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Can one be fooled into thinking that space and time are fundamentally described by a Lorentzian
manifold? In this article, we describe a scenario in which a theory constructed on a (Euclidean signature)
Riemannian manifold can lead to degrees of freedom with Lorentzian dispersion relations, due to a
nontrivial configuration of a scalar field. In particular, we perform a perturbative analysis of a
renormalizable shift-symmetric scalar-tensor theory and find that it can, in principle, admit a massless
tensor degree of freedom with a Lorentzian dispersion relation. While the remaining degrees of freedom in
the gravity sector will, in general, satisfy Euclidean dispersion relations, we argue that they can be brought
under control by elliptic equations with an appropriate choice of boundary conditions.
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I. INTRODUCTION

In physics, the dynamics of a given system is nothing but
a sequence of configurations parametrized by time. For
example, in general relativity, the dynamics of the Universe
is represented by the spacetime itself, which can be
considered as a sequence of spatial configurations para-
metrized by time, up to general coordinate transformations.
However, as we go back towards the initial singularity, the
geometrical description of the Universe should break down,
and thus, space may be emergent. Then a natural question is
whether time can also be emergent.
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The idea that time may be emergent is in line with the
fact that in any diffeomorphism invariant theory of gravity,
the Hamiltonian is a linear combination of constraints and
thus vanishes up to boundary terms, meaning that there is
no evolution of quantum states in the bulk; this issue is
sometimes referred to in the literature as the problem of
time (see the reviews [1]). It is usually thought that the
dynamics should then be encoded as correlations among
various fields. In other words, one of the fields should play
the role of time, one such example being an inflaton field
during inflation. In this sense, the concepts of time and
dynamics may be emergent.

Motivated by the above set of thoughts, Ref. [2] pro-
posed a scenario in which the concept of time in the sense
of the Lorentz signature of an effective metric emerges
from a locally Euclidean theory without time. The basic
idea is to introduce a clock field, i.e., a field playing the role
of time. Since it must carry at least one number corre-
sponding to the time, the simplest possible candidate for the
clock field is a scalar field, which was adopted in the
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proposal. Since we would not like to induce violation of the
time translation and/or reflection symmetries in the matter
sector from the gravity sector after the emergence of time,
we demand that the gravity action including the clock field
@ is invariant under the shift symmetry, ¢ — ¢ + const,
and the Z, symmetry, ¢ - —@. When the clock field ¢
develops a sufficiently large gradient in a region of the
Riemannian, i.e., locally Euclidean, manifold, the concept
of time emerges along the direction of the gradient.

Mathematically, this phenomenon can be described as
the signature change of an effective metric, which is a
disformal transformation [3,4] of the originally positive-
definite metric by the clock field ¢. In regions with a small
or vanishing gradient of the clock field, the effective metric
remains positive definite, and the perturbations are
described by elliptic equations. On the other hand, in
regions with a large gradient of the clock field, the effective
metric becomes Lorentzian, and the perturbations with low
momenta are well-described by hyperbolic equations.

Hence, the signature change takes place through a hyper-
surface on which the effective metric becomes degenerate.
Near the boundary, higher-derivative terms should become
important and the description of the system at the leading
order in the derivative expansion completely breaks down.'
Even away from the boundary, the description of short
distance behavior of the system requires inclusion of higher
derivative terms. For these reasons, Ref. [6] proposed a
renormalizable higher-derivative theory of Riemannian grav-
ity with a clock field as a possible UV completion.

The purpose of the present paper is to study perturbations
around a simple background solution with a nonvanishing
and constant derivative of the clock field in the renorma-
lizable Riemannian theory proposed in Ref. [6]. We show
that for a range of parameters, gravitational waves at long
distances indeed have a positive time kinetic term and
follow a hyperbolic dispersion relation.

The rest of the paper is organized as follows. In Sec. II,
we review the theory in [6] and present a reformulation
suitable for our analysis. In Sec. III, we construct pertur-
bations about a flat background and present expressions for
the resulting Lagrangian (keeping terms quadratic in the
perturbations). In Sec. IV, we analyze in detail the sector
containing scalar degrees of freedom. Finally, we summa-
rize and discuss our results in Sec. V.

II. THEORY

A. A shift-symmetric emergent Lorentz signature theory

A general shift symmetric emergent Lorentz signature
theory (ELST) with terms containing no more than four
derivatives of the fields is given by the action [6]:

lSignature change has been the subject of heated debate in the
past; see [5] and the papers and comments listed in their
Refs. [14,15] for a survey of the debate regarding signature
change in classical general relativity.

L== L0+L2+L4, (1)

Sz/ d*x\/g|L,
M

where

Lo = cyy, Ly = coR + c10X,
L4 = C1R2 + CzRabRab + C3RadeRade + C4XR
+ ¢sRP g,y + X + ¢7(0p)* + cspupp®.  (2)

with the following definitions for the derivatives of the
clock field ¢:

Py = va(pv Pab = vavh(p’ X = (pa(pu' (3)
This theory has been shown to be renormalizable [7]
(which is expected, as an action containing quadratic
curvature terms is renormalizable [8]), and since the theory
has Euclidean signature, one can choose the couplings so
that the action is bounded below [6]. Moreover, it was
recently shown [9] that this ELST can, in principle, provide
a regular description for the quasiregular singularities that
are necessarily present at the termination of the horizon
for evaporating black holes in the “baby universe”
scenario [10].

In [2,6], the emergence of Lorentz signature arises from
matter couplings; in particular, one presumes that (at long-
distance scales)” matter is coupled to an effective metric:

PaPp
Xc

_ e
8ab = Yab — gab = gah -

’

where X is a positive constant that appears in the matter
couplings and X := ¢“¢p,, and we employ the convention
that indices are raised and lowered with the Euclidean
metric g,;, and its inverse g°°. Whether this can be realized
will require a careful study of the renormalization group
flow in the matter sector (with the idea of the emergent
Lorentz invariance as in [11]); this is an important question
which is left for future work. The main purpose of this
article is to consider the theory in the absence of matter, and
to ask whether a gravitational theory formulated on a
Euclidean signature manifold can, in the weak-field long-
distance limit, mimic the behavior of gravitational degrees
of freedom propagating on a Lorentzian manifold.

B. Reformulation of action

It is perhaps convenient to reformulate the action. With
the parameter relations:

*We will make this notion more precise later, but here we mean
regimes in which higher-derivative contributions to the action can
be neglected.
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no1 | 1
c1:—Z+a+o, c2:—z—4a, 0322—/1+0,
¢4 = —Yo/2, ¢s =70, ce =1,

cr=ay/2, cg=Po, c9g=-Z,

1o = —2Xo, e = Py + X5, (5)

and integration by parts, one may write the dynamically

equivalent action S’ := [, d*x+/|g|L, where L is given by’

Cabcdcade
24

+ X2+ 710G @0y + a0 9" - Po#™ Pap +0E,  (6)

L=Py+X;—ZR+n(y*—yR) + —2XoX

where C,;,., 1S the Weyl tensor, y is an auxiliary field
(replacing a term quadratic in the Ricci scalar), and E is the
Gauss-Bonnet invariant satisfying:

2
E = CupegC? — 2R, R + gR2. (7)

To recover the appropriate flat space solution with
X = X, (corresponding to a flat spacetime background),
we require that Py = 0. The constants Z and X, are
dimensionful; we assume that they are on the order of
the Planck mass squared M3,

III. PERTURBATION ABOUT
A FLAT BACKGROUND

A. Background and perturbation

We then consider the perturbation of L about the flat
background satisfying (setting P, = 0):

gab:diag(lal,lal), (p: XO[, /},_/:O (8)

with coordinates (¢, x, y, z). The perturbations are written in

terms of spatial Fourier modes with wave number k in the
direction of the coordinate x. With this in mind, we
consider the following form for the metric perturbation
(where s is the expansion parameter):

The notation and conventions employed here differ slightly
from that of Eq. (2.5) of [6]. Here, we employ abstract index
notation [12], with indices raised and lowered using the Euclid-
ean signature metric g,,. For later convenience, we also (1)
rewrite the R? term in (2.5) in terms of a scalar quantity y, (2)
modify the cosmological term so that terms involving only X,
and X form a complete square, and (3) we subtract boundary
terms so that the R% ¢, ¢, term may be combined with ¢ ,¢° to
form the G, ¢, term.

Uu 0 B B,
0 v 0 0
5gab =S B 0 h h ’ (9)
y "4 + + X
B, 0 h. y—h,

in which we decompose the metric perturbations into tensor
(hy, hy), vector (B, B;), and scalar (U, y) components,
classified according to their behavior under spatial rotations
about the x-axis. We also consider perturbations of the
scalar fields:

S = s, Sy = sé. (10)
For each quantity U, w, ¢, & By, hg (with 1€{y,z},

K € {+, x}) in the perturbation, we pick out a spatial mode
of the form:

F = F,(t) sin(kx) 4+ F,(t) cos(kx). (11)

We expand S’ to second order in the expansion parameter s to
obtain an action for small amplitude perturbations, which
may be cleanly separated into a tensor, vector, and scalar part.

B. Tensor sector

After performing the mode decomposition and integrat-
ing over the spatial coordinates, the action for the tensor
sector (containing &, and &) consists of terms of the form
[terms of order O(s) cancel out when setting Py = 0]:

s2V .
Sy = 3 0 / dt [{Xo(ﬁo +70) + Z}h* = (yoXo — Z)k*h?

+ % (4k20h2 + 72)] : (12)

where V,, is a volume factor, and 7 is defined as
T := h+ k>h. (13)

Now X, and Z both have mass dimension two, so that we
can characterize the long-distance limit as k << Mp,
h < My, the terms proportional to X, and Z dominate.
We require that

(Xo(Bo +710) +2) >0, (14)

so that the tensor modes have a positive kinetic term and
also that

(Xo(Bo + 7o) + Z)(roXo = Z) > 0, (15)

so the perturbations A will satisfy a massless Lorentzian
dispersion relation in the long-distance limit; the tensor
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degrees of freedom will therefore appear as massless fields
propagating on a Lorentzian background.

C. Vector sector

On the other hand, the sector containing the vector
degrees of freedom B, and B, consist of terms of the form:

$2Vok? P2 | 1212 2
Sp == [ diB+ B + A(Xo(fo + r0) + 2) B,

(16)

The resulting dispersion relation is Euclidean rather than
Lorentzian and it contains a large mass term that is
tachyonic relative to B? if all the constants are assumed
to be positive. However, a Euclidean dispersion relation,
which one might expect to arise for modes governed by
elliptic equations, indicates that the modes are determined
by a suitable boundary condition. If one chooses, e.g.,
B = 0 at the boundary, a large tachyonic mass will suppress
these modes in the bulk.

D. Scalar sector

The scalar sector containing the fields (U, y, ¢, &) is more
complicated. It is convenient to adopt an approach outlined
in [13,14] (which resembles the spin projection operator
formalism [15-18]), in which the quadratic action is repre-
sented in terms of vectors (containing the degrees of free-
dom) and matrices containing information about the kinetic
terms, the potential, and friction terms on the second
derivatives ¢, so one cannot immediately express the
quadratic action in first-order form. Following [13], one
may add to the scalar sector Lagrangian L4 a Lagrange
multiplier term of the form ®(v/2Q — [l¢), where © is a
Lagrange multiplier and Q is a new variable, and redefine the
Lagrange multiplier ® to replace [¢ in the quadratic action
with Q/2+/2. One may then integrate by parts to convert
terms of the form @¢ to the first order form © ¢. After
performing this procedure and dropping surface terms, the
resulting scalar action may be written as

TABLE I. Constants and k-dependent coefficients.

§<D = SZVO/dtL(D. (17)

where the Lagrangian L4 has the quadratic form (following
the general decomposition in [19]):

Le=Y" K- Y+YT.V-Y+YT-M"-Y
+Y' M- Y4+YT-AT.Z4+ZT - A.Y
+Y'-B'-z+72"-B-Y+27-C-Z (18)

The variables are encoded in the vectors:

Y=.(¢.0)., Z=(QU) (19)
where Y contains the dynamical variables and Z are auxiliary
fields.

Before listing the components of the matrices K, V, M,
A, B, and C, it is perhaps convenient to define a set of
constants and k-dependent coefficients. These definitions
are listed in Table I; we will refer to these definitions
throughout. In terms of the definitions given in Table I, the
components of the 4 x 4 kinetic matrix K are

=34, —43—\/'75 0 0
" - 00 0 | )
0 0 K3 ﬁ
0 0 ﬁ 0
the 4 x 4 matrix V has the components:
Seo-25 0 0
yo | TR B0 0
0 0 kB, 2%
0 0 £ o0

and the 4 x 4 friction matrix M has components:

Dimensionless

Dimensionful

D(abe) = adg + bfy + cro Hab.ed) = XoV(abe) +Zd

vy =ag+ o w1 = Xoro+ 2
vy =209 + o Hr = Xoro—Z
v3 =3ay + fo Hz = Xo(Bo + 7o) +Z

k-dependent
K = =3us/(2v1) Ky = 3 d + kK
Ha = 3Xo(ro —2B0) + 2 Ky = 3pd + K

K3 = 2Xo + k*fy
K4 = 3K3X0). + k4

Hs = 3Xoff5 + 2v1 s
He = 3Xo(B5 + 4n) + 2u41,

M7 = A31,-2-2) = Xo(3ag + o — 2r9) —2Z
He = 18Xo(4n — aofo) + v1[12u1 = 2/ (0 4.-1.-3) + 3nA(kz + 10p3)]
ps = 4Xo (300,453 — 20 (3.1.-1-3)) + 3A[4uivy = XoBo(4Xoaoyo + Pof6.2.-1.-3))]

The dimensionful constants (y;, K) have mass dimension two and are expected to be of O(M3)).

024066-4
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2 3
0 0 286 335
00 0 0
M = /X, , 22
M=vXol 0o (22)
00 0 0

Note that K and V are symmetric, but M is not symmetric.
The matrices A, B, and C have the form:

0 0 bk s
A = 2 2 \/5 21, C—|:01 K4:|’
- —8'7—\/5 0 0 127
%0 0 0
B=\X,| " ) 11. (23)
0 0 -% -

In the following, we perform a detailed analysis of the
Lagrangian L.

IV. SCALAR SECTOR ANALYSIS

The Lagrangian Lg for the scalar sector is rather non-
trivial. Our strategy here is as follows. We first integrate out
the auxiliary degrees of freedom, then diagonalize the
kinetic matrix of the resulting system. The massive degrees
of freedom are then identified and integrated out.

A. Integrate out nondynamical degrees of freedom

We integrate out the nondynamical degrees of freedom €
and U by varying Lg, with respect to the same variables. We
obtain the expressions:

V2o X~ k) -0

Q )
21/1

y
74K4

8k2K1
34

V20K2E+2/X o (4x3+V/20) + (24)

Inserting these expressions back into Lg, we obtain a
reduced Lagrangian of the form:
Lo=Y" K- Y+YT.V.-. Y4+ YT -M"-Y. (25)

where the kinetic matrix [K and the mass matrix V have the
block diagonal form:

TABLE II. Matrix coefficients for L.

K 0 0 0
K — 12 ’
L O 0 K3 Ky
Vi Vo O 0
1% 1% 0 0
V— 12 2 ’ (26)
0 0 Vi Vy
L O 0 Vi Vi
and the friction matrix M has the block form:
0O 0 M M
M = 23 24 27)
0O 0 O 0
0O 0 O 0

The explicit expressions for the matrix components are
given in Table II. It is worth pointing out here that both K33
and V33 are proportional to k* and that all off-diagonal
matrix components with the index label 3 are proportional

to k?; one may then absorb a factor of k? into a rescaling
of Y3 = ¢

B. Determinant of equation of motion matrix

Before proceeding, it is perhaps worth considering the
nature of the degrees of freedom in Lg,. Following [13,19],
one may construct a matrix E of the form,

E = 0’K+ io(M - MT) +V, (28)
such that if the components of Y may be written as
Y, =Yy,e®! the equation of motion for the system
may be written as

E-Y=0. (29)
Since the dispersion relations form the eigenvalues of E, the
determinant det(E) is proportional to the product of the
dispersion relations for Y, as well as an additional overall

factor k*, which (as discussed earlier) can be absorbed into
a rescaling of Y3 = ¢. If the dispersion relations are

Kinetic matrix K coeffs.

Mass matrix V coefficients

Friction matrix M coefficients

Khn=K K= —% vV, = kz("z;fi;lkz’(f) Vie= __k2’7<i%(/:2’<1) M = \/X_okzV30K4<421:(14;]3ﬁ0)—2’f1'f3”1]
4 4 iy 2

Ky = % Ksy, = 2\?__2&' Vo = ”(2K432:f 1) My, =— \/)(_0(3/70’;4\%(:4’:1 3K4)11)
Kaa = _% Vi = —Mzﬁ—,ﬂuz Vi = 2]:;-—;2] My = —73"3/25'(3
Vi = ﬁ My, = _3nVXok

16Ky

024066-5
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analytic at k> = 0, the determinant may be assumed to have
the form [where f,(0) =0, and a €{1,2,3,4}]:

det(E) [ [ [0 = G,k = m2 + f(?)k* + O(k*)]

a

=0, (30)

which is a general expression valid for low momenta.”
Accounting for the fact that det(E)  k*, one can obtain
the masses from Eq. (28) by taking the limit k> — 0, which
yields an expression of the form:

det(E
tim “UE o202 ) (o0 g0 ~4x). (1)

which implies the following for the masses:

mi=0, mj=—Ays,
2 12Xon+ps 4/ (12Xon+ps)? — 48X g p7
mi=— ,
61’]1/1
m2—— 12X o0+ ps — /(12X +ps)* — 48X gnu 47 (32)
1= .
61y,

Now, since the masses are, in general, different, the
dispersion relations will, in general, be different. Given
the ansatz used in Eq. (30) for the dispersion relations, one
can construct a recursion relation and expand in k? to obtain
the dispersion relations of the form:

w* = mg + G k> + O(k*),
G; = Ga _fa(m%l) (33)

If the masses are different, one may then obtain an

expression for the effective gradient factor G/, for the

massless degree of freedom by inserting the expression (33)

for a given m2 into the determinant equation det(E) = 0,

expanding to O(k?), then solving for G,. The result is

G =G, - _ 2Xopory R _3Z+ Xo(2B0 + 10)
Mty 3us

’

Gy =— 121;1(3’7’“2 = Aa X5) + m3(us + pom3) ’
3m3(m3 + Az ) (us 4 6nvym3 + 12nX,)
3m3(m3 + Aus) (us + 6quymi + 12nX,)

where G4 and G, have the same form, differing only in the
masses. Recall conditions (14) and (15), which can be

“That the dispersion relations can be expanded in k* follows
from the fact only even powers of k appear in the components
of E.

respectively written as 3 > 0 and o3 > 0. We find that in
order for the massless scalar degree of freedom to satisfy a
Lorentzian dispersion relation (so that G; > 0), one must
require 47 < 0. However, we will consider both signs for x4
in the following analysis.

To see whether there exists a suitable parameter space,
we here study some specific cases. For this purpose, we
consider a parametrization of the form:

2(1+q)ro

Xo = qZ/yo, Po= !
q

—3a,.  (35)

The condition u, > 0 requires that ¢ > 1, and pu; <0
requires [ > 1 (assuming the other constants of the theory
are positive). It is not too difficult to verify by direct
computation that for A=n=0ay=1, ¢ =y, =3, and
[ = 2, one has

G, =1/5,

m% =-5Z,

G)=-8/15,
m2 =-2.927,

Gy=-1.60, G,=-2.07,
m3 =—0.913Z. (36)

Now in the case of positive [ < 1, one has 7 > 0, so that
G| <0. In this case, one can seek to ensure that the
dispersion relations for the remaining scalar degrees of
freedom are Euclidean and the masses are tachyonic. For
n=—-lL,A=yy=ay=1,¢g=4, and [ = 1/3, we obtain:

G| =-33/230, G, =—43/69,
Gy=-1/2, G, =-273,

m3 = =237, m} = —4Z, m; = —4.85Z.  (37)
One can verify that in each case, there exists a neighbor-
hood of parameter space around these points such that G5,

%, G}, are all negative, and the nonvanishing masses are
tachyonic. Recalling our earlier discussion of the vector
modes, we emphasize again that Euclidean tachyonic
modes can be easily controlled by suitable boundary
conditions.

C. Integrating out degrees of freedom

To formulate a strategy for integrating out degrees of
freedom, it is perhaps appropriate to consider the behavior
of the matrices K, V, and M for small k%, only keeping
terms to leading order in k*:

- _3_;7 -
K ™G 0 0
-0 0 0
Kol )0, " s (38)
3Xok  12v2X22
K 1
| 0 0 12V2x31 16X,

024066-6
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>~
o
~

- 2 -
_ K n 0 0
16
V 22 e K | (39)
0 0 2u 220,
k2, 1
Lo o g -]
I 2K 3ag\/Xg ]
00 % A
0 0 —_Fkn_ __En_
M ~ W2X, 32X | (40)
0 0 0 0
100 0 0 |

The dependence on k? in the respective kinetic and mass
matrices KK and V indicates that Y5 = ¢ is scaled by a factor
of k2, and that Y, = y is connected to the massless degree
of freedom for small k2. From the form of V, we expect the
massive degrees of freedom to be connected to Y, =¢
and Y, = 0.

We, therefore, begin by integrating out the massive
degrees of freedom & and ®; we do this by varying Lg
with respect to £ and @, setting second derivatives to zero
in the resulting equations of motion, and solving £ and ©.
We then resubstitute back into the action (setting E=0
and ® =0) to obtain the Lagrangian. The resulting
expression is

— 2 32 2 2
Lo = Kiyyi? + Ky y* + Vi g0 + Vi v
My, . (41)

where ¢ = ¢k?, and the coefficients are given by some
rather complicated expressions:

K Kk3(2 = 3n4)
2P 2ky = 3k*nA’
Viy =2
b 7
K  3XoA(Xoks = K py) (264 + 3A(Kuy = Xoks) vy
v ZKﬁ
+ H(4,1,-3,-3)
K2 2 6
v, & =———T]12X — 9k
(Ot v vy L
— (3ndfias3) — 2,L7(0.—1,1.3))k4
+ (4X3(1 4+ 3A(Boro — 2n)) — 6Auip3)K?),
vXo
Méfl// = W [6&]('3//!7 8(1 + 37’]/1>X0k2
— (a9 (972 = 6) + o (1514 + 2))k*]. (42)

The appearance of quadratic terms in ¢ when k*> — 0

indicates that ¢ is connected to a massive degree of
freedom, so we integrate out ¢ as well. After integrating
out ¢, we obtain the following Lagrangian, keeping terms

up to O(k?):
z//2>. (43)

One can see that y is massless, and it is not too difficult to
confirm that yw indeed satisfies the massless dispersion
relation in Eq. (34). Now recall that conditions (14) and
(15) may be respectively written as pz > 0 and pzu, > 0,
and correspond to the requirement that the tensor modes £
have a positive kinetic term and satisfy a Lorentzian
dispersion relation. If yw also satisfies a Lorentzian
dispersion relation, one requires that y; < 0, but it follows
that the kinetic term for y is negative valued. More
generally, if 4 and y both satisfy Lorentzian dispersion
relations, either A or y is necessarily ghostlike.’

On the other hand, we can instead consider y; > 0, in
which case y satisfies a massless Euclidean dispersion
relation. If we assume that k> is small compared to the
factor usu;/Xov, (of order M3 1), We obtain:

2(1 + 3nd)us
3XOI/1)¥

K37

L
Y X

=y +k2</u// +

 H3Hq

L
lIlX()l

i + Py (44)

This indicates that under an appropriate rescaling, y is a
harmonic function for u; > 0, which is, in principle,
bounded by its value on the boundary. Since the constants
in L, have dimension MPl, any contribution ansmg from
h1gher—0rder effects will, in principle, be suppressed by an
additional factor of order 1/ M 71> S0 that despite the absence
of a large tachyonic mass, one can still suppress y by
setting its value on the boundary to zero.

V. SUMMARY AND DISCUSSION

In this article, we considered the Euclidean signature
scalar-tensor theory of [6], which is renormalizable [7] and
can evade Ostrogradskian instabilities [22] by virtue of the
absence of genuine dynamics. In this theory, the concept of
dynamics emerges locally for physics at low momenta. At
extremely high momenta, or short distances, there is no
concept of dynamics as the theory is genuinely locally
Euclidean. Globally, or at very long distances, again there is
no dynamics as everything is in principle determined by
suitable boundary conditions. In particular, we conducted
an analysis of perturbations over a flat background with a

It should be mentioned that there are some scenarios that can, in
pnnmple accommodate ghosts; see for instance, [20,21].

Ot is perhaps worth notlng that in Egs. (38)-(40), the only
terms of mass dimension MPl or higher are those containing .
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nonvanishing derivative of the clock field and their asso-
ciated dispersion relations with the aim of identifying
massless degrees of freedom with Lorentzian dispersion
relations.

We find in our analysis a massless tensor degree of
freedom that can, with an appropriate choice of parameters,
satisfy a Lorentzian dispersion relation. At the same time,
we show that all but one of the remaining degrees of
freedom can be made to satisfy Euclidean dispersion
relations with a large tachyonic mass; these modes can
be set to zero with an appropriate choice of boundary
values. The last degree of freedom is a massless scalar that
can either be a massless ghost satisfying a Lorentzian
dispersion relation or a harmonic function. We have argued
that the latter is preferable, as harmonic functions are
bounded by their values on the boundary, and higher-order
effects are suppressed by M3,. In this manner, one can argue
that the degrees of freedom that do not satisfy Lorentzian
dispersion relations can be suppressed.

A next step in this direction will be to extend the present
analysis to different backgrounds, such as those corre-
sponding to Lorentz signature black holes; it is important to
confirm (as one might expect) that conclusions of the
present analysis remain valid so long as the momentum
scale is larger than the (intrinsic and extrinsic) curvature
scale, and much smaller than Mp,. It may be of interest to
study the fate of modes with momenta comparable to or
lower than the curvature scale in such backgrounds. One
can also extend the analysis to include a simple matter
model, and then all ingredients necessary to accommodate
the standard model of particle physics [23]. If one can
recover a Lorentzian dispersion relation for matter degrees

of freedom, one might expect additional constraints to arise
in such an analysis from the requirement that the massless
tensor and matter degrees of freedom propagate with the
same effective sound speed, thus recovering Lorentz
invariance. As discussed earlier, it is perhaps appropriate
in such future studies to consider a careful study of the
renormalization group flow of the theory, and to also adopt
the idea of the emergent Lorentz invariance [11].
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