. Instead of introducing convoluted constructions, we simply truncate the NIT at
second order in the orbital elements and at first order in the phases here.

C.2. Handover error

The optimal value of β depends on the finite order to which we carry out the NIT. By neglecting
Ỹ(3), X̃(2) terms in the NIT, we are neglecting singular terms of the form

Ỹ(3) ∼
(
∂Υ(0)

∂P

)2(
∂F(1)

∂q

)2 F(1)
κ⃗res.(

κ⃗res ·Υ(0)

)5 +O
((

κ⃗res ·Υ(0)

)−4
)
, (C.2)

X̃(2) ∼
(
∂Υ(0)

∂P

)(
∂Υ⊥

∂P

)(
∂F(1)

∂q

)
F(1)
κ⃗res.(

κ⃗res ·Υ(0)

)4 +O
((

κ⃗res ·Υ(0)

)−3
)
, (C.3)

where from this point onward we suppress summation indices and factors of order one for
simplicity. Another simplification that we make is the definition of the dimensionless factor
δ, which can be understood as the ratio of the fluctuating or resonant part and the q-averaged
part of any function appearing in the expressions. In particular, we assume that Aκ⃗res. ∼ δ⟨A⟩
and (∂A/∂q)∼ δ ⟨A⟩ and so on. This simplified ‘universal’ scaling allows for a more tractable
computation.

We now assume that we transform from the Full NIT variables P̃, q̃ back toOG variablesP,q
using only Y(2),X(1) and hand them over to the partial NIT integration. The leading hand-over
error for P,q respectively then scales as

∆Ph-o ∼ ϵ3Y(3) ∼ ϵ3−5βδ3
(
Υ(0) ′

)2〈
F(1)

〉
(Υ ′

⊥)
−5
T−5 , (C.4)

∆qh-o ∼ ϵ2X(2) ∼ ϵ2−4βδ2
(
Υ(0) ′

)
(Υ ′

⊥)
−3
T−4 . (C.5)

C.3. Error of partial NIT evolution

The evolution equations are known only to some finite order in powers of ε and, as such,
inevitably accumulate error when integrated over the time ∼ ϵβ−1T. Here we estimate this
secular error.

We start by Taylor-expanding the functions P̂(λ), q̂⊥(λ) around the exact Mino time λres

when Υ⊥ = 0 as

P̂
(
λres + ϵβ−1T

)
=

∞∑
k=0

1
k!

dkP̂
dλk

∣∣∣
λ=λres

ϵk(β−1)Tk , (C.6a)

q̂⊥
(
λres + ϵβ−1T

)
=

∞∑
k=0

1
k!
dk̂q⊥
dλk

∣∣∣
λ=λres

ϵk(β−1)Tk , (C.6b)

where the terms in the Taylor expansion can be evaluated by iterating the partial NIT
equations of motion (25) at λres. It can be shown that this Taylor series is divergent for β < 1/2
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since the shortest time-scale of the partial NIT equations is ∼
√
ϵ. As such, this expansion is

only useful for asymptotic analysis.
The key assumption that we make here is that we are able to evaluate F̂(2)(P̂,q⊥) as a

function of q⊥ accurately only exactly at resonance. This is because this corresponds to an
average second-order flux averaged over a single resonant orbit at fixed q⊥. Away from exact
resonance, we assume to be able to evaluate only the full average ⟨F̂(2)⟩q⊥ . As a consequence,
we assume that we are unable to evaluate derivatives of oscillating parts of the second-order

forcing term ∂ ˘̂F(2)/∂P̂ and similar quantities. Furthermore, we assume that we have no inform-
ation on the second order forcing terms on the phases such as the second order resonant phase
term f(2)⊥ . The leading-order unknown terms in the Taylor series (C.6) are then respectively

∆P̂=
1
2
T2ϵ1+2β

(
˘̂F(2) ′

+
∂F̂(1)

∂q⊥
f̂(2)⊥

)
, (C.7a)

∆q̂= Tϵ1+β f̂(2)⊥ . (C.7b)

C.4. Balancing the errors

The errors in (C.7) cannot be removed by a longer integration of the partial NIT; they will keep
accumulating the longer we integrate the equations. As such, it makes no sense to keep using
the partial NIT equations when this error becomes larger than the hand-over error. However,
we have two types of estimates, the error in phase ∆q, and the error in the orbital elements
∆P, and balancing the error each of these gives different optimal values for β. At this point
we assume that when the inspiral leaves the resonance, it is still a 1/ϵ time before plunge and
that our primary goal is to obtain accurate phase at plunge. In that case, one can show that
balancing the error in the orbital elements yields better accuracy in the phase at plunge. That
is, we solve for T and β from the balance

∆Ph-o ∼∆P̂ , (C.8a)

ϵ3−5βδ3
(
Υ(0) ′

)2〈
F(1)

〉
(Υ ′

⊥)
−5
T−5 ∼ T2ϵ1+2β

(
˘̂F(2) ′

+
∂F̂(1)

∂q⊥
f̂(2)⊥

)
. (C.8b)

From this we get that the optimal choice of the power index: ϵ3−5β ∼ ϵ1+2β → β = 2/7.
We also obtain our relation for the switching timescale to be:

T=

 δ2

(Υ ′
⊥)

5

(
Υ ′(0))2 〈F(1)

〉〈
F ′(2)

〉
+
〈
F(1)

〉〈
f(2)⊥

〉
1/7

. (C.9)

We then also make the estimate that f(2)⊥ ∼ f(1)⊥ , resulting in equation (35) which is used in our

practical implementation (note that both f(2)⊥ ∼ f(1)⊥ are O(1) quantities when the mass ratio
prefactors are removed).
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Using this value of β, we can estimate that the total error in the orbital elements incurred
from this switching procedure is given by:

∆P∼∆P̂+∆P̂h-o ∼ ϵ11/7δ11/7
(〈
F ′(2)

〉
+
〈
F(1)

〉〈
f(1)⊥

〉)5/7(
Υ(0) ′

)4/7
(Υ ′

⊥)
−10/7

,

(C.10)

which corresponds to the ϵ11/7 we see in figure 6(a).
Likewise, the resulting error in the phases after evolving for a time of ε−1 is dominated by

the error in the orbital elements and is given by:

∆qfinal ∼
Υ(0)

ϵΥ ′(0)∆P̂+∆q̂ (C.11a)

∼ ϵ4/7δ11/7
(〈
F ′(2)

〉
+
〈
F(1)

〉〈
f(1)⊥

〉)5/7(
Υ(0) ′

)−3/7
(Υ ′

⊥)
−10/7

Υ(0) +O
(
ϵ9/7
)

(C.11b)

corresponding to the ϵ4/7 we see in figure 6(b). This is a dramatic improvement over
the ϵ−1/2 error one would incur from incorrectly modelling the orbital resonance seen in
figure 4(b), while minimising the time spend evaluating the Partial NIT equations of motion.
In contrast, if we chose β > 2/7 or β = 2/7+ γ with γ > 0, the term∆Ph−o would dominate
the error and we would obtain ∆qfinal ∼ ϵ4/7−5γ . On the other hand, choosing a β < 2/7, or
γ < 0 would lead to the dominance of the ∆P̂ term and ∆qfinal ∼ ϵ4/7+2γ
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