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Rapidly rotating bodies moving in curved space-time experience the so-called spin-curvature force,
which becomes important for the motion of compact objects in gravitational-wave inspirals. As a first
approximation, this effect is captured in the motion of a spinning test particle. We solve the equations
motion of a spinning particle to leading order in spin in arbitrary static and spherically symmetric space-
times in terms of one-dimensional closed-form integrals. This solves the problem and proves its
integrability in a wide range of modified gravities and near exotic compact objects. Then, by specializing
to the case of bound orbits in Schwarzschild space-time, we demonstrate how to express the solution in the

form of Jacobi elliptic functions.
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Introduction.—After a track record of spectacular suc-
cesses in their first three observing runs [1-3], in May 2023
the LIGO and Virgo instruments were joined for the first
time by the Japanese detector KAGRA to start the fourth run
of observing coalescing compact objects through gravita-
tional waves [4]. The so-called LVK Collaboration is
expected to detect more events in this run than have been
amassed to date. Next-generation detectors on Earth and in
space promise to multiply the sensitivity and reach of the
detectors even further [5,6]. As the number of events grow,
we will observe binaries with different mass ranges, mass
ratios, and dynamical setups and, consequently, we will need
a more faithful and complete picture of the two-body
dynamics in order to detect and interpret these signals
correctly.

In particular, the space-based observatory Laser Interfero-
meter Space Antenna (LISA) will detect inspirals of stellar-
mass compact objects (henceforth dubbed as secondary)
onto supermassive black holes [7]. This will allow us to
accurately test whether the supermassive objects in the
centers of galaxies are truly black holes or perhaps some
exotic compact objects, or whether their gravitational field
is described by Einstein gravity [8]. These so-called
extreme-mass-ratio inspirals (EMRIs) are best modeled in
a mass-ratio expansion [9]. At leading order, the two-body
dynamics is approximated by the adiabatic inspiral of a test
particle in the space-time of the massive compact object,
where the inspiral is driven by fluxes sourced by the
secondary [10,11]. Subleading corrections to the motion
are collectively called post-1-adiabatic and include the
effects of second order in the mass-ratio fluxes, conservative
self-force, and the spin of the smaller companion [12-14].
Post-1-adiabatic corrections are fundamental to model
waveforms suited for data analysis for LISA [7,15], and
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the spin of the secondary plays a crucial role [16—18]. The
effects of the latter are fully captured by the motion of a
spinning test particle in the space-time of the massive
compact object (computed to linear order to spin) and the
outgoing gravitational-wave flux it sources [19-27]. Here
we present an analytical solution of this motion near
spherically symmetric compact objects in terms of quad-
ratures. In particular, our analysis implies that the spinning
particle motion is integrable at linear order in spin in any
static, spherically symmetric space-time. We then specialize
to Schwarzschild space-time and reexpress the solution in
terms of Jacobi elliptic integrals. Even though a number of
works have treated this and similar topics previously (see,
e.g., Refs. [27-32]), this is the first time an analytic, closed-
form solution of generic bound motion of a spinning test
particle in Schwarzschild space-time is presented.

We use the G =c =1 geometrized units and the (— + ++)
signature of the metric. Greek indices label coordinate
components. The Riemann tensoris defined by a,,.; — @, =
R’:K ,a,,, where “;” denotes the covariant derivative and a,, is an
arbitrary form.

Spinning particle—The motion of a spinning particle is
given by the equations of motion [33-35]

DPE 1,
5= o RS (1)
DS#

= it - P, @)

where P* and % are the 4-momentum and tangent vector to
the worldline of the spinning test particle, while S#* = —S*
is the spin tensor. We are only interested in the dynamics to
linear order in spin S* and, unless specified, all formulas
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are to be assumed at most O(S) accurate. This is justified
by considering a comparably light compact object in the
field of a heavy black hole, since the truncated terms can be
shown to scale as higher order in the mass ratio, as
discussed in Supplemental Material [36]. We fix the
relation of the centroid x“(z) and the momentum P*
by the Tulczyjew-Dixon supplemental spin condition
S*P, =0, to obtain P¥ = mi* + O(S*) where m is the
particle mass [35,47,48]. The spin tensor can then be
expressed as SH = me"“**x.s,/2, where s* is the specific
spin vector and &*** is the Levi-Civita pseudotensor. The
equations then reduce to

D2 x# 1 ek
Pkt ’:y(;egx”x 54, (3)
Ds*

Motion in static, spherically symmetric metric.—A gen-
eral static, spherically symmetric space-time metric can be
locally expressed in the form

ds? = —f(r)df*> + h(r)dr? + r*(d6* + sin#*d¢?). (5)

The Schwarzschild metric is contained within this class by
setting f(r), h(r) to f(r)=1/h(r)=1—2M/r. The
Killing vectors of this metric are generators of time trans-
lations and rotations around the x, y, and z axes,

fo = (6)
£y = —singbaae—cosgbcotﬁaib, 7)
Ey) = cos ¢a% —sing cotea(zb , (8)
0 =35 (9)

Dixon [49] showed that for any Killing vector the
spinning particle motion has a constant of the form
Ci) = Pr§, —£,,57/2. In this case, the Killing vectors
correspond to a conserved specific spin-orbital energy and
a formal angular momentum vector (we normalize each
C(g by m),

r2sin 0f's?0 — s%¢

E=—fi+ Wi :

(10)

T = —r?(sin 8 + cos ¢ cos Osin O¢h)

+ \/%[sinecos Ph(s'i — s"t)
+ rsin ¢ sin O(s?t — s'¢h)
+ rcos ¢ cos 0(s'0 — s°1)], (11)

T, = r2(cos ¢0 — sin ¢ cos O sin )

+ \/%[siné sin ph(s'i — s1)
+ rcos ¢ sind(s'gp — s%1)
+ rsingcos 0(s'0 — s91)], (12)

J. = r’sin’0¢

+ \/%[cos Oh(s'i-— s"t)

+ rsin0(s% — 5'0)]. (13)

The linearization in spin means that these integrals of
motion are conserved up to O(s?). Another integral of
motion is obtained by noticing that the following vector is
parallel transported along geodesics in general spherically
symmetric static space-times,

ro 0 .0
- % singpZ 14
snap 05 (14)

and for spinning particles DI#/dz = O(s). As a result, the
aligned component of the spin vector is an approximate
constant of motion,

Hs ds
u I 2

, — =0+ . 15
VI dz O(s”) (15)

51 =

Angular momentum aligned coordinates.—For general
initial conditions, the formal angular-momentum vector

-

J = (T, T, TJ.) keeps pointing into a constant direction.
Additionally, the orbital plane is always almost orthogonal
to this vector up to O(s) corrections. Hence, without loss of
generality, we can rotate into a new coordinate system
0, ¢ — 9, ¢ such that its axis of ¢ rotation (d = 0, x) points

in the direction of j . When defined with respect to this new

system, we obtain 7, =7}, =0, T, =1/ T3+ T3+ T:=J.

and the position of the particle will fulfil 9(z) =z /2+59(),
where
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VIh(s"t = s'i)

69 =
rzg'o

+O(s2). (16)

In other words, the 9 motion of the particle is automatically
expressed in terms of the other variables. This transforma-
tion was already implicitly used in the numerical studies of
Refs. [29,50], even though the authors did not realize it also
allows one to analytically solve for the J degree of freedom
at O(s). More details of the computation can be found in
Supplemental Material [36].

The equations of motion for the other orbital variables
r(z), t(z), and ¢(z) can now be expressed in first-order
form up to O(s?),

o, 1 E TN s EITRf —rf)
7"2—%(—14'7—7) —FH(JC}IW’ (17)
_E, aIf 18
fo2frJfn’ (18)
_J . s5€
2 (19)

Solving parallel transport.—As for the spin degree of
freedom, we need to solve the parallel transport equation at
leading (geodesic) order. To do so, we construct a parallel-
transported tetrad e ,A=0,...,3 inspired by Marck [51].
We start with the zeroth and thlrd leg (component order
tr,e,9),

= (E/f.7.T/1.0), (20)

1
ey = (o, 0, 0,—r>, (21)

where i~ is given by Eq. (17). Note that the full expression
for i including O(s) corrections avoids singularities in the
definition of the tetrad at radial turning points. Now the first
and second legs are given as e’<’1) = Cos z//é’(’l) + sin y/é’(‘2>

and e’(‘z) = —siny&), + cosye,), where
irv h E
&, = ( iry/h , ! 0, 0), (22)
VIT+7) VT + 1)

g _(_ET __ JrNT+rP
6(2)_ f\/m’r’ 2 ’ s

and the precession angle y/(z) is obtained by integrating

(23)

ET
=—. 24
J?+r? (24)
The components of the spin with respect to the parallel-

transported tetrad e‘(A) are constant at leading order.

Additionally, since the spin magnitude s=,/s"s, is

conserved and s e( 5 =8 +0(s 2), the solution for the
evolution of the spin vector can be expressed as

st —s2
st = 7T Hrz) <€J\j;)_csy/ + irsin 1;/), (25a)
oo 2z ll(jrcosz// Srsi;u;/ : ) (25b)
r fh(T* +7r7)
\/(s - SH)<‘72 +7r?) cosy
s = o , (25¢)
O (25d)

- .

One can now also reexpress 69 from Eq. (16) as

\/(52 - sﬁ)(jz + %) siny

08 = 77

(26)

Solution by quadrature.—The motion of the spinning
test particle in any static, spherically symmetric metric is
solved by quadrature as follows. First, one integrates

2(r) = 2(ro) = /¢_ (27)
1 &2 2 siET2f —rf!
R(r) = h( 1+7—%>+W (28)

and inverts this relation to obtain r(z). This is then
substituted into the r-parametrized solutions

£, 9Jf
t(r) —t(ro) / R0 J_‘+2fr’\/f_h]’ (29)
o(r) = olro) == [ J% Tt 0)
v v == [P e

The aligned coordinate position 9 = z/2 + 9 and the spin
components s* are then obtained by substituting the
solutions for r(z) and y(z) into Egs. (25) and (26).
Schwarzschild space-time.—Let us demonstrate how to
use this solution near a Schwarzschild black hole by setting
f=1/h=1-2M/r. We focus on bound motion between
radial turning points r; > r, which are real roots of R(r).
Following Darwin’s treatment of geodesics [52], we para-
metrize the motion by eccentricity e and semilatus rectum
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p such that r; = p/(1 —e), r, = p/(1 + e). The relation
between energy, angular momentum, and the orbital
elements e, p is obtained by inserting the geodesic relations
from Darwin into the equation R(r) = 0 and computing
the spin corrections

82:(p—2M)2—4M262

plp—M(3+e?)]
(e?=1)*M\/Mp[p*—4Mp—4M*(*~1)]
Plp-M(3+e*)

+SH

. (32)

M p?
p—M(3+¢€?)
2p—3M(3+e?

Jr=

)]/ Mp[p>—4Mp—4M>(2—1)]
[p—M(3+e*)?

(33)

Interestingly, these shifts exactly agree with those for
a particle with spin fully aligned with orbital angular
momentum when s = s (cf. Refs. [53,54]). The bound
motion exists for e € [0, 1) and p € (p.(e), ), where the
last stable orbits p.(e) are determined by the vanishing of
the Jacobian of the transform in Eqgs. (32) and (33), which
yields (cf. the geodesic case in Ref. [55])

2(1+e)

3+e
This generalizes the results for innermost stable circular
orbits of particles with aligned spin from Refs. [29,30,56,57]

to fully generic motion. The function R(r) can now be
reexpressed as

Pe = (6 + 2€)M + ZSH (34)

1-&
R = A (ry=r)(r=r)(r=r3)(r=ry), (35)
r1>r2>r3>r4, r1‘2:1:Fe, }"4:0, (36)
2Mp ZSH\/Mp[p2—4Mp+4M2(1—e2)] (37)
rya= .
> p-am (p—4M)?

Expression as Jacobi elliptic integrals.—In Schwarzschild
space-time, the most elegant parametrization of the
motion is through Carter-Mino time [58,59] 4, dz/dA = r?
so that
|

()=

ratr3)=ri(r

=) = [ dr

R(7)
~Va _25)’2;?)_ o )
il w
K = % (40)

R(r)=(1=8)(r =r)(r=r)(r—r)r. (41)

where F(y, k) is the elliptic integral of the first kind. All
elliptic integrals F, K, E, I and their inverses am, sn, cn
will be defined in the angle-modulus convention of Byrd
and Friedman [60] (see also Supplemental Material [36]).
The A(r) function can be inverted by the same arguments as
given by Van de Meent [61] for corresponding formulas for
Kerr geodesics to yield

r3(r1—r2)sn2<

k

fay

N3

) = TquC) —ra(ry —r3) @)
(=) (MW qr k) = (r = ry)

q " =7T1"2+ qp, (43)

TrEﬂ'\/(l —E)(ry —r3)r, (44)

2K (k) ’

where K (k) is the complete elliptic integral of the first kind
and ¢g{, is an integration constant determined by initial
conditions. Again, following closely the notation and appro-
ach of Ref. [61], we express the other orbital variables as

i) = ¢ + T, <am (q—r K(K), k>) - %m (45)

T

o) =+, (am(Lx0.6) ) - 252, (ae

T

v = + %, (an (L k0.1 ) B )

¢ =T2+qy, q"=Y"2+q). ¢"=TV2i+qf. (48)

t‘ R . . .
where g;”" are again integration constants and

& {ZM(71—73)<r2—73)+r3( r3(
\/(1—52)’”2(”1—”3)

+(ri+ryt+r3+4M)(ry—

2M(r=r3)(8M? +Ls)) —2M)(r;—r,)

—2M

k)

)n( , 1_:3 k>+r2( —r3)E(y.k)

_(rl—rz)sin2)(\/r2(r1—r3)[r2(r1—r3)—r3(rl—rz)sinzj(}

(r:
(r,—2M)(r;—2M) (”(rz—zM)(n—rg)’

’

ri4ry—=2r3+(ry—ry)cos2y
(49)
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e i .
0 = NG 52)(rlzfi)r2(72 R [r%m’ 0+ %Re (H (ZZ:—E% ’ k))
() )] 2
v T - Kik) [ZM(rl )y = 3) +r3ri(;‘(4r2 r)=nn=r) o
4 (4 a1+ AM)(ry — r3)n<2 = Z , k) +ra(ry = 1) E(K)
i s () - (-t G )
Yo — g—;é,(ﬂ) — T 158, (53)
T = S ke [T (M )
—(32—r2r3)lm<l'[(:z:§§:i::j,k))} (54)

This allows to us plot fully explicit orbital solutions, as
demonstrated in Fig. 1. It should be noted that Y%, ¥, (y)
can be evaluated at sy = 0 at leading order (with no spin
correction to r3, £, 7). On the other hand, Y""%, T, and @,
need to be explicitly expanded in s due to the spin
corrections to r3, &, and J at fixed p, e [see Egs. (32),
(33), and (37)]. This procedure is straightforward, but the
results are lengthy and thus relegated to Supplemental

=
2 00
S
S -05
6 7 8 9 10
rsin (M)
10}
5+t
s
S 0
g
~
_5
—10+
-5 0 5 10
rsing[M]

FIG. 1. A generic inclined spinning particle orbit (left) and its
description in angular momentum aligned coordinates (right)
with p =7M, e = 0.3, s =0, s=03M.

Material [36]. From the ratios of these frequencies, one can
compute coordinate-time frequencies Q"#¥ = Y"?V /X!
or the nodal and periastron precession rates, which is also
discussed in Supplemental Material [36].

Discussion and outlook.—The presented analytical sol-
ution for the motion of spinning test particles in
Schwarzschild space-time can be taken “as is” to source
gravitational-wave fluxes or to compute the gravitational
self-force on the particle [18-27]. Another useful output
will be to extend the solution to compute action variables
and scattering orbits in order to compare to effective one-
body models [62—-65] and other approaches to the relativ-
istic two-body problem [66,67]. The formulas provided in
the notebooks along with this Letter can also be straight-
forwardly implemented into existing code bases such as the
BHPTOOIKIt [68], thus providing an immediate impact in
gravitational-wave modeling. In particular, this solution is a
springboard to understand the radiation reaction on the
fully generic motion of spinning particles in Kerr space-
time [27,32,69]. Indeed, we have recently constructed
semianalytical orbits of spinning particles near Kerr black
holes by using the Hamilton-Jacobi formalism presented in
Ref. [69], and it is proving important to have independently
derived analytical formulas for validation, even if just for
the Schwarzschild case. An important application will also
be to use the quadratures in Egs. (27)—(31) to study
deviations of the particle motion in modified gravities such
as in Einstein-Gauss-Bonnet gravity [70,71], Horndeski
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and beyond-Horndeski theories [72,73], or near boson stars
[74—77] and other exotic compact objects [78].

However, we can already use our results to draw general
conclusions about the detectability of secondary spin in
large-mass-ratio inspirals onto spherically symmetric com-
pact objects. Our solution demonstrates that time-averaged
observables depend only on the aligned component of spin

5|, independent of the compact-object model, and the

contributions of the orthogonal component s ,57 ESZ—Sﬁ

to any dynamical variable will oscillate with the character-
istic frequency Q¥ generically different from the orbital
frequencies. The spin contributions to the post-1-adiabatic
phase of the waveform depend only on the spin shifts to
quantities such as average orbital frequencies and the
average energy- and angular-momentum fluxes, which
are independent of s, (see also Ref. [24]). Furthermore,
the QY oscillation due to s; <m only appears in the
O(m/M) subdominant corrections to the waveform ampli-
tude [79,80]. As a result, waveform templates that neglect
s | contributions will have a mismatch with models that
include s, of order O(m?/M?). Hence, according to the
Lindblom criterion, the waveforms that either include or
neglect s, for EMRIs will be indistinguishable from each
other in a matched filtering analysis unless the signal-to-
noise ratio of the EMRI signal reaches the order of the large
mass ratio M/m ~ 10*~10° [81,82]. This provides a key
insight that will vastly simplify the treatment of spin in
modified-gravity waveforms at large mass ratios.

Another consequence of this Letter is that the motion of
spinning particles in any static spherically symmetric
space-time is integrable to linear order in spin. In other
words, if there is any chaos to be observed by the numerical
integration of spinning particle motion [29,31], it is an
O(s?) effect that goes beyond the validity of the equations
themselves, which is in line with the quantitative numerical
scalings of resonances observed in Schwarzschild space-
time [31].

This work makes use of the Wolfram Mathematica
package KerrGeodesics [83], which is a part of the
BHPTOOIKIt [68].
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