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We present the complete set of covariant equations that govern the locally rotationally symmetric torsion
spacetimes sourced by Weyssenhoff fluid in Einstein-Cartan-Sciama-Kibble gravity. Using these equations,
we can explore in detail the peculiar relationship between conformal structure and torsion. We develop a
comprehensive scheme to categorize these torsional spacetimes into distinct classes. We explicitly analyze
the properties of each class and obtain novel analytical solutions to the gravitational field equations.
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I. INTRODUCTION

The issue of extending the classical scheme of General
Relativity (GR) is a widely discussed subject of research.
While GR can be extended in many different ways, one of
the most studied extensions is achieved by relaxing the
condition of torsion-free covariant derivative. The reason
for such interest in the inclusion of torsion goes beyond the
theoretical exploration of the mathematical structure of
pseudo-Riemannian spacetimes.

Historically, General Relativity was not designed to
account for quantum effects, such as spin. The inclusion
of spin and the study of its influence on the differential
structure of a manifold, thus, is a problem of fundamental
importance to understand the interaction between gravity and
the microphysical domain in which quantum phenomena
play a significant role. While there is no unique prescription
to include spin to the differential structure of the manifold,
one of the most widely studied theories that achieves this
integration is the Einstein-Cartan-Sciama-Kibble (ECSK)
theory of gravity (sometimes referred to as Einstein-Cartan
theory) [1].

ECSK theory is a consistent extension of GR which
postulates that the intrinsic spin of matter fields is coupled
to a nonvanishing torsion tensor field [1-3]. The reason
behind such a choice is that spin is related to the rotational
part of the Poincaré group, whereas mass is connected to its
translational part. Thus, the gravitation of spin must be
represented separately from the one of mass. This can
be achieved by introducing the hypermomentum tensor
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(or spin angular momentum tensor) on top of the standard
energy-momentum tensor to describe the effects of spin on
spacetime. In the field equations, the hypermomentum tensor
couples to a geometrical quantity, which is a combination of
the torsion tensor, associated with the rotational degrees of
freedom in spacetime [1].

Interestingly, in ECSK theory, the coupling of spin to
torsion leads to certain modifications in the field equations
that are quadratic in spin terms and do not vanish on
spacetime averaging (despite the dipole character of spin)
[1,4]. This fact highlights that even in the macroscopic
domain, the ECSK theory predicts nonvanishing effects of
spin on the spacetime geometry. In particular, these effects
can be measurable at extremely high densities of matter [4].

At macroscopic scale, one can describe the matter fluid
with spin via the Weyssenhoff fluid [4-7]. The Weyssenhoff
fluid is a semi-classical model of a spin matter fluid, which at
macroscopic scales, following an integration over small
volume elements, reduces to the Frenkel-Mathisson equa-
tions [8-10].

One type of macroscopic system where both spin and
gravitation play a significant role is compact stars, in
particular, neutron stars. A neutron star is a collapsed core
of a massive star that is formed following a supernova
explosion. Its core, composed of fermionic matter at extreme
density in a strong gravity environment, is made stable by the
neutron degeneracy pressure [11]. Thus, a neutron star serves
as an ideal laboratory in which theoretical models, such as the
ECSK theory of gravity, can be tested, particularly against the
recently available gravitational wave data [12].

While the above discussion focuses on the inclusion of
spin matter fields, torsion also provides an alternative
explanation for several open problems in gravitational
physics. For example, in cosmology, the introduction of
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torsion can offer theoretical frameworks for the late-time
acceleration of the Universe, introduce an inflationary
period at very early times, and avoid the big bang
singularity [13,14]. Torsion might even prevent complete
gravitational collapse to a singularity [4,15,16]. Various
other fields of research in which the inclusion of torsion can
be useful are discussed in [13,17] and references therein.

In summary, the study of spacetimes endowed with torsion
could provide a better understanding of the interaction
between matter and gravitational field (as in, geometry of
the spacetime) in both the macroscopic and microscopic
domains. In particular, the inclusion of torsion in the study of
cosmological models, the interior solutions of stellar objects,
and perturbations of such spacetimes can be quite fruitful.
However, the task of resolving the gravitational field equa-
tions can be very complex in general, forcing one to exploit
the symmetries of the spacetimes as much as possible.
Luckily, many of the most studied cosmological and astro-
physical spacetimes fall in the so-called locally rotationally
symmetric (LRS) [18-20] class of spacetimes.

LRS spacetimes are defined as pseudo-Riemannian
manifolds that possess, at each point, a continuous isotropy
group related to rotations around a local axis of symmetry
(hence the name “locally rotationally symmetric™) [18,19].
In General Relativity, LRS spacetimes sourced by a perfect
fluid can be separated into three independent classes
[19,20]. Such a classification provides two benefits.
Firstly, it simplifies the geometry of the spacetime and
resolution of the governing equations because many physi-
cal quantities, and sometimes even certain derivatives,
vanish for each class. Secondly, it enables the development
of a taxonomy of exact solutions to the gravitational field
equations. In GR, the classification helped further the
understanding of many physically relevant cosmological
and astrophysical spacetimes, such as the Friedmann-
Lemaitre-Robertson-Walker models, various Bianchi mod-
els, and the interior solutions of stellar objects [20].

Among the various approaches for analyzing LRS
spacetimes, covariant formalism provides a highly effective
methodology [21-24]. In the covariant formalism, one
decomposes the tensors on the manifold by projecting
them along timelike or spacelike congruences and on the
(locally) orthogonal hypersurface. This allows one to define
physically meaningful variables that describe all the proper-
ties of a manifold while avoiding confinement to a specific
coordinate system. In particular, the covariant formalism
has led to the development of powerful methods to study
the interior of stellar objects [25,26].

In this paper, utilizing the covariant formalism, we study
the LRS spacetimes endowed with nonvanishing torsion.'

'Since, typically, LRS spacetimes are considered as a class of
spacetimes within General Relativity, we wish to clarify further that
we aim to study spacetimes endowed with nonvanishing torsion
and which possess a continuous isotropy at each point which is
given by a spacelike vector describing a local axis of symmetry.

We shall refer to these spacetimes as torsional locally
rotationally symmetric (TLRS) spacetimes, in analogy with
the class of LRS spacetimes in General Relativity [19,20].
This will enable us to develop a framework that can be
utilized to study many physically interesting torsional
spacetimes, including cosmological and astrophysical ones.
We focus mainly on the Einstein-Cartan theory of gravity
[1-3] sourced by Weyssenhoff fluid [4-7]. Thus, as
discussed, the torsion would be coupled to the spin of
a semiclassical spin matter (fermionic) fluid. Following
1 4+ 1+ 2 decomposition, we derive the complete set of
governing equations for torsional locally rotationally sym-
metric spacetimes. Further, despite the spin matter fluid
generating torsion being nonclassical and nonperfect, we
were able to develop a complete classification scheme and
explore some interesting examples that have no corrective
in GR.

This paper is organized as follows. In Sec. II, we
define the fundamental quantities that describe the
properties of the manifold, such as the torsion and
Riemann tensors and their properties. We provide a brief
review of Einstein-Cartan gravity and its field equations,
as well as the spin matter source of torsion, the
Weyssenhoff fluid. In Sec. III, we provide a summary
of the 1 4+ 1 + 2 decomposition and define the covariant
variables which describe the torsional locally rotationally
symmetric spacetimes. In Sec. IV, we provide a peda-
gogical derivation of the covariant equations governing
the spacetime, along with the consistency conditions that
must be satisfied. We also discuss the condition so that
the manifold admits a foliation into a submanifold and a
hypersurface orthogonal vector field. We then combine
the results to simplify the governing equations and
provide a complete set of covariant equations which
govern the spacetime. In Sec. V, we review the classi-
fication of LRS spacetimes in General Relativity and
highlight some significant features. In Sec. VI, we
describe the classification of the TLRS spacetimes with
Weyssenhoff fluid matter source and show that the key
features of classification in General Relativity are pre-
served. In Sec. VII, we present some examples of TLRS
spacetimes. Finally, in Sec. VIII, we present the con-
clusions and discuss the results of the paper.

In this article, we use metric signature (— + +-+) and
natural units 827G = ¢ = 1. We utilize abstract indices
to denote the rank of tensor fields, and help describe
their symmetries, and perform operations [27]. As such,
these indices do not denote the components in a
specific basis.

II. TORSION SPACETIMES
AND EINSTEIN-CARTAN THEORY

We first define the important quantities needed to
describe a four-dimensional pseudo-Riemannian manifold
M equipped with a metric tensor g,, and a covariant
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derivative (V), which is metric compatible (Vg = 0)
[1,27,28]. The torsion tensor TX,, is described as

vavhw - vhvul// = _Tkabvkl//’ (1)

where y is a generic function on the manifold. The
Riemann tensor R ., is described as

vavac - vbva)(c + TkabkaC = _Rabchd’ (2)

where X“ is a generic vector field on the manifold. The
Ricci tensor R,;, and the Ricci scalar R are given as
Rab = gm”Rmanb R= gabRalN (3)

and finally the Weyl tensor C,,., is defined through the
decomposition of the Riemann tensor,

1
Rabcd = Cabcd += (Racgbd + thgac - Radghc - Rhcgad)

2
R
- 6 (gacgbd - gadgbc)- (4)

The symmetries of the Riemann tensor are

Rupea = —Rpaca = —Rapacs (5)

and the Weyl tensor has the same symmetries as the
Riemann tensor. Additionally, by definition, the Weyl
tensor is completely traceless.

Finally, in this paper, the Bianchi identities

R[abnc] = v[aTnbc] - Tk[aanc]b (6)

v[aRbc]kl = Tn[abRc]nkp (7)

will be referred to as type-I and type-II respectively. If the
Riemann tensor is replaced in (7) using (4), we obtain, after
contracting the indices a and /, the following equation for
the derivative of the Weyl tensor:

1 1
vdcabcd = _v[aRb]c - ggc[avb]R - zTnmkR[anmkgb]c

- Tnm[a (gb]can + 2Rb]nmc) - TnabRnC‘ (8)

Further, a contraction of (8), while utilizing Vg = 0 and the
properties of the Weyl tensor to eliminate the lhs, gives the
following:

1 1
VbRab - EvaR = _anTnma - ERankanmk' (9)

Notice that in each case, while deriving (8) and (9), only
one unique nonvanishing contraction is possible.

A. Einstein-Cartan gravity and Weyssenhoff fluid

Now, we endow the manifold with field equations that
relate the Ricci and torsion tensors to the matter content
of spacetime. The details of Einstein-Cartan gravity can
also be found in Refs. [1,17,29]. However, in this work,
we have used different conventions compared to these
references. In Einstein-Cartan theory, the field equations
are given as

1
Ru, — EgabR = Sup> (10)

Tcab + 25faTdb]d - 2Acab, (11)
where S, is the canonical energy-momentum tensor and
A€,, is the hypermomentum tensor, or spin angular
momentum tensor. Notice that A€,, can be defined as
the variation of the matter Lagrangian L,, with respect
to a combination of the torsion tensor 7,.%° called
contortion K.,

L,
5Kcab -

AC —

ab — _Acbav (12)

where contortion tensor is defined as

Keab = Teap + Tpae = Tape = —Kecpa- (13)
However, the canonical energy-momentum tensor S,
is not directly obtained by the variation of the matter
Lagrangian. Indeed, the variation of the matter
Lagrangian with respect to the metric gives the metric
energy-momentum tensor S,

oL

=2m 14
5gab ( )

Sab

which is symmetric by definition (while S,, has no
symmetries), and it is related to the canonical energy-
momentum tensor by

Sub — Sab + (vc + Tmcm)(Aabc _ Acab _ Abca>‘ (15)

Contracting the Bianchi identity type-I (6) and using (10)
and (11), we obtain

S[ab] = (vc + Tmcm)Acab- (16)

Equation (16) allows us to write (15) in explicitly
symmetrical form as

s = §@) 4 2V, 4 T, A6 (17)

Also, Eq. (9) can now be rewritten, using (10), as the
conservation equation,
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1
_ TnmkR(mmk' (1 8)

1
\V4 Suh —_Tn a kmS — Tnmag
b o g km nm " o

We will consider the matter source to be the uncharged
Weyssenhoff fluid. The Weyssenhoff fluid [5,6,29] is a
fluid which carries an antisymmetric spin density tensor
L, orthogonal to its fluid 4-velocity u“,

Lab = _Lba’ MuLab =0. (19)
The spin density tensor, L, is postulated to be related to

the hypermomentum tensor A€,;, and the canonical energy-
momentum tensor S, as

Acab = MCLab’ (20)
Sab =—u,P, + p(.gab + uaub)’ (21)

where p is the isotropic pressure in the rest frame of the
fluid, and P, is the 4-vector density of energy-momentum.
Contracting (11) with 6% and using (20), one finds that for
Weyssenhoff fluid, the compatible torsion tensor must
satisfy

T = 0. (22)
This simplifies (11) and gives the solution
Tcab = 2Acab = 2MCLab. (23)

Finally, we need to resolve the relation between the 4-
vector density P, and the spin density tensor L,,. Taking
the projection of (16) along u“, using (21) to replace S,
and defining 4 = uu’S,;, = u®P, as the energy density in
the rest frame of the fluid, we obtain

Pa = —HU, — 2Amnavmun7 (24)

which leads us to the canonical energy-momentum tensor
of the Weyssenhoff fluid,

Sub = puglt) + p(gub + uuuh) - 2MuLbanvmun' (25)

III. THE 1+1+2 DESCRIPTION OF LRS
SPACETIMES WITH TORSION

We provide here a concise summary of the 141+ 2
covariant approach. The complete description can be found
in Refs. [21-24]. In the 1 4 1 + 2 covariant approach, the
tensors and equations on the four-dimensional manifold are
decomposed by considering two congruences, a generic
normalized timelike vector field #* and a normalized
spacelike vector field e“,

e'e, =1, (26)

which are orthogonal2
u’e, =0, (27)
and the projection operators #,, and N, are defined as

hab = Gap T+ UgUp, uahab =0, (28)

Nab = hab — €,€p, MaNab = O, e“Nab =0. (29)
The projection operator h,, can describe the geometry
of the 3-hypersurface orthogonal to u“ locally. Similarly,
the projection operator N, can describe the geometry of a
2-surface orthogonal to u“ and e? locally. The benefit of
such a formalism is that one is not confined to a specific
coordinate system. Yet, the 1 + 1 42 covariant variables
described via projections of tensors have a rigorous
mathematical definition and a distinct physical meaning.
The Levi-Civita tensor for four-dimensional spacetime

Nabed = Nabed) is

No123 = V | )
o123 _ sign(g)

Tl

The projections of the Levi-Civita tensor are defined as

g = det(gyp).

sign(g) = g/|gl- (30)

Nabe = MNabc] = ﬂdahcuda Nab = Mjab) = Nabee, (31)

which can be related to each other as

Nabe = €allpe — €plac + €cMap- (32)

In general, the contraction of Levi-Civita tensor for a
d-dimensional manifold described by metric tensor P, is
given as
Nay.ayere 00 omercn = sign(P)m!n!PLbl‘...PZ,”n’], (33)
where we have m+n=4d, P =det(P,(x)), and
sign(P) = P/|P|. Specifically, in the case of the two-
dimensional Levi-Civita tensor, we have

1y = NpNg = NGN;

q'Vp» W“bﬂpb = N; (34)

For convenience, we define some shorthand notations. The
covariant derivative along the timelike vector field u® is
written as the dot derivative,

WV, T, = T*,, (35)

“The concept of orthogonality here is different from the notion
of hypersurface orthogonality of a congruence to an integral
submanifold. We discuss hypersurface orthogonality in detail in
Sec. IV D.
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and full spatially projected covariant derivative is written

as (V,)
hEnbnN ,T9, =V, T?,, (36)

which can then be projected to define the covariant derivative
along the vector field e“ given as the hat derivative

eV, T, =T?, (37)

where the tensor 7, is a generic tensor on the manifold. The
full projection of the covariant derivative onto the

2-surface described by N, is written as V)
NINENIV, T, =V, T, (38)

where the tensor 7%, is a generic tensor on the manifold.

In this paper, we consider spacetimes which are LRS
[19,20]. This implies that the spacetime possesses a local axis
of symmetry at each point on the spacelike hypersurface
described by h,,. This local axis of symmetry can be
described as a spacelike vector field. We choose the con-
gruence e“ to be parallel to this preferred direction. Thus, all
vector and tensor fields orthogonal to u“ and e, that is, on the
surface N, vanish, making the 1 4+ 1 42 covariant for-
malism particularly well suited to study LRS spacetimes. As
mentioned in the introduction, and in line with the literature,
we assign a new name to torsional spacetimes that possess
local rotational symmetry: Torsional locally rotationally
symmetric or TLRS spacetimes.

The key 1 + 1 + 2 variables that describe TLRS space-
times can be obtained by projecting and decomposing the
covariant derivatives of u“ and ¢“ and the Weyl tensor,

® ® X
Vaub = —Auaeb + <§ + 2) €,€p -+ <§ - 5>Nab
=+ Ql/labv (39)

(¢S]
Ve, = —Au,uy, + <§ + Z) e up + %Nab + &ap.  (40)

Cabea = _2uaEb[cud] + 2ubEa[Cud] - 277abeHe[cud]
- 27]cd€He[aub] - nabprlcquqp’ (41)

. N &
Eyp = uulCpepg = 5<€a€b - Tuh) + ENap, (42)

1
Hab = _”upqc

1
3 u" = H,eueb + EHIN“}” (43)

pgbr

_ - 1z
H,, = Enurschqrsuq = Hreaeh + EHtNub' (44)

We call {A,0,%,Q,¢,E} kinematic variables and
{S,E,H,,H,,ﬂr,ﬂt} Weyl variables. The 1-+1+2

formalism for non-LRS spacetimes with torsion is fully
described in Ref. [29].

The canonical energy-momentum tensor (under local
rotational symmetry) is decomposed as

N,
Sab = Hu,uy +p(eaeb +Nab) +H<eaeb - 2b>
+2Qeup) + 20e€,up) + Mg, (45)

For a Weyssenhoff fluid, we can simplify the decom-
position of S,,, A%,., and T%,. collectively. For this, we
choose the timelike congruence to be the fluid 4-velocity
described in Sec. I A. The tradeoff is that making this
choice fixes the frame, an aspect which will be important in
the following discussion. Now, the spin density tensor L,
is decomposed as

Loy, = tap. (46)

Utilizing (46) and the postulated canonical energy-momen-
tum tensor S,;, of the Weyssenhoff fluid (25), one obtains

Sab = piglt) + p(eaeh + Nab) (47)
From (23), the torsion tensor is
Tabc = ZAahc = 2Tl/la7’]bc. (48)

Thus, 7 simultaneously determines the hypermomentum
tensor (a property of matter) and the torsion tensor (a property
of the manifold). Collectively, we call {u, p,z} martter
variables. The kinematic, Weyl, and matter variables
together form the full collection of covariant variables,
which determine the properties of the TLRS spacetime.

Using (17), we can characterize covariantly the relation
between the canonical energy-momentum tensor S, and
the metric energy-momentum tensor s,;, as

5% = S — 4Qruu’ — 2QeN + 4&zul@et).  (49)
Following (45), s, is decomposed as

Sap = fUgUp + p(eaeb + Nab) + un(aeb)

+1I <eaeb - Nz“b) , (50)

where {ji, p,I1,3} are the covariant variables defined
via projections of the metric energy-momentum tensor.
Using Eqgs. (47), (49), and (50), we obtain the relations,

4
fi=pu—4Qr, ﬁ:p—ggfr,
_ 4 )
HZEQT, q = 2z, (51)
so that the metric energy-momentum tensor for

Weyssenhoff fluid with torsion is, in general, not perfect.
This aspect will be important in the following discussion.
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The absence of matter, i.e., L,, = 0, leads to
Sap = 0= Amab’ (52)

since these quantities are directly connected to the matter
Lagrangian L,,. In this case, Eq. (15) shows that the
canonical energy-momentum tensor vanishes,

S, = 0. (53)

However, the converse is not true; a vanishing canonical
energy-momentum tensor does not necessarily imply (52).
In fact, assuming

Sypy =0=pu=p=0, (54)
we have that
4
i = —4Qz, p= —EQT,
_ 4 .
II= 397, q = 2¢t. (55)

We call condition (54) canonical vacuum. It is evident that
this case does not represent the absence of matter fluid. In a
canonical vacuum, the Ricci tensor vanishes, and the only
contribution to the Riemann curvature tensor comes from
the Weyl tensor. In particular, the investigation of singu-
larity theorems for such a system could lead to interesting
results given the important role of energy conditions in the
singularity theorems [30].

IV. COVARIANT 1+1+2 EQUATIONS
FOR TLRS SPACETIMES

The governing equations for the covariant variables are
derived via the projections of Egs. (6), (8), and (18), and the
following Ricci identities of congruences u“ and e,

Rabcdud = Vavbuc - vbvauc + Tkabvkucv (56)
Rabcded = vavbec - vbvaec =+ TkabvkeC' (57)

In the following, Secs. IVA-IV C, we provide a pedagogi-
cal derivation of the equations governing the TLRS space-
times. Then, in Sec. IV D, we show how these equations
can be utilized to derive some additional constraints. We
also present the conditions under which a manifold admits a
foliation. The insights from the results of Sec. IV D help us
to develop a better understanding of the governing equa-
tions derived in Secs. IVA-IV C. Subsequently, after
performing certain simplifications, the complete set of
equations is presented in Sec. IV E.

A. Ricci identities

Due to the symmetries of the Riemann tensor, there are
only six nonvanishing projections of Ricci identities.
Further, two of the projections of Ricci identity of e

(57) are not independent from projections of Ricci identity
of u® (56). The projections of (56) along

{uuhbc" uath’ Manbc7 euNbc7 rluhc’ nahec}

are, respectively,

. A 3 3 1

L2 u 1 2 _\?
Y-Z0=-Ap-E+% —(Z-0) -202,
3 A 5+3+p+2< 3 >

O— <z—§@>g+@4—€,

2‘—§®: — T - 2£Q,
Q= (A—¢)Q—Ar+%+%,
H, =362 — (2A — §)Q + 2Ax. (58)

The projections of (57) along
{uaNbc, eaNbc’ ua”hc’ eanbc}

are, respectively,

. S 0

¢_—<5—§>(2A—¢)+2§Q,

.1 2 1 2
gb:—54)2+2§2+§®2+§ze—zz—g—§ﬂ,

- ¢ X e\ *H,

§—<A‘z) +§<2_3>_2’

~ ® ~

§:Q<Z+§>—§¢—5. (59)

B. Bianchi identity type-I

There are eight independent projections of Bianchi
identity type-I (6). However, since (48) holds for the
Weyssenhoff fluid, we are left with only five independent
equations. The projections of (6) along

{nuhéz, nabunec" nabenec, nahenuc’ uaehncn}

give the following five equations, respectively:

T =—10,
. H,  H
T=—1¢p+ 2 + R
~ ]
8—T<2+3>9
H, = 2A7 — H,,
2H, = —(H, + H,). (60)
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The projections of (6) along
{uaeb5z , l,labun uc’ nabncn}

do not give any independent equation due to the form of
torsion. Equation (60) are crucial in order to understand
how the conformal structure of the manifold relates to the
kinematic variables and torsion.

As a side note, we remark that in General Relativity
(without torsion), Eq. (60) do not appear explicitly as they
just imply that there is a unique magnetic part of the Weyl
tensor (H,, = H ;) and that H,, and E, are traceless and
symmetric.

C. Bianchi identity type-1I

There are clearly two independent projections of (18),
one along u“ and one along e which, respectively, give

p=—Alp+p)—2H,. (61)
Finally, the six independent projections of (8) are

{nabec’ l,labuc’ uaebec’ uaebuc’ M“ﬂbc, ea’,,bc}

and projections along them give, respectively,’

. X 0 _ ~

Hr - <§—§> (2Hr —H[) _g¢_3§gs
P 2\ s
HrE(Ht—ZH,)—<Z—§®)E

1
- (39—2T)E+§u1—u9—p§2+pr,

. 4 (3 T 0
et (3x-0)e- (5= n
+2QE + EQQH, - H,),

&—

W=

3 _ 8 _
==&+ (2H, - H)Q - 268 - 2074,
_o

2
—35Q-E(32+20) —Q(u+ p).

26 —H, = A(H, - H,) - £ 0H, —H,)

2 . ~ R
26+ H, =366 - (4A+ ))E —OH, + TIF,

X 0 » -

3The third and the fourth equations of (62), as presented here,
have been simplified using Eq. (61).

D. Foliation of manifold and consistency conditions

To better understand the covariant equations for TLRS
spacetimes, we first describe the condition for the foliation
of the manifold. Here, we only want to study if the manifold
can be foliated into a one-form n, and a three-dimensional
integral submanifold.

Let T M be the tangent space and 7* M be the cotangent
space on the manifold M. Let n, be a one-form (which spans
a one-dimensional cotangent subspace) and V C T M be a
three-dimensional tangent subspace complementary to it,
that is

n,X*=0, VXeV, (63)
then the condition such that tangent subspace V admits an

integral submanifold is given by the Frobenius’ Theorem
(dual formulation) [27,31,32] as follows:

2n[avbnc] + n[akac]nk =0. (64)

This condition originates by demanding that the tangent
subspace V must be involutive, or equivalently, by demand-
ing that the cotangent subspace spanned by the one-form n,,
must be differential [27,31,32]. A tangent subspace V C
T M is considered to be involutive if the Lie transport of any
vector field Y € V with respect to vector field X € V leaves
the resulting vector field on the tangent subspace V. A
cotangent subspace is said to be differential if it is spanned by
a complete set of (generating) one-forms that are parallel to
the derivative of a coordinate function. For the one-dimen-
sional cotangent subspace spanned by n, as given above,
being differential implies, in abstract notation, that

n = ydp, (65)

where n is the one-form with components 7, y is a generic
function on the manifold, and the function ¢ describes a
coordinate function. These conditions are further described
in the Appendix.

In this paper, we refer to condition (64) as the hyper-
surface orthogonality condition. Further, if a one-form n,
satisfies the hypersurface orthogonality condition (64), then
the one-form n, (and its dual n?) is said to be hypersurface
orthogonal (to the family of integral submanifolds formed
by the complementary tangent subspace V), and the
manifold is said to admit a foliation orthogonal to n,.

Using the hypersurface orthogonality condition and the
torsion (48), we see that u, is hypersurface orthogonal if

Q-7=0, (66)
and e, is hypersurface orthogonal if

£=0. (67)
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Taking the *? projection of the definition of torsion (1), we
have

A&y — 4Qy = T, Ve, (68)
and further using (48), we obtain

(Q-1)y =& (69)

Equation (69) is useful as it can be imposed on variables
which have both an evolution equation (dot derivative) and
a propagation equation (hat derivative). This process leads
to some additional constraints, which are typically referred
to as consistency conditions. Additionally, (69) highlights
some other properties resulting from the foliation of the
manifold. For example, for a spacetime manifold which
only admits a foliation orthogonal to a timelike vector field
u“, while the one-dimensional cotangent subspace spanned
by the spacelike vector field e, is not differential, then this
implies that the hat derivative of all scalars must vanish.

Now imposing (69) for £ and (Q—17), and using
equations from Secs. IV A and IV B, we get the consistency
conditions,

& =0=(Q-1)p. (70)

where, following [20], we defined

/)’==§¢+(Q—r)<2—§®>. (71)

The solution of (70) either requires # = 0 or otherwise, we
need £ = 0 = Q — 7 which then still implies = 0. Thus,
we can replace (70) with simply the solution,

B=0. (72)

The remaining consistency conditions can be derived by
utilizing the dot and hat derivative equations in Secs. [V A—
IV C for the variables,

{r.(€ = u/3). H,. (£ -20/3). 4}.

These consistency conditions are (98), (99), (100), (101),
and (102), respectively, and are reported in the next
Sec. IVE.

E. The complete covariant equations for TLRS
Spacetimes with Weyssenhoff fluid

The covariant variables which completely describe the
TLRS spacetimes with Weyssenhoff fluid (as the matter
source) are

{A.0.2.Q.¢. & p.t. EEH, Ho HH. (73)

We utilize (72), (60) and the last equation of (58) to simplify
the equations derived in Secs. IVA-IV D and to replace the
propagation and evolution equations of € with the ones for
(Q — 7). In this way, we collect and present the final version
of all the covariant equations for the TLRS spacetimes for
Einstein-Cartan theory with Weyssenhoff fluid.

Evolution equations:

Q-7 =¢A-9), (74)
i-e(22-3). (75)
T = —10, (76)
. 2 u ¥ 0)\2
Z—3®——A¢—5+3+p+2<2—3) -2Q2%, (77)
b= —<E—®) QA-¢)+26Q.  (78)
2 3
) /1_ 2_9 o ~ P
(79)
H, = @—%) (2H, —H,) — Ep -3, (80)
i ==0(u+p). (81)
Propagation equations:

Q-t=(Q-17)(A-9), (82)
é:(g—r)(zz—%, (83)
f:—mﬁ—k%—k%, (84)

o 24 3

. 1, 2 1 2
- 282 4+ 2@ 430 -2 - -2y, 86
¢=—5¢" T2+ 0"+ E=3H (86)

E-

W=

3 _ .
=&+ (R, ~H)Q - 2E -1, (87)

 om, -1, - (z-%@)e

Hr - —E
1
- (3Q-27)¢ +§,u1 —uQ —pQ+pr,  (88)

p=—Au+p)-2H,. (89)
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Mixed equations:

S A 1
O- A=At -t-2pia0-Ix2ter (90)

2 . ~ R

) o 4R
+ (___>(4H,+3H,+3Ht+2ﬂr)’ (01)

2 3
26—, = A(H, - H,) - % (2H, - 7,) - 360
—E(3Z+20) - Q(u + p). (92)
Constraint equations:
£:r<z+g>, (93)
H, =32 - 2A - ¢)Q + 2Az, (94)

H, =2At—H, = -3+ A-$)Q,  (95)
2H, = —H, — H,. (96)

Consistency conditions:

ﬁ_o_§¢+<2—§®>(9—r), (97)

EH, = —EH, —2E(Q — 1), (98)

0= (5-%) @+
- <Z—§@>T(g2—gf—g2), (99)
0=¢Q-17)(u+p)—260(Q - Qr—¢&),  (100)

28— (9—1){5+A¢+ <z—§@) <z+g>
+2s22—2§2—§—p}, (101)
26Qr — §{€+A¢+ (z-%@) <z+§>

+292—2§2+§u}. (102)

Equations (80), (88), and (92) are redundant since they can
be obtained by taking the derivative of relevant constraint
Egs. (93)—(96).4 The above set of equations is closed when

4Equations (99) and (100), as presented here, have been
simplified using Egs. (98) and (102).

one has enough information on the matter fluid, in general,
given by an equation of state p = p(u) and a relation
between 7 and p that we will call equation of spin density.
However, the necessary information can be provided
in different forms or might not be required for certain
systems (for example, canonical vacuum, see Sec. VII C).
The equation of state can also be provided in terms of
projections of the metric energy-momentum tensor as
f(, p,11) = 0. Similarly, the information on 7 can be
provided via a matter Lagrangian and the resulting hyper-
momentum tensor derived from its variation with respect to
the contortion tensor (see Refs. [1,6,17]). Also, notice that
the role of consistency conditions depends heavily on the
foliation the manifold admits. Indeed, most known exact
solutions possess both a timelike and a spacelike hyper-
surface orthogonal one-forms, and for such spacetimes, the
consistency conditions vanish identically.

V. CLASSIFICATION OF LRS SPACETIME
IN GENERAL RELATIVITY

In this section, we review the classification of LRS
spacetimes in General Relativity [20] and highlight some
salient features of the classification. These results will be
useful to form the basis for the classification of TLRS
spacetimes described in Sec. VI.

First of all, we notice that the 1 + 1 + 2 equations given
in the previous section reduce to the GR ones by setting
7 = 0. Setting also IT = Q = 0, so that matter is modeled as
a perfect fluid, i.e., there is no energy flux or anisotropic
pressure,5 Eq. (100) becomes [20]

EQu+ p) = 0. (103)
It is important to stress that one needs to impose the
condition u + p # 0 for the classification to make sense.
This condition is essentially a constraint on the equation of
state p = p(u), which is always a characteristic property
of the fluid, not determined by the Einstein equation.
However, in Ref. [20], one considers a stricter condition
i+ p > 0 on the matter variables, which can be under-
stood in various ways. Thermodynamically, it can be seen
as a nonvacuum case with the isentropic speed of sound
bounded by the requirement of local stability of matter and
causality [21]. Furthermore, such a condition can be seen as
a strict form of the null energy condition, which would
imply the purely attractive nature of gravitational fields
[30]. Assuming y + p # 0 in (103) leads to the crucial
relation [20]

Qf =0. (104)

*Notice here that Eq. (47) already represents the canonical
energy-momentum tensor of a perfect fluid. So, in the case of
ECSK with Weyssenhoff fluid, this step is not really required.
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which forms the basis of the classification. Under the same
conditions, we can also derive the relations [20],

QO =QF = EA=¢p=0. (105)

The classification of LRS spacetimes is based on the three
possible solutions of (104). These solutions also determine
which foliations the manifold admits. In particular, we have

LRSClassI: Q #0,£ =0

= only ¢, is hypersurface orthogonal,
LRSClassIl: Q=0,=0

= both (u,, e,) are hypersurface orthogonal,
LRSClassIll: Q =0,&#0

= only u, is hypersurface orthogonal.

We will now proceed to demonstrate another key feature of
the classification of LRS spacetimes. To achieve this result,
we begin with a local statement on the vanishing of the
variables Q and £ and then show that this statement holds
true for the entire manifold, i.e., it is global.6 To achieve this
result, we employ the covariant equations of Q and ¢ for
LRS spacetimes, which can be recast as’

Q=tA-¢). Q=0(A-9)

. ® . ®
g:§<22—§), g:gz(zz-g).

Let us start with the simple case of LRS class II spacetimes.
Suppose the local value of  and £ at some point x € M to
be given as Q|, = 0, |, = 0. Then from Eq. (106), we can
conclude that

(106)

Q=0 Q=0 §,=0 &,=0. (107

This implies that Q = 0 = £ is true in a neighborhood NV,

of x. Now, at an arbitrary point y € N, (y # x), the relations
above remain true, and therefore

al, —o,

y Qly =0,

é,=0, §,=0. (108)

so that Q and £ vanish in a neighborhood NV, of the point y.
As N, can extend beyond N, by repeating this procedure

for other points, we can eventually cover the entire
manifold M with overlapping open sets in which

®Note that since Q and & are variables defined through the
covariant derivative of congruences, local measurements cannot
provide information on their local values.

"These equations can be obtained using Egs. (74), (75), (82),
and (83) with 7 = 0, or after an equivalent manipulation of the
equations given in Ref. [20].

Q =0 =¢. In this way, Q = 0 = £ can be recognized as
a global property of the spacetime manifold.

The above result implies that if at a point in the
spacetime Q =0 = ¢, then this property will be true
throughout the manifold, and we will have an LRS class
II spacetime. In other words, if Q =0 = £ at a point in
spacetime, there cannot be any points at which € # 0 or
& # 0. This characteristic feature is codified in the concept
of separation of classes. We say that an LRS class is
separated if the characterizing quantities of this class
assume globally the same value that they present locally.
Using similar arguments, it is not difficult to prove that all
the LRS classes are separated.

Let us consider, for example, LRS class III spacetimes.
Let the local value of Q and £ at some point x € M be given
as Q|, = 0,¢|, # 0. Then from Eq. (105), we can conclude
that

Al =0= ¢l (109)
Substituting in (106), we obtain
Q, =@, =¢.=0 (110)
which ensures that Q = 0 everywhere in N, and
. C]
§|x—§|x<22—§> (111)

Since in a neighborhood A, of x, we can consider ©|, and
¥|, to be constant and finite, we can see that (111) has an
exponential solution. As a consequence, £ cannot be zero in
N .. Now, taking an arbitrary point y € N, (y # x), we can
show in the same way that Q = 0, £ # 0 in a neighborhood
N , that extends beyond N .. In this way, as before, we can
cover the entire manifold with overlapping open sets, each
of which satisfies Q =0 and & # 0, making it a global
property of the spacetime manifold. The same reasoning
also leads to A =0 = ¢ for entire manifold M through
Eq. (105). The entire spacetime, therefore, belongs to LRS
class IIL.

One can also perform similar steps in the case of
spacetimes belonging to LRS class I: starting from
Q|, #0,¢], = 0 and showing that this property is globally
true. We have then proven that in GR, all LRS classes are
separated.8

While developing the classification for TLRS space-
times, it will be necessary to ensure that TLRS classes are
separated. We will proceed in the same manner as described
above: given a local statement on the variables which define

¥Notice that, if one tries to classify the LRS spacetimes based
on the solution of any other equation in (105), then the
classification is not possible, without assuming additional global
properties on other kinematic variables.
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each class, we will prove that the same statement holds for
the entire manifold.

VI. CLASSIFICATION OF TLRS SPACETIMES

We first begin with developing a scheme for the
classification of TLRS spacetimes (with Weyssenhoff fluid)
in the comoving frame based on the results from Sec. V.
Then, in the following subsections, we shall describe the
TLRS classes and their properties.

In analogy with the case of General Relativity, one would
expect the classification to be based on the quantities (Q — 7)
and &. This anzats can be supported by two arguments.
Firstly, for TLRS spacetimes with Weyssenhoff fluid, the
quantities (Q — 7) and £ determine if the spacetime manifold
admits a foliation. Secondly, even the covariant Egs. (74),
(75), (82), and (83) for TLRS spacetimes are similar to
the ones for LRS spacetimes (106) with replacement
of Q - (Q—1).

However, we immediately find a fundamental difference
from the case of GR. Indeed, we see that an extension of the
relation (104) for torsion spacetimes is absent. This fact can
be seen by combining Egs. (74), (75), (82), (83), and (97) to
obtain,

(Q-1)é+ Q-2 =, (112)
Q-1+ (Q-D)E=(Q-1), (113)

where
y:§A+3(Q—r)<2—§)>. (114)

Since, in general y # 0, we can conclude through proof by
negation9 that for TLRS spacetimes, in general, we have
(Q-17)5#0. (115)
This is not surprising, and the reason why such an
extension is absent can be seen from (100), rewritten as
EQ-1)(u+p-20°) =25[(Q-1)* =& (116)
This relation shows that the presence of torsion and the
consequent modification to the nature of gravitational fields
and the matter fluid (which now carries spin) leads to the
absence of a trivial extension of relation (104) to TLRS
spacetimes.
The situation becomes physically clearer if we write the

above equation in terms of the projection of the metric
energy-momentum tensor (50),

’Assuming (Q — 7)¢& = 0 leads to y = 0, which is not true in
general, thus the assumption must be false.

EQ-1)(a+p+T+20%) =—q[(Q—1)2+&. (117)
The nonvanishing energy flux ¢ in the metric energy-
momentum tensor induced by the spin of the matter fields
breaks the perfect fluid condition and allows for spacetime
with {Q —7,& #0}.

Since the torsion term 7 appears explicitly in the lhs of
Egs. (116) and (117) in combination with the other matter
variables, any conditions on the matter variables would
involve simultaneously constraining the equation of state
and the equation of spin density. Such conditions do not
necessarily have a strongly motivated physical justification
as the (strict) null energy condition u + p > 0 required for
the GR classification [4,33].

In the absence of an extension of (104) to TLRS
spacetimes, the classification scheme as presented below
is entirely based on the foliation admitted by the manifold.
Thus, we will define classes via statements on the variables
&and (Q — 7). This scheme is motivated by and draws from
the hypersurface orthogonality of congruences in the
various classes of LRS spacetimes in General Relativity,
which was highlighted in Sec. V. Another key feature we
aim to preserve is the separation of classes. Therefore, we
begin with a local value of ¢ and (Q — 7). We will then
proceed to show, by analyzing the covariant equations for
TLRS spacetimes given in Sec. IVE and Eq. (69), that
those values of £ and (Q — 7) are global and true on the
entire manifold. As in General Relativity, we may need to
impose conditions on the equation of state and hyper-
momentum, i.e., on 7 [see (48)].

A. TLRS class I

We start with assuming a local value at x € M for our
classification variables,

@-7),#0. &, =0 (118)
Substituting (118) in Egs. (69) and (97) we obtain,
i, =0, (119)
2
Z'x = §®|x’ (120)

where y is a generic scalar. Utilizing (119) in Egs. (76) and
(81), we obtain

7,0l =0, (121)

(1 + p)[,0], =0. (122)

Now, we wish to see if £ vanishes globally. We know that
§|X must vanish due to (119), and this is confirmed by (75)
when we apply (120). However, (83) gives
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é'x :®‘x(g_r)|x' (123)
Thus, if we can ensure that ©|, vanishes, &|, would also
vanish, and the value of ¢ is preserved in a neighborhood
N, of x. However, since we do not have an equation for

6," the only way to control the behavior of © is to use
(121) or (122). These equations imply the requirement

u+p#0 or 7#0,

(124)
which, like all statements on the properties of matter, are
global conditions by definition. It follows that if either of
the conditions (124) is satisfied, then ®|, = 0, and this, in
turn, preserves the value of & in \V,.

Let us now turn to the behavior of (Q — ) in \V,. From
Eq. (82), we have

Q-9 = Q-7 (A=) (125)
Since we can consider (A — ¢)|, to be constant and finite in
N, in analogy to what we have seen in the context of GR,
we know that the above equation has an exponential
solution. Thus, since (Q—17)|, #0 from (118), we can
conclude that (Q —7) # 0 everywhere in N,.

Now, we can follow the same steps at an arbitrary point
y€eN, (y # x). Given that (118) is true at y and remem-
bering that (124) is a global property of matter, we can
conclude that

(Q-1)#0, =0, (126)
is true in a generic neighborhood N, of y. As N, can
extend beyond N,, we can obtain a covering of the
manifold M made of open sets, each of which satisfies
(Q—=17)#0 and & =0. Hence, (118) is satisfied every-
where in M, making it a global property of the spacetime
manifold.

We can now define TLRS class I as follows:

Definition. TLRS class I spacetimes are defined, in the
comoving frame, by the property

Q—-7#0, £=0. (127)
The manifold of this class only admits a foliation into a
hypersurface orthogonal spacelike vector field and a 3D
Lorentzian submanifold. Spacetimes belonging to this class
can be further sorted into the following subclasses deter-
mined by the matter fluid properties (124):

(1) TLRS class IA. The matter fluid must satisfy the

condition on the equation of state p = p(u) such
that

'OEquation (85) would also not be useful. Even taking into
account (120) we cannot make any statements on % which cannot
be deduced by any other equation.

u+ pp) #O0. (128)
This subclass is an extension of the LRS class I of
General Relativity and can be reduced to LRS T if
one imposes 7 = 0. The matter fluid can be of two
types; a spin matter fluid with u 4+ p >0, or a
generalization of phantom matter fluid with spin
which satisfies y + p < 0[34,35]. Notice that due to
nonvanishing torsion, the condition y + p > 0 does
not necessarily have the same physical implications
as described in Sec. V.

(2) TLRS class IB. The matter fluid must satisfy the
condition on the hypermomentum,

T #0. (129)
The spacetime of this subclass cannot be reduced to
General Relativity.

Typically, we expect the condition on the matter fluid to
be global. Thus, we shall have either TLRS class IA or class
IB spacetimes if the matter fluid satisfies (128) or (129),
respectively. Some spacetimes may satisfy both the matter
conditions globally and, therefore, belong to both classes
IA and IB. However, strictly speaking, we only need to
ensure that the matter fluid does not violate the conditions
7 # 0, u + p # 0 at the same point. We can also have TLRS
class I spacetime, which satisfies one condition on a patch
and the other one on the complementary patch of global
spacetime. Hence, according to our definitions, classes [A
and IB are not separated, and for this reason, we place them
as subclasses within TLRS class 1. For both subclasses [A
and IB, we have ® = 0 = X, and the spacetime is stationary
(y = 0, for any generic function y). This also simplifies the
Weyl tensor. In particular, we have & =0 for both
subclasses.

B. TLRS class 11
Suppose that at x € M we have

(Q-7), =0=¢l. (130)

Using (130) in Egs. (74), (75), (82), and (83), we obtain

@=9), = (@-7),=&,=&,=0, (131
so that Q — 7 = 0 and £ = 0 in the neighborhood V.. Now,
we can apply the same argument used in the case of LRS
class II spacetimes. We can choose another arbitrary point
y €N, (v # x) and since (130) holds, we can conclude that
both £ and (Q — 7) vanish in V. As /|, can extend beyond
N, we can form a covering of the manifold composed of a
union of overlapping open sets in which Q —7 =0 =¢,
making (130) a global property of the manifold. We can
now define TLRS class II as follows:
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Definition. TLRS class II spacetimes are defined, in the

comoving frame, by the property

Q-7=0=¢ (132)
The manifold of this class admits a foliation into a hyper-
surface orthogonal spacelike vector field, a hypersurface
orthogonal timelike vector field, and a 2D Riemannian
submanifold.

TLRS class Il is essentially an extension of the LRS class
IT of GR and can be reduced to it if one imposes 7 = 0.
Notice that TLRS class II does not require any global
condition on the equation of state of the matter fluid. This
may seem counter-intuitive, as in Sec. V, we argued that the
condition p + p > 0 is necessary for constructing the LRS
classification in GR. However, in GR, one can discuss a
spacetime which admits the same foliation as LRS class II
without pre-supposing any condition on the matter varia-
bles, thus allowing for richer systems with anisotropic
stress in LRS class II (see, e.g., [26,36]). Our classification
scheme will naturally enable us to include those spacetimes
in the LRSII class.

Like their GR counterparts, TLRS class II can be used to
study complex cosmological models, like Bianchi or
Tolman-Bondi models in cosmology, and to develop
models of the interior of stellar objects. There are many
examples of such spacetimes in literature, albeit not treated
using covariant formalisms. An exception is given by their
application in developing models of compact stars com-
posed of spin matter fluid, see [29]. We will not further
analyze TLRS class II in this paper.

C. TLRS class III
We assume that, at x € M,

(Q-1), =0, &, #0. (133)

Using (133), Egs. (69) and (97) give
Wl =0, (134)
¢l =0, (135)

where y is a generic scalar. Substituting (133), (134), and
(135) in Egs. (85) and (89), we obtain
Q& =0=Q[, =1, =0, (136)
Al (e +p)l, =0. (137)
We now wish to prove that (Q — 7) vanishes globally.
Equation (82) is trivial at x. Looking at Eq. (74), since (135)
holds, we have

(Q - T>|x = §|X'A

X (138)

so that .A|, = 0 would imply that (Q — 7) vanishes in V.
Since we do not have an equation for A, we cannot control
the behavior of the variable A. On the other hand, if the
matter fluid follows the global condition y + p # 0, then
Eq. (137) allows us to conclude that A|, = 0 using a global
statement. Then (Q — 7) vanishes in NV, and from Eq. (75)

we have
. (S}
= 2 — —
§|x §|X< 3)

As before, since we can consider 0|, and X|, to be constant
and finite in A/, the above equation has an exponential
solution, and we can conclude that € is nonvanishing in V.

Now take an arbitrary point y €N, (y # x), where we
have shown that {(Q —7)|, = 0,¢|, # 0}. We can follow
the same steps as before, and since the condition on the
matter fluid is global, we can conclude that (Q —17) is
vanishing and & is nonvanishing in a neighborhood A/ yofy
not entirely within A/ ,.. In this way, we can cover the entire
manifold with overlapping open sets, each of which
satisfies (Q—17 =0,¢& #0), thus proving that this state-
ment is indeed valid globally. We can now define TLRS
class III as follows:

Definition. TLRS class III spacetimes are defined, in the
comoving frame, by the property

(139)

X

Q-1=0, E#O.

(140)
The manifold of this class only admits a foliation into a
hypersurface orthogonal timelike vector field and a 3D
Riemannian submanifold. The matter fluid must satisfy the
global conditions on the equation of state and hyper-
momentum
u+plp) #0, 7=0. (141)
Since torsion vanishes (z = 0), this class is reduced to
LRS class III in General Relativity. The matter fluid of a
spacetime of this class can be a classical fluid satisfying
1+ p > 0 (with the same physical interpretation as given
in Sec. V) or a phantom matter fluid satisfying 4 4+ p <0
[34,35]. The spacetimes belonging to TLRS class III further
have the properties
Pp=A=Q=0, (142)
and =0 for any generic function . Since torsion
vanishes, the Weyl scalars are significantly simplified. In
particular, from Eqgs. (84), (86), and (93)-(96), we obtain
H, = —H, = —H, = H, = 3, =0,
1 2

2
5=2¥+5®2+—E®—22—yL

3 (143)
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Thus, the magnetic part H,, = H,, and the electric part
E,;, of the Weyl tensor are symmetric and traceless, as one
would expect in General Relativity.

D. TLRS class IV
Let us now consider all the spacetimes which do not
satisfy the hypersurface orthogonality conditions men-
tioned above, i.e., for which

Q-7#0, ¢#0,

(144)
and therefore do not admit any foliation. These are certainly
the most complicated cases to treat.

An interesting case that can be associated with this type
of spacetime is the one which allows

u+p=0, 7=0. (145)

With these assumptions, if we have a local statement on
Q — 7 and ¢ like (118) or (133), then we have no way to
control the behavior of the relevant kinematic quantities, as
discussed in Secs. VI A and VI C. Thus, in general, in these
manifolds, there might exist patches in which (144) is
satisfied. In fact, the most general structure for TLRS class
IV spacetimes can be imagined to consist of patches
satisfying (118) or (133), along with other patches in
which (144) is satisfied. Since in these last patches,
7 =0, they are indistinguishable from a GR spacetime,
and therefore, TLRS class IV spacetimes can also be seen
as a mix between GR and ECSK theory.

We can then give the following definition:

Definition. TLRS class IV spacetimes are defined, in the
comoving frame, by the property that

Q—-7#0,

£#0, (146)

or

u+p=0, 7=0, Q-1+ #0 (147)
is true (at a point, over a patch, or globally). The manifolds
of this class do not admit any foliation orthogonal to the
congruences defining the comoving frame.

From the discussion above, it should be evident that the
definition of TLRS class IV and, most of all, of their
properties is much weaker than the other classes. Indeed,
TLRS class IV can probably be better defined by simply
stating that it is a class of locally rotationally symmetric
spacetimes which do not belong to TLRS classes I, II,
or IIL

One can demonstrate that in TLRS class IV spacetimes,
all scalars satisfy a second-order linear hyperbolic partial
differential equation. In fact, the u®e® projection of (1)

gives the commutation relations for hat and dot derivatives,

C)

-y = Ay — <2+—)17/. (148)

3

Taking the hat derivative of (69), the dot derivative of (69),
subtracting them and finally using (148) to eliminate the
cross-derivative terms, we obtain the partial differential
equation which governs any scalar y given as

i — (Q—1)% = E(Q—1)(0 - 3T)§r

Q- (A2 (149)
However, the resolution of this equation is not immediate,
and in addition, it is not necessarily true that the problem is
mathematically well-posed. Indeed, we would need to
prove the existence of a Cauchy surface to ensure that
the covariant variables can be uniquely determined.
However, we know that every Cauchy surface is a (space-
like) embedded continuous submanifold of M (see e.g.,
[27]). As no foliation is possible for these spacetimes in the
comoving frame, the existence of a global Cauchy surface
remains doubtful.

VII. TLRS CLASS I SPACETIMES

The spacetimes within TLRS class I do not expand
(@ =0) or distort (£=0). As mentioned earlier in
Sec. VI, in these spacetimes the spacelike vector e is
nontwisting (£ = 0). Furthermore, the timelike vector field
u®, chosen to be the fluid-4 velocity, is a Killing vector field
and, thus, these spacetimes are stationary (yr = 0, for a
generic function y on the manifold). However, u“ is not
hypersurface orthogonal (Q — 7 # 0), and therefore in this
class it is not possible to define a global notion of time. The
Weyl scalars, except H,, can be determined algebraically

€= —Ap+5+p-202,
H, =2A7 - QA - ¢),

H, = QQ2A-¢).

_ 1 _
H = =3 (0, + 71, (150)

and we have & = 0. The propagation equations are

N

Q-t=(Q-1)(A-¢). (151)
oo T
t=—th+ T+ (152)
p=—A(u+p)-2H,, (153)
. 1
¢=—5¢2+A¢+292—/¢—p, (154)
~ , M 3
A=-A(A+¢)-2Q>+~+p, (155)

2 2
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and Eq. (87) is redundant. As before, in general, we need
the equation of state p = p(u) and the equation of spin
density 7 = 7(u) to close the system of equations and to
determine H,. Indeed, one can also close the system by
choosing the behavior of the magnetic Weyl scalars instead
of imposing an equation of spin density on the matter fluid.
This is not surprising since 7 directly communicates with
the conformal structure of the manifold through Eq. (60);
thus, it can be determined if the behavior of Weyl variables
is known. As already mentioned, in this class, the matter
fluid must satisfy at least one of the two conditions, either
u—+p+#0orz#0 at every point x € M.
In the following, it will also be useful to combine (151)
and (152) to obtain the equation:
Q=

(H, - Q). (156)

N[ =

We now focus on some specific examples of TLRS class I
spacetimes.

A. Godel’s solutions with torsion
We impose the condition 1 = 0 for any function y on
the manifold. Equation (151) then gives (using Q — 7 # 0)
A=¢. (157)

Using (157) in (152) and (150), we obtain an expression for
the magnetic part of the Weyl tensor

H, =2t -Qp,  H,=Qp,

H, =21 — H, = Q¢, H, = -Q¢p. (158)
Instead, Eqgs. (154) and (155) can be used to relate the
kinematic variables to the matter variables,

2_P_# 2 15
p=t (159)

1,5
MR

(160)

Thus, the only independent quantities remaining are
{u, p,7}, and all other quantities are determined algebrai-
cally. In particular, H, requires information on torsion,
while all the remaining quantities are determined by matter
variables {u, p}.

Lastly, the substitution of the above conditions in
Eq. (153) gives us

d(u+p-21Q) =0. (161)

Thus, we can discuss two possible cases:

064075-15
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Setting ¢p = 0, we obtain

A=H,=H,=H,=H,=0, (162)

szp:,u:—%g. (163)
Given p, the rest of the variables, but z, can be
algebraically determined. Notice that the torsion
variable 7 is left independent, i.e., it does not
influence the kinematics of the spacetime. In this
case, all the covariant variables are the same as one
would have had in the Godel’s universe of General
Relativity. However, torsion still affects the behavior
of the timelike congruences. Based on the choice of
4 and , this spacetime can belong to TLRS class [A
or IB or both.

For ¢ # 0, Eq. (161) implies

u+p=2Q. (164)

Squaring this condition and using (159), we obtain

2
RN Cha)i (165)
Tu—+S5p

Then, given an equation of state and the energy
density, one can determine all other covariant
variables. As the conditions 4+ p #0 and 7#0
are simultaneously satisfied, this spacetime belongs
to both TLRS class IA and IB. Additionally, the

matter fluid must satisfy

7

pP>—ZH

. (166)

to avoid divergence 7 — oo and 7% < 0. It is useful to
look at these conditions in terms of projections of the
metric energy-momentum tensor s,,. Using (u +
p =27Q) and Eq. (51), one can evaluate

2u p
= —y — 2 5 p=—— )
H H—2zp p 3 + 3
-2 B
M=2+p). §=0 (167)
which also leads to the equation of state
- S5+
/«l+p+§1—1:0. (168)

Defining the radial pressure and the shearing
pressure as

p,=p+0, p=p—-=I (169

| —

Eq. (165) can be written as
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3(i = \2
RN IChy (170)
5p, = 1p,

Thus, to ensure the condition 72 > 0 is satisfied, we
require g+ p, #0 and 5p, > 7p,.

B. Torsional spacetimes without the magnetic part
of the weyl tensor

We now consider TLRS spacetimes of class I with the
condition,
H,=H,=H,=H, =0, t#0.  (171)
i.e., a gravitationally silent torsional spacetime, in which
there are no gravitational waves. These manifolds can be
divided into two subcases, Q # 0 and Q = 0. This is
because Eq. (156) now reduces to
A 1
Q=-— 5 P, (172)
and therefore, if Q = 0, then it remains zero since the above
equation leads to an exponential solution for € in a small
enough neighborhood.
For Q # 0, we get back Godel’s solution with torsion for
¢ =0 in Sec. VII A.
For Q = 0, instead, (150) and (171) give

A=0, (173)
which along with (155) leads to
u

=—-=. 174

P=-3 (174)

Using the results above, the electric part of the Weyl tensor
also vanishes [using (150)]
E=0. (175)
Hence, the entire Weyl tensor vanishes, the matter
follows the geodesic path (A = 0), there is no vorticity
(©Q =0), and the matter fluid has an equation of state
given by (174). The propagation Eqs. (152)—(154) are
simplified to
¢2

p=0. d=-"+2p.

5 (176)

Thus, the matter variables {y = pg, p = py} are constant in
spacetime. Since we have used (156) (which vanishes for
this subcase), (151) is now redundant. Further, since Q = 0,
we obtain from (52) that projections of the metric energy-
momentum tensor are given as

H=p p =L
0 3

while we have IT = 0 and § = 0. We have then obtained a
gravitationally silent torsional spacetime dominated by
dark radiation.

Equation (176) can be solved exactly. Choosing a
spacelike coordinate function r such that ¢? is given as !

2 rgp o0
=— @ =—— 17
e, rd)dr’ e >3 (178)
the solution of (176) can be evaluated to be
T 2c
T:r—g’ ¢2:4P0+77 (179)

where ¢ and 7, are constants of integration. This spacetime
belongs to TLRS class IB by definition and also belongs to
TLRS class TA if one chooses pgy # 0.

C. Spacetimes in canonical vacuum

Let us now consider geometries generated by canonical
vacuum, S,, = 0, described in Sec. IIl. Since we violate
u+p#0, we must impose 7 # 0, and the spacetime
belongs to TLRS class IB only. From (153), we have

H, = 0. (180)

Using (150), the rest of the Weyl variables can be
determined algebraically,

E=—Ap 202,
H,=QQ2A-¢),

H, =2A71 - Q2A-¢),

M, = -Q2A-¢). (181)

and the governing propagation equations are [simplified
from (151), (154), (155), (156)]

Q-t=(Q-7)(A-¢), (182)
b= —72+A¢+2£22, (183)
A=—AA+ p) —202, (184)

Q=-AQ. (185)

Using (55), we have the following relations between
projections of the metric energy-momentum tensor

"The choice of coordinate is based on ease of evaluation.
Coincidently, this coordinate function is similar to the area-radius
coordinate. Therefore, one can write the interval of the 2-surface
described by N, as dI?,;, = r*(d6* + sin’0dg?), for angular
coordinates 6§ and ¢. However, since u® is not hypersurface
orthogonal, we do not have a two-dimensional integral submani-
fold, and u“ can also contribute to d6* and dq)2 terms in the
spacetime interval of the manifold M.
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p= (186)

W=

o
5 H:__a
3

with § = 0. These relations can be presented in terms of
radial pressure p, and shearing pressure p, [defined in
Eq. (169)] as

pr=0.  p=3. (187)

SR N]

Thus, the matter source only has shearing pressure and no
radial pressure. Therefore, this spacetime represents a
stationary gravitational field generated by a distribution
of matter for which only shearing pressure appears. This
configuration is analogous to the one found by Florides in
LRS-II spacetimes [37] and raises the question of the
existence, within ECSK theory, of vortical compact stars.

VIII. DISCUSSION AND CONCLUSIONS

In this paper, we have derived the complete set of
covariant equations that describe spacetimes possessing
local rotational symmetry and nonvanishing torsion and are
sourced by the Weyssenhoff spin fluid in ECSK theory. The
covariant approach we employed allows us to assign
distinct physical meaning to the covariant variables that
characterize spacetime, making it much easier to study its
physical properties. Since this approach prevents confine-
ment to a specific coordinate system, one avoids making
coordinate (gauge) dependent conclusions (for example,
coordinate singularity). Both these properties make this
framework particularly suitable for any further investiga-
tion into locally rotationally symmetric spacetime with
Weyssenhoft-like torsion.

We found that in the ECSK theory, the Weyl tensor
becomes much more complicated. Such richness in the
conformal structure of the manifold directly relates to the
presence of torsion, as can be seen from the projections of
the type-I Bianchi identity. One of the most significant
distinctions between nontorsional and torsional locally
rotationally symmetric spacetimes is that the magnetic part
of the Weyl tensor is no longer algebraically characterized
by kinematic variables only. Indeed, the covariant scalar H,
depends on the covariant derivative of the torsion parameter
7 along e,. This result indicates that the structure of
gravitational waves on TLRS spacetimes can be substan-
tially different from that of their LRS counterparts. Notice
also that one can omit the need for the equation of spin
density to close the system of equations if one imposes a
specific conformal structure of the manifold, as shown in
the example in Sec. VII B.

We also presented the condition such that the manifold
admits a foliation into a hypersurface orthogonal one-
form and an integral three-dimensional submanifold.
Understanding the hypersurface orthogonality condition
shows that, differently from GR, it is more appropriate to
look at the behavior of the combination (Q — 7) rather than

Q. In addition, a precise definition of hypersurface ortho-
gonality allows us to appreciate the relationship between
the classification of the LRS spacetime in General
Relativity and the foliation admitted by the spacetime
manifold for each class.

Furthermore, we have proposed a classification scheme
for TLRS spacetimes based on the foliation admitted by the
manifold and showed that such a classification scheme can
be successfully applied. In particular, we found four classes
of spacetime, dubbed TLRS class 1, II, III, and IV, which,
similarly to the GR case, are distinguished by the admit-
tance of a foliation into spacelike or timelike hypersurfaces
and some conditions on torsions and thermodynamics. The
first three classes are separated in the sense that the
kinematic or thermodynamic properties that define them
are global and, therefore, only valid in that class. This was
shown by taking a local value (vanishing or nonvanishing)
of defining variables of the TLRS classes, namely Q — 7
and &, and demonstrating that those values remain true over
the entire manifold. Thus, a spacetime having either Q — 7
or ¢ (or both) zero locally will present the same properties
also globally.

In TLRS class I spacetimes, the matter fluid needs to
satisfy at least one of the conditions, y + p # 0, or 7 # 0 at
every point on the manifold. While ¢ + p # 0 is a gener-
alization of the condition necessary for classification in
General Relativity, the condition 7 # 0 shows that this class
contains spacetimes which are unique to ECSK gravity
sourced by a Weyssenhoff fluid. Within the TLRS class I,
we can distinguish two subclasses, IA and IB, characterized
by either  + p # 0 or 7z # 0. Indeed, one can even have
TLRS class I spacetimes in which the condition ¢ + p # Ois
realized in some part of the manifold and 7 # 0 on the
complementary part of the manifold. Such a configuration
could find applications in modeling relativistic stellar sol-
utions with nonvanishing torsion.

For TLRS class II, the matter fluid does not need to
satisfy any condition. We can contrast this with classi-
fication in General Relativity and LRS class II, in which
one always pre-supposes a condition on the matter fluid.
Since our classification scheme is primarily based on the
foliation admitted by the manifold, we were able to omit
any unnecessary condition on the matter fluid. Notice that
our approach could be used in GR to extend the traditional
classification of LRS spacetimes to cases not traditionally
included (see [26,36] for some examples).

Unlike the previous two classes, we found that TLRS
class III is always torsion-free. This result implies that
TLRS class III in ECSK gravity with Weyssehoff fluid
contains the same spacetimes as LRS class III in General
Relativity. We believe that this is a result of the special form
of Weyssenhoff torsion. Indeed, the ultimate reason why
TLRS class I presents differences with respect to LRS class
I is that the hypersurface orthogonality of u“ is charac-
terized by the quantity Q — 7 rather than just €, and this is
essentially due to (48). For example, should a term
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containing e¢n,;, appear in that relation, we could not use &
to characterize hypersurface orthogonality, and there would
be space for a richer TLRS class III.

We have collected the TLRS spacetimes that do not
belong to any of the TLRS classes above in TLRS class I'V.
This class differs from the other three above in that it either
derives its meaning from the matter variables as spacetimes
with existence of regions with y+ p =0 and 7 =0, or
otherwise, it is counterintuitively defined via a lack of a
global foliation orthogonal to the congruences describing
the fluid rest frame. Indeed, TLRS class IV spacetimes can
even be formed by patches which mimic the foliation of
TLRS class I and III and patches with Q — 7 # 0, £ # 0.
These last regions can be thought of as buffers that connect
the local TLRS class I and III regions (if any are present).

The absence of a global foliation for the spacetime
complicates the treatment of TLRS IV spacetimes. Indeed,
one can prove that a second-order linear hyperbolic partial
differential equation exists for the covariant variables.
However, conclusive proof of the applicability of the
Cauchy theorem is not immediately obtainable. This means
that this kind of spacetime should most likely be treated
locally. Despite these complications, TLRS Class IV
remains the most physically realistic among the four
classes. This becomes evident if we think that in the
observed Universe, there is vorticity and twist, often at
the same time, and that the presence of nonadiabatic
processes means that a flux term is always present.

The above classification has been constructed by choosing
to describe spacetimes in a frame that is comoving with the
Weyssenhoff fluid. Thus, the definition and the properties of
spacetimes of each class are frame specific. In principle, a
classification can be formulated in a generic frame. In GR, a
global matter condition u + p # 0 leads to existence of only
three classes as discussed. Therefore, LRS class IV would be
characterized by the violation of this thermodynamic con-
dition (instead of a statement on its foliation) and probably
for this reason, this class is rarely introduced. This invokes
the question if TLRS class IV would also be more suitably
defined via thermodynamic conditions (for classification
formulated in a generic frame).

As an application of the 1+ 1+ 2 equations and the
TLRS classification, we studied various examples of TLRS
classI.In Sec. VII A, we discussed a Godel-like solution with
torsion, which has the same properties as the Godel Universe
in General Relativity, except it allows for a nonvanishing
independent torsion. One can, therefore, expect that the
presence of torsion will affect the geodesics of timelike
congruences and the formation of closed time loops, opening
the way to interesting scenarios. In Sec. VII B, instead, we
presented an example showing that imposing a conformal
structure on the manifold omits the necessity for information
on an equation of state and an equation of spin density to
closethe 1 + 1 + 2 equations. More specifically, we found a
solution representing a gravitationally silent universe domi-
nated by dark radiation. By breaking covariance, we have

been able to resolve the covariant equations exactly in terms
of a parameter similar to the area radius. As a final example,
in Sec. VIIC, we studied TLRS I spacetimes in canonical
vacuum. While this system appears to be unphysical for
TLRS classes II and III because it leads to a negative energy
density f#, it can yield physical results in TLRS class I,
particularly for subclass IB. Interestingly, this example yields
a solution in which matter is supported solely by a shearing
pressure. It is known that the Florides solution, when
interpreted as a stellar object, does not require a shell to
be stable, but this might not be the case within its counterpart
in ECSK theory.

It is also worth stressing that since TLRS class I
spacetimes do not admit foliation orthogonal to a timelike
congruence, a notion of global time (like cosmic time)
would be absent from any further physical interpretation/
application of such examples. On the other hand, the fact
that these solutions are stationary (® = 0 = X) makes this
shortcoming less relevant in the context of the potential
physical value of these solutions.

As discussed, the results of this paper form a framework
that can be utilized to study torsion spacetimes with local
rotational symmetry and their physical properties and
develop a taxonomy of exact solutions. While in our case,
the classification was only done in the comoving frame for
Weyssenhoff-like torsion, we have no reason to doubt that the
scheme described in Sec. VI would also be successful for any
type of torsion and/or source fluid or in a generic frame. At
the same time, the complete set of equations can be utilized to
extend the understanding of other aspects of ECSK theory.
For example, they can be employed to formulate the junction
conditions in the 1+ 1+ 2 covariant formalism, which
would extend the work in Ref. [38] to torsion spacetimes.
Another more complex application would be in the pertur-
bative study of the static solutions of the interior of stellar
objects as discussed in [39—41] in the case of GR.
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APPENDIX: INTEGRABLE SUBMANIFOLDS

Let M be a manifold of dimension-d, TM be the
tangent space on the manifold, and 7* M be the cotangent
space on the manifold.

Let U be a collection of vector fields of dimension—n
(n < d) such that for any point p€ M, U, C T\, M, where
T,M is the tangent space at point p€ M, and the
collection can be generated by n smooth vector fields
which are members of U. Then U forms a subspace of the
tangent space T M.
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Similarly, let U* be a collection of covector fields of
dimension m (m < d) such that for any point p € M,
U, c T, M, where T}, M is the cotangent space at point
p €M and the collection can be generated by m smooth
covector fields which are members of U*. Then U* forms a
subspace of the cotangent space 7" M.

The subspaces U and U* are complementary if m +n = d
and we have

X%a, =0, VXeU, VaeU" (A1)

A tangent subspace U C T M is said to be involutive if

we have

[X.Y]eU, VX.YeU, (A2)
where the square brackets [-, -] denotes Lie bracket. In other

words, U is involutive if

a,[X,Y]*=0, VX, YeU, (A3)
where a is a member of the complementary cotangent
subspace.
The cotangent subspace U* C T* M is said to be differ-
ential if we have
XY’Da,, =0, YaeU*, (A4)
where X and Y are members of complementary tangent
subspace, and D(-) is the exterior derivative. In other
words, for the generators of U*, given as o, we must
have (written without abstract indices/components)
Dot =0y A, (AS)
where @) € T* M is a one-form, and p,v = 1, ...m index
the generators o and @Y.
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