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Abstract. Two shooting methods for calculation of potential (shape) resonances are described
and their efficiency tested. It is found that although both methods are based on calculation of
the Siegert (i.e. exponentially increasing non-normalizable) state, the methods are stable and
very accurate values of resonance energies and widths are obtainable. It is hoped that the
resonance parameters obtained here can serve as test examples for various approximate methods
for calculating resonance energies and widths.

1. Introduction

Resonances play an important role in many areas of physics and chemistry [1]. They
manifest themselves as sharp structures in various cross sections and enhance a broad variety
of processes. Let us mention just the vibrational excitation of molecules by electron impact
and the dissociative attachment of electrons to molecules which are strongly influenced by
the existence of short-lived negative ion states [2]. Mathematically, resonance is defined
as the pole of theS-matrix lying in the lower complex halfk-plane,kr = k1 − ik2, k1 and
k2 positive [1, 3]. Generally, there are two types of resonance [1]: Feshbach (core excited)
resonances and the potential (shape) resonances. The existence of the latter is guaranteed
by a special form of the interaction potential. In this paper we shall discuss only the second
type of resonance.

As is well known, the resonance wavefunction is not square integrable, it diverges at
large distances and its calculation is generally regarded as difficult.

To avoid the complications caused by the divergence of the resonance wavefunction at
large distances the method of complex scaling in which the position vectorr is rotated
to the complex plane is commonly used [4–7]. For this method to be applicable the
potential must satisfy certain analytic conditions which restrict its utility. The stabilization
method of Hazi and Taylor, ignoring the asymptotic part of the resonance wavefunction
completely, can be applied only to narrow resonances [9–19]. There exist other methods
for the calculation of resonances. To mention just a few of them: the variational methods
[1], the scattering methods [1, 20, 21], the Siegert method [22–27], the Riccatti–Pad method
[28], the Milne method [40], the optical potential method [41], etc. The references are
meant to be representative rather than exhaustive.

Here we shall discuss two methods which are different from those listed above and
which to our knowledge have received little attention in the context of resonances. Both
are based on the calculation of the Siegert state [22] and are of the shooting type. This
means that starting from an initial guess of the resonance parametersk1 andk2 their value
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is iteratively improved so that theS-matrix pole is eventually found. Contrary to the
aforementioned matrix methods only one resonance is calculated at a time. This is exactly
what we need, since usually only one resonance dominates in a certain energy region and
the distant resonances have a negligible effect on the cross section. By our methods it is
possible of course to calculate all resonances in a given energy range as well as to treat
overlapping resonances [29].

Computationally, the proposed two methods differ very much from each other. One
method is based on the integral form of the Schrödinger equation, i.e. on the solution of the
Lippmann–Schwinger equation [3], the other relies on solving the Schrödinger equation in
its differential form. Both methods are based on the calculation of the Siegert state which
is defined as the solution of the Schrödinger equation

− ψ ′′(r)+ V (r)ψ(r) = k2ψ(r) (1)

(for simplicity we treat just the casel = 0) satisfying the following boundary conditions
[22]

ψS(kr, 0) = 0 (2)
ψ ′

S(kr, R)

ψS(kr, R)
= ikr. (3)

In accordance with the usual physical conditions we assume thatV (r) = 0 for some
sufficiently large values ofr > R. In this region the Siegert state behaves as

ψS(kr, r) ∼ A(kr)e
ikrr for r > R (4)

and therefore is proportional to the Jost solutionf (kr, r) [3]. As is well known the
resonances arise whenkr = k1 − ik2 with k1 and k2 positive. Fork1 = 0 we have either
virtual (k2 > 0) or bound (k2 < 0) states.

The resonance wavefunctionψS(kr, r) therefore behaves asψS(kr, r) ∼ A(kr)eik1rek2r

at large distances whereA(kr) is a function of k. Since k2 is positive the resonance
wavefunctionψS(kr, r) increases exponentially with increasingr and hence cannot be
normalized in the usual way. Because of this behaviour the calculation ofψS(kr, r) is
difficult, and numerical problems often arise in the course of the computation.

It is the purpose of this paper to show that an accurate and stable calculation of the
resonance parametersk1 andk2 can be obtained by a direct calculation ofψS(kr, r) despite
its asymptotic behaviour.

The paper is organized as follows. In section 2, the Schrödinger equation with the
boundary condition (2), (3) is solved by the method of Gordon [45] in which the potential
V (r) is approximated by a piecewise linear function. This approach has been widely used
for the solution of scattering problems (realk). As soon as an approximation to the potential
is established, the resonance wavefunctionψS(kr, r) can be obtained in terms of the Airy
functions of complex argument. The resonance parametersk1 and k2 are then calculated
as zeros of respective Wronskians. It is found that this approach represents a very general,
accurate and stable method for the calculation of resonances.

The method described in section 3, unlike the previous one, is based on the solution
of the Lippmann–Schwinger equation. No approximation of the potential is made. All
integrals are evaluated by means of Romberg extrapolation technique [30]. It is shown
that this method is also very stable and accurate provided the resonance is narrow. If the
resonance is very broad, numerical problems will occur. However, it is noteworthy to stress
that only narrow resonances display themselves in cross sections and that more distant
resonances (broad ones) have very small effect.
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In section 4 we summarize the results and compare the efficiency of the two methods.
The details of the calculation of the Airy functions are given in the appendix.

2. Differential equation approach

For the integration of the equation (1) we used the generalization of the Gordon’s piecewise
analytic method. This method [45] is based on dividing the range of integration into
intervals 〈xi−1, xi〉, which are sufficiently small, so that the potential functionV (x) can
be approximated by a linear functionV0i (x) = ci + di(x − x̄i ) in each interval (̄xi is the
midpoint of interval〈xi−1, xi〉). The best choice ofV0i (x) (see [46]) seems to be the sum
of the tangent ofV (x) with the weight of1

3 and the secant weighted with23. Excluding the
trivial casedi = 0, the general solution of the equation (1) with potentialV0i (x) is a linear
combination

ψ(x) = AAi(α(x + β))+ B Bi(α(x + β)) (5)

where Ai(x) and Bi(x) are the Airy functions (see the appendix),α = 3
√
di , β =

1
di
(ci − k2) − x̄i and A, B are arbitrary constants. From this expression forψ(x) and

the fact, that the Wronskian of Ai and Bi is1
π

, it follows that

ψ(xi) = π

[
1

α
11ψ

′(xi−1)−12ψ(xi−1)

]
(6)

ψ ′(xi) = π [13ψ
′(xi−1)− α14ψ(xi−1)] (7)

where

11 = Bi(ZF )Ai(ZI )− Ai(ZF )Bi(ZI )

12 = Bi(ZF )Ai ′(ZI )− Ai(ZF )Bi′(ZI )
13 = Bi′(ZF )Ai(ZI )− Ai ′(ZF )Bi(ZI )

14 = Bi′(ZF )Ai ′(ZI )− Ai ′(ZF )Bi′(ZI ).

(8)

Here ZF = α(xi + β) and ZI = α(xi−1 + β). Equations (6) and (7) are very useful
expressions, which enable us to propagateψ andψ ′ from the boundary values at the origin
to any pointx. It is better to use (6) and (7) directly than to perform the matching of
solutions (5), because1i are rather small even when Ai(x) and Bi(x) are too big to be
represented on a computer in common arithmetic (see the appendix).

The method is suitable for both real and complexk, but in the complex case we must
be able to compute functions Ai(z) and Bi(z) for the complex values ofz. In the appendix
we present an algorithm for evaluating the functions Ai(z) and Bi(z) in the whole complex
plane with the relative accuracy 10−13. This algorithm is a generalization of the original
Gordon’s method to complex argumentz.

In the asymptotic region outside the rangeR of the potential the wavefunctionψ(k, r)
is of the following form

ψ(k, r) = al(k)e
ikr + bl(k)e

−ikr . (9)

Consequently, the partial waveS-matrix, defined as the negative ratio of the coefficients
al(k) andbl(k) [31–34], is

Sl(k) ≡ −al(k)
bl(k)

= W(ψ(k, r),e−ikr )

W(ψ(k, r),eikr )
(10)
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whereW(f (r), g(r)) denotes Wronskian of the functionsf (r) andg(r). The poleskr of
the S-matrix are then given by the equation

W(kr) = 0 (11)

where

W(k) = W(ψ(k, r),eikr ) (12)

providedr lies outside the rangeR of the potential (thenW(k) is r-independent) so that
(9) holds. At such values ofR the Siegert eigenfunctionψS(k, r) behaves as eikr ((4)—we
assume thatψS(k, r) is normalized so thatA(kr) = 1) and therefore

W(k) = W(ψ(k, r), ψS(k, r)). (13)

The condition (11) then guarantees that the wavefunctionψ(k, r) is the Siegert state. The
calculation of the resonance parameters thus reduces to calculation of the WronskianW(k)

and to the search for values ofkr for whichW(kr) = 0. The WronskianW(k) is computed
from the definition

W(k) = W(ψ(k, r),eikr ) = ψ ′(k, r)eikr − ikeikrψ(k, r) (14)

whereψ(k, r) andψ ′(k, r) are obtained by integration of the Schrödinger equation from
the origin to the pointr = R.

We propose to use the following method for determining the complex zeros of the
function W(z) [1, 35]. Let the values of the functionW(z) be calculated at three points
z1, z2, z3 (we denote them asW1, W2 andW3, respectively). We construct an approximate
functionW0(z) = a1z+a0

z+b , so thatW0(zi) = Wi (i = 1, 2, 3) (this is the Pad approximation
of order [1/1]). It is easy to find the zeroz4 of the functionW0(z):

z4 =
z3
z2−z1
W3

+ z2
z1−z3
W2

+ z1
z3−z2
W1

z2−z1
W3

+ z1−z3
W2

+ z3−z2
W1

. (15)

Next we construct a new functionW0(z), the Pad approximation toW(z), so that
W0(z2) = W2, W0(z3) = W3, W0(z4) = W4 ≡ W(z4), find zeroz5 of this function and
so on. Generally holds

zn+3 =
zn+2

zn+1−zn
Wn+2

+ zn+1
zn−zn+2

Wn+1
+ zn

zn+2−zn+1

Wn

zn+1−zn
Wn+2

+ zn−zn+2

Wn+1
+ zn+2−zn+1

Wn

. (16)

The procedure is very simple and quickly converges to the exact value of the rootz = kr.

3. Integral equation approach

For simplicity of presentation we restrict ourselves to the casel = 0. The generalization
to non-zero angular momentuml is straightforward. In the coordinate representation the
Lippmann–Schwinger (LS) equation [3] reads

ψ(k, r) = sinkr

k
− 1

k
eikr

∫ r

0
sinkyV (y)ψ(k, y)dy − −1

k
sinkr

∫ ∞

r

eikyV (y)ψ(k, y)dy.

(17)

Equation (17) is of the Fredholm type. It is worthwhile considering instead of this equation
another integral equation defining the so-called regular solution [3]

φ(k, r) = sinkr

k
− 1

k

∫ r

0
(eikr sinky − eiky sinkr)V (y)φ(k, y)dy (18)
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which is of the Voltera type and can be solved very easily [30]. Once the solutionφ(k, r)

is known the physical solutionψ(k, r) can be expressed as

ψ(k, r) = φ(k, r)

1 + ∫ ∞
0 eikrV (r)φ(k, r)dr

. (19)

Similarly we can express theT -matrix in terms ofφ(k, r) as

T (k) =
∫ ∞

0 sinkrV (r)φ(k, r)dr

1 + ∫ ∞
0 eikrV (r)φ(k, r)dr

. (20)

The T -matrix has a pole when the denominator (the Jost function) in (20) vanishes:

0 = 1 +
∫ ∞

0
eikrV (r)φ(k, r)dr. (21)

To calculate the resonance pole we vary the (complex) momentumk until the condition

F(kr) = −1 (22)

where

F(k, r) =
∫ r

0
eikrV (r)φ(k, r)dr and F(k) = F(k, r → ∞) (23)

is satisfied. The calculation is performed on a set of grids with an increasing number of
grid points, and, with the use of Romberg extrapolation [30] very accurate values ofF(k)

can be obtained. One word of caution is necessary here. As we know, the wavefunction
φ(k = k1 − ik2, r) behaves as

φ(k, r) ∼ A(k)eik1rek2r (24)

at large distances. The integrand in (23) attains the form (r → ∞)

∼ A(k)e2ik1re2k2rV (r). (25)

Let us assume for a while that the potential is exponentially decreasing

V (r) ∼ V0e−αr . (26)

Then for the integral (23) to exist (the same holds for analogous integrals in (18)) we must
demand that

k2 <
α

2
. (27)

This means that only resonances with small values ofk2 (narrow resonances) can be
determined in this way. For details we refer to [3].

4. Results

4.1. Analytic potentials

As a first test we apply both methods to a simple smooth analytic potential

V (r) = λr2e−r (28)

which serves a standard test and which has been studied by various methods in many
papers (see for example [15, 23, 24, 26, 28, 36–40]). Table 1 shows the calculated resonance
energies and widths for a series of values of the parameterλ. Both methods yielded identical
values and the results are probably correct to all figures printed in this table. The cut-off
radiusR is 40 for λ < 8 andR = 25 for the rest of the values.
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Table 1. Resonance energies and widths for the potential (28).

λ Er 0/2 λ Er 0/2

3 0.973 823 63 −2.154 0507− 1 15 3.426 390 31 −1.277 4480− 2
4 1.234 208 72 −1.872 2802− 1 16 3.587 033 69 −9.186 4904− 3
5 1.477 948 26 −1.591 1786− 1 17 3.742 927 77 −6.543 5906− 3
6 1.708 912 74 −1.327 9218− 1 18 3.894 398 85 −4.624 2840− 3
7 1.929 400 36 −1.089 9823− 1 19 4.041 763 72 −3.247 1588− 3
8 2.140 879 36 −8.803 9256− 2 20 4.185 323 29 −2.268 8374− 3
9 2.344 336 68 −6.998 0354− 2 21 4.325 357 91 −1.579 3618− 3

10 2.540 466 03 −5.474 1130− 2 22 4.462 124 84 −1.096 4761− 3
11 2.729 781 15 −4.214 3870− 2 23 4.595 857 56 −7.598 7596− 4
12 2.912 689 66 −3.194 4009− 2 24 4.726 766 46 −5.260 5566− 4
13 3.089 542 94 −2.385 4326− 2 25 4.855 040 35 −3.640 2136− 4
14 3.260 668 79 −1.756 7059− 2 26 4.980 848 50 −2.519 0637− 4

Table 2. Convergence of the Romberg extrapolation for the potential (28) (integral equation
method);N is the number of meshpoints andλ is the potential strength.

λ = 4 λ = 15 λ = 24

Er 0/2 Er 0/2 Er 0/2

N 1.233 214 410 0.188 041 3989 3.420 855 746 1.365 490 260− 2 4.719 388 561 6.273 899 787− 4
2N 1.234 208 121 0.187 230 6240 3.426 343 540 1.284 183 606− 2 4.726 594 816 6.666 582 961− 4
4N 1.234 208 267 0.187 228 1932 3.426 390 315 1.277 462 929− 2 4.726 766 178 5.268 962 929− 4
8N 1.234 208 272 0.187 228 1874 3.426 390 313 1.277 448 057− 2 4.726 766 464 5.260 563 327− 4
16N 1.234 208 269 0.187 228 1907 3.426 390 313 1.277 448 017− 2 4.726 766 459 5.260 556 580− 4

As expected, the resonances become narrower with increasingλ. In table 2 we show
the results obtained with the integral equation method, in order to display the stability of
the method by changing the number of grid points. As usual in the Romberg extrapolation
technique one solves the problem at a series of grids usingN, 2N, 4N, 8N, . . . grid points
and then extrapolates the results. In all the rest of the calculations we usedR = 25.

N is the starting number of the grid points, hereN = 100. We see that very accurate
results can be obtained in this way keeping the number of mesh points moderately low (no
optimization of the grid was performed). The results obtained with the differential equation
method are collected in table 3. HereM denotes the number of segments into which the
integration range〈0, 25〉 was partitioned. No extrapolation was performed. We have used
a non-equidistant grid defined as

xi = R
eiQ/M − 1

eQ − 1
with Q = 3. (29)

The resulting resonance parameters are again stable with increasing number of
meshpoints and we see that very accurate values are obtainable.

In figures 1–3 we plot the calculated wavefunctions for three values of the potential
strengthsλ. Figure 1 describes a very narrow resonance (E = 4.727− i0.000 5261) which
was obtained withλ = 24. The full curve depicts the real part of the wavefunction of
the Siegert state, the potential is plotted (arbitrary units) by the short broken curve and
the functionF(k, r), (23), by long the long broken curve. As expected the wavefunction
is strongly localized. In figure 2 a broader resonance (E = 3.426− i0.012 77) obtained
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Table 3. Convergence of the differential equation method for the potential (28);M is the number
of meshpoints andλ is the potential strength.

λ = 4 λ = 15 λ = 24

M Er 0/2 Er 0/2 Er 0/2

10 1.233 322 830 0.162 945 4084 3.425 121 791 1.329 627 062− 2 4.727 539 144 5.260 281 379− 4
20 1.231 258 313 0.186 530 3053 3.426 524 972 1.283 143 745− 2 4.726 866 514 5.232 207 315− 4
50 1.234 205 623 0.187 229 0096 3.426 389 168 1.277 487 138− 2 4.726 768 897 5.260 663 579− 4

100 1.234 208 104 0.187 228 2365 3.426 390 240 1.277 450 272− 2 4.726 766 610 5.260 571 914− 4
200 1.234 208 258 0.187 228 1914 3.426 390 305 1.277 448 185− 2 4.726 766 466 5.260 557 598− 4
400 1.234 208 267 0.187 228 1886 3.426 390 310 1.277 448 055− 2 4.726 766 457 5.260 556 703− 4

Figure 1. Plot of the wavefunction corresponding to the Siegert state for the potential, (28), with
λ=24. Full curve, the real part of the wavefunction, short broken curve, the potential (arbitrary
units), long broken curve, the functionF(k, r) defined in (23).

with λ = 15 is shown and finally in figure 3 the wavefunction of a very broad resonance
(E = 1.477− i0.159) generated withλ = 4 is plotted. In the last case the amplitude of the
Siegert state increases rapidly with the radial distance.

4.2. Non-analytic potentials

As the second test we apply both methods to a non-analytic potential

V (r) = 30
r − b√|r − b|e−r . (30)

This potential is smooth and finite everywhere but at the pointr = b its derivative
diverges, simulating in this way a hard-core potential (see figure 4). The results of the
calculation of the resonance parameters obtained both with the integral and differential
equation approach are shown in tables 4 and 5 for two values of parameterb. No attempt
was made to choose the pointx = b as a grid point.

It is clear that the convergence is much worse than in the previous case because of
the non-analyticity of the potential. It is worthwhile mentioning however, that the complex
scaling methods widely used in atomic physics cannot be applied in this case.
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Figure 2. The same as in figure 1 but for a broader resonance generated withλ = 15.

Figure 3. The same as in figure 1 but for a broad resonance obtained withλ = 4.

Table 4. Convergence for the non-analytic potential (30) (integral equation approach);N is the
number of meshpoints.

b = 0.4 b = 0.65

N = 100 Er 0/2 Er 0/2

N 4.016 684 270 0.242 935 7339 0.466 468 5418 2.987 535 648− 5
2N 4.011 636 114 0.237 693 6854 0.460 552 8461 2.556 730 078− 5
4N 4.009 152 168 0.236 873 2119 0.469 972 9324 3.114 596 597− 5
8N 4.008 257 293 0.236 572 3614 0.468 599 8089 2.973 623 393− 5
16N 4.007 978 214 0.236 478 1074 0.468 153 5929 2.968 887 162− 5
32N 4.008 155 858 0.236 538 4153 0.468 121 7736 2.968 612 743− 5

4.3. Singular potentials

As a prototype of a singular potential we choose the combination of two Yukawa-type
potentials

V (r) = −100
e−4r

r
+ λ

e−r

r
(31)



Calculation of potential resonances 6333

Figure 4. Potential function:V (r) = 30 r−b√|r−b| e
−r .

Table 5. Convergence for non-analytic potential (30) (differential equation approach);M is the
number of meshpoints.

b = 0.4 b = 0.65

M Er 0/2 Er 0/2

100 4.009 628 532 0.237 025 4798 0.480 023 805 3.200 759 620− 5
200 4.006 155 876 0.235 859 0517 0.468 132 011 2.968 711 859− 5
400 4.006 742 046 0.236 060 3477 0.467 233 679 2.951 917 410− 5
800 4.008 039 402 0.236 498 8148 0.468 568 725 2.977 054 869− 5

1600 4.008 204 154 0.236 554 7512 0.468 119 594 2.968 577 128− 5
3200 4.008 259 417 0.236 573 5115 0.468 071 669 2.967 674 747− 5

with variableλ. This potential is singular at the origin and has a rich resonance structure. All
Siegert states are bound states forλ = 0; at increasingλ the repulsive barrier is subsequently
built and resonances appear. Asλ approaches the valueλ ∼ 15 a pair ofS-matrix poles,
one bound-state pole and one virtual-state pole, appear very close to the threshold. These
poles move in opposite directions along the imaginary axis at increasingλ and coalesce at
some valueλc

.= 15.030 34(R = 30). At increasingλ, λ > λc, the poles again separate
and their trajectories form two symmetric branches in the lower complex half plane. This
behaviour allows us to expose our approach to the more difficult case of two very close
poles of theS-matrix (so far we have been treating only isolated poles). We performed a
series of calculations of theS-matrix poles with the integral equation approach for a range
of values ofλ from the region of a weakly bound state to the appearance of a narrow
resonance including values ofλ for which both poles merge. It is found that again very
accurate and stable results are obtained with our approach even in the case of merging poles
and singular potentials. The results are collected in the table 6 which shows the locations
of the two poles versus the coupling parameterλ.
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Table 6. S-matrix poles for the singular potential (31).

λ Rekr Im kr Rekr Im kr

15.00 0.0 0.2118 0.0 −0.2251
15.01 0.0 0.1718 0.0 −0.1859
15.02 0.0 0.1201 0.0 −0.1349
15.03 0.0 0.0155 0.0 −0.0312
15.035 0.0854−0.0080 −0.0854 −0.0080
15.04 0.1231 −0.0082 −0.1231 −0.0082
15.05 0.1755 −0.0086 −0.1755 −0.0086
15.10 0.3301 −0.0106 −0.3301 −0.0106
16.00 1.2059 −0.0568 −1.2059 −0.0568

4.4. Location of resonances

A widely used method for calculating the resonance parameters is based on the
parametrization of the cross section (phase shift) in the vicinity of a resonance by the
Breit–Wigner formula [1] or more generally by an analytic representation of theS-matrix
[20]. As is well known, the phase shift increases rapidly in the resonance region. If the
resonance is narrow the phase shift increases byπ on a very narrow energy range. Since
the phase shift is determined only moduloπ it is necessary to repeat the calculation with
very small energy steps otherwise the resonance may easily be overlooked. This results in
a huge increase in volume of the computation and sometimes even special procedures for
the location of very narrow resonances must be used [21].

However, if we look at the functionF(k), defined by (23), we find (the same also holds
for the WronskianW(k)) thatF(k) is a very smooth function ofk and the location of the
resonance position is easy even for very narrow resonances. This is clearly demonstrated
in figure 5 which shows the real part ofF(k) + 1 and the imaginary part ofF(k) plotted

Figure 5. The real (full curve) and imaginary (broken curve) parts of the Jost function 1+F(k),
(23), for the potential (28) withλ = 30 plotted for realk. The two lines cross aroundk = 3.3
in correspondence with the presence of a very narrow resonance atk = 3.305− i0.000 0176.
The broader resonances abovek = 4.2 are also seen.
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for a range of realk calculated with the potential 28 withλ = 30. The full curve shows
the Re(F (k) + 1), the broken curve that of Im(F (k)). Both lines cross neark = 3.30
(this corresponds to the resonance atk = 3.305− i0.000 0176). The second resonance
(at k = 4.179− i0.128) is also seen. Now, however, the two curves do not cross at one
real point and the distance between the roots is a measure of the resonance width0. For
comparison we plot the cross section and the phase shift in figure 6. It follows from figure 5
that even if we are far away from the resonance the zero ofF(k) is easily discernible and
with a very few sample points the position of the resonance can be located even for very
narrow resonances. Hence, a very sparse energy grid may be used to locate the resonance
reducing considerably the amount of the numerical work.

Figure 6. The cross section in the region of the narrow resonance discussed in figure 5. Note
difference in the scales.

4.5. Calculation of zeros of the functionW(k)

As is well known, each potential identically equal to zero forr > R, whereR is a finite
non-zero value, provides an infinite number of resonances, so-called cut-off resonances.
These resonances can easily be separated from the true ones by their large sensitivity to
changes of the parameterR. Therefore, the number of resonance poles in a given region
may be large.

As described above, the resonance poles, i.e. zeros ofW(k) are localized iteratively
by means of the Pad [1/1] approximation. To start this procedure three pointsz1, z2 and
z3 in the vicinity of the resonance pole must be provided. Usually we choose the points
on a circle of a small radius. If the resonance pole is located inside or in the proximity
of the circle the process of finding the root of the Wronskian is very fast, and just a few
iterations lead to a very accurate determination of the root. However, if the initial guess was
wrong, i.e. at a considerable distance from the pole, the number of iterations increases and
not always the pole closest to the starting value is found. Sometimes even a very distant
pole may be found in this way. To see how the choice of the starting point influences the
calculation we applied the method to some simple analytic functions. As the first test we
take the functiong(z) = z4 − 1, which has four zerosz = ±1 andz = ±i. Let z0 denote
the centre of a circle on whichz1, z2 and z3 lie and let us investigate four domains ofz0
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Figure 7. Poles of the Wronskian for potential 15r2e−r with the cut-offR = 15. The true pole
is indicated by a cross, and cut-off poles with dots. Domains leading to the different poles are
plotted in the left figure. Two traces of the Pad method for two different initial guesses A and
B are shown on the right.

in the complex plane, which lead to those four zeros. It turns out that boundaries among
them are approximately the rays arg(z0) = (2n+ 1)π4 with n integer, but the behaviour of
the method is highly unstable near the rays and it is very difficult to say which zero will be
reached ifz0 is taken from this region.

The picture is much more complicated for realistic calculations, however. This is shown
in figure 7. Roots of the WronskianW(k) and respective domains are plotted in figure 7(a)
for the potentialV (x) = 15x2e−x . In figure 7(b) we follow the trace of the Pad [1/1]
approximant. The trace started from the circleA (denoted by the small circles) converges
to the true resonance, but the traceB (crosses) leads to the cut-off resonance.

Other methods for determining complex zeros (for example the Newton–Raphson
method) show analogous complicated behaviour [42].

5. Conclusions

We have implemented and tested two numerical methods for calculating theS-matrix poles
for local short-range potentials. TheS-matrix poles are defined here as the Siegert states
[22].

The first method is based on the idea of approximating the potential by a piecewise
linear function. To implement this idea an efficient method of calculating Airy functions
for complex arguments is necessary. By generalizing Gordon’s method [45] we developed
a very fast and accurate method of calculating Airy functions (details are described in the
appendix). By using this algorithm the resonance poles can be calculated accurately as the
zeros of the WronskianW(k), (11). By treating potentials with increasing complexity it
was shown in examples that very accurate and stable results are obtained (see tables 1–5)
with a moderate number of partitions of integration rangeR provided the resonance is not
very broad or the integration range is not very long. In this way we confirm the findings
of Meyer and Walter [26] who state that all methods based on the Schrödinger equation
lose their stability for Re(ikr) > 17 (using 16-digit arithmetic). In this paper we made no
attempt to use the long-range corrections of Meyer and Walter [26].

The second approach tested here is based on the solution of the integral equation (18).
The integration range is discretized and all the calculations are performed on a grid. No
approximation of the potential is performed. The calculations are repeated on various grids
and by means of the Romberg extrapolation very precise results are obtained. It appears that
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Table 7. Convergence of the integral equation approach for a broad resonance in the potential
V (r) = 15r2e−r ; R denotes the range of integration.

R Rek Im k

10 3.125 2062−0.231 1916
20 3.132 4457−0.304 5132
40 3.132 1414−0.353 0260
60 3.130 0853−0.357 1228
80 3.130 0427−0.357 1442
100 3.130 0425−0.357 1443
200 3.130 0425−0.357 1443
300 3.130 0425−0.357 1443

for resonances with small Re(k)((Re(k) < 10) the number of meshpoints needed for the
required accuracy is usually low (for example 100, 200 and 400 not optimized points yields
six-figure accuracy for potential of (28)). For resonances with higher Re(k) the differential
equation approach may be more efficient. However, the integral equation approach has a
definite advantage over the differential equation approach: it is much more stable and the
condition Re(ikR) > 17 may be relaxed. To see this we present here the calculation of the
second non-cut-off pole generated by the potentialV (r) = 15r2e−r in table 7.

Our results are stable even forR > 300 (i.e. Re(ikR) > 100) and compare well with
values (k = 3.130−i0.357) quoted by Meyer and Walter [26]. In all the cases studied above
it was assumed that the potential was local. It is known, however, that many physically
interesting potentials possess significant non-local parts [3]. To treat such potentials the
method discussed above must be generalized.

Appendix

A.1. Airy functions

The Airy functions Ai(z) and Bi(z) can be defined as sums of the following power series
(see [47])

Ai(z) = c1f (z)− c2g(z) (32)

Bi(z) =
√

3[c1f (z)+ c2g(z)] (33)

where

f (z) = 1 + 1

3!
z3 + 1.4

6!
z6 + 1.4.7

9!
z9 + · · · (34)

g(z) = z + 2

4!
z4 + 2.5

7!
z7 + 2.5.8

10!
z10 + · · · (35)

and

c1 = 1

2π
0

(
1

3

)
3− 1

6 c2 = 1

2π
0

(
2

3

)
3

1
6 . (36)

The convergence radius of these series is infinite. However, the functions Ai(z) and Bi(z)
cannot be evaluated by means of (32)–(36) in the whole complex plane. For large|z|, these
series are very slowly convergent and cancellation of terms occurs in the regions where
values of the functions are small.
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A.2. Evaluation ofAi(x) andBi(x) for real x

Gordon [45] has derived formulae (43)–(46) (see below), which lead to a very efficient
and precise method for evaluating Airy functions and expressions containing them for real
values ofx. Let us start with integral expressions [45] for Ai(x) and Bi(x)

Ai(x) = 1

2
√
π
x− 1

4 e−ξ
∫ ∞

0

ρ(t) dt

1 + (t/ξ)
(37)

Bi(x) = 1√
π
x− 1

4 e+ξ
∫ ∞

0

ρ(t) dt

1 − (t/ξ)
(38)

Ai(−x) = 1√
π
x− 1

4

∫ ∞

0

cos(ξ − π
4 )+ (t/ξ) sin(ξ − π

4 )

1 + (t/ξ)2
ρ(t) dt (39)

Bi(−x) = 1√
π
x− 1

4

∫ ∞

0

(t/ξ) cos(ξ − π
4 )− sin(ξ − π

4 )

1 + (t/ξ)2
ρ(t) dt (40)

wherex is real positive,

ξ = 2
3x

3
2 and ρ(t) = π− 1

2 2− 1
6 3

1
6 t−

5
6 e−t Ai(( 3

2t)
2
3 ). (41)

Using the fact that momentsµk of the weight functionρ(x) are known [43]

µk ≡
∫ ∞

0
xkρ(x) dx = 0(3k + 1

2)

54kk!0(k + 1
2)

(42)

we can use the method of the generalized Gaussian quadrature [44] to evaluate integrals in
(37) and (38), which leads to

Ai(x)
.= 1

2
√
π
x− 1

4 e−ξ
n∑
i=1

wi

1 + xi
ξ

(43)

Bi(x)
.= 1√

π
x− 1

4 e+ξ
n∑
i=1

wi

1 − xi
ξ

(44)

Ai(−x) .= 1√
π
x− 1

4

n∑
i=1

wi
cos(ξ − π

4 )+ xi
ξ

sin(ξ − π
4 )

1 + ( xi
ξ
)2

(45)

Bi(−x) .= 1√
π
x− 1

4

n∑
i=1

wi

xi
ξ

cos(ξ − π
4 )− sin(ξ − π

4 )

1 + ( xi
ξ
)2

. (46)

Values of the nodesxi and weightswi for n = 10 can be taken from [45] and forn = 20
(our result) are given in the table 8:

This allows us to calculate Ai(x) and Bi(x) on the whole real axis using (43)–(46),
except close to the origin, where the error of these expressions increases and the series
(32)–(36) must be used. Corresponding intervals (according to Gordon [45]) for relative
precision 10−14 (using 16-digits arithmetic) are given in table 9. In fact the relative error of
ai(x) is slightly higher (∼ 10−12) nearx = 3.7 due to cancellation of terms in the power
series. So we recommend using (43) withn = 20 for x ∈ 〈2.14, 4.2〉 if a really high
precision is required.

For solving the Schr̈odinger equation only the quantities1i are directly required, not
the values of the Airy functions, see (6) and (7). It is not very convenient to compute
Airy functions first and then to use (8), because values of Ai(x) are very small and values
of Bi(x) very big for large positivex and both functions are highly oscillatory for large
negativex. It is much better to substitute expressions (43)–(46) into (8) instead and collect
exponential or oscillatory terms, which nearly cancel out.
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Table 8. Weights and nodes for evaluation of the Airy functions (equations (43)–(46)).

i wi xi

n = 20 1 7.367 629 917 890 1838× 10−1 4.138 104 596 959 3848× 10−3

2 1.637 323 588 744 4356× 10−1 1.014 067 838 903 4257× 10−1

3 6.570 004 475 518 6294× 10−2 3.205 073 781 659 7486× 10−1

4 2.411 813 173 090 3074× 10−2 6.638 935 637 889 6527× 10−1

5 7.419 250 357 169 8453× 10−3 1.134 300 624 683 1197
6 1.843 764 790 888 4445× 10−3 1.735 088 919 269 7992
7 3.616 318 396 044 2296× 10−4 2.470 526 438 097 2342
8 5.491 243 708 738 4324× 10−5 3.346 026 679 221 7012
9 6.334 261 117 425 5159× 10−6 4.368 419 128 0619 897

10 5.437 206 860 231 9701× 10−7 5.546 303 499 989 5683
11 3.390 641 438 271 3043× 10−8 6.890 543 640 208 1020
12 1.491 946 218 236 8753× 10−9 8.414 983 529 145 1491
13 4.465 712 145 839 1191× 10−11 10.137 524 095 983 333
14 8.671 110 960 163 8167× 10−13 12.081 813 157 473 574
15 1.024 660 028 979 5361× 10−14 14.280 042 673 374 010
16 6.736 064 233 908 1152× 10−17 16.777 910 032 636 809
17 2.153 990 102 811 0840× 10−19 19.644 275 859 114 523
18 2.690 146 409 301 3610× 10−22 22.992 627 728 392 780
19 8.668 109 035 110 7345× 10−26 27.039 719 919 610 232
20 2.542 001 893 424 9125× 10−30 32.341 049 358 350 355

Table 9. Ranges for evaluation of Ai(x) and Bi(x) for real x.

Ai Bi

x ∈ (∞,−5〉 (45) for n = 10 (46) forn = 10
x ∈ 〈−5, 3.7〉 Power series Power series
x ∈ 〈3.7, 8〉 (43) for n = 10 Power series
x ∈ 〈8,∞) (43) for n = 4 (44) for n = 4

A.3. Analytic continuation of the Gordon’s method

We shall see that formulae (43) and (44) cannot be used directly with real positivex replaced
by complexz. The formulae were obtained from (37)–(40) by means of Gaussian quadrature
so we will examine the analytic continuation of (37)–(40).

Let us start with expression (37). The right-hand side of this equation is analytical in
the domainD = {z, | arg(z)| < 2

3π}. The integral path must be deformed to circumvent the

pole t = 2
3z

3
2 , whenz is from the rest of the complex plane. The resulting contour integral

can be written as integral over the positive real axis plus the respective residuum. Thus for
± arg(z) > 2

3π :

Ai(z) = 1

2
√
π
z− 1

4 e−ξ
∫ ∞

0

ρ(t) dt

1 + (t/ξ)
+ δ

(±)
1 (z) (47)

where

δ
(±)
1 (z) = ∓iπ

1
2 z− 1

4 e−ξ Rezt=−ξ
ρ(t)

1 + (t/ξ)
(48)

and

ξ = 2
3z

3
2 = 2

3|z| 3
2 e

3i
2 arg(z). (49)
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Functionδ±
1 for | arg(z)| > 2

3π can be evaluated explicitly in terms of Ai(η), whereη is in
the domainD so that (37) can be used. In this way we find that (47) coincides with (39).

Treating (39) and (40) in the same way, we discover that these expressions are valid in
the domain| arg(z)| < π

3 and must be modified for± arg(z) > π
3 adding the factorsδ±

3 (z)

and δ±
4 (z) respectively to the right-hand sides. The situation is slightly different for the

equation (38) because the right-hand side is a principal value integral. However, it can be
shown that (for± arg(z) > 0)

Bi(z) = 1√
π
z− 1

4 e+ξ
∫ ∞

0

ρ(t) dt

1 − (t/ξ)
+ δ

(±)
2 (z) (50)

with

δ
(±)
2 (z) = ∓iπ

1
2 z− 1

4 e+ξ Rezt=ξ
ρ(t)

1 − (t/ξ)
. (51)

Similarly as for Ai(z) it can be shown that (50) leads to (40) on the negative real axis.
One way of evaluating Ai(z) in the complex plane is a direct use of (43) in the domain

D and of (45) elsewhere. It seems at first sight, that the Gaussian quadrature of integral
(37) or (39) will not work near the rays arg(z) = ± 2

3π , because of the proximity of the
poles to the integration path. Fortunatelyδ±

1 is exponentially damped in this region and the
error of the Gaussian quadrature due to proximity of the pole is proportional toδ±

1 . It is
the same situation as in the formula (38) on the real axis and in (39) and (40) near the rays
arg(z) = ±π

3 and so Bi(z) could be treated similarly. But this way of evaluating the Airy
functions is not the best one, which is clearly seen from the fact that formula (44) is of use
for x > 8 only (table 9). We prefer to evaluate functions Ai(z) and Bi(z) in a different
manner.

The following relations hold for the Airy functions of the rotated argument [47]:

Ai(ze± 2
3π i) = 1

2[Ai (z)∓ i Bi(z)] (52)

Bi(ze± 2
3π i) = 1

2[Bi(z)∓ 3i Ai(z)]. (53)

This can also be seen directly from the definition (32)–(35). From these relations
we can evaluate Ai(z) and Bi(z) in the whole complex plane knowing Ai(z) only in
{z, | arg(z)| 6 π

3 } and Bi(z) in {z, | arg(z)| > 2
3π}. So only formulae (43) and (46) are

really necessary.
We have compared results of calculation of the Airy functions using different formulae

with results obtained from the series (32)–(35) (performing computation in high-precision
arithmeticcomplex*32) and thus determined their precision. In table 10 we give domains
for evaluation of Ai(z) and Bi(z), which lead to a relative precision of at least 10−13 in the
result (usingcomplex*16 arithmetic).

Table 10. Ranges for evaluation of Ai(z), Bi(z) for complexz.

Ai Bi

z ∈ A Series Series
z ∈ B n = 20 Series
z ∈ D1 ∪D6 n = 10 n = 10+ relations
z ∈ D3 ∪D4 n = 10+ relations n = 10
z ∈ D2 ∪D5 n = 10+ relations n = 10+ relations
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Definition of the domainsA, B andD1–D6 is given below. Letk1 and k2 denote the
following two curves in the complexz-plane:

k1 =
{
reiϕ; r = 3.7 + 4.5

(
1

2
+

∣∣∣∣D (
3

2

(ϕ
π

+ 1
))∣∣∣∣)2

;ϕ ∈ 〈−π, π)
}

k2 =
{
reiϕ; r = − 3

ϕ2 − 1.5
;ϕ ∈ 〈−1.22, 1.22〉

}
where the functionD(c) for real c is a distance from the nearest integer number. Curve
k2 divides the interior ofk1 into two partsA andB, whereA contains the origin,z = 0.
The exterior ofk1 is divided by rays arg(z) = ±π

3 and arg(z) = ± 2π
3 into six partsD1–D6

(anticlockwise and 10+ i ∈ D1).
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