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We study the thermodynamics of a class of four-dimensional black hole solutions arising from the
compactification of a higher-curvature gravity theory featuring an infinite tower of Lovelock-type
invariants. For planar horizons, we identify two distinct branches: a regular black hole supported by a
nontrivial scalar field and a non-regular general relativity (GR) solution with a trivial scalar profile. Despite
their differing geometries, both branches share the same free energy at fixed temperature, revealing a
thermodynamic degeneracy naturally linked to the enhanced symmetry and scale invariance of the planar
base manifold. In the case of a spherical horizon, even if the scalarized branch is not obtained in closed
form, one can see that the degeneracy persists in the absence of the quadratic curvature contribution. On the
other hand, if this quadratic term is taken into account, the regular solution may be thermodynamically
favored (or not) over the Schwarzschild-anti—de Sitter solution depending on the values of the coupling

constants of the theory.
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I. INTRODUCTION

Singularity theorems in general relativity (GR) demon-
strate that, under fairly general physical conditions—such
as the validity of energy conditions and the existence of
trapped surfaces—gravitational collapse leads inevitably to
the formation of spacetime singularities [1-3]. These
singularities are characterized by the divergence of curva-
ture invariants and geodesic incompleteness. They re-
present regions where the predictive power of GR breaks
down, and thus signal a fundamental limitation of the
classical theory in the strong gravity regime.

The appearance of curvature singularities is widely
interpreted as an indication that GR is incomplete at high
energy scales. In the vicinity of such singularities, quantum
gravitational effects are expected to become significant,
pointing to the need for a more fundamental theoretical
framework. Although a complete theory of quantum
gravity remains elusive, considerable attention has been
devoted to constructing modified gravitational models that
admit nonsingular black hole solutions—geometries that
remain regular everywhere, including at the center of
collapse. These are commonly referred to as regular black
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holes. For a comprehensive overview, we refer the reader to
the review [4] and the references cited therein.

These solutions, by construction, avoid inner curvature
singularities while preserving essential features of black
hole spacetimes, such as event horizons. Unfortunately,
in most of the cases, they require the inclusion of exotic
matter fields and undesired tunings between the theory and
solution parameters.

It has long been understood that in spherically symmetric
cases, any regular black hole geometry must feature a de
Sitter-like core near the origin r = 0, where the curvature
invariants remain finite and geodesic completeness is
ensured. This necessary and sufficient condition is known
as the Sakharov criterion [5,6]. The aforementioned inner
de Sitter region effectively replaces the singular core of
standard black hole solutions, such as those found in the
Schwarzschild or Reissner-Nordstrom metrics. The first
regular solution derived from equations stemming from an
action principle was constructed some time ago in the
context of nonlinear electrodynamics [7]." Within scalar-
tensor theories, regular solutions have also been found for
certain classes of Degenerate Higher-Order Scalar-Tensor
(DHOST) theories by means of the Kerr-Schild construc-
tion [9,10]. In addition, in the case of hairy solutions

'Some of these iconic regular black hole geometries have been
proven to provide a natural mechanism for cosmic acceleration as
well [8].
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belonging to the beyond-Horndeski class, regular space-
times have been obtained under a specific relation between
the mass and the hair parameter [11,12].

More recently, a promising approach to constructing
such regular black holes has emerged through the use of
higher-curvature theories of gravity, particularly the class
known as quasitopological gravities [13—17]. These theo-
ries generalize Einstein gravity by including specific
combinations of curvature invariants that contribute non-
trivially to the field equations in dimensions higher than
four, while still yielding second-order equations of motion
under the assumptions of spherical symmetry. In addition,
in contrast to Lovelock theory [18,19], they are shown to
exist at any order in the curvature in dimensions greater
than four [20-22], and even more to provide a basis of
polynomial densities for any aimed effective-field-theory
expansion of GR [23].

By employing the full tower of quasitopological gravity
terms at arbitrary order n > 3 in the curvature tensor—along
with the n = 2 Gauss-Bonnet term—it becomes possible to
construct black hole solutions that are regular at all points in
the spacetime (of at least dimension five), in vacuum and with
only mild assumptions on the theory couplings [24]. Taking
the limit n — oo naturally leads to the emergence of a de
Sitter core, while the infinite series of higher-curvature terms
also enables the construction of various regular geometries,
depending on the chosen parametrization of the couplings
that govern each term in the series. These solutions generi-
cally contain an inner (Cauchy) horizon, which is typically
subjected to mass inflation and other instabilities [25].
However, such instabilities may be avoided if the inner
horizon structure is extremal [26]. In addition, their dynami-
cal formation has been recently addressed under fairly
general conditions [27,28].

Due to the intrinsically higher-dimensional nature of
quasitopological gravities, the resulting regular black holes
inherently reside in higher dimensions. The presence of the
full quasitopological tower relies on the structure of gravity
theories that are well defined only in dimensions greater than
four. Consequently, any solution constructed in this setting
must be interpreted as higher-dimensional, which poses a
conceptual challenge: how can such regularization mecha-
nisms, which depend fundamentally on higher-dimensional
structures, be applied in a four-dimensional context?.

This question has been addressed in recent work by
supplementing Einstein’s theory with four-dimensional
Lovelock-like corrections at all orders in the curvature
[29]. These corrections are achieved via a well-defined
dimensional regularization of the entire Lovelock tower of
higher curvature invariants, that considers the subtraction of
two conformally related Lovelock actions of order n and
performs the limit to the critical dimension d = 2n. This is
made in strict analogy with the recently explored conformal
regularizations of Einstein-Gauss-Bonnet gravity in dimen-
sion four [30-33]. Effectively, the higher-dimensional
information is encoded through a scalar degree of freedom.

This scalar field arises naturally from the conformal regu-
larization scheme and couples to gravity in a way that retains
second-order field equations, thereby avoiding issues related
to higher-derivative instabilities or ghosts [34,35]. In fact, it
reproduces Horndeski gravity [36], in a covariant Galileons
fashion [37], with fixed theory potentials.2

Importantly, for a planar base manifold geometry,’ the
resulting black hole solutions in this reduced theory remain
everywhere regular, mirroring the higher-dimensional con-
figurations of quasitopological gravity. Again, considering
the entire set of corrections allows one to effectively create
a de Sitter core. Furthermore, the scalar field introduced in
the process does not require any form of self-tuning or fine-
tuning to maintain regularity. Instead, the regular geometry
emerges as a consequence of the structure of the theory
itself.

This work is devoted to the study of the thermodynamic
properties of the regular planar anti—de Sitter (AdS) black
holes constructed in [29].4 Using the Euclidean action
approach [41], we compute the mass, entropy, and temper-
ature, and verify that these quantities satisfy the first law of
thermodynamics. Interestingly, we find that these thermo-
dynamic charges are degenerate: the vacuum planar AdS
black hole in pure GR possesses the same mass, entropy,
and temperature, rendering it thermodynamically indistin-
guishable from the regular black hole. This degeneracy is
attributed to the planar geometry of the horizon and has
been observed previously [42] in a three-dimensional
nonrotating setup.” Taking advantage of the planar sym-
metry, we follow the methodology of [44] to construct the
corresponding planar AdS soliton. We compute its mass
and free energy, enabling an analysis of the phase transition
structure between the soliton and the regular black hole
configurations. Finally, although the exact form of the
spherical counterpart of the regular (hairy) black hole is not
known, we compute its mass, entropy, and temperature. In
contrast to the planar case, we find that the thermodynamic
degeneracy with the Schwarzschild-AdS black hole is
lifted. We conclude with a qualitative analysis of the
corresponding phase transition structure in this setup.

II. BLACK HOLE THERMODYNAMICS

A. Thermodynamics of the regular planar black holes

As discussed in [29], the conformal dimensional regu-
larization of Lovelock theory gives rise to a scalar-tensor
theory with second-order field equations. It is therefore

*This theory was obtained for the first time in [38].

3Although the spherical base manifold counterpart of this
solution remains elusive in exact form, below we provide
evidence supporting the loss of regularity in this case.

Thermodynamic analysis of the aforementioned vacuum higher
dimensional solutions [24] have been recently addressed in [39,40].

’In fact, universality of the thermodynamic quantities is no
longer valid if rotation is included [43].
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natural to recast this target theory within the Horndeski
gravity framework [36,37]. In fact, to order n in the
Lovelock Lagrangian £, the resulting scalar-tensor theory

is described by the Horndeski Lagrangian LEZ;)

£ =c\ -c{"0p +G\"R
+ GU(Oh)? = (VuV, )] + GGV, V,

(n)
G
- (O) - 3049, V.) + 2(V,9.4)")
(1)

with fixed theory potentials given by

GV = 2n1(n — 1)(2n - 3)X",

Gy = —2"n(2n = 3)X",

GE‘”) — 211—1,,1)(%—17

G(”> _ 4log X, n=2, )

5 on-1 ”(ﬂ—zl)Xn—Z’ n>2,

where X = —1V,¢V#¢ denotes the standard canonical

kinetic term of the scalar degree of freedom [38].
Therefore, our guiding action principle is defined by the
four-dimensional action

1 [s+]
S = /d‘*x, /=g {R —20+5 > 12"45)] . ()
n=2

where [/ denotes a new length scale that governs the scalar-
tensor trace left by the original Lovelock invariants. We
have also already defined a set of couplings, that later on we
denote by c,, that already provide the planar regular black
hole of [29].

We proceed with the study of the thermodynamics of the
solutions using the Euclidean approach, where the thermo-
dynamic ensemble corresponds to the Euclidean path
integral in the saddle-point approximation around the
classical Euclidean configuration [41]. Given the static
and spherically symmetric nature of the geometries, we
consider the Euclidean class of metrics

ds> = N(r)>f(r)d7* + d_r2 + rz(dx% + dx%), (4)
f(r)
¢ = ¢(r), (5)

with Euclidean time 0 < 7 < f3, where # = T~ is, as usual,
the inverse of the temperature. Here the scalar field is
assumed to depend only on the radial coordinate r.
Plugging this ansatz into the Euclidean action, one yields
after some cumbersome calculations

Iy = —1Qy)p / NH(f S b )

and where the expression of H(f, f', ¢', ¢") becomes too
cumbersome to present in full. Varying this action with
respect to N, f, and ¢, one would yield to the three
independent field equations. Nevertheless, because of the
choice of the Horndeski potentials a certain combination of
these field equations can be factorized as in [45,46] in the
following form

[(¢')* +¢"]
x {ZF" [—r22"  n(n—1)(2n—=3) X" =2"n(n—1)X""2

n>2

+ X220 (n—1)(142(n—2) +2r¢/ (2n=3))] } (6)

It is clear that, as in similar cases [45,46], there exist two
branches of solutions for the scalar field: a logarithmic
branch, and another that cancels the infinite series. In what
follows, we restrict our attention to the logarithmic branch
and, from this point onward, we assume the scalar field
takes the form ¢(r) = In(r) + C. We are aware that the
general solution should be of the form ¢(r) = In(Ar + B)
but, as in [45,46], the integration constant B must be taken
to zero. One can see that this branch of solution is
compatible with N(r) =1 and the metric function f
determined below.

Now, since the scalar field can be chosen as ¢ = In(r),
after some straightforward computations, the Euclidean
action becomes

d © | [—2A\E A
(7)

where |Q,| = [ dx,dx, and By is a boundary (see below).
It is clear that variation with respect to the lapse function N
yields the following polynomial equation for f

2 &N (=PF(r) ¢ 2AF°
— = M, 8
I — < r? > 3 + (®)

where M is an integration constant. This solution corre-
sponds to the regular black hole configuration recently
constructed in [29].

In the Euclidean action, the boundary term B is deter-
mined by requiring that the Euclidean action attains an
extremum, i.e., 6/ ; = 0, within the class of fields considered
here, as is customary and was originally introduced in [47],
see also [48]. As usual, the variation of the boundary term
proceeds as 6By = 6Bg(o0) — 6Bg(r),). We first compute
the variation at infinity, obtaining
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6Bp(o0) = || lim

(3f o0 _12 kfk—l
) [Z “ er)—3 - 2rlz]’
= ||poM. (9)

Hence, we get

3
2r§£A) ’ (10)

where we used relation (8). As usual, at the horizon
of, = —4xTory, and thus

Bi(oo) = [ |M = 1) (—

8f 1, [xo= 2k(=12)F f1
OBp(ry) = ||p 12h {27( 2k)—3 —2rlz} ,
k=2 r T
= 87r|§22|rh5rh. (11)
Integrating yields
Bg(ry) = 4n|Qr7, (12)

allowing us to express the final form of the boundary term as

er,A

BE:ﬁ|szz|(— )—4nr%|szz|. (13)

It is then straightforward to extract the mass M and
entropy S

M= ZrZA

| ], S =4nr|Q,|. (14)

The temperature can be obtained by differentiating relation
(8) and evaluating at r = ry,

rhA
T=-"2 1
47 (13)

Finally, one can directly verify the first law of black hole
thermodynamics

dM =TdsS. (16)

Note that, for the same underlying theory, there also exists a
solution corresponding to that of GR with a constant (trivial)
scalar field. However, this GR branch is singular in the
planar case, singular in the sense it contains a central
singularity. Despite differences in the geometries and scalar
field profiles between the nonregular GR solution and the
regular scalarized configuration, it is straightforward to show
that both possess the same free energy at fixed temperature.
This thermodynamic equivalence indicates a degeneracy
between the two branches, suggesting that the scalar field
in the planar case can be activated without affecting the

on-shell action—effectively regularizing the geometry with-
out altering its thermodynamic properties.
Now, it is possible to reintroduce the coupling constants

¢, in front of each of the Horndeski Lagrangians Eg‘) (3).
The action principle we consider is then given by [29]

1 & n
5= / d4x\ﬁ—g{R—2A+l—22cn12"£2>], (17)
n=2

and, in this case, the Wheeler relation (8) becomes slightly
modified as

e

Since the contribution of the variation at infinity depends
only on the constant of integration M, and at the horizon
only on the Einstein-Hilbert term —2f(r)r, it is evident that
the resulting thermodynamic quantities are insensitive to
the specific values of the coupling constants c,.
Consequently, for different choices of these couplings
(provided they at least ensure the convergence of the
series), the thermodynamics remains unchanged. This
highlights once again the remarkable nature of these regular
solutions: their thermodynamic behavior is universal,
unaffected by the detailed structure of the higher-order
terms in the action. This robustness suggests that the
physical properties of these configurations are governed
primarily by the leading-order dynamics, reinforcing their
special role within the broader solution space of the theory.

2AP

) =2f(r)r= +M. (18)

B. Regular soliton: The phase diagram
of regular black holes

In pure GR, the Schwarzschild-AdS black hole with a
spherical horizon exhibits a rich phase transition structure
relative to the maximally symmetric AdS background. As
shown by Hawking and Page [49], there exists a critical
temperature 7. at which the large-radius Schwarzschild-
AdS black hole becomes thermodynamically favored over
thermal AdS. This marks a first-order phase transition
which, from the perspective of the dual conformal field
theory (CFT), corresponds to a confinement/deconfinement
transition [50].

It is well recognized that the phase transition structure—
on both the gravitational and field theory sides—depends
on the topology of the spacetime. In fact, no Hawking-Page
transition occurs for planar Schwarzschild-AdS black holes
with respect to thermal AdS, as the planar black hole is
always thermodynamically dominant for any nonzero
temperature.

However, even a minimal change in the topology on
which the field theory resides—such as compactifying one
of the planar directions into a circle—introduces a negative
Casimir energy associated with the resulting nontrivial
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topology. The corresponding geometry on the gravity side
is known as the Horowitz-Myers AdS soliton [44]. As a
matter of fact, a Hawking-Page transition does exist in
between the planar Schwarzschild-AdS black hole and the
AdS soliton [51].

Owing to the planar topology of the black hole geometry,
this soliton can be obtained simply by performing a double
Wick rotation: one between the Lorentzian time coordinate
t = ix; and, let us say, the coordinate x; = if, where we
assume that x; is compactified as 0 < x; < L;. Without
any loss of generality, we can assume that the remaining
planar direction satisfies 0 < x, < L,. Hence, the soliton
metric in our case reads

dr?

f(r)

where f(r) corresponds to the regular black hole solution
(8). Now, for this class of regular planar black holes, the
Euclidean action /I, ;, defined with a Euclidean time 7 = it
such that 0 < 7 < fi, reads

ds> = —r?di* + + f(r)dx? + r’dx3,  (19)

8|

SLL
3z~ s X3

3N

IE,s = —p; (20)

from where it is direct to obtain the mass of the soliton

8[| 8LiL,

Mi=-307 =~ 37

(21)

On the other hand, the entropy of the soliton can be
computed via the Cardy-like formula introduced in [52],
using the very same soliton mass. It yields

S = 3a(=2M,)i M3, (22)
result in agreement with the one obtained via the standard
thermodynamical relation S; = I, — f adl—;i“‘.

Now, having the soliton geometry as the real vacuum
state, which has a negative energy, allows the study of
phase transition with respect to the planar black hole
geometry. In fact, the difference of free energy between
both hairy configurations is

AF = g Iy — 1] = )5 [1 287 23
E Es 2 3 A2 ﬁ3 .
Recall that the soliton has no associated temperature, hence
in order to compare the corresponding free energy we
consider the equilibrium condition f; = f. It is direct to
observe the emergence of a critical temperature

at which a first-order phase transition occurs. In addition,
once again, it can be proven that the thermodynamic
structure is degenerated with respect to the one of the
vacuum GR case.

C. Spherical case and non regular solution

An analogous calculation to the one performed above
reveals that the function f of a line element with a spherical
base manifold does not satisfy a Wheeler-like polynomial
relation, such as the one given in Eq. (8). Although a closed-
form expression for the metric function remains elusive, it is
still possible to compute the associated thermodynamic
quantities. These quantities can be derived and analyzed
despite the lack of an explicit metric solution, they read

8rri A r(1=7r2A)
= — 8 S T =—— 2 7 s
M 3 TRy 4r(rs +2)
S = 162%r7 + 64z% In(ry,). (25)

Again, it is straightforward to verify the validity of the first
law in this case. By introducing coupling functions in front of
the Horndeski Lagrangians (17), one finds that only the
coupling ¢, appears in the thermodynamic relations. Indeed,
we obtain

8rri A rp(1=72A)
M= 8ary, T=-"1t— I’
3 TR 4r(ry + 2¢y)
S = 162%r;, + 64c,n* In(ry,). (26)

This result is not surprising, as we had already observed that
the presence of the Gauss-Bonnet coupling leads to a
logarithmic contribution to the entropy, see, e.g., [53].

In the spherical case, the thermodynamic picture changes
significantly compared to the planar scenario. Although the
explicit form of the scalarized (hairy) black hole solution is not
known, one can still compute its mass, entropy, and temper-
ature, and thereby evaluate its free energy. When comparing
with the Schwarzschild-AdS solution of general relativity—
which corresponds to a trivial (constant) scalar field—an
interesting dependence on the coupling ¢, emerges.

Specifically, when ¢, # 0, the difference in free energy
can be either strictly positive or strictly negative, depending
on the value of ¢, and the cosmological constant A. In such
cases, either the scalarized (hairy) black hole or the GR
branch can be thermodynamically favored at fixed temper-
ature. This behavior points to the presence of a richer phase
structure, controlled by the interplay between scalar cou-
plings and background curvature.

On the other hand, when ¢, = 0, the situation changes.
Although the free energy difference vanishes and the
thermodynamic becomes degenerated with respect to the
pure GR spherical case, the scalarized solution is still no
longer regular near the origin. In particular, it lacks a de

064036-5



CISTERNA, HASSAINE, and HERANDEZ-VERA

PHYS. REV. D 112, 064036 (2025)

Sitter core and does not behave as f~1 near r =0,
indicating a pathological or singular geometry in that limit.

III. CONCLUSIONS

Using the Euclidean formalism, we analyzed the thermo-
dynamics of a regular black hole solution in four-dimen-
sional gravity, derived from an infinite tower of Horndeski
theory with a planar base manifold. Our results reveal a
marked contrast between black hole solutions with planar
and spherical horizons within the same scalar-tensor
framework. In the planar case, we identified two branches:
a regular black hole supported by a nontrivial scalar field
and a singular, GR-like solution with a trivial scalar
configuration. Both share the same free energy, indicating
thermodynamic degeneracy. This stems from the enhanced
symmetry and scale invariance of planar horizons, which
permit nontrivial scalar fields to regularize the geometry
without affecting the on-shell action. Such behavior is
reminiscent of flat-horizon holographic models, where
scalar hair can be thermodynamically neutral.

In contrast, this degeneracy is lifted in the spherical case.
Although the explicit metric for the scalarized black hole is
unavailable, we computed its mass, entropy, and temper-
ature, allowing evaluation of its free energy. The resulting
difference from the GR branch suggests that the scalar field
induces a new thermodynamic phase—similar to sponta-
neous scalarization in scalar-Gauss-Bonnet and other
extended gravity theories, where curvature activates scalar
fields and shifts the preferred thermodynamic solution [54].
These findings highlight the influence of horizon topology
and base curvature on solution structure, thermodynamics,
and possible phase transitions.

Further research is needed to assess the regularity and
stability of scalarized black holes in the spherical case. A

detailed analysis, potentially involving numerical methods,
may clarify whether the solution is truly singular or
regularized at higher orders. Investigating the dynamical
and thermodynamic stability of these solutions, along with
their phase structure, could offer deeper insight into the role
of scalar fields in black hole physics and their observational
implications.

Future work should also test the conjecture that regular
black holes with nontrivial scalar fields can exhibit the same
free energy as singular GR solutions with constant scalar
configurations. Verifying this will likely require numerical
exploration of scalarized solutions and their thermodynamic
behavior, especially when analytic metrics are inaccessible.
It is crucial to determine whether thermodynamic observ-
ables alone—such as free energy or entropy—can signal the
regularity of a solution. If so, this could serve as a powerful
diagnostic tool in modified gravity, enabling the identifica-
tion of physically viable, regular solutions even in the
absence of explicit spacetime metrics.
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