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A new diabatization method based on artificial neural networks (ANNs) is presented, which is capa-
ble of reproducing high-quality ab initio data with excellent accuracy for use in quantum dynamics
studies. The diabatic potential matrix is expanded in terms of a set of basic coupling matrices and the
expansion coefficients are made geometry-dependent by the output neurons of the ANN. The ANN is
trained with respect to ab initio data using a modified Marquardt-Levenberg back-propagation algo-
rithm. Due to its setup, this approach combines the stability and straightforwardness of a standard
low-order vibronic coupling model with the accuracy by the ANN, making it particularly advanta-
geous for problems with a complicated electronic structure. This approach combines the stability
and straightforwardness of a standard low-order vibronic coupling model with the accuracy by
the ANN, making it particularly advantageous for problems with a complicated electronic struc-
ture. This novel ANN diabatization approach has been applied to the low-lying electronic states of
NO3 as a prototypical and notoriously difficult Jahn-Teller system in which the accurate descrip-
tion of the very strong non-adiabatic coupling is of paramount importance. Thorough tests show
that an ANN with a single hidden layer is sufficient to achieve excellent results and the use of
a “deeper” layering shows no clear benefit. The newly developed diabatic ANN potential energy
surface (PES) model accurately reproduces a set of more than 90 000 Multi-configuration Refer-
ence Singles and Doubles Configuration Interaction (MR-SDCI) energies for the five lowest PES
sheets. Published by AIP Publishing. https://doi.org/10.1063/1.5053664

I. INTRODUCTION

The fundamental understanding of chemical processes
and spectroscopy is one of the main goals in chemi-
cal physics and theoretical chemistry. A key component
in the strive for such understanding is the study of the
underlying molecular quantum dynamics. With the ongo-
ing advances of theoretical and experimental treatments of
chemical systems alike, fundamental insights regarding chem-
ical dynamics become increasingly available. However, the
complexity of experimental data and the intricacy of theo-
retical treatments vastly increase with the size of the sys-
tem. Therefore, extending the fundamental insights to larger
systems is of great interest and an active field of current
research.

One of the core issues in the theoretical treatment of
systems beyond triatomics is the development of accurate
high-dimensional potential energy surfaces (PESs), which
provide the basis for quantum-dynamical investigations. In
the case of a single adiabatic electronic state, several strate-
gies for developing higher-dimensional PESs of sufficient
accuracy have been established. One class of approaches is
based on local interpolation techniques,1–5 and another one
uses invariant polynomials and least-squares fitting to uti-
lize the permutation symmetry of indistinguishable nuclei.6

However, extending these methods to PESs of multiple
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excited states proves difficult due to the added complexity of
accounting for state-state interactions. Recent attempts to
tackle this issue have been formulated by utilizing the mod-
ified Shepard interpolation7–9 and by using invariant poly-
nomials and complete nuclear permutation-inversion (CNPI)
symmetry.10,11

The proper inclusion of excited states requires a number
of PESs and their couplings to be represented in an appro-
priate form. In general, there will be at least some region in
nuclear configuration space (NCS) with a high density of elec-
tronic states, such that interactions among electronic states
become significant, rendering the Born-Oppenheimer (BO)
approximation invalid. For such a case, a quasi-diabatic rep-
resentation of the coupled electronic states has been found
to be of great advantage.12–25 Quasi-diabatic, which will be
referred to as “diabatic” from here on for the sake of sim-
plicity, means that the state basis to represent the electronic
Hamiltonian is required to preserve the character of the elec-
tronic states as much as possible, reducing the nonadiabatic
(or derivative) coupling to a degree that it can be neglected
safely. Thus, the electronic Hamiltonian will be represented
by a non-diagonal PES matrix encoding all state energies and
couplings. One advantage is that the matrix elements of the
electronic Hamiltonian become simple, well-behaved func-
tions of the nuclear coordinates, reducing the complexity of
finding analytic expressions for them. The simplest (and most
commonly used) such approach utilizing the diabatic represen-
tation is the multi-mode linear vibronic coupling method by

0021-9606/2018/149(20)/204106/11/$30.00 149, 204106-1 Published by AIP Publishing.
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Köppel, Domcke, and Cederbaum26 as well as similar methods
developed by Yarkony and co-workers.27–30 These treatments,
while suitable for the simulation of certain ultra-fast nonadia-
batic processes, are too limited to represent more extended
regions of the coupled PESs as required for the treatment
of more complicated dynamical processes. Therefore, exten-
sions of vibronic coupling models needed for the treat-
ment of dynamical processes of higher complexity have been
developed.31–36 Furthermore, several other approaches exist
utilizing properties of the adiabatic electronic wave func-
tions for diabatization.18,21,22,24,37–42 Most of these methods
do not require a model diabatic matrix, meaning that they
do not yield a set of PESs in closed mathematical form.
Therefore, a second step would be required to represent
the diabatic matrix elements provided by a point-wise dia-
batization scheme by some external mathematical model.
Representing the diabatic energies and couplings accurately
and in closed form as diabatic PESs beyond simple mod-
els is still a major problem for systems with more than
three atoms.43–46 This has been attempted by the aforemen-
tioned methods of extending vibronic coupling models in
various ways,31–36 using modified Shepard interpolation7–9 or
invariant polynomials and CNPI symmetry10 as well as by
choosing elaborate functional forms for the diabatic matrix
elements.43–45 However, the number of accurate diabatic
surfaces for such systems in the literature remains rather
scarce.

Recently an alternative approach for the representation of
PESs evolved utilizing artificial neural networks (ANNs),47–65

which are trained by various methods usually based on ana-
lytic reference data from other models or ab initio data. It has
been shown mathematically that ANNs are capable of uni-
formly representing any continuous real function of n dimen-
sions up to arbitrary accuracy.66 Therefore, in principle, it
should be possible to train an appropriate neural network
to represent any PES accurately with respect to the under-
lying data given. Apart from the high accuracy that can be
achieved, ANNs have the advantage that they can be evalu-
ated very efficiently once trained, which plays a key role in
quantum dynamics methods such as multi-configuration time-
dependent Hartree (MCTDH) where the evaluation of the PES
is the most time demanding part.67,68 While ANNs are in prin-
ciple capable of reproducing arbitrary continuous functions,
this is in practice of course limited by the acquisition of data,
training algorithm, chosen network architecture, and an issue
commonly referred to as “over-fitting.” However, ANNs have
already been used with impressive results to represent a sin-
gle PES based on high-level ab initio-data.63,65 Some first
attempts to extend the use of ANNs to diabatic PESs are also
known.69,70

In the present work, a novel ANN based diabatization
approach is used to accurately represent the coupled PESs of
electronically excited states with strong Jahn-Teller (JT) cou-
plings. For this purpose, an ANN-based diabatic model has
been developed and trained to represent the low-lying elec-
tronic states of NO3. The new method is described here for the
first time and the overall quality, the resulting PES model, and
the stability of the fitting procedure is analyzed depending on
various factors.

II. THEORY
A. Adiabatic and diabatic representation

As pointed out above, we aim for an accurate diabatic
representation of the electronic Hamiltonian of a given molec-
ular system. Therefore, the theoretical background of adiabatic
and diabatic representations is briefly summarized in the fol-
lowing. The starting point is the total molecular Hamiltonian
with electronic degrees of freedom q and nuclear degrees
of freedom Q reading

Ĥ(q, Q) = T̂nuc(Q) + T̂el(q) + VC(q, Q)︸                ︷︷                ︸
Ĥel(q,Q)

. (1)

If the nuclear motions are frozen, the nuclear kinetic energy
T̂nuc(Q) vanishes and what remains is the electronic Hamil-
tonian Ĥel consisting of the electronic kinetic energy T̂el

and the Coulomb potential VC . The eigenvalues Ea
k (Q) and

eigenfunctions ψa
k

(
q; Q

)
of Ĥel can be evaluated by suit-

able ab initio methods for selected points Q in the nuclear
configuration space. The Ea

k (Q) depend parametrically on
the nuclear coordinates Q which yields the adiabatic poten-
tial energy surfaces (PESs) for the electronic states in ques-
tion. The set of all electronic eigenfunctions ψa

k forms the
adiabatic basis for the complete molecular wave functions.
The total wave function thus can be expanded as

Ψ
a
j (q, Q) =

∑
k

φa
k(Q) · ψa

k (q; Q). (2)

Expanding Ĥ in terms of ψa
k (q; Q) yields the adiabatic rep-

resentation Ĥ
a
(Q) with all electronic degrees of freedom

integrated out

Ĥ
a
kj =

(
T̂nuc(Q) + Ea

k (Q)
)
· δkj − Λ̂kj(Q). (3)

In case that the derivative coupling terms Λ̂(Q) are small, they
can be ignored which is widely known as Born-Oppenheimer
(BO) approximation. However, this condition is often not ful-
filled for electronically excited states and Λ̂(Q) may even
become singular or very large for conical intersections or
avoided crossings, respectively.12

By contrast, a diababatic basis {ψd
k (q; Q)} is chosen such

that Λ̂ remains negligibly small by construction so that in the
resulting Hamiltonian

Ĥ
d
kj = T̂nuc · δkj + Wd

kj(Q) (4)

the derivative coupling terms can be ignored just like in the
BO approximation. The kinetic (derivative) coupling of the
adiabatic representation is transformed into a potential cou-
pling in the diabatic representation since the diabatic potential
matrix Wd(Q) is not diagonal anymore. Unfortunately, a dia-
batic basis cannot be defined unambiguously and can only
be determined ab initio through the computation of adiabatic
eigenstates and energies. However, it can be shown that the
diabatic matrix elements Wd

kj(Q) must be simple and smooth
functions of the nuclear coordinates. Therefore, the approxi-
mate mathematical representation of Wd(Q) is usually much
easier than that of Ea(Q). Finally, the adiabatic basis functions
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can be expanded in terms of diabatic basis functions as

ψa
l (q; Q) =

∑
k

ukl(Q) · ψd
k (q; Q). (5)

This relates to a basis transformation U(Q) which would be
exact if both bases would be complete or span the same vector
space. In this case, the unitary matrix U diagonalizes Wd

U†WdU =Wa = diag(Wa
j ) (6)

and the eigenvalues exactly reproduce the adiabatic energies
Ea

k (Q).
Up to this point no approximations were necessary as all

bases were assumed to be complete. However, for any practi-
cal application, all bases involved are finite and only a small
number of states can be handled. Thus, the adiabatic states are
approximately represented in a finite Nd-dimensional diabatic
basis by

ψa
l (q; Q) ≈

Nd∑
k

ud
kl(Q) · ψd

k (q; Q). (7)

Nd can be equal or greater than the number of adiabatic states
required.

B. Artificial neural networks

In the present work, multilayer perceptron feed-forward
neutral networks are utilized for the diabatization of adiabatic
molecular energy data. A feed-forward neural network is a
function taking a vector η(1) as the input layer and processing
it via intermediate results η(k ), the so-called hidden layers, to
a final output vector η( f ) called the output layer. The vector
elements η(k)

j of the kth layer are the neurons (perceptrons).

Each intermediate η(k ) depends solely on the previous layer
η(k−1) by

η(k)
j = f (k)*

,
β(k)

j +
∑

l

ω(k)
jl η

(k−1)
l

+
-︸                           ︷︷                           ︸

f (k)
(
χ

(k)
j

)
. (8)

Here, f (k ) is a function of one variable χ(k)
j called the acti-

vation function, χ(k)
j being a weighted sum of the values of

the neurons η(k−1)
l of the previous layer with an added bias

term β(k)
j . The resulting ANN can be visualized as shown

in Fig. 1.

C. Diabatic model (ansatz)

Since the diabatic matrix elements are by nature slowly
varying functions of the nuclear coordinates, it is straight-
forward to expand them as multi-dimensional polynomials
as

Wd
kj(Q) =

∑
α

pkj
α

∏
l

Qnαl
l . (9)

The order of the polynomials is given by the sum of the expo-
nents n =

∑
l nα l. Special boundary conditions like asymptotic

behaviour or periodicity may be incorporated into the defini-
tion of the nuclear coordinates Ql. The symmetry of the sys-
tem is conveniently accounted for by using symmetry-adapted

FIG. 1. A neural network with 2 hidden layers. Arrows correspond to
weighted contributions. Bias terms and activation functions are not visualized.

coordinates in which case certain expansion parameters pkj
α

may vanish or be strictly related to other expansion param-
eters. In the latter case, it is very convenient to rewrite this
expansion in terms of basis matrices as

Wd(Q) =
∑

L

λL ·ML(Q). (10)

The symmetry relations are encoded in the basis matri-
ces ML(Q) here. This approach is extremely successful and
straightforward in the case of linear vibronic coupling26 or
for other low-order expansions. The order of the expansion
terms needs to be increased if higher accuracy of the PES
model is required over more extended regions of the nuclear
configuration space (NCS). However, the higher-order terms
cause several technical problems for the required nonlinear fit-
ting as well as possibly causing artifacts in the shape of the
PESs. Hence, the choice of terms included in the model usu-
ally requires a trade-off between lower accuracy with higher
stability and higher (local) accuracy at the cost of more erratic
behavior outside the sampling space. In the present work, we
therefore propose a new approach based on an expansion in the
basis matrices of lowest orders. The expansion coefficients are
first obtained from a standard nonlinear least-squares fit and
then are modified by corrections provided by ANNs. As will
be shown below, this new method overcomes the character-
istic oscillation features plaguing typical higher-order poly-
nomial expansions. Furthermore, this approach does not pro-
duce the erratic behavior outside of the sampling space, often
observed in higher-order polynomial expansions. The new
ANN approach, thus, leads to very robust diabatic ANN-PES
models.

The fundamental idea of this method is to render the
expansion coefficients of Eq. (10) coordinate dependent read-
ing

Wd(Q) =
∑

L

λL(Q) ·ML(Q), (11)

where each coefficient is of the form
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λL(Q) =



λ0
L for uncorrected terms

λ0
L ·

(
1 + η(f )

kL
(Q)

)
otherwise.

(12)

The constants λ0
L obtained from standard nonlinear fitting pro-

cedures are modified by the coordinate dependent outputs
of a trained ANN. This way, one can combine the stabil-
ity and basic qualitative description of low-order expansions
while still introducing flexibility to achieve excellent accu-
racy. Of course, the ANN must be trained properly with
respect to ab initio reference data and this training also
involves a necessary adiabatic-to-diabatic transformation. This
requires a modification of standard ANN training algorithms
described next.

D. Backpropagation of generalized outputs

All special properties of ANNs aside, they can be viewed
as parametrized functions modeled for the specific purpose of
closely reproducing an expected output t for each point in the
function’s domain. In the most simple case, the function output
η(f ) is modeled to directly reproduce the desired output t, in
which case the error can be measured in terms of the difference
e between the two. The problem of finding an optimal set of
parameters can then be expressed in terms of minimizing the
sum of squares error

V =
1
2
|e2 |. (13)

Applying a (gradient descent) step in parameter space to
improve the current parameter set requires derivatives of V
with respect to all parameters ω(k)

jl and β(k)
j . However, thanks

to the mathematical structure of feed-forward networks, the
derivatives can be easily expressed in terms of derivatives with
respect to the weighted sums χ(k)

j by defining

δ(k)
j :=

∂V

∂ χ(k)
j

(14)

which yields

∂V

∂ω(k)
jl

= δ(k)
j · η

(k−1)
l , (15a)

∂V

∂ β(k)
j

= δ(k)
j . (15b)

These equations generalize naturally for sums over multiple
data points by introducing a sum over all points Qp which is
omitted for brevity. These δ(k)

j are in return analytically known
from the recurrence relation

δ(k)
j = f ′(k)

(
χ(k)

j

)︸      ︷︷      ︸
f ′(k)

j

·
∑

k

ω(k+1)
kj δ(k+1)

k , (16)

which terminates at the final layer, yielding

δ
(f )
j = −ej · f

′(f )
j . (17)

Evaluating and applying gradient descent steps by exploiting
the recursive nature of the required derivatives seen in Eq. (16)
is referred to as backpropagation. This scheme is generally
applicable as long as the error can be directly expressed in

terms of the ANN output. However, in principle, the neural
network output η(f ) can relate to the desired output t in arbi-
trarily indirect ways. For example, the present case uses the
individual output values as coefficients for a diabatic expan-
sion, which in turn produces a matrix that is diagonalized to
obtain adiabatic energies comparable to the actual ab initio
data. This processed form of η(f ), denoted D

(
η(f )

)
, is now

what is actually comparable to t. Hence we developed a modi-
fication allowing for arbitrary differentiable relations D

(
η(f )

)
between the output layer and physical reference data. While
the actual backpropagation remains the same, the final layer
now terminates to

δ
(f )
j =

∂V

∂ χ
(f )
j

= −
∑

l

el ·
∂Dl

(
η(f )

)
∂ χ

(f )
j

= −
∑

l

el ·
∂Dl

(
η(f )

)
∂η

(f )
j

∂η
(f )
j

∂ χ
(f )
j

= −
∑

l

el ·
∂Dl

∂η
(f )
j

· f ′(f )
j . (18)

In the present case, where D
(
η(f )

)
refers to the eigenval-

ues of a diabatic matrix which is parametrized by the output
layer η(f ) as seen in Eqs. (11) and (6), partial derivatives are
obtained from numerical differentiation. This is always possi-
ble as long as the target t refers to a continuously differentiable
property. Since the diagonalization is carried out numeri-
cally, the partial derivatives must be computed numerically as
well.

E. (Adapted) Marquardt-Levenberg method

The most basic training algorithm using the back-
propagation would be a simple gradient decent approach.
However, due to the extreme non-linearity of the fitting prob-
lem, it is desirable to choose a more sophisticated algorithm
to optimize a given parameter set Ω (containing all weights
and biases) than a gradient descent method can provide. A
widely used improvement is to utilize a Marquardt-Levenberg
algorithm71 which approximates the exact Hessian using the
Jacobian

Jlk =
∂el

∂Ωk
(19)

and a damping term λ. The working equation to produce the
correction step ∆Ω in parameter space then reads

∆Ω =
(
JT J + λ1

)−1
JT e. (20)

It can be shown, in analogy to the derivatives of V with respect
to individual parameters, that J can be evaluated analytically.
By using backpropagation with a modified termination con-
dition,71 a single backpropagation yields all J lk for a fixed
row index l, meaning one requires as many backpropaga-
tions to construct J as there are physical outputs per data
point (e.g., adiabatic energies). In the standard case, each out-
put neuron corresponds to one physical output and the final
backpropagation layer ∆(f ,l) reads
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∆
(f ,l)
j = −δlj · f

′(f )
j (21)

for a given l. We again derived a modified version for the
case that there is no one to one correspondence of neural net-
work output and physical output but an arbitrary differentiable
relation D

(
η(f )

)
instead. Equation (21) then generalizes to

∆
(f ,l)
j = −

∂Dl

∂η
(f )
j

· f ′(f )
j . (22)

III. APPLICATIONS

The new method should be widely applicable and can
be used for conventional diabatization-by-ansatz problems as
well as for the more advanced approaches like the hybrid diaba-
tization72 recently developed by us. A prototypical Jahn-Teller
problem is chosen to demonstrate the novel ANN diabatiza-

tion. The first three electronic states of NO3, X̃
2
A′2, Ã

2
E′′, and

B̃
2
E′, have been studied by us extensively35,36,73–75 and thus

NO3 is an ideal benchmark system for the present study. The
results of the present work can be compared directly with our
latest diabatic PES model.75

A. Diabatic model for NO3

For this first proof-of-principle study of the new ANN
diabatization method, a restricted-dimensional (5D) model of
the lowest PESs corresponding to the X̃, Ã, and B̃ states of
the planar NO3 radical has been developed. Due to the global
D3h symmetry of NO3, two pairs of PESs become degenerate
at symmetry points and are split for distorted geometries due
to strong JT coupling. Thus, the symmetry and couplings have
to be accounted for properly. Furthermore, the Ã state has
a rather low dissociation threshold and thus the asymptotic
behaviour of the PESs is relevant. To account for the basic
asymptotic behavior and a correct description of the complete
nuclear transformation symmetry in the underlying low-order
model, a set of symmetry-adapted coordinates has been cho-
sen as already described in previous work.33,36 First, a set of
primitive coordinates is defined comprising the three N–O dis-
tances ri and a set of O–N–O anglesαi. The latter are numbered
according to the unique atom not involved in forming the angle.
These primitive coordinates are first transformed nonlinearily
as

mi = 1 − exp(−γ(ri − r0)), (23a)

α′i =
αi − α0

rjrk
, i , j , k (23b)

to account for the asymptotic behaviour. Here, r0 and α0 are
the respective distances and angles at the reference point and
γ is a chosen Morse-parameter. Then the transformed coor-
dinates are symmetry-adapted to yield a breathing mode a, a
degenerate pair of asymmetric stretching modes xs, ys, and a
degenerate pair of asymmetric bending modes xb, yb by

a =

√
1
3

(m1 + m2 + m3), (24a)

xs =

√
1
6

(2m1 − m2 − m3), (24b)

ys =

√
1
2

(m2 − m3), (24c)

xb =

√
1
6

(
2α′1 − α

′
2 − α

′
3

)
, (24d)

yb =

√
1
2

(
α′2 − α

′
3

)
. (24e)

With these coordinates, all linear coupling matrices can
be constructed with two non-trivial kinds of coupling matrix
blocks

εs,b = *
,

xs,b ys,b

ys,b −xs,b

+
-

and ρs,b =
*
,

xs,b

−ys,b

+
-

(25)

accounting for 2E′ and 2E′′ Jahn-Teller coupling as well as
pseudo-Jahn-Teller coupling between 2A′2 and 2E′. The diag-
onal potential Wd(Q) consists of 12 coordinate-dependent
terms up to second order listed in the Appendix. The three con-
stants defining the energy differences between the electronic
states at the D3h reference geometry are modified by the ANN
as well as the expansion coefficients of the coupling matrices.
This yields a total of 9 ANN-corrected basis matrices. In the
following, the diabatic electronic basis states are used in order
2A′2, 2E′′, and 2E′. This yields the diabatic matrix

Wd(Q) =Wd
diag(Q) +

*..
,

λ1 0T 0T

0 λ21 0

0 0 λ31

+//
-

+
*..
,

0 0T 0T

0 λ4εs + λ5εb 0

0 0 λ6εs + λ7εb

+//
-

+
*..
,

0 0T λ8ρs
T + λ9ρb

T

0 0 0

λ8ρs + λ9ρb 0 0

+//
-
, (26)

where Wd
diag contains all uncorrected diagonal terms. The first,

second, and third matrix terms encode the ANN-corrected
contributions to the diagonal potential terms, the Jahn-Teller
coupling blocks, and the pseudo-Jahn-Teller coupling blocks,
respectively. The corrected coefficients λi are of the general
form

λj = λ
0
j ·

(
1 + cj · η

(f )
j (Q)

)
. (27)

Factors of cj allow further flexibility if particular λ0
i (read: the

reference model terms) reside in a different order of magnitude
than the other terms (the coupling terms) and hence require a
different treatment.

B. Ab initio data and reference fit

The extremely intricate electronic structure of the NO3

radical requires a rigorous treatment in order to obtain sta-
ble results. The ab initio data points are taken from pre-
vious work75 and were computed by Multi-configuration
Reference Singles and Doubles Configuration Interaction
(MR-SDCI) calculations based on Complete Active Space
Self-Consistent Field (CASSCF) reference wave functions
using a slightly adapted correlation consistent aug-cc-pVTZ
standard basis.74 For details of the ab initio computations,

 15 April 2024 08:38:35



204106-6 D. M. G. Williams and W. Eisfeld J. Chem. Phys. 149, 204106 (2018)

see Refs. 36 and 73–75. The data points have been selected
by a stochastic approach described in Ref. 76. To this end,
normalised random vectors are generated which define lin-
ear cuts through the multi-dimensional PESs starting from the
ground state equilibrium structure. Then, ab initio points are
computed along these random directions. By this approach,
we can check and ensure that the CASSCF/MRCI calcula-
tions converge to the correct result. This could not be achieved
by computing single points at random positions due to the
very complicated electronic structure of this system (as typ-
ical for radicals and excited states in general). The sampled
nuclear configuration space is selected such that the resulting
PES model is optimally suited for the simulation of spectro-
scopic properties. The 21 free parameters λ0

j of the reference
model were fitted against this data set using a Marquardt-
Levenberg algorithm incorporated into a genetic algorithm
with a resulting root mean square (rms) error of roughly
1700 cm−1.

The large data set of roughly 90 000 ab initio reference
energies has been partitioned into training sets of 85% of the
data and external validation sets of the remaining 15% of the
energies. The validation set error is used as a convergence
parameter and does not otherwise contribute to the neural net-
work fit, but has been included in the polynomial reference
model. This technique is referred to as early stopping in the
literature.77 In the present work, this early stopping technique
is implemented in a “relaxed” fashion. Instead of immediately
stopping the fit when the reference error does not improve
along with the fitting error, the reference error must increase
for a fixed number of consecutive cycles (default is 3) before
early stopping is executed. The convergence of the fitting error
does not suffer from this restriction, as discussed in Sec. IV
below. The contributions to the squared error which is mini-
mized during the training of the neural network are weighted
with an exponential decay of energy differences of the
form

σij = exp
(
−α(Ea

j
(
Qi

)
− Ea

j
(
Q0

)
)
)
. (28)

This scheme allows us to weigh regions in NCS more or less
depending on their relevance in the nuclear dynamics and thus
helps to improve the accuracy of the fit in the most relevant
regions.

C. Description of ANN setup

Apart from the actual fit, several parameters and options
regarding the ANN have been taken into consideration to
ensure an optimal setup. The final setup discussed in Sec. IV
involves ANNs with only one hidden layer of varying sizes.
The sigmoid tanh(χ) has been chosen as the hidden layer acti-
vation function. For the final layer, the identity Id(χ) has
been selected. Each ANN is trained starting from a set of
100 randomly generated initial guesses for weights and biases
which are then optimized according to the working equations
from Sec. II E. While modified backpropagation by itself has
been tested, it has been found inferior for the current applica-
tion compared to the modified Marquardt-Levenberg method.
Similarly, “deeper” networks with more than one hidden
layer have been tested with various size combinations, but no

improvement compared to single layer ANNs was observed. It
has been shown by Cybenko that any continuous real function
can be represented with arbitrary accuracy by a single layer
ANN.66 Since this is a consequence of the superposition of
sigmoidal functions, this also holds for multi-layer ANNs and
has been shown by Cybenko for ANNs with two hidden lay-
ers. In principle, it could be more efficient to achieve a certain
accuracy with less optimization parameters by using multi-
ple hidden layers of smaller size. Therefore, we tested this
possibility by setting up ANNs with one through four hidden
layers and layer sizes such that the total number of optimization
parameters is roughly the same. Thus, a benefit of “deep lay-
ering” ANNs would manifest itself in lower rms errors. From
a study involving various ANN topographies listed in greater
detail in Sec. IV below, we conclude that increasing the num-
ber of hidden layers shows no clear advantage for the present
case (see below). Increasing the number of hidden layers can
yield slightly better as well a significantly worse results com-
pared to a single hidden layer. Larger numbers of initial guesses
(up to 2000) were found to have no influence on the overall
quality of the final model. Various splitting schemes for fitting
reference and validation data, respectively, have been studied.
The selection of 15% of the original data as validation set has
been found to be sufficiently large to reduce over-fitting while
not being detrimental to the overall quality of the final model
by removing too many data from the training set. Table III
provides a quick overview of various choices of data partition-
ing, which is discussed in Sec. IV. Furthermore, the validation
data has been ensured to have no characteristic differences
compared to the fitting data, as random reassignment of fit-
ting and reference subsets had no significant effect on the fit
quality.

IV. RESULTS AND DISCUSSION

The single layer ANN setup described in Sec. III C yields
excellent fit results for a surprisingly low number of hidden
layer neurons. The (weighted) rms error of the primitive ref-
erence model is fairly large and about the same for both fitting
and validation data set (1730 cm−1 and 1710 cm−1, respec-
tively). This is to be expected as both data sets have been
included equally in the reference fit. The reference model is
not flexible enough to represent the surface in a satisfying
quantitative way but is sufficient to reproduce the reference
data qualitatively. The remaining deviation is corrected by the
ANN model yielding PESs of very high accuracy. Various neu-
ral network sizes between 20 and 120 hidden layer neurons
have been tested as summarized in Table I. The convergence
behavior of the best rms error (and the corresponding reference
error) is presented in Fig. 2.

Considering the best ANN parametrization found in each
set of 100 initial guesses, the fitting rms expresses satisfac-
tory convergence for 60–75 neurons, the best fit from the
75 neuron set yielding a weighted rms error of 38.4 cm−1.
While the fitting rms expectedly decreases further for ever
increasing network sizes, the difference between fitting and
validation error increases also. For this reason the 75 neuron
network will be considered as the optimal result and primary

 15 April 2024 08:38:35



204106-7 D. M. G. Williams and W. Eisfeld J. Chem. Phys. 149, 204106 (2018)

TABLE I. Fitting results of best and 10th best out of 100 trained networks for
each hidden layer size, depending on the number of hidden layer neurons. Both
fitting rms and rms of validation set are shown. All rms errors are weighted
and are given in cm�1.

Neurons Best Validation 10th best Validation

20 101 103 107 111
40 68.3 72.9 69.9 74.3
50 56.0 60.5 58.5 64.5
55 51.0 56.4 54.4 59.8
60 48.1 52.0 49.5 54.1
65 44.6 49.8 46.6 51.2
70 41.9 47.7 43.2 49.0
75 38.4 42.6 41.1 45.3
80 36.7 42.4 38.6 44.0
90 34.4 41.1 35.0 41.0
100 31.0 37.3 32.0 38.7
120 26.8 34.5 27.8 34.0

example to alleviate potential concerns of over fitting. Inter-
estingly, the closeness of the validation set and fitting set error
(here 38.4 cm−1 and 42.6 cm−1) is consistent throughout many
parametrizations in each set, as even the 10th percentile of each
set of 100 ranked ANNs generally shows the same behavior
as the best ANN itself. This is both a testament to the consis-
tency of the model in areas unknown to the fit as it is to the
stability of the method because a comparably small number
of initial guesses already produces a lot of networks of similar
quality. Knowing the basic capabilities of a 75 neuron single
layer ANN, it may be interesting to consider comparable net-
works of “increased depth,” that is, ANNs with multiple hidden
layers. To achieve a fair comparison one can increase the
number of layers while keeping the number of corresponding
formal parameters (weights and biases) approximately con-
stant and keeping all other technical influences of the fit the
same. Overall, the errors produced by networks of increasing
depth do not show a straightforward improvement compared to
the single-layer case, as seen in Table II. While the ANN with
three hidden layers does produce slightly better fitting errors,

FIG. 2. Weighted root mean square error of the best neural network of a given
set as a function of hidden layer size. Purple line represents fitting set error,
and green line represents validation set error.

TABLE II. Fitting results of best out of 100 trained networks for each network
topography. Both fitting rms and rms of validation set are shown. All rms errors
are weighted and are given in cm�1.

Hidden layers Neurons/Layer Parameters Best Validation

1 75 1134 38.4 42.6
2 27 1170 96.6 104
3 20 1149 26.4 30.2
4 17 1182 75.9 82.5

both two and four hidden layer networks perform significantly
worse than the single layer model in this particular setup.
Therefore, increasing the number of layers shows no particular
advantage compared to the cost of increased complexity.

Another technical factor influencing the fit is that of early
stopping as described above. In order to investigate potential
(negative) impacts on the overall quality of the PES model,
the single layer 75 neuron model was fitted again without
early stopping and a maximum number of 1000 Marquardt-
Levenberg iterations. Both fitting and validation error have
been found to show no significant improvement (35.7 cm−1

and 40.3 cm−1) at the cost of missing an additional safeguard
against over-fitting. Furthermore, the training without early
stopping is much less efficient in terms of computer time which
might be a big disadvantage for the representation of larger
systems and thus larger ANNs.

Apart from the validation set as used in this work, it is not
uncommon to withhold an additional part of the data set which
is not considered in the fit at all, the so-called testing set. Fur-
thermore, choosing the relative sizes of these three data sets
may be a point of concern. In particular, increasing the valida-
tion (and testing) set(s) may be a way to further decrease the
risk of overfitting. The impact of these two factors has been
studied for the present case, again using the single layer 75 neu-
ron architecture as a benchmark. Table III shows the results of
comparing the present case (85% fit: 15% validation: 0% test-
ing) against a standard literature case (85%: 10%: 5%) as well
as the extreme case of choosing a training and validation set of
equal size, again with and without the 5% testing set. Due to
the extreme similarity of validation and testing rms, no benefit
has been observed in withholding data for a testing set. Instead,
introducing a testing set at the cost of reducing the validation
set has only been found to increase the difference between fit
and validation for the present case. Similarly, an even split
between validation and fitting data has not been found to
have any beneficial effect compared to the cost of increased

TABLE III. Fitting results of best out of 100 trained networks (single layer,
75 neurons) for each choice of data split. The full data set is segmented into
a set for fitting, a validation set for convergence testing (early stopping), and
an independent test set. All rms errors are weighted and are given in cm�1.

Split Best Validation Testing

85%: 15%: 0% 38.4 42.6 . . .

85%: 10%: 5% 39.3 47.0 45.6
50%: 50%: 0% 37.7 53.2 . . .

50%: 45%: 5% 38.4 50.2 50.2
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FIG. 3. State-resolved convergence behavior of unweighted root mean square
error for ab initio data points up to 1 eV above respective reference point
energy. States are enumerated from ground state to energetically highest lying
state. Gray: weighted fitting set error.

disparity between the two. For this reason, our preferred dis-
tribution of the reference data is 85% fit: 15% validation:
0% testing.

Another useful measure for the accuracy of the surface
is the unweighted rms error of the adiabatic energies below a
certain threshold. Since we are particularly interested in the
quality of the surface in the physically relevant region, the
cutoff energies have been chosen 1 eV above the reference
point energies, which results in about 15 000 ab initio values
for each electronic state.

Considering again all network sizes as shown in Fig. 3 and
Table IV, one finds that the unweighted errors are generally
well below the weighted fitting rms for all states except the
first (and to a lesser degree third) excited state. This indicates
that the physically relevant regions of the surface are repro-
duced even significantly better than the weighted rms over all
ab initio data points would indicate. While the convergence of
the individual states initially appears more erratic than the total
weighted error for small networks, it becomes well-behaved

TABLE IV. Fitting results of best out of 100 trained networks of size 20 to
120, depending on the number of hidden layer neurons. Both fitting rms and
rms of validation set are shown. All rms errors are unweighted with a cutoff
1 eV above each state’s reference energy. All errors are given in cm�1.

Neurons State 0 State 1 State 2 State 3 State 4

20 49.2 103 63.0 87.4 49.5
40 34.3 75.1 52.0 55.3 37.5
50 32.7 55.2 39.3 47.3 37.4
55 31.0 48.8 36.8 42.3 34.3
60 30.5 48.7 36.4 40.5 31.0
65 27.4 46.4 35.3 35.4 27.6
70 24.6 40.8 30.2 34.1 30.0
75 22.9 39.4 29.3 30.2 23.1
80 22.4 38.7 29.7 28.2 20.8
90 19.9 35.1 27.7 27.1 22.2
100 19.1 31.6 23.1 24.3 20.2
120 16.3 27.1 21.0 21.0 16.5

for networks approaching acceptable sizes (55 onwards). What
remains to be investigated further is the outlying error of the
first excited state, which almost appears to dominate the total
weighted error for large network sizes. This behavior is easily
explained when investigating the topographical complexity of
the individual sheets, as the first excited state has a far more
complicated multi-minimum structure than the ground state,
resulting in more strain for the network. Conversely, the ground
state itself is extremely well reproduced due to its significantly
simpler shape. With both convergences with respect to net-
work size and initial guess number sufficiently expanded upon,
what remains is a deeper analysis of the produced diabatic
model.

Given the previously considered 75 neuron network, the
cutoff-rms of 30.0 cm−1 turns out to be significantly smaller
than the weighted rms of 38.4 cm−1. The ground state by
itself is reproduced with a corresponding cutoff-rms of only
22.9 cm−1. The performance of the ANN model compared to
the polynomial reference model is also demonstrated graph-
ically in Figs. 4 and 5. Figure 4 shows that the ANN model
consistently reproduces the ab initio data quantitatively over
the complete energy range of 6 eV for an arbitrary cut through
the 5D surfaces. While the reference model shows significant
deviations of over 1 eV, the ANN fit is indistinguishable from
the reference energies at the scale of the plot. This also applies
to scans from the validation data set, as can be seen in Fig. 5,

FIG. 4. Comparison of ANN model with underlying primitive reference
model along a linear random cut through the 5D surfaces taken out of the
training set. Above: energies produced by ANN model. Below: energies pro-
duced by polynomial reference model. Circled dots are ab initio fitting data.
τ is an arbitrary scan parameter.
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FIG. 5. Comparison of ANN model with underlying primitive reference
model using validation set data. Above: energies produced by ANN model.
Below: energies produced by polynomial reference model. Circled dots are
ab initio validation data. Data points belong to a random cut through the 5D
surfaces, τ is an arbitrary scan parameter.

indicating consistent behavior beyond the fitting data. Looking
at the two sheets of the 2E′′ state as a function of the e′ stretch
coordinates xs and ys, Fig. 6 displays the symmetry-induced
three equivalent minima characteristic for the lower adiabatic
sheet. While this behavior is to be expected of a quantita-
tively correct surface, it follows in no way from the underlying
reference model. This is due to the fact that linear coupling

FIG. 6. Cross section of diabatic PESs of the two sheets of the 2E′′ and two
sheets of the 2E′ state of NO3 depending on the stretching modes xs and ys.
Contour lines facing outwards are drawn white. The cross section’s rim has
been marked in black to highlight the present conical intersections.

terms as used in the reference model are only capable (with-
out inclusion of higher order coupling terms) of producing
rotationally symmetric “mexican hat”-like potentials. Hence,
all characteristic features of the PESs are inherited from the
ANN correction. The two adiabatic PES sheets belonging to
the B̃

2
E′ state are also displayed in Fig. 6. The three equivalent

PES wells in the 2E′ manyfold are less pronounced compared
to the 2E′′ state and thus not so clearly visible in the figure.
The figure also reveals additional intersections between the
2E′′ and 2E′ PESs which certainly has an impact on the quan-
tum dynamics of the photochemistry of NO3 after excitation
into the B̃ state. These additional conical intersections also
become obvious from Fig. 7 in which the adiabatic energies
of the five state components are displayed along the 1D bond
dissociation coordinate rNO.

The novel ANN approach presented here has one further
extremely positive feature beyond its general ability to repro-
duce the ab initio data with very high accuracy. The Taylor
expansions of the diabatic matrix used so far tend to produce
rapid oscillations and even unbound areas in configuration
space where no ab initio reference data is available. These
Taylor expansions require a considerable trade-off between
local accuracy (higher orders, greater flexibility) and stability
of the model (lower orders, fewer oscillations). By contrast,
the ANN model is found to be completely robust against such
oscillations and unbound regions. Considering, for example,
a scan along an N–O distance as seen in Fig. 7 which has not
been included in the fit, the model shows the ability to pro-
duce a complex coupling structure of the higher states without
producing oscillations in the repulsive wall. The reason for

FIG. 7. Scan along NO distance around the reference point with all other
coordinates frozen at the reference geometry. The ANN model reproduces con-
ical intersections not included in the reference model and shows appropriate
asymptotic behaviour.

 15 April 2024 08:38:35



204106-10 D. M. G. Williams and W. Eisfeld J. Chem. Phys. 149, 204106 (2018)

this is that the used neural networks, unlike polynomials, are
by nature composed of slowly varying sub-expressions (sig-
moid functions) which merely increase in number but remain
unchanged in character for larger networks while polynomial
expansions introduce terms of increasingly erratic behavior
which need to be compensated for by all other terms at every
reasonable point in coordinate space. Furthermore, it is impor-
tant to keep in mind that the neural network model does not
need to reproduce the coupling terms directly. It only needs to
correct a low-order polynomial model which is already intrin-
sically bound and free of oscillations. Each contribution is
scaled in a way such that the neural network corrections reside
in the order of magnitude of the expected terms. It turns out
that this is an invaluable property of the novel ANN approach
when used for quantum dynamics simulations. A demonstra-
tion of the strength of the ANN diabatization method pre-
sented here will be given in a forthcoming quantum dynamics
study.

V. CONCLUSIONS AND OUTLOOK

A new diabatization approach is presented to accurately
represent the coupled PESs of strongly interacting electronic
states. The core idea of this method is to express the diabatic
model in terms of a primitive low-order polynomial expan-
sion whose coefficients are then modulated by an artificial
neural network (ANN). This approach combines the stabil-
ity and straightforwardness of a standard low-order vibronic
coupling model with the accuracy provided by the ANN as
required for reliable quantum dynamics simulations. The new
approach is applied to a 5-dimensional 5-state model of pla-
nar NO3. Special attention has been paid to the stability of the
fitting algorithm, the overall consistency of the resulting PESs
throughout the ab initio data, and the quality of the model with
respect to the whole data set including points not used for the
ANN training as well as the regions which are most relevant
for future dynamics calculations, namely, the potential wells.
The model has been found to excel in all of the above areas.
Furthermore, extensive tests show that a single hidden layer is
sufficient for this excellent performance and that “deeper” lay-
ering shows no clear benefit. While the primitive and easy to
obtain reference model only provides a general bound shape of
the potential roughly representing the reference data, the final
model is of outstanding quality over an energy range of 6 eV.
Despite being intrinsically non-linear, the algorithm produces
many high-quality parameter sets even for a small number of
initial guesses. Of the roughly 90 000 ab initio reference ener-
gies obtained from ab initio CASSCF/MR-SDCI calculations,
a subset of 15% has been excluded from the training data,
but used as validation set for a convergence test to prevent
over-fitting. This validation data set has been found also to be
represented with excellent accuracy by the final ANN model
despite these data not being used to train the ANN.

The present study demonstrates that the proposed method
is capable of producing stable, high-quality PESs based on a
straightforward and easy to extend model. What remains is
the extension of the model to a full-dimensional description of
NO3, including the umbrella motion as well as corresponding
couplings in the diabatic matrix. Furthermore, as a final study

of the resulting PESs, appropriate quantum dynamics calcula-
tions are already in progress. As the approach laid out in this
paper is generic, applying it to different systems as well as
different kinds of coupling (e.g., relativistic coupling) appears
to be very promising.
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APPENDIX: DIAGONAL MODEL TERMS

For the sake of simplicity, let r2
s,b be given as

r2
s,b = x2

s,b + y2
s,b. (A1)

The totally symmetric diagonal contributions of the reference
model are expressed here in terms of three independent scalar
functions V i(Q)

Wd
diag(Q) =

*..
,

V1(Q) 0T 0T

0 V2(Q)1 0

0 0 V3(Q)1.

+//
-

(A2)

Apart from the constant terms, referring to the vertical exci-
tation energies at the reference point, an expansion of each
V i(Q) up to second order yields four (constant) coefficients
µi

k and the corresponding polynomial terms

Vi(Q) = µi
1 · a + µi

2 · a
2 + µi

3 · r
2
s + µi

4 · r
2
b . (A3)
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