Homework \#2

Assigned: 1.11.2019 Deadline: 15.10.2019

Symmetry group of benzene and character table of its subgroup $C_{6 v}$ (13 points)

1. (7 points) Determine the symmetry grouop of benzene molecule $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ in its equilibrium geometry and construct character table of its 12element subgroup $C_{6 v}$. The solution must contain unambiguous step by step explanation of the procedure.
2. (6 points) Consider function space with a basis of $\left\{x^{2}, y^{2}, z^{2}, x y, x z, y z\right\}$. Determine irreducible invariant subspaces of this vector space under the action of $C_{6 v}$ and assign them (i.e., their bases) to the irreducible representations found in the previous sub-task.

Note: Systematic solution of the second sub-task will be only discussed in the 8.11. lecture. The key is the decomposition of a representation obtained as a direct product of two vector representations (with represenation space defined by the basis $\{x, y, z\}$). However, the problem can be solved already now with the aid of some geometrical visualization.

Cyclic group (7 points)

1. (4 points) Construct the character table of an abstract 4 -element cyclic group.
2. (3 points) Find some isomorphic point group and determine according to which irreducible representations are transformed the vectors (linear functions $x, y, z)$ and pseudovectors.

Hint: Cyclic group is Abelian and has, therefore, only one-dimensional complex irreducible representations. For the sub-task 2 it is however necessary to find real representations, which might be higher-dimensional and, strictly speaking, reducible).

