Homework \#5

Assigned: 20.12.2019 Deadline: bring for examination

Homomorphism $S L(2, \mathbb{C})$ onto L_{+}^{\uparrow}
Let ϕ be the homomorphism

$$
S L(2, \mathbb{C}) \rightarrow L_{+}^{\uparrow}
$$

constructed in the class. The homomorphism is based on the one-to-one association of a four-vector from Minkowski space with a Hermitean 2×2 matrix,

$$
x=\left(x_{0}, x_{1}, x_{2}, x_{3}\right)^{T} \quad \leftrightarrow \quad X=\left(\begin{array}{cc}
x_{0}+x_{3} & x_{1}-i x_{2} \\
x_{1}+i x_{2} & x_{0}-x_{3}
\end{array}\right) .
$$

Action of $S L(2, \mathbb{C})$ on the space of Hermitean matrices (and, therefore, Minkowski space) is then defined through

$$
X \longmapsto \tilde{X}=A X A^{\dagger}, \quad A \in S L(2, \mathbb{C}) .
$$

For more details, see the lecture notes.
Show that

1. (5 points) matrix

$$
M_{\tau}=\left(\begin{array}{cc}
e^{-\tau} & 0 \\
0 & e^{\tau}
\end{array}\right) \in S L(2, \mathbb{C})
$$

is mapped to the boost in the $\langle z\rangle$ direction with velocity $v=\tanh (2 \tau)$,
2. (5 points) matrices

$$
U_{\theta}=\left(\begin{array}{cc}
e^{-i \theta} & 0 \\
0 & e^{i \theta}
\end{array}\right) \in S L(2, \mathbb{C})
$$

and

$$
V_{\alpha}=\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right) \in S L(2, \mathbb{C})
$$

are mapped to rotations around $\langle z\rangle$ by an angle 2θ and around $\langle y\rangle$ by an angle 2α, respectively,
3. (5 points) kernel of the homomorphism is $\operatorname{Ker}_{\phi}=\{\mathbb{1},-\mathbb{1}\}$ (Don't forget to show that there is no other matrix in $S L(2, \mathbb{C})$ that is mapped to identity transformation).
Try to show that if the kernel of ϕ contains n elements, then the preimage of every element of L_{+}^{\uparrow} contains exactly n elements and, therefore, the ϕ represents double covering.

