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Can one be fooled into thinking that space and time are fundamentally described by a Lorentzian
manifold? In this article, we describe a scenario in which a theory constructed on a (Euclidean signature)
Riemannian manifold can lead to degrees of freedom with Lorentzian dispersion relations, due to a
nontrivial configuration of a scalar field. In particular, we perform a perturbative analysis of a
renormalizable shift-symmetric scalar-tensor theory and find that it can, in principle, admit a massless
tensor degree of freedom with a Lorentzian dispersion relation. While the remaining degrees of freedom in
the gravity sector will, in general, satisfy Euclidean dispersion relations, we argue that they can be brought
under control by elliptic equations with an appropriate choice of boundary conditions.
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I. INTRODUCTION

In physics, the dynamics of a given system is nothing but
a sequence of configurations parametrized by time. For
example, in general relativity, the dynamics of the Universe
is represented by the spacetime itself, which can be
considered as a sequence of spatial configurations para-
metrized by time, up to general coordinate transformations.
However, as we go back towards the initial singularity, the
geometrical description of the Universe should break down,
and thus, space may be emergent. Then a natural question is
whether time can also be emergent.

The idea that time may be emergent is in line with the
fact that in any diffeomorphism invariant theory of gravity,
the Hamiltonian is a linear combination of constraints and
thus vanishes up to boundary terms, meaning that there is
no evolution of quantum states in the bulk; this issue is
sometimes referred to in the literature as the problem of
time (see the reviews [1]). It is usually thought that the
dynamics should then be encoded as correlations among
various fields. In other words, one of the fields should play
the role of time, one such example being an inflaton field
during inflation. In this sense, the concepts of time and
dynamics may be emergent.
Motivated by the above set of thoughts, Ref. [2] pro-

posed a scenario in which the concept of time in the sense
of the Lorentz signature of an effective metric emerges
from a locally Euclidean theory without time. The basic
idea is to introduce a clock field, i.e., a field playing the role
of time. Since it must carry at least one number corre-
sponding to the time, the simplest possible candidate for the
clock field is a scalar field, which was adopted in the
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proposal. Since we would not like to induce violation of the
time translation and/or reflection symmetries in the matter
sector from the gravity sector after the emergence of time,
we demand that the gravity action including the clock field
φ is invariant under the shift symmetry, φ → φþ const,
and the Z2 symmetry, φ → −φ. When the clock field φ
develops a sufficiently large gradient in a region of the
Riemannian, i.e., locally Euclidean, manifold, the concept
of time emerges along the direction of the gradient.
Mathematically, this phenomenon can be described as

the signature change of an effective metric, which is a
disformal transformation [3,4] of the originally positive-
definite metric by the clock field φ. In regions with a small
or vanishing gradient of the clock field, the effective metric
remains positive definite, and the perturbations are
described by elliptic equations. On the other hand, in
regions with a large gradient of the clock field, the effective
metric becomes Lorentzian, and the perturbations with low
momenta are well-described by hyperbolic equations.
Hence, the signature change takes place through a hyper-

surface on which the effective metric becomes degenerate.
Near the boundary, higher-derivative terms should become
important and the description of the system at the leading
order in the derivative expansion completely breaks down.1

Even away from the boundary, the description of short
distance behavior of the system requires inclusion of higher
derivative terms. For these reasons, Ref. [6] proposed a
renormalizable higher-derivative theory ofRiemannian grav-
ity with a clock field as a possible UV completion.
The purpose of the present paper is to study perturbations

around a simple background solution with a nonvanishing
and constant derivative of the clock field in the renorma-
lizable Riemannian theory proposed in Ref. [6]. We show
that for a range of parameters, gravitational waves at long
distances indeed have a positive time kinetic term and
follow a hyperbolic dispersion relation.
The rest of the paper is organized as follows. In Sec. II,

we review the theory in [6] and present a reformulation
suitable for our analysis. In Sec. III, we construct pertur-
bations about a flat background and present expressions for
the resulting Lagrangian (keeping terms quadratic in the
perturbations). In Sec. IV, we analyze in detail the sector
containing scalar degrees of freedom. Finally, we summa-
rize and discuss our results in Sec. V.

II. THEORY

A. A shift-symmetric emergent Lorentz signature theory

A general shift symmetric emergent Lorentz signature
theory (ELST) with terms containing no more than four
derivatives of the fields is given by the action [6]:

S ¼
Z
M
d4x

ffiffiffiffiffi
jgj

p
L; L ≔ L0 þ L2 þ L4; ð1Þ

where

L0 ≔ c11; L2 ≔ c9Rþ c10X;

L4 ≔ c1R2 þ c2RabRab þ c3RabcdRabcd þ c4XR

þ c5Rabφaφb þ c6X2 þ c7ð□φÞ2 þ c8φabφ
ab; ð2Þ

with the following definitions for the derivatives of the
clock field φ:

φa ≔ ∇aφ; φab ≔ ∇a∇bφ; X ≔ φaφa: ð3Þ

This theory has been shown to be renormalizable [7]
(which is expected, as an action containing quadratic
curvature terms is renormalizable [8]), and since the theory
has Euclidean signature, one can choose the couplings so
that the action is bounded below [6]. Moreover, it was
recently shown [9] that this ELST can, in principle, provide
a regular description for the quasiregular singularities that
are necessarily present at the termination of the horizon
for evaporating black holes in the “baby universe”
scenario [10].
In [2,6], the emergence of Lorentz signature arises from

matter couplings; in particular, one presumes that (at long-
distance scales)2 matter is coupled to an effective metric:

gab ¼ gab −
φaφb

XC
; ḡab ¼ gab −

φaφb

X − XC
; ð4Þ

where XC is a positive constant that appears in the matter
couplings and X ≔ φaφa, and we employ the convention
that indices are raised and lowered with the Euclidean
metric gab and its inverse gab. Whether this can be realized
will require a careful study of the renormalization group
flow in the matter sector (with the idea of the emergent
Lorentz invariance as in [11]); this is an important question
which is left for future work. The main purpose of this
article is to consider the theory in the absence of matter, and
to ask whether a gravitational theory formulated on a
Euclidean signature manifold can, in the weak-field long-
distance limit, mimic the behavior of gravitational degrees
of freedom propagating on a Lorentzian manifold.

B. Reformulation of action

It is perhaps convenient to reformulate the action. With
the parameter relations:

1Signature change has been the subject of heated debate in the
past; see [5] and the papers and comments listed in their
Refs. [14,15] for a survey of the debate regarding signature
change in classical general relativity.

2We will make this notion more precise later, but here we mean
regimes in which higher-derivative contributions to the action can
be neglected.
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c1 ¼ −
η

4
þ 1

6λ
þ σ; c2 ¼ −

1

λ
− 4σ; c3 ¼

1

2λ
þ σ;

c4 ¼ −γ0=2; c5 ¼ γ0; c6 ¼ 1;

c7 ¼ α0=2; c8 ¼ β0; c9 ¼ −Z;

c10 ¼ −2X0; c11 ¼ P0 þ X2
0; ð5Þ

and integration by parts, one may write the dynamically
equivalent action S0 ≔

R
M d4x

ffiffiffiffiffijgjp
L̃, where L̃ is given by3

L̃≔P0þX2
0−ZRþηðχ2−χRÞþCabcdCabcd

2λ
−2X0X

þX2þ γ0Gabφaφbþα0φa
aφb

bþβ0φ
abφabþσE; ð6Þ

where Cabcd is the Weyl tensor, χ is an auxiliary field
(replacing a term quadratic in the Ricci scalar), and E is the
Gauss-Bonnet invariant satisfying:

E ¼ CabcdCabcd − 2RabRab þ 2

3
R2: ð7Þ

To recover the appropriate flat space solution with
X ¼ X0 (corresponding to a flat spacetime background),
we require that P0 ¼ 0. The constants Z and X0 are
dimensionful; we assume that they are on the order of
the Planck mass squared M2

Pl.

III. PERTURBATION ABOUT
A FLAT BACKGROUND

A. Background and perturbation

We then consider the perturbation of L̃ about the flat
background satisfying (setting P0 ¼ 0):

ḡab ¼ diagð1; 1; 1; 1Þ; φ̄ ¼
ffiffiffiffiffiffi
X0

p
t; χ̄ ¼ 0: ð8Þ

with coordinates ðt; x; y; zÞ. The perturbations are written in
terms of spatial Fourier modes with wave number k⃗ in the
direction of the coordinate x. With this in mind, we
consider the following form for the metric perturbation
(where s is the expansion parameter):

δgab ¼ s

2
6664
U 0 By Bz

0 ψ 0 0

By 0 ψ þ hþ h×
By 0 h× ψ − hþ

3
7775; ð9Þ

in which we decompose the metric perturbations into tensor
(hþ, h×), vector (By, Bz), and scalar (U, ψ) components,
classified according to their behavior under spatial rotations
about the x-axis. We also consider perturbations of the
scalar fields:

δφ ¼ sϕ; δχ ¼ sξ: ð10Þ

For each quantity U, ψ , ϕ, ξ, BI , hK (with I ∈ fy; zg,
K ∈ fþ;×g) in the perturbation, we pick out a spatial mode
of the form:

F ¼ F1ðtÞ sinðkxÞ þ F2ðtÞ cosðkxÞ: ð11Þ

WeexpandS0 to second order in the expansion parameter s to
obtain an action for small amplitude perturbations, which
may be cleanly separated into a tensor, vector, and scalar part.

B. Tensor sector

After performing the mode decomposition and integrat-
ing over the spatial coordinates, the action for the tensor
sector (containing h× and hþ) consists of terms of the form
[terms of order OðsÞ cancel out when setting P0 ¼ 0]:

Sh ¼
s2V0

8

Z
dt

�
fX0ðβ0 þ γ0Þ þ Zgḣ2 − ðγ0X0 − ZÞk2h2

þ 1

λ
ð4k2ḣ2 þ T 2Þ

�
; ð12Þ

where V0 is a volume factor, and T is defined as

T ≔ ḧþ k2h: ð13Þ

Now X0 and Z both have mass dimension two, so that we
can characterize the long-distance limit as k ≪ MPl,
ḣ ≪ MPl, the terms proportional to X0 and Z dominate.
We require that

ðX0ðβ0 þ γ0Þ þ ZÞ > 0; ð14Þ

so that the tensor modes have a positive kinetic term and
also that

ðX0ðβ0 þ γ0Þ þ ZÞðγ0X0 − ZÞ > 0; ð15Þ

so the perturbations h will satisfy a massless Lorentzian
dispersion relation in the long-distance limit; the tensor

3The notation and conventions employed here differ slightly
from that of Eq. (2.5) of [6]. Here, we employ abstract index
notation [12], with indices raised and lowered using the Euclid-
ean signature metric gab. For later convenience, we also (1)
rewrite the R2 term in (2.5) in terms of a scalar quantity χ, (2)
modify the cosmological term so that terms involving only X0

and X form a complete square, and (3) we subtract boundary
terms so that the Rabφaφb term may be combined with φaφ

a to
form the Gabφaφb term.
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degrees of freedom will therefore appear as massless fields
propagating on a Lorentzian background.

C. Vector sector

On the other hand, the sector containing the vector
degrees of freedom Bx and By consist of terms of the form:

SB ¼ s2V0k2

4λ

Z
dt½Ḃ2 þ k2B2 þ λðX0ðβ0 þ γ0Þ þ ZÞB2�:

ð16Þ

The resulting dispersion relation is Euclidean rather than
Lorentzian and it contains a large mass term that is
tachyonic relative to Ḃ2 if all the constants are assumed
to be positive. However, a Euclidean dispersion relation,
which one might expect to arise for modes governed by
elliptic equations, indicates that the modes are determined
by a suitable boundary condition. If one chooses, e.g.,
B ¼ 0 at the boundary, a large tachyonic mass will suppress
these modes in the bulk.

D. Scalar sector

The scalar sector containing the fields ðU;ψ ;ϕ; ξÞ is more
complicated. It is convenient to adopt an approach outlined
in [13,14] (which resembles the spin projection operator
formalism [15–18]), in which the quadratic action is repre-
sented in terms of vectors (containing the degrees of free-
dom) and matrices containing information about the kinetic
terms, the potential, and friction terms on the second
derivatives ϕ̈, so one cannot immediately express the
quadratic action in first-order form. Following [13], one
may add to the scalar sector Lagrangian LΦ a Lagrange
multiplier term of the form Θð ffiffiffi

2
p

Ω −□ϕÞ, where Θ is a
Lagrangemultiplier andΩ is a new variable, and redefine the
Lagrange multiplier Θ to replace□ϕ in the quadratic action
with Ω=2

ffiffiffi
2

p
. One may then integrate by parts to convert

terms of the form Θϕ̈ to the first order form Θ̇ ϕ̇. After
performing this procedure and dropping surface terms, the
resulting scalar action may be written as

SΦ ¼ s2V0

Z
dtLΦ: ð17Þ

where the Lagrangian LΦ has the quadratic form (following
the general decomposition in [19]):

LΦ ¼ ẎT · K · Ẏ þ YT · V · Y þ ẎT ·MT · Y

þ YT ·M · Ẏ þ YT ·AT · Z þ ZT ·A · Y

þ ẎT · BT · Z þ ZT · B · Ẏ þ ZT · C · Z: ð18Þ

The variables are encoded in the vectors:

Y ¼ ðψ ; ξ;ϕ;ΘÞ; Z ¼ ðΩ; UÞ; ð19Þ

whereY contains the dynamical variables andZ are auxiliary
fields.
Before listing the components of the matrices K, V , M,

A, B, and C, it is perhaps convenient to define a set of
constants and k-dependent coefficients. These definitions
are listed in Table I; we will refer to these definitions
throughout. In terms of the definitions given in Table I, the
components of the 4 × 4 kinetic matrix K are

K ¼

2
666664

−3μ4 − 3η
4
ffiffi
2

p 0 0

− 3η
4
ffiffi
2

p 0 0 0

0 0 κ3
1

2
ffiffi
2

p

0 0 1

2
ffiffi
2

p 0

3
777775; ð20Þ

the 4 × 4 matrix V has the components:

V ¼

2
666664

k2κ2
3λ − ηk2

2
ffiffi
2

p 0 0

− ηk2

2
ffiffi
2

p η
16

0 0

0 0 k4β0
k2

2
ffiffi
2

p

0 0 k2

2
ffiffi
2

p 0

3
777775; ð21Þ

and the 4 × 4 friction matrix M has components:

TABLE I. Constants and k-dependent coefficients.

Dimensionless Dimensionful k-dependent

ν̄ða;b;cÞ ¼ aα0 þ bβ0 þ cγ0 μ̄ða;b;c;dÞ ¼ X0ν̄ða;b;cÞ þ Zd K ¼ −3μ4=ð2ν1Þ κ1 ¼ 3μ1λþ k2

ν1 ¼ α0 þ β0 μ1 ¼ X0γ0 þ Z μ4 ¼ 3X0ðγ0 − 2β0Þ þ Z κ2 ¼ 3μ2λþ k2

ν2 ¼ 2α0 þ β0 μ2 ¼ X0γ0 − Z μ5 ¼ 3X0β
2
0 þ 2ν1μ4 κ3 ¼ 2X0 þ k2β0

ν3 ¼ 3α0 þ β0 μ3 ¼ X0ðβ0 þ γ0Þ þ Z μ6 ¼ 3X0ðβ20 þ 4ηÞ þ 2μ4ν1 κ4 ¼ 3κ3X0λþ k4

μ7 ¼ μ̄ð3;1;−2;−2Þ ¼ X0ð3α0 þ β0 − 2γ0Þ − 2Z
μ6 ¼ 18X0ð4η − α0β0Þ þ ν1½12μ1 − 2μ̄ð0;4;−1;−3Þ þ 3ηλðμ2 þ 10μ3Þ�

μ2s ¼ 4X0ð3ηλμ̄ð0;4;5;3Þ − 2μ̄ð3;1;−1;−3ÞÞ þ 3λ½4μ21ν1 − X0β0ð4X0α0γ0 þ β0μ̄ð6;2;−1;−3ÞÞ�
The dimensionful constants ðμi;KÞ have mass dimension two and are expected to be of OðM2

PlÞ.
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M ¼
ffiffiffiffiffiffi
X0

p
2
6664
0 0 2k2β0

3

2
ffiffi
2

p

0 0 0 0

0 0 0 0

0 0 0 0

3
7775; ð22Þ

Note that K and V are symmetric, but M is not symmetric.
The matrices A, B, and C have the form:

A ¼
"

0 0 β0k2ffiffi
2

p 1
2

− k2κ1
6λ − ηk2

8
ffiffi
2

p 0 0

#
; C ¼

�
ν1 0

0 κ4
12λ

�
;

B ¼
ffiffiffiffiffiffi
X0

p "
− 3β0ffiffi

2
p 0 0 0

0 0 − κ3
2

− 1

4
ffiffi
2

p

#
: ð23Þ

In the following, we perform a detailed analysis of the
Lagrangian LΦ.

IV. SCALAR SECTOR ANALYSIS

The Lagrangian LΦ for the scalar sector is rather non-
trivial. Our strategy here is as follows. We first integrate out
the auxiliary degrees of freedom, then diagonalize the
kinetic matrix of the resulting system. The massive degrees
of freedom are then identified and integrated out.

A. Integrate out nondynamical degrees of freedom

We integrate out the nondynamical degrees of freedomΩ
andU by varying LΦ with respect to the same variables. We
obtain the expressions:

Ω¼
ffiffiffi
2

p
β0ð3

ffiffiffiffiffiffi
X0

p
ψ̇−k2ϕÞ−Θ

2ν1
;

U¼ 3λ

4κ4

� ffiffiffi
2

p
ηk2ξþ2

ffiffiffiffiffiffi
X0

p
ð4κ3ϕ̇þ

ffiffiffi
2

p
Θ̇Þþ8k2κ1

3λ
ψ

�
: ð24Þ

Inserting these expressions back into LΦ, we obtain a
reduced Lagrangian of the form:

LΦ ¼ ẎT · K · Ẏ þ YT · V · Y þ ẎT ·MT · Y: ð25Þ

where the kinetic matrix K and the mass matrix V have the
block diagonal form:

K ¼

2
6664
K11 K12 0 0

K12 0 0 0

0 0 K33 K34

0 0 K34 K44

3
7775;

V ¼

2
6664
V11 V12 0 0

V12 V22 0 0

0 0 V33 V34

0 0 V34 V44

3
7775; ð26Þ

and the friction matrix M has the block form:

M ¼

2
6664
0 0 M13 M14

0 0 M23 M24

0 0 0 0

0 0 0 0

3
7775: ð27Þ

The explicit expressions for the matrix components are
given in Table II. It is worth pointing out here that both K33

and V33 are proportional to k4 and that all off-diagonal
matrix components with the index label 3 are proportional
to k2; one may then absorb a factor of k2 into a rescaling
of Y3 ¼ ϕ.

B. Determinant of equation of motion matrix

Before proceeding, it is perhaps worth considering the
nature of the degrees of freedom in LΦ. Following [13,19],
one may construct a matrix E of the form,

E ¼ ω2Kþ iωðM −MTÞ þ V ; ð28Þ

such that if the components of Y may be written as
Ya ¼ Y0;aeiωat, the equation of motion for the system
may be written as

E · Y ¼ 0: ð29Þ

Since the dispersion relations form the eigenvalues of E, the
determinant detðEÞ is proportional to the product of the
dispersion relations for Y, as well as an additional overall
factor k4, which (as discussed earlier) can be absorbed into
a rescaling of Y3 ¼ ϕ. If the dispersion relations are

TABLE II. Matrix coefficients for LΦ.

Kinetic matrix K coeffs. Mass matrix V coefficients Friction matrix M coefficients

K11 ¼ K K12 ¼ − 3η
4
ffiffi
2

p V11 ¼ k2ðκ2κ4−k2κ21Þ
3κ4λ

V12 ¼ − k2ηð2κ4þk2κ1Þ
4
ffiffi
2

p
κ4

M13 ¼
ffiffiffiffi
X0

p
k2½β0κ4ð4ν1−3β0Þ−2κ1κ3ν1�

2κ4ν1

K33 ¼ k4κ3
κ4

K34 ¼ k4

2
ffiffi
2

p
κ4

V22 ¼ ηð2κ4−3k4ηλÞ
32κ4

M14 ¼ −
ffiffiffiffi
X0

p ð3β0κ4þðk2κ1−3κ4Þν1Þ
2
ffiffi
2

p
κ4κ1

K44 ¼ − 3X0λ
8κ4

V33 ¼ − k4β0ν2
2ν1

V34 ¼ k2α0
2
ffiffi
2

p
ν1

M23 ¼ − 3ηλ
ffiffiffiffi
X0

p
k2κ3

4
ffiffi
2

p
κ4

V44 ¼ − 1
4ν1 M24 ¼ − 3ηλ

ffiffiffiffi
X0

p
k2

16κ4
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analytic at k2 ¼ 0, the determinant may be assumed to have
the form [where fað0Þ ¼ 0, and a∈ f1; 2; 3; 4g]:

detðEÞ ∝
Y4
a

½ω2 −Gak2 −m2
a þ faðω2Þk2 þOðk4Þ�

¼ 0; ð30Þ

which is a general expression valid for low momenta.4

Accounting for the fact that detðEÞ ∝ k4, one can obtain
the masses from Eq. (28) by taking the limit k2 → 0, which
yields an expression of the form:

lim
k2→0

detðEÞ
k4

∝ω2ðω2−m2
2Þð3ην1ω4þμ6ω

2−4X0μ7Þ; ð31Þ

which implies the following for the masses:

m2
1¼0; m2

2¼−λμ3;

m2
3¼−

12X0ηþμ5þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12X0ηþμ5Þ2−48X0ην1μ7

p
6ην1

;

m2
4¼−

12X0ηþμ5−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12X0ηþμ5Þ2−48X0ην1μ7

p
6ην1

: ð32Þ

Now, since the masses are, in general, different, the
dispersion relations will, in general, be different. Given
the ansatz used in Eq. (30) for the dispersion relations, one
can construct a recursion relation and expand in k2 to obtain
the dispersion relations of the form:

ω2 ¼ m2
a þ G0

ak2 þOðk4Þ;
G0

a ≔ Ga − faðm2
aÞ: ð33Þ

If the masses are different, one may then obtain an
expression for the effective gradient factor G0

a for the
massless degree of freedom by inserting the expression (33)
for a given m2

a into the determinant equation detðĒÞ ¼ 0,
expanding to Oðk2Þ, then solving for Ga. The result is

G0
1 ¼ G1 ¼ −

2X0μ2ν1
μ3μ7

; G0
2 ¼ −

3Z þ X0ð2β0 þ γ0Þ
3μ3

;

G0
3 ¼ −

12ν1ð3ηm6
3 − λμ2X2

0Þ þm2
3ðμs þ μ9m2

3Þ
3m2

3ðm2
3 þ λμ3Þðμ5 þ 6ην1m2

3 þ 12ηX0Þ
;

G0
4 ¼ −

12ν1ð3ηm6
4 − λμ2X2

0Þ þm2
4ðμs þ μ9m2

4Þ
3m2

4ðm2
4 þ λμ3Þðμ5 þ 6ην1m2

4 þ 12ηX0Þ
; ð34Þ

where G0
3 and G0

4 have the same form, differing only in the
masses. Recall conditions (14) and (15), which can be

respectively written as μ3 > 0 and μ2μ3 > 0. We find that in
order for the massless scalar degree of freedom to satisfy a
Lorentzian dispersion relation (so that G1 > 0), one must
require μ7 < 0. However, we will consider both signs for μ7
in the following analysis.
To see whether there exists a suitable parameter space,

we here study some specific cases. For this purpose, we
consider a parametrization of the form:

X0 ¼ qZ=γ0; β0 ¼
2ð1þ qÞγ0

ql
− 3α0: ð35Þ

The condition μ2 > 0 requires that q > 1, and μ7 < 0
requires l > 1 (assuming the other constants of the theory
are positive). It is not too difficult to verify by direct
computation that for λ ¼ η ¼ α0 ¼ 1, q ¼ γ0 ¼ 3, and
l ¼ 2, one has

G0
1 ¼ 1=5; G0

2¼−8=15; G0
3 ¼−1.60; G0

3 ¼−2.07;

m2
2 ¼−5Z; m2

3¼−2.92Z; m2
4¼−0.913Z: ð36Þ

Now in the case of positive l < 1, one has μ7 > 0, so that
G0

1 < 0. In this case, one can seek to ensure that the
dispersion relations for the remaining scalar degrees of
freedom are Euclidean and the masses are tachyonic. For
η ¼ −1, λ ¼ γ0 ¼ α0 ¼ 1, q ¼ 4, and l ¼ 1=3, we obtain:

G0
1 ¼ −33=230; G0

2 ¼ −43=69;

G0
3 ¼ −1=2; G0

4 ¼ −2.73;

m2
2 ¼ −23Z; m2

3 ¼ −4Z; m2
4 ¼ −4.85Z: ð37Þ

One can verify that in each case, there exists a neighbor-
hood of parameter space around these points such that G0

2,
G0

3, G
0
4 are all negative, and the nonvanishing masses are

tachyonic. Recalling our earlier discussion of the vector
modes, we emphasize again that Euclidean tachyonic
modes can be easily controlled by suitable boundary
conditions.

C. Integrating out degrees of freedom

To formulate a strategy for integrating out degrees of
freedom, it is perhaps appropriate to consider the behavior
of the matrices K, V , and M for small k2, only keeping
terms to leading order in k2:

K ≈

2
6666664

K − 3η
4
ffiffi
2

p 0 0

− 3η
4
ffiffi
2

p 0 0 0

0 0 k4
3X0λ

k4

12
ffiffi
2

p
X2
0
λ

0 0 k4

12
ffiffi
2

p
X2
0
λ

− 1
16X0

3
7777775
; ð38Þ

4That the dispersion relations can be expanded in k2 follows
from the fact only even powers of k appear in the components
of E.
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V ≈

2
6666664

k2μ2 − k2η
2
ffiffi
2

p 0 0

− k2η
2
ffiffi
2

p η
16

0 0

0 0 k4β0ν2
2ν1

k2α0
2
ffiffi
2

p
ν1

0 0 k2α0
2
ffiffi
2

p
ν1

− 1
4ν1

3
7777775
; ð39Þ

M ≈

2
6666664

0 0 k2K
3
ffiffiffiffi
X0

p 3α0
ffiffiffiffi
X0

p
2
ffiffi
2

p
ν1

0 0 − k2η
4
ffiffi
2

p ffiffiffiffi
X0

p − k2η
32X3=2

0

0 0 0 0

0 0 0 0

3
7777775
: ð40Þ

The dependence on k2 in the respective kinetic and mass
matricesK and V indicates that Y3 ¼ ϕ is scaled by a factor
of k2, and that Y1 ¼ ψ is connected to the massless degree
of freedom for small k2. From the form of V , we expect the
massive degrees of freedom to be connected to Y2 ¼ ξ
and Y4 ¼ Θ.
We, therefore, begin by integrating out the massive

degrees of freedom ξ and Θ; we do this by varying LΦ
with respect to ξ and Θ, setting second derivatives to zero
in the resulting equations of motion, and solving ξ and Θ.
We then resubstitute back into the action (setting ξ̇ ¼ 0

and Θ̇ ¼ 0) to obtain the Lagrangian. The resulting
expression is

L0
Φ ¼ K0

ψψ ψ̇
2 þ K0

ϕϕϕ̇
2 þ V 0

ϕϕϕ
2 þ V 0

ψψψ
2

þM0
ϕψϕ ψ̇ ; ð41Þ

where ϕ ≔ ϕk2, and the coefficients are given by some
rather complicated expressions:

K0
ϕϕ ¼ κ3ð2 − 3ηλÞ

2κ4 − 3k4ηλ
;

V 0
ϕϕ ¼ ν1

2
;

K0
ψψ ¼ 3X0λðX0κ3 − k2μ1Þð2κ4 þ 3λðk2μ1 − X0κ3ÞÞν1

2κ24

þ μ̄ð4;1;−3;−3Þ;

V 0
ψψ ¼ k2

2κ4 − 3k4ηλ
½12λX2

0μ2 − 9ηk6

− ð3ηλμ̄ð0;4;5;3Þ − 2μ̄ð0;−1;1;3ÞÞk4
þ ð4X2

0ð1þ 3λðβ0γ0 − 2ηÞÞ − 6λμ1μ3Þk2�;

M0
ϕψ ¼

ffiffiffiffiffiffi
X0

p
2κ4 − 3k4ηλ

½6λκ3μ7 − 8ð1þ 3ηλÞX0k2

− ðα0ð9ηλ − 6Þ þ β0ð15ηλþ 2ÞÞk4�: ð42Þ

The appearance of quadratic terms in ϕ when k2 → 0

indicates that ϕ is connected to a massive degree of
freedom, so we integrate out ϕ as well. After integrating
out ϕ, we obtain the following Lagrangian, keeping terms
up to Oðk2Þ:

Lψ ¼ μ3μ7
X0ν1

ψ̇2 þ k2
�
μ2ψ

2 þ 2ð1þ 3ηλÞμ7
3X0ν1λ

ψ̇2

�
: ð43Þ

One can see that ψ is massless, and it is not too difficult to
confirm that ψ indeed satisfies the massless dispersion
relation in Eq. (34). Now recall that conditions (14) and
(15) may be respectively written as μ3 > 0 and μ3μ2 > 0,
and correspond to the requirement that the tensor modes h
have a positive kinetic term and satisfy a Lorentzian
dispersion relation. If ψ also satisfies a Lorentzian
dispersion relation, one requires that μ7 < 0, but it follows
that the kinetic term for ψ is negative valued. More
generally, if h and ψ both satisfy Lorentzian dispersion
relations, either h or ψ is necessarily ghostlike.5

On the other hand, we can instead consider μ7 > 0, in
which case ψ satisfies a massless Euclidean dispersion
relation. If we assume that k2 is small compared to the
factor μ3μ7=X0ν1 (of order M2

Pl), we obtain:

Lψ ≈
μ3μ7
X0ν1

ψ̇2 þ k2μ2ψ : ð44Þ

This indicates that under an appropriate rescaling, ψ is a
harmonic function for μ7 > 0, which is, in principle,
bounded by its value on the boundary. Since the constants
in Lψ have dimension M2

Pl, any contribution arising from
higher-order effects will, in principle, be suppressed6 by an
additional factor of order 1=M2

Pl, so that despite the absence
of a large tachyonic mass, one can still suppress ψ by
setting its value on the boundary to zero.

V. SUMMARY AND DISCUSSION

In this article, we considered the Euclidean signature
scalar-tensor theory of [6], which is renormalizable [7] and
can evade Ostrogradskian instabilities [22] by virtue of the
absence of genuine dynamics. In this theory, the concept of
dynamics emerges locally for physics at low momenta. At
extremely high momenta, or short distances, there is no
concept of dynamics as the theory is genuinely locally
Euclidean. Globally, or at very long distances, again there is
no dynamics as everything is in principle determined by
suitable boundary conditions. In particular, we conducted
an analysis of perturbations over a flat background with a

5It should bementioned that there are some scenarios that can, in
principle, accommodate ghosts; see for instance, [20,21].

6It is perhaps worth noting that in Eqs. (38)–(40), the only
terms of mass dimension M2

Pl or higher are those containing ψ .
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nonvanishing derivative of the clock field and their asso-
ciated dispersion relations with the aim of identifying
massless degrees of freedom with Lorentzian dispersion
relations.
We find in our analysis a massless tensor degree of

freedom that can, with an appropriate choice of parameters,
satisfy a Lorentzian dispersion relation. At the same time,
we show that all but one of the remaining degrees of
freedom can be made to satisfy Euclidean dispersion
relations with a large tachyonic mass; these modes can
be set to zero with an appropriate choice of boundary
values. The last degree of freedom is a massless scalar that
can either be a massless ghost satisfying a Lorentzian
dispersion relation or a harmonic function. We have argued
that the latter is preferable, as harmonic functions are
bounded by their values on the boundary, and higher-order
effects are suppressed byM2

Pl. In this manner, one can argue
that the degrees of freedom that do not satisfy Lorentzian
dispersion relations can be suppressed.
A next step in this direction will be to extend the present

analysis to different backgrounds, such as those corre-
sponding to Lorentz signature black holes; it is important to
confirm (as one might expect) that conclusions of the
present analysis remain valid so long as the momentum
scale is larger than the (intrinsic and extrinsic) curvature
scale, and much smaller than MPl. It may be of interest to
study the fate of modes with momenta comparable to or
lower than the curvature scale in such backgrounds. One
can also extend the analysis to include a simple matter
model, and then all ingredients necessary to accommodate
the standard model of particle physics [23]. If one can
recover a Lorentzian dispersion relation for matter degrees

of freedom, one might expect additional constraints to arise
in such an analysis from the requirement that the massless
tensor and matter degrees of freedom propagate with the
same effective sound speed, thus recovering Lorentz
invariance. As discussed earlier, it is perhaps appropriate
in such future studies to consider a careful study of the
renormalization group flow of the theory, and to also adopt
the idea of the emergent Lorentz invariance [11].

ACKNOWLEDGMENTS

J. C. F. thanks Will Barker, Ignacy Sawicki, and Atabak
Jalali for helpful discussions and reference suggestions,
and acknowledges the Leung Center for Cosmology
and Particle Astrophysics (LeCosPA), National Taiwan
University (NTU), the R. O. C. (Taiwan) National Science
and Technology Council (NSTC) Grant No. 112-2811-M-
002-132, which supported part of this work. J. C. F. is also
supported by the European Union and Czech Ministry of
Education, Youth and Sports through the FORTE Project
No. CZ.02.01.01/00/22_008/0004632. The work of S.M.
was supported in part by Japan Society for the Promotion of
Science (JSPS) Grants-in-Aid for Scientific Research
No. 24K07017 and the World Premier International
Research Center Initiative (WPI), MEXT, Japan. The work
of S. C. has been carried out in the framework of activities of
the INFN Research Project QGSKY.

DATA AVAILABILITY

The data supporting this study’s findings are available
within the article.

[1] E. Anderson, Ann. Phys. (Berlin) 524, 757 (2012); C. J.
Isham, NATO Sci. Ser. C 409, 157 (1993), arXiv:gr-qc/
9210011.

[2] S. Mukohyama and J.-P. Uzan, Phys. Rev. D 87, 065020
(2013).

[3] M. Ishak, Living Rev. Relativity 22, 1 (2019).
[4] J. D. Bekenstein, Phys. Rev. D 48, 3641 (1993).
[5] A. White, S. Weinfurtner, and M. Visser, Classical Quantum

Gravity 27, 045007 (2010).
[6] S. Mukohyama, Phys. Rev. D 87, 085030 (2013).
[7] K. Muneyuki and N. Ohta, Phys. Lett. B 725, 495

(2013).
[8] K. S. Stelle, Phys. Rev. D 16, 953 (1977).
[9] J. C. Feng, S. Mukohyama, and S. Carloni, Phys. Rev. D

109, 024040 (2024).
[10] S. Hossenfelder and L. Smolin, Phys. Rev. D 81, 064009

(2010); S. W. Hawking, Mod. Phys. Lett. A 05, 453 (1990);
S. W. Hawking and R. Laflamme, Phys. Lett. B 209, 39
(1988); S. W. Hawking, Phys. Rev. D 37, 904 (1988).

[11] S. Chadha and H. B. Nielsen, Nucl. Phys. B217, 125
(1983).

[12] R. Wald, General Relativity (University of Chicago Press,
Chicago, 1984); S. Hawking and G. Ellis, The Large Scale
Structure of Space-Time (Cambridge University Press,
Cambridge, England, 1973).

[13] K. Aoki and S. Mukohyama, Phys. Rev. D 100, 064061
(2019).

[14] S. Mukohyama, J. Cosmol. Astropart. Phys. 12 (2014)
011.

[15] W. Barker, C. Marzo, and C. Rigouzzo, arXiv:2406.09500.
[16] L. Buoninfante, arXiv:1610.08744.
[17] Y.-C. Lin, M. P. Hobson, and A. N. Lasenby, Phys. Rev. D

99, 064001 (2019); Y.-C. Lin, Ghost and tachyon free
gauge theories of gravity: A systematic approach, Ph.D.
thesis, Apollo—University of Cambridge Repository,
2020.

[18] A. Aurilia and H. Umezawa, Phys. Rev. 182, 1682 (1969).
[19] S. Mukohyama, Phys. Rev. D 98, 104053 (2018).

FENG, MUKOHYAMA, and CARLONI PHYS. REV. D 112, 024066 (2025)

024066-8

https://doi.org/10.1002/andp.201200147
https://arXiv.org/abs/gr-qc/9210011
https://arXiv.org/abs/gr-qc/9210011
https://doi.org/10.1103/PhysRevD.87.065020
https://doi.org/10.1103/PhysRevD.87.065020
https://doi.org/10.1007/s41114-018-0017-4
https://doi.org/10.1103/PhysRevD.48.3641
https://doi.org/10.1088/0264-9381/27/4/045007
https://doi.org/10.1088/0264-9381/27/4/045007
https://doi.org/10.1103/PhysRevD.87.085030
https://doi.org/10.1016/j.physletb.2013.07.054
https://doi.org/10.1016/j.physletb.2013.07.054
https://doi.org/10.1103/PhysRevD.16.953
https://doi.org/10.1103/PhysRevD.109.024040
https://doi.org/10.1103/PhysRevD.109.024040
https://doi.org/10.1103/PhysRevD.81.064009
https://doi.org/10.1103/PhysRevD.81.064009
https://doi.org/10.1142/S0217732390000524
https://doi.org/10.1016/0370-2693(88)91825-4
https://doi.org/10.1016/0370-2693(88)91825-4
https://doi.org/10.1103/PhysRevD.37.904
https://doi.org/10.1016/0550-3213(83)90081-0
https://doi.org/10.1016/0550-3213(83)90081-0
https://doi.org/10.1103/PhysRevD.100.064061
https://doi.org/10.1103/PhysRevD.100.064061
https://doi.org/10.1088/1475-7516/2014/12/011
https://doi.org/10.1088/1475-7516/2014/12/011
https://arXiv.org/abs/2406.09500
https://arXiv.org/abs/1610.08744
https://doi.org/10.1103/PhysRevD.99.064001
https://doi.org/10.1103/PhysRevD.99.064001
https://doi.org/10.1103/PhysRev.182.1682
https://doi.org/10.1103/PhysRevD.98.104053


[20] C. Deffayet, A. Held, S. Mukohyama, and A. Vikman,
arXiv:2504.11437; J. Cosmol. Astropart. Phys. 11 (2023)
031; C. Deffayet, S. Mukohyama, and A. Vikman, Phys.
Rev. Lett. 128, 041301 (2022).

[21] A. Hell, D. Lust, and G. Zoupanos, J. High Energy Phys. 08
(2023) 168; J. Maldacena, arXiv:1105.5632.

[22] R. P. Woodard, Scholarpedia 10, 32243 (2015); Eur. Phys. J.
Plus 138, 1067 (2023); M. Ostrogradsky, Mem. Acad. St.
Petersbourg 6, 385 (1850).

[23] J. Kehayias, S. Mukohyama, and J.-P. Uzan, Phys. Rev. D
89, 105017 (2014).

EMERGENT LORENTZIAN DISPERSION RELATIONS FROM A … PHYS. REV. D 112, 024066 (2025)

024066-9

https://arXiv.org/abs/2504.11437
https://doi.org/10.1088/1475-7516/2023/11/031
https://doi.org/10.1088/1475-7516/2023/11/031
https://doi.org/10.1103/PhysRevLett.128.041301
https://doi.org/10.1103/PhysRevLett.128.041301
https://doi.org/10.1007/JHEP08(2023)168
https://doi.org/10.1007/JHEP08(2023)168
https://arXiv.org/abs/1105.5632
https://doi.org/10.4249/scholarpedia.32243
https://doi.org/10.1140/epjp/s13360-023-04709-4
https://doi.org/10.1140/epjp/s13360-023-04709-4
https://doi.org/10.1103/PhysRevD.89.105017
https://doi.org/10.1103/PhysRevD.89.105017

	Emergent Lorentzian dispersion relations from a Euclidean scalar-tensor theory
	I. INTRODUCTION
	II. THEORY
	A. A shift-symmetric emergent Lorentz signature theory
	B. Reformulation of action

	III. PERTURBATION ABOUT A FLAT BACKGROUND
	A. Background and perturbation
	B. Tensor sector
	C. Vector sector
	D. Scalar sector

	IV. SCALAR SECTOR ANALYSIS
	A. Integrate out nondynamical degrees of freedom
	B. Determinant of equation of motion matrix
	C. Integrating out degrees of freedom

	V. SUMMARY AND DISCUSSION
	ACKNOWLEDGMENTS
	DATA AVAILABILITY
	References


