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Abstract. Two shooting methods for calculation of potential (shape) resonances are described
and their efficiency tested. It is found that although both methods are based on calculation of
the Siegert (i.e. exponentially increasing non-normalizable) state, the methods are stable and
very accurate values of resonance energies and widths are obtainable. It is hoped that the
resonance parameters obtained here can serve as test examples for various approximate methods
for calculating resonance energies and widths.

1. Introduction

Resonances play an important role in many areas of physics and chemistry [1]. They
manifest themselves as sharp structures in various cross sections and enhance a broad variety
of processes. Let us mention just the vibrational excitation of molecules by electron impact
and the dissociative attachment of electrons to molecules which are strongly influenced by
the existence of short-lived negative ion states [2]. Mathematically, resonance is defined
as the pole of the&-matrix lying in the lower complex halt-plane,k;, = k1 — ik2, k1 and

k, positive [1, 3]. Generally, there are two types of resonance [1]: Feshbach (core excited)
resonances and the potential (shape) resonances. The existence of the latter is guaranteed
by a special form of the interaction potential. In this paper we shall discuss only the second
type of resonance.

As is well known, the resonance wavefunction is not square integrable, it diverges at
large distances and its calculation is generally regarded as difficult.

To avoid the complications caused by the divergence of the resonance wavefunction at
large distances the method of complex scaling in which the position vecterrotated
to the complex plane is commonly used [4-7]. For this method to be applicable the
potential must satisfy certain analytic conditions which restrict its utility. The stabilization
method of Hazi and Taylor, ignoring the asymptotic part of the resonance wavefunction
completely, can be applied only to narrow resonances [9-19]. There exist other methods
for the calculation of resonances. To mention just a few of them: the variational methods
[1], the scattering methods [1, 20, 21], the Siegert method [22—27], the Riccatti-Pad method
[28], the Milne method [40], the optical potential method [41], etc. The references are
meant to be representative rather than exhaustive.

Here we shall discuss two methods which are different from those listed above and
which to our knowledge have received little attention in the context of resonances. Both
are based on the calculation of the Siegert state [22] and are of the shooting type. This
means that starting from an initial guess of the resonance parametansl k, their value
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is iteratively improved so that th&-matrix pole is eventually found. Contrary to the
aforementioned matrix methods only one resonance is calculated at a time. This is exactly
what we need, since usually only one resonance dominates in a certain energy region and
the distant resonances have a negligible effect on the cross section. By our methods it is
possible of course to calculate all resonances in a given energy range as well as to treat
overlapping resonances [29].

Computationally, the proposed two methods differ very much from each other. One
method is based on the integral form of the Sclinger equation, i.e. on the solution of the
Lippmann—Schwinger equation [3], the other relies on solving thed@iihger equation in
its differential form. Both methods are based on the calculation of the Siegert state which
is defined as the solution of the Sodinger equation

— ")+ V()Y r) = K2y (r) (1)

(for simplicity we treat just the case= 0) satisfying the following boundary conditions
[22]

Ys(kr, 0) = 0 B
Witk R)
el ) @)

In accordance with the usual physical conditions we assume Wliet = O for some
sufficiently large values of > R. In this region the Siegert state behaves as

Vske, r) ~ A(k,)ek" forr > R ()

and therefore is proportional to the Jost solutigtk,, r) [3]. As is well known the
resonances arise whep = k; — ik, with k; andk, positive. Fork; = 0 we have either
virtual (k > 0) or bound k; < 0) states.

The resonance wavefunctiofis(k,, ) therefore behaves ags(k;, r) ~ A(k,)e* ek
at large distances wherg(k;) is a function ofk. Sincek; is positive the resonance
wavefunction ¥s(k;, r) increases exponentially with increasimgand hence cannot be
normalized in the usual way. Because of this behaviour the calculatiofs@f, r) is
difficult, and numerical problems often arise in the course of the computation.

It is the purpose of this paper to show that an accurate and stable calculation of the
resonance parameters andk, can be obtained by a direct calculationyaf(k,, r) despite
its asymptotic behaviour.

The paper is organized as follows. In section 2, the &dinger equation with the
boundary condition (2), (3) is solved by the method of Gordon [45] in which the potential
V(r) is approximated by a piecewise linear function. This approach has been widely used
for the solution of scattering problems (réal As soon as an approximation to the potential
is established, the resonance wavefunctigyik,, r) can be obtained in terms of the Airy
functions of complex argument. The resonance paraméieasnd k, are then calculated
as zeros of respective Wronskians. It is found that this approach represents a very general,
accurate and stable method for the calculation of resonances.

The method described in section 3, unlike the previous one, is based on the solution
of the Lippmann—Schwinger equation. No approximation of the potential is made. All
integrals are evaluated by means of Romberg extrapolation technique [30]. It is shown
that this method is also very stable and accurate provided the resonance is narrow. If the
resonance is very broad, numerical problems will occur. However, it is noteworthy to stress
that only narrow resonances display themselves in cross sections and that more distant
resonances (broad ones) have very small effect.
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In section 4 we summarize the results and compare the efficiency of the two methods.
The details of the calculation of the Airy functions are given in the appendix.

2. Differential equation approach

For the integration of the equation (1) we used the generalization of the Gordon’s piecewise
analytic method. This method [45] is based on dividing the range of integration into
intervals (x;_1, x;), which are sufficiently small, so that the potential functigiix) can

be approximated by a linear functidry; (x) = ¢; + d;(x — X;) in each interval §; is the
midpoint of interval{x;_1, x;)). The best choice of{;(x) (see [46]) seems to be the sum

of the tangent ol (x) with the weight of% and the secant weighted Wi@] Excluding the

trivial cased; = 0, the general solution of the equation (1) with potentiglx) is a linear
combination

Y(x) = AAi(ax(x + B)) + BBi(a(x + B)) (5)

where Aix) and Bix) are the Airy functions (see the appendin), = Jd;, B =
%(c,» — k% — x; and A, B are arbitrary constants. From this expression far) and

the fact, that the Wronskian of Ai and Bi |7$ it follows that

Y(x)=m [iAlw/(xi—l) - AZI/f(xi—l)i| (6)

V(%) = w[Agy (xi—1) — aAgr(xi1)] (7)
where

Ay = Bi(Zp) Ai(Z,) — Ai(ZF) Bi(Z))

A, = Bi(Zp) A'(Z)) — Ai(Z) BI'(Z))

As = Bi'(Zr) Ai(Z)) — Ai"(ZF) Bi(Z))

Ag=Bi'(Zp)A'(Z)) — N'(Zr) Bi'(Z).

©)

Here Zr = a(x; + B) and Z; = a(x;_1 + B). Equations (6) and (7) are very useful
expressions, which enable us to propagatand+’ from the boundary values at the origin
to any pointx. It is better to use (6) and (7) directly than to perform the matching of
solutions (5), becausd; are rather small even when &i) and Bix) are too big to be
represented on a computer in common arithmetic (see the appendix).

The method is suitable for both real and complexbut in the complex case we must
be able to compute functions @&i and Bi(z) for the complex values aof. In the appendix
we present an algorithm for evaluating the functiongziiand Bi(z) in the whole complex
plane with the relative accuracy 1. This algorithm is a generalization of the original
Gordon’s method to complex argument

In the asymptotic region outside the rangeof the potential the wavefunctiow (k, r)
is of the following form

Yk, r) = aqj(k)e* + by (k)e " )

Consequently, the partial wavematrix, defined as the negative ratio of the coefficients
a;(k) andb; (k) [31-34], is

ak) Wk, r),e'*)
bik) — Wk, r), k)

Si(k) = — (10)
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where W (f(r), g(r)) denotes Wronskian of the function&r) and g(r). The polesk; of
the S-matrix are then given by the equation

W (k;) =0 (12)
where
W(k) = Wy (k,r), €) (12)

providedr lies outside the rang& of the potential (therW (k) is r-independent) so that
(9) holds. At such values ok the Siegert eigenfunctiotts(k, r) behaves as"é ((4)—we
assume thatrs(k, r) is normalized so tha# (k) = 1) and therefore

Wk) = Wk, r), ys(k, r)). (13)

The condition (11) then guarantees that the wavefunafioh, ) is the Siegert state. The
calculation of the resonance parameters thus reduces to calculation of the Wroigkian
and to the search for values kf for which W (k;) = 0. The WronskiarW (k) is computed
from the definition

Wk) = Wk, r), €y = (k, e —ike v (k, r) (14)

wherey (k, r) and y'(k, r) are obtained by integration of the Sékdinger equation from
the origin to the point = R.

We propose to use the following method for determining the complex zeros of the
function W(z) [1,35]. Let the values of the functioW (z) be calculated at three points
71, Z2, z3 (We denote them aW;, W, and W3, respectively). We construct an approximate
function Wy(z) = %*b“(’ so thatWy(z;) = W; (i = 1, 2, 3) (this is the Pad approximation

+
of order [1/1]). It is easy to find the zerg, of the functionWy(z):

¥y + 2t + (15)
4= - —— — .
Z2W3ZI + «»1WZZ3 _"_ ZSWlZ
Next we construct a new functioWy(z), the Pad approximation tdV(z), so that
Wo(z2) = Wa, Wo(z3) = W3, Wolze) = W4 = W(zs), find zerozs of this function and
so on. Generally holds

Zn+1—Zn Zn—Zn+2 Zn+2—Zn+1
Zn+2 "T/:H-z + Zns1 ‘/Vn+1+ + 2 +W" * (16)

Z =
n+3 Zn+1—2n + Zn—Zn+2 + Zn+2—2n+1

Wr1+2 Wn+1 "V”

The procedure is very simple and quickly converges to the exact value of the foét.

3. Integral equation approach

For simplicity of presentation we restrict ourselves to the dase0. The generalization

to non-zero angular momentuimis straightforward. In the coordinate representation the

Lippmann—Schwinger (LS) equation [3] reads

sinkr
k

Yk, r) = — %e”" /r sinkyV(y)v (k, y)dy — —% sinkr /OO eik»"V(y)w(k, y) dy.
0

(17)
Equation (17) is of the Fredholm type. It is worthwhile considering instead of this equation
another integral equation defining the so-called regular solution [3]

sinkr
k

bk, r) = _ %/r(ék’ sinky — €% sinkr)V (y)¢ (k, y) dy (18)
0
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which is of the Voltera type and can be solved very easily [30]. Once the solgition)
is known the physical solutiog (k, r) can be expressed as

¢k, r)

k,r)= - . 19
VD = e Ve n (19)

Similarly we can express thE-matrix in terms of¢ (k, r) as
T = Jo sinkrV (r)¢ (k, r)dr 20)

1+ [y € V(rgk, r)dr
The T-matrix has a pole when the denominator (the Jost function) in (20) vanishes:

0=1+ / e v (g (k, r)dr. (21)
0
To calculate the resonance pole we vary the (complex) momehtuniil the condition
F(k) = —1 (22)
where
F(k,r) = f e v(irgk, r)dr and F(k) = F(k,r — 00) (23)
0

is satisfied. The calculation is performed on a set of grids with an increasing number of
grid points, and, with the use of Romberg extrapolation [30] very accurate valuEgkpf

can be obtained. One word of caution is necessary here. As we know, the wavefunction
¢ (k = k1 — ikp, r) behaves as

ok, r) ~ A(k)ekr e (24)
at large distances. The integrand in (23) attains the form-(co)

~ A(k)er ey (r). (25)
Let us assume for a while that the potential is exponentially decreasing

V(r) ~ Voe™®. (26)

Then for the integral (23) to exist (the same holds for analogous integrals in (18)) we must

demand that
o
This means that only resonances with small valuescofnarrow resonances) can be

determined in this way. For details we refer to [3].

4. Results

4.1. Analytic potentials

As a first test we apply both methods to a simple smooth analytic potential
V(r)=irle” (28)

which serves a standard test and which has been studied by various methods in many
papers (see for example [15, 23, 24, 26, 28, 36—40]). Table 1 shows the calculated resonance
energies and widths for a series of values of the parametBoth methods yielded identical
values and the results are probably correct to all figures printed in this table. The cut-off
radiusR is 40 for A < 8 andR = 25 for the rest of the values.
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Table 1. Resonance energies and widths for the potential (28).
r E r/2 r o E r/2
3 097382363 —2.1540507- 1 15 342639031 —1.2774480- 2
4 123420872 —1.8722802-1 16 358703369 —9.186 4904 3
5 147794826 —1.5911786-1 17 374292777 —6.5435906- 3
6 170891274 —1.3279218-1 18 389439885 —4.6242840- 3
7 192940036 —1.0899823- 1 19 404176372 —3.2471588- 3
8 214087936 —8.8039256- 2 20 418532329 —2.2688374— 3
9 234433668 —6.9980354— 2 21 432535791 —-1.5793618- 3
10 254046603 —5.4741130-2 22 446212484 —1.0964761— 3
11 272978115 —-4.2143870- 2 23 459585756 —7.598 7596 4
12 291268966 —3.1944009- 2 24  A726766 46 —5.2605566— 4
13 308954294 —2.3854326— 2 25 485504035 —3.6402136- 4
14 326066879 —1.756 7059 2 26 498084850 —2.5190637— 4
Table 2. Convergence of the Romberg extrapolation for the potential (28) (integral equation
method);N is the number of meshpoints ands the potential strength.
r=4 Ar=15 A=24
E, ry/2 E, r/2 E, r/2
N 1.233214410 0.1880413989 3.420855746365490260-2 4.719388561 @73899787-4

2N 1.234208121 0.1872306240 3.426343540284183606-2 4.726594816 6665829614
4N 1.234208267 0.1872281932 3.426390315277462929-2 4.726766178 268962929-4
8N  1.234208272 0.1872281874 3.426390313277448057-2 4.726766464 2605633274
16N 1.234208269 0.1872281907 3.426390313277448017-2 4.726766459 260556 580-4

As expected, the resonances become narrower with increasihg table 2 we show
the results obtained with the integral equation method, in order to display the stability of
the method by changing the number of grid points. As usual in the Romberg extrapolation
technique one solves the problem at a series of grids ugirigjv, 4N, 8N, ... grid points
and then extrapolates the results. In all the rest of the calculations weRuse#5.

N is the starting number of the grid points, heve= 100. We see that very accurate
results can be obtained in this way keeping the number of mesh points moderately low (no
optimization of the grid was performed). The results obtained with the differential equation
method are collected in table 3. Hebé¢ denotes the number of segments into which the
integration rang€0, 25) was partitioned. No extrapolation was performed. We have used
a non-equidistant grid defined as

gom _q
e? —1

The resulting resonance parameters are again stable with increasing number of
meshpoints and we see that very accurate values are obtainable.

In figures 1-3 we plot the calculated wavefunctions for three values of the potential
strengthsi. Figure 1 describes a very narrow resonangEe=(4.727 — i0.000 5261) which
was obtained withh. = 24. The full curve depicts the real part of the wavefunction of
the Siegert state, the potential is plotted (arbitrary units) by the short broken curve and
the functionF (k, r), (23), by long the long broken curve. As expected the wavefunction
is strongly localized. In figw 2 a broader resonanc& (= 3.426 — i0.01277) obtained

with 0 = 3. (29)

Xi =
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Table 3. Convergence of the differential equation method for the potential (28}f the number

of meshpoints and is the potential strength.
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A=4

A=15

r=24
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r/2
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r/2

Er

r/2

10
20
50
100
200
400

1.233322830
1.231258313
1.234205623
1.234208 104
1.234208 258
1.234208 267

0.162945 4084
0.186 5303053
0.187 2290096
0.187 228 2365
0.1872281914
0.187 2281886

3.425121791329627 062- 2
3.426524 972283143 745- 2
3.426389168271487 138- 2
3.426 390240271450 272- 2
3.426390 305271448 185- 2
3.426 390310271448 055- 2

4.727539144
4.726866514
4.726 768897
4.726 766610
4.726 766 466
4.726 766 457

260281379-4
232207315-4
260663579- 4
260571914- 4
260557598- 4
260556 703- 4

6
radial distance

Figure 1. Plot of the wavefunction corresponding to the Siegert state for the potential, (28), with
A=24. Full curve, the real part of the wavefunction, short broken curve, the potential (arbitrary
units), long broken curve, the functiafi(k, r) defined in (23).

with A = 15 is shown and finally in figure 3 the wavefunction of a very broad resonance
(E = 1.477-10.159) generated with = 4 is plotted. In the last case the amplitude of the
Siegert state increases rapidly with the radial distance.

4.2. Non-analytic potentials

As the second test we apply both methods to a non-analytic potential
r—>b
lr — bl

This potential is smooth and finite everywhere but at the peiat b its derivative
diverges, simulating in this way a hard-core potential (see figure 4). The results of the
calculation of the resonance parameters obtained both with the integral and differential
equation approach are shown in tables 4 and 5 for two values of parabndter attempt

was made to choose the point= b as a grid point.

It is clear that the convergence is much worse than in the previous case because of
the non-analyticity of the potential. It is worthwhile mentioning however, that the complex
scaling methods widely used in atomic physics cannot be applied in this case.

V(r) =30 e (30)
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Figure 2. The same as in figure 1 but for a broader resonance generated with5.

5

radial distance

10 12

0 2 4 6 8 10 12
radial distance

14 16 18 20

Figure 3. The same as in figure 1 but for a broad resonance obtainediwiti4.

Table 4. Convergence for the non-analytic potential (30) (integral equation appra¥cis)the

number of meshpoints.

b=04 b= 0.65

N=100 E, r/2 E; r/2

N 4016684270 0.2429357339 0.4664685418.982535648- 5
2N 4011636114 0.2376936854 0.4605528461.558 7300785
AN 4.009152168 0.2368732119 0.4699729324.1183596597- 5
8N 4008257293 0.2365723614 0.4685998089.973623393-5
16N 4.007978214 0.2364781074 0.4681535929.968887 162- 5
328 4008155858 0.2365384153 0.4681217736.968612743-5

4.3. Singular potentials

As a prototype of a singular potential we choose

potentials

—4r

e’

V() =—-100"— +A—
r r

the combination of two Yukawa-type

(31)
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radial distance

r—b
VIr=b|

Figure 4. Potential function:V (r) = 30 e,

Table 5. Convergence for non-analytic potential (30) (differential equation approa¢hy; the
number of meshpoints.

b=04 b =0.65
M E; r/2 Ey r/2
100 4.009628532 0.2370254798  0.480023805.208759 620- 5
200 4.006155876 0.2358590517 0.468132011.962711859- 5
400 4.006742046 0.2360603477 0.467233679.952917410- 5
800 4.008039402 0.2364988148 0.468568725.972054 869- 5
1600 4.008204154 0.2365547512 0.468119594.96@577 128- 5
3200 4.008259417 0.2365735115 0.468071669.962674 747- 5

with variabler. This potential is singular at the origin and has a rich resonance structure. All
Siegert states are bound statesifet 0; at increasing. the repulsive barrier is subsequently

built and resonances appear. Asapproaches the value~ 15 a pair ofS-matrix poles,

one bound-state pole and one virtual-state pole, appear very close to the threshold. These
poles move in opposite directions along the imaginary axis at increasargl coalesce at

some valuer, = 1503034 (R = 30). At increasingi, A > A¢, the poles again separate

and their trajectories form two symmetric branches in the lower complex half plane. This
behaviour allows us to expose our approach to the more difficult case of two very close
poles of theS-matrix (so far we have been treating only isolated poles). We performed a
series of calculations of th&-matrix poles with the integral equation approach for a range

of values of» from the region of a weakly bound state to the appearance of a narrow
resonance including values affor which both poles merge. It is found that again very
accurate and stable results are obtained with our approach even in the case of merging poles
and singular potentials. The results are collected in the table 6 which shows the locations
of the two poles versus the coupling parameter
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Table 6. S-matrix poles for the singular potential (31).

A Rek, Im k, Rek, Im &y

15.00 0.0 0.2118 0.0 -0.2251
15.01 0.0 0.1718 0.0 —-0.1859
15.02 0.0 0.1201 0.0 —-0.1349
15.03 0.0 0.0155 0.0 -0.0312

15.035 0.0854—-0.0080 —0.0854 —0.0080
15.04 0.1231-0.0082 —0.1231 —0.0082
15.05 0.1755—-0.0086 —0.1755 —0.0086
15.10 0.3301—-0.0106 —0.3301 —0.0106
16.00 1.2059 —0.0568 —1.2059 —0.0568

4.4. Location of resonances

A widely used method for calculating the resonance parameters is based on the
parametrization of the cross section (phase shift) in the vicinity of a resonance by the
Breit—-Wigner formula [1] or more generally by an analytic representation ofStheatrix
[20]. As is well known, the phase shift increases rapidly in the resonance region. If the
resonance is narrow the phase shift increases lmn a very narrow energy range. Since
the phase shift is determined only modutoit is necessary to repeat the calculation with
very small energy steps otherwise the resonance may easily be overlooked. This results in
a huge increase in volume of the computation and sometimes even special procedures for
the location of very narrow resonances must be used [21].

However, if we look at the functiod¥ (k), defined by (23), we find (the same also holds
for the WronskianW (k)) that F (k) is a very smooth function of and the location of the
resonance position is easy even for very narrow resonances. This is clearly demonstrated
in figure 5 which shows the real part éf(k) + 1 and the imaginary part of (k) plotted

25 T ¥ T T T T T T

Figure 5. The real (full curve) and imaginary (broken curve) parts of the Jost functiof ),
(23), for the potential (28) withh. = 30 plotted for reak. The two lines cross around= 3.3
in correspondence with the presence of a very narrow resonarice-a88.305— {0.000 0176.
The broader resonances abdve- 4.2 are also seen.
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for a range of reak calculated with the potential 28 with = 30. The full curve shows

the Re€F (k) + 1), the broken curve that of I (k)). Both lines cross neat = 3.30

(this corresponds to the resonancekat 3.305— i0.0000176). The second resonance

(atk = 4.179—i0.128) is also seen. Now, however, the two curves do not cross at one
real point and the distance between the roots is a measure of the resonanc& wigtth
comparison we plot the cross section and the phase shift in figure 6. It follows from figure 5
that even if we are far away from the resonance the zerb @} is easily discernible and

with a very few sample points the position of the resonance can be located even for very
narrow resonances. Hence, a very sparse energy grid may be used to locate the resonance
reducing considerably the amount of the numerical work.

11 T T ¥ T T H H 1 1

1.08 | .

1.086 |- B

1.04 F .

1.02 | E

0.98 .

] I i H i 1 i I 1

0.96
325 326 327 328 329 3k3 3.31 3.32 333 334 335

Figure 6. The cross section in the region of the narrow resonance discussed in figure 5. Note
difference in the scales.

4.5, Calculation of zeros of the functid#i (k)

As is well known, each potential identically equal to zero fox R, whereR is a finite
non-zero value, provides an infinite number of resonances, so-called cut-off resonances.
These resonances can easily be separated from the true ones by their large sensitivity to
changes of the paramet&. Therefore, the number of resonance poles in a given region
may be large.

As described above, the resonance poles, i.e. zerd® @ are localized iteratively
by means of the Pad [1/1] approximation. To start this procedure three pgints and
z3 in the vicinity of the resonance pole must be provided. Usually we choose the points
on a circle of a small radius. If the resonance pole is located inside or in the proximity
of the circle the process of finding the root of the Wronskian is very fast, and just a few
iterations lead to a very accurate determination of the root. However, if the initial guess was
wrong, i.e. at a considerable distance from the pole, the number of iterations increases and
not always the pole closest to the starting value is found. Sometimes even a very distant
pole may be found in this way. To see how the choice of the starting point influences the
calculation we applied the method to some simple analytic functions. As the first test we
take the functiong(z) = z* — 1, which has four zeros = 41 andz = +i. Let zo denote
the centre of a circle on whichky, z2 and z3 lie and let us investigate four domains of
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Figure 7. Poles of the Wronskian for potential A%~ with the cut-off R = 15. The true pole

is indicated by a cross, and cut-off poles with dots. Domains leading to the different poles are
plotted in the left figure. Two traces of the Pad method for two different initial guesses A and
B are shown on the right.

in the complex plane, which lead to those four zeros. It turns out that boundaries among
them are approximately the rays af@ = (2n + 1)7 with » integer, but the behaviour of
the method is highly unstable near the rays and it is very difficult to say which zero will be
reached ifzg is taken from this region.

The picture is much more complicated for realistic calculations, however. This is shown
in figure 7. Roots of the WronskiaW (k) and respective domains are plotted in figura)7(
for the potentialV(x) = 152e~*. In figure 7p) we follow the trace of the Pad [1/1]
approximant. The trace started from the cirdlgddenoted by the small circles) converges
to the true resonance, but the traBgcrosses) leads to the cut-off resonance.

Other methods for determining complex zeros (for example the Newton—Raphson
method) show analogous complicated behaviour [42].

5. Conclusions

We have implemented and tested two numerical methods for calculatingyriagrix poles
for local short-range potentials. Thematrix poles are defined here as the Siegert states
[22].

The first method is based on the idea of approximating the potential by a piecewise
linear function. To implement this idea an efficient method of calculating Airy functions
for complex arguments is necessary. By generalizing Gordon’s method [45] we developed
a very fast and accurate method of calculating Airy functions (details are described in the
appendix). By using this algorithm the resonance poles can be calculated accurately as the
zeros of the WronskiaW (k), (11). By treating potentials with increasing complexity it
was shown in examples that very accurate and stable results are obtained (see tables 1-5)
with a moderate number of partitions of integration rayerovided the resonance is not
very broad or the integration range is not very long. In this way we confirm the findings
of Meyer and Walter [26] who state that all methods based on thed8ittyer equation
lose their stability for Rékr) > 17 (using 16-digit arithmetic). In this paper we made no
attempt to use the long-range corrections of Meyer and Walter [26].

The second approach tested here is based on the solution of the integral equation (18).
The integration range is discretized and all the calculations are performed on a grid. No
approximation of the potential is performed. The calculations are repeated on various grids
and by means of the Romberg extrapolation very precise results are obtained. It appears that
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Table 7. Convergence of the integral equation approach for a broad resonance in the potential
V(r) = 152e7"; R denotes the range of integration.

R Rek Imk

10 3.1252062 —-0.2311916
20 3.1324457 —-0.304 5132
40 3.1321414-0.353 0260
60 3.1300853 -0.357 1228
80 3.1300427 —0.357 1442
100 3.1300425-0.3571443
200 3.1300425-0.357 1443
300 3.1300425-0.357 1443

for resonances with small Re ((Re(k) < 10) the number of meshpoints needed for the
required accuracy is usually low (for example 100, 200 and 400 not optimized points yields
six-figure accuracy for potential of (28)). For resonances with high€k)Ree differential
equation approach may be more efficient. However, the integral equation approach has a
definite advantage over the differential equation approach: it is much more stable and the
condition R€ikR) > 17 may be relaxed. To see this we present here the calculation of the
second non-cut-off pole generated by the poteritial) = 152" in table 7.

Our results are stable even f& > 300 (i.e. RéikR) > 100) and compare well with
values k = 3.130—:0.357) quoted by Meyer and Walter [26]. In all the cases studied above
it was assumed that the potential was local. It is known, however, that many physically
interesting potentials possess significant non-local parts [3]. To treat such potentials the
method discussed above must be generalized.

Appendix

A.1. Airy functions

The Airy functions Aiz) and Biz) can be defined as sums of the following power series
(see [47])

Ai(z) = c1f(z) — c28(2) (32)

Bi(z) = v3[c1f (2) + c28(2)] (33)
where

1 1.4 1.4.7

f(Z)Zl‘l‘aZa‘i‘aZG‘i‘TZg‘i‘"' (34)

g@)=z+ %z“ + %17 + 2138 0. (35)
and

1 1\ 1 2 1
C1=271F<3)3 6 C2=27TF<3>36 (36)

The convergence radius of these series is infinite. However, the functigns &id Bi(z)
cannot be evaluated by means of (32)—(36) in the whole complex plane. Fotdartiese
series are very slowly convergent and cancellation of terms occurs in the regions where
values of the functions are small.
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A.2. Evaluation ofdi (x) and Bi(x) for real x

Gordon [45] has derived formulae (43)—(46) (see below), which lead to a very efficient
and precise method for evaluating Airy functions and expressions containing them for real
values ofx. Let us start with integral expressions [45] for(&) and Bi(x)

Ai(x) = Zjﬁx}leé /OOO 1‘;(27;) (37)
Bi(x) = \/;x—ie+$ /Ooo p_(’()t‘;;) (38)
Ai(—x) = } i /0 coss - 4)1:%223 " (39)
Bi(—x) = jﬁx 1/000 (t/s)cos@l; ?t)/;)zs'”(g ~ 9w d (40)

wherex is real positive,
£ =253 and  p() =x 227838 se AL(CND). (41)
Using the fact that momenis, of the weight functiono(x) are known [43]
> I3k + 3)
k 2
= d_x =
M /o X o) SAKIT(k + 1)

we can use the method of the generalized Gaussian quadrature [44] to evaluate integrals in
(37) and (38), which leads to

(42)

A= xje_& Z 1+ ¥ (43)

Bl = 2 “ett Z T (44)
i N BERS 005(5 — D+ EsinE—7)

Ai(—x) = ﬁx ; Wi 1t (%)2 (45)
1 i gcosE - %) —sinE - %)

Bi(—x) = ﬁx ;w, it (?)2 . (46)

Values of the nodes; and weightsw; for n = 10 can be taken from [45] and far= 20
(our result) are given in the table 8:

This allows us to calculate At) and Bix) on the whole real axis using (43)—(46),
except close to the origin, where the error of these expressions increases and the series
(32)—(36) must be used. Corresponding intervals (according to Gordon [45]) for relative
precision 164 (using 16-digits arithmetic) are given in table 9. In fact the relative error of
ai(x) is slightly higher ¢ 107'?) nearx = 3.7 due to cancellation of terms in the power
series. So we recommend using (43) with= 20 for x € (2.14,4.2) if a really high
precision is required.

For solving the Sclirdinger equation only the quantitie’s; are directly required, not
the values of the Airy functions, see (6) and (7). It is not very convenient to compute
Airy functions first and then to use (8), because values ¢f Aare very small and values
of Bi(x) very big for large positiver and both functions are highly oscillatory for large
negativex. It is much better to substitute expressions (43)—(46) into (8) instead and collect
exponential or oscillatory terms, which nearly cancel out.
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Table 8. Weights and nodes for evaluation of the Airy functions (equations (43)—(46)).

i

w;i

Xi

n=20 1 73676299178901838 10! 4.138104 596 959 3848 103
2 16373235887444356 101 1.014 067 838903 425% 101
3  65700044755186294 102 3.205073781 659 7486 101
4  2411813173090307% 102 6.638935637889652% 1071
5 7.4192503571698458 103 1.134 300 624 683 1197
6 18437647908884445 1073 1.735088 919 269 7992
7 3616318396044 2296 104 2.470526 438097 2342
8 54912437087384324 10°° 3.346 026 6792217012
9 63342611174255159 10°° 4.3684191280619 897

10 5437206860231970% 107 5.546 303 499 989 5683
11 33906414382713048 1078 6.890 543 640 208 1020
12 1491946218236 8758 10° 8.414 983529 145 1491
13  4465712145839119% 1011  10.137524 095983333
14 8671110960163816% 10713 12.081813157473574
15 1024660028979536% 10714  14.280042673374010
16 67360642339081152 10717 16,777 910032636 809
17 2153990102811084Q 1071° 19644 275859114523
18 2690146409301361R 10722 22992627 728 392 780
19 86681090351107345 1026  27.039719919610232
20 2542001893424912% 10730 32341049 358 350 355

Table 9. Ranges for evaluation of At) and Bi(x) for real x.

Ai Bi
x € (c0,—5) (45)forn =10 (46) forn = 10
x € (—5,3.7) Power series Power series
x € (3.7, 8) (43) forn =10 Power series
x € (8,00) (43) forn =4 (44) forn =4

A.3. Analytic continuation of the Gordon’s method

We shall see that formulae (43) and (44) cannot be used directly with real posityptaced
by complexz. The formulae were obtained from (37)—(40) by means of Gaussian quadrature
so we will examine the analytic continuation of (37)—(40).

Let us start with expression (37). The right-hand side of this equation is analytical in
the domainD = {z, |arg(z)| < %n}. The integral path must be deformed to circumvent the
polet = %z%, whenz is from the rest of the complex plane. The resulting contour integral
can be written as integral over the positive real axis plus the respective residuum. Thus for
+argz) >

. 1 1 o ,O(t)dt €5)
Aiz)=-"—z 4ef/ 48 (2) 47
2w o 1+@/E t 47
where
s®(z) = Finzz 16 ¢ Rez__ QNS 48
1 + & 1+ (1/8) (48)
and
gzgzg =§|z|%e%‘af9<z>. (49)
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Functionaf for |arg(z)| > %7‘[ can be evaluated explicitly in terms of &i), wheren is in

the domainD so that (37) can be used. In this way we find that (47) coincides with (39).
Treating (39) and (40) in the same way, we discover that these expressions are valid in

the domain|arg(z)| < 3 and must be modified fot-arg(z) > 5 adding the factor§3 (2)

and (Si(z) respectlvely to the right-hand sides. The S|tuat|0n is slightly different for the

equation (38) because the right-hand side is a principal value integral. However, it can be

shown that (for:arg(z) > 0)

PN +E/°° p(1) dr 56
Bl(z)—ﬁz e ; 1—(t/.§) () (50)
with
p (1)

88 (z) = Fim2z 4e Regoy — -~ - (51)

(/&)
Similarly as for Aiz) it can be shown that (50) leads to (40) on the negative real axis.

One way of evaluating Ak) in the complex plane is a direct use of (43) in the domain
D and of (45) elsewhere. It seems at first sight, that the Gaussian quadrature of integral
(37) or (39) will not work near the rays atg = +2 57, because of the proximity of the
poles to the integration path. Fortunatéifl is exponentlally damped in this region and the
error of the Gaussian quadrature due to proximity of the pole is proportlorrii*f tdt is
the same situation as in the formula (38) on the real axis and in (39) and (40) near the rays
arg(z) = =73 and so B{z) could be treated similarly. But this way of evaluating the Airy
functions is not the best one, which is clearly seen from the fact that formula (44) is of use
for x > 8 only (table 9). We prefer to evaluate functions(Ai and Biz) in a different
manner.

The following relations hold for the Airy functions of the rotated argument [47]:

Ai(z€5) = 1[Ai () FiBi(2)] (52)
Bi(ze*5™) = 1[Bi(2) T 3iAi(2)]. (53)

This can also be seen directly from the definition (32)—(35). From these relations
we can evaluate A) and Biz) in the whole complex plane knowing &i) only in
{z,largz)| < 3} and Biz) in {z, |argz)| > gn}. So only formulae (43) and (46) are
really necessary.

We have compared results of calculation of the Airy functions using different formulae
with results obtained from the series (32)—(35) (performing computation in high-precision
arithmeticcomplex*32) and thus determined their precision. In table 10 we give domains
for evaluation of A{z) and Bi(z), which lead to a relative precision of at least 1din the
result (usingcomplex*16 arithmetic).

Table 10. Ranges for evaluation of A), Bi(z) for complexz.

Ai Bi
z€A Series Series
z€B n=20 Series
z€D1UDg n=10 n = 10+ relations

z€ D3UDs n=10+relations n =10
z€ D2UDs n=10+relations n = 10+ relations
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Definition of the domainsA, B and D,—Ds is given below. Letk; andk, denote the
following two curves in the complex-plane:

. 1 3
k= {rée; r =3.7+4.5( + ‘D ( (¢ +1)>
2 g

2
> );406(—11,11)

ky — {réw; r— g e (—122 1.22)}

p2—-15

where the functionD(c) for real ¢ is a distance from the nearest integer number. Curve
ko divides the interior ofk; into two partsA and B, where A contains the origing = 0.
The exterior ofk; is divided by rays arg) = +% and argz) = i% into six partsD;—Dg
(anticlockwise and 16-i € Ds).
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