
Lecture synopsis

NTMF061: Group theory and its application in physics

Winter term 2022/23

Literature:

Problems are taken mostly from

• Ma, Z.-Qi: Group Theory for Physicists (World Scientific, 2007)

• Inui, Tanabe, Onodera: Group Theory and Its Applications in Physics (Springer,
1996)

Week 1: October 5th

• group definition, order of the group, examples of groups, Abelian group

• multiplication table, rearrangement theorem: Each row and each column of the
multiplication table contains each element of the group once and only once.

• subgroup, order of an element, cyclic subgroup, theorem: Intersection of two
subgouprs of G is again a subgroup of G.

• left and right cosets with respect to a subgroup, each element of G is a
member of one and only one left/right coset with respect to a given subgroup

• Lagrange theorem: Order of a subgroup of G divides #G, index of a subgroup

• conjugacy classes, theorem: Number of elements in any class (g) is a divisor
of #G.

Tutorial: Classification of point groups, symmetry elements, and symmetry operations

Suggested problems:

• Let g and h be elements of order two. Show that if g and h commute, the set V4 = 〈g, h〉 =
{e, g, h, g · h} constitutes a group (called four-group). Construct its multiplication table.
Are there other groups of order 4?

• Demonstrate that the set of rotations through 180◦ around the x−, y− and z−axes and
the identity transformation, D2 = {E,C2x, C2y, C2z}, constitutes a group and its multipli-
cation table is that of a four-group V4.

• Verify that if two mirror planes σ1 and σ2 form an angle θ, the product operation σ1σ2 is
the rotation R(2θ) whose rotation axis is the intersection of the two mirror planes.

• Find the eight proper subgroups of C4v.

• Derive the left and right coset decomposition of C3v with respect to its proper subgroups.

• Prove that elements belonging to the same class have the same order.

http://is.cuni.cz/studium/predmety/index.php?do=predmet&kod=NTMF061
http://utf.mff.cuni.cz/~kolorenc/Grupy.2021/L1_Lagrange.pdf
http://utf.mff.cuni.cz/~kolorenc/Grupy.2021/T1_point_groups.pdf


Week 2: October 12th

• multiplication of conjugacy classes, class constants (gi)(gj) =
∑

(gk)
ckij(gk)

• normal (invariant) subgroup, center of a group, simple and semi-simple groups

• theorem: H / G ⇔ H consists entirely of complete classes of G.

• product of left/right cosets, theorem (factor group): The set of all distinct
cosets with respect to an invariant subgroup H /G forms a factor (quotient) group.

• homomoprhic mapping; surjective, injective and bijective (isomorphic) map-
pings

• theorem: Let Φ : G → G′ be a homomorphism. Then Imφ is a subgroup of G′,
Kerφ is invariant subgroup of G and Imφ ∼ G/Kerφ.

• direct and semi-direct product groups, Euler group as a semi-direct group

Suggested problems:

• Construct the class multiplication table for C4v.

• The inverse elements of nj elements constituting class (gj) form a class by themsel-
ves, which will be denoted (gj′). Show that c1ij = ni when (gi) = (gj′) and c1ij = 0
otherwise [(g1) = e].

• Show that (gi)(gj) = (gj)(gi).

• show that the conjugation φa : g 7→ aga−1 is an isomorphism

• show that left translation La : g 7→ ag is an isomorphic mapping but that it is not
homomorphic

• show that the group D3h ∼ C3v ⊗ Cs ∼ D3 ⊗ Cs

• For the point group C6v

– construct the multiplication table

– find the set of generators

– find the six classes

– explain why the rotations fall into two distinct classes

– construct the multiplication table of the classes (class constants)

– find the four proper invariant subgroups

– find the corresponding coset decompositions

• Show that up to isomorphism, there are only two different fourth-order groups –
the cyclic group and the four-group V4.

http://utf.mff.cuni.cz/~kolorenc/Grupy.2022/L2_mappings.pdf


• Show that a group must be abelian if the order of any element in the group, except
for the identity, is 2.

• In a finite group G of order #G, let (g) = {g1, . . . , gn} be a class containing n
elements. For any two elements gi and gj in the class (may be different or same),
show that the number m of elements h ∈ G satisfying gi = hgjh

−1 is m = #G/n.

Week 3: October 19th

• group action on a set, orbit, stabilizer (isotropy) group, theorem: Let G be a
finite group acting on a set M. Then (#G ·m)(#Gm) = #G.

• Group action on itself: left/right translation, conjugation

• representation of a group as an action on a vector space (homomorphism
to the group of all automorphisms on the vector space), dimension of the repre-
sentation, faithful representation

• basis of a representation, matrix representation

• equivalent representations, intertwining mapping; equivalent matrix represen-
tations are related by similarity transformation

• invariant subspaces under group action, reducible and irreducible represen-
tation, subrepresentation, reducibility of matrix representations

• completely reducible representation, block-diagonal form of completely redu-
cible matrix representation

• theorem: Every irreducible representation of a finite group is finite-dimensional.

• unitary representation, theorem: Every finite-dimensional reducible unitary
representation of a group G is completely reducible.

• theorem: Every finite-dimensional representation of a finite or compact Lie group
is equivalent to some unitary representation.

• theorem (Maschke): Every finite-dimensional reducible representation of a finite
or compact Lie group is completely reducible.

• Schur lemma I: Intertwining mapping between two irreducible representations is
either bijective (and the two representations are equivalent) or null mapping.

• Schur lemma II: Let (ρ, V ) be a complex finite-dimensional irreducible repre-
sentation of a group G and S an intertwining operator on V commuting with all
operators T (g) ∈ ρ. Then S = λ1 for λ ∈ C.

• theorem: Complex finite-dimensional irreducible representations of an Abelian
group are one-dimensional.

http://utf.mff.cuni.cz/~kolorenc/Grupy.2022/L3_repreI.pdf


Suggested problems:

• Let G be a non-Abelian group, D(G) its faithful representation, and D(g) the
matrix representing an element g ∈ G. Assuming we replace the set of matrices
D(g) by another set as indicated below, decide whether the new set still forms a
representation:

1. g 7→ D(g)†

2. g 7→ D(g)T

3. g 7→ D(g−1)

4. g 7→ D(g)∗

5. g 7→ D(g−1)†

6. g 7→ detD(g)

7. g 7→ TrD(g)

• Prove that the module of any representation matrix in a one-dimensional repre-
sentation of a finite group is equal to 1.

Week 4: October 26th

• theorem: Orthogonality relations for irreducible matrix representations∑
g∈G

[Dµ(g−1)ij ]D
ν(g)kl =

#G

dµ
δµνδjkδil

for unitary repre:
∑
g∈G

[Dµ(g)ji ]
∗Dν(g)kl =

#G

dµ
δµνδjkδil

• character of a representation

• theorem: Orthogonality relations for characters∑
g∈G

χµ(g)∗χν(g) = #Gδµν

• theorem: For finite or compact Lie group, equality of characters of two represen-
tations is a sufficient condition for their equivalence.

• decomposition of a reducible representation ρ (of a finite or compact Lie group):

ρ = ⊕µnµρµ =⇒ nµ =
1

#G

∑
g

χµ(g)∗χ(g)

with summation running over all non-equivalent IRREPs ρµ.

http://utf.mff.cuni.cz/~kolorenc/Grupy.2022/L4_repreII.pdf


• regular representation of a finite group, theorem: #G =
∑

µ d
2
µ

• theorem: Number of non-equivalent IRREPs of a finite group is equal to the num-
ber of distinct conjugacy classes.

• theorem (Frobenius): Representation (ρ, V ) of a finite group G is irreducible

⇐⇒
∑
(gk)

nkχ(gk)
∗χ(gk) = #G.

Tutorial:

1. Vector and pseudo-vector representation of O(3)

Suggested problems:

• Consider C3v point group.

1. Verify that the second Schur lemma holds for the irreducible representation E.

2. Show that for the “defining” 3-dim representation (action on R3) there exists
a matrix other than 1 that commutes with all matrices of the representation.

• Prove that the similarity transformation matrix between two equivalent irreducible
unitary representations of a finite group, if restricting its determinant to be equal
to one, has to be unitary.

• Show that for a finite group G, the sum of the characters of all elements in any
irreducible representation of G, except for the trivial representation, is equal to
zero.

Week 5: November 2th

• transformation of a wave function [group action on a Hilbert space L2(R3)]; trans-
formation of an operator

• direct product representation, symmetric and antisymmetric products of equi-
valent representations

– point groups – transformation of quadratic (or higher polynomial) functions

• symmetrization (projection) operators (complete and incomplete), construc-
tion of a basis of irreducible (sub)representation

Tutorial:

1. Character table for D3h

2. MO-LCAO for H+
3 – basis symmetrization

http://utf.mff.cuni.cz/~kolorenc/Grupy.2022/T2_O3_vec.pdf
http://utf.mff.cuni.cz/~kolorenc/Grupy.2022/L5_directproduct_repre.pdf
http://utf.mff.cuni.cz/~kolorenc/Grupy.2022/T3_D3h_table.pdf
http://utf.mff.cuni.cz/~kolorenc/Grupy.2022/T4_H3_MOLCAO.pdf


Suggested problems:

• If the group G is a direct product H1 ⊗ H2 of two subgroups show that the di-
rect product of two irreducible representations of two subgroups is an irreducible
representation of G.

– Considering the number of classes in H1, H2 and in G, show that each irredu-
cible representation of G can be constructed as a direct product representation
of irreducible representations of H1 and H2. You also have to show that the
direct product of inequivalent pairs of irreducible representations of Hi’s gives
inequivalent irreducible representations of G.

• The homogeneous function space of degree 2 spanned by the basis functions

ψ1(x, y) = x2, ψ2(x, y) = xy, ψ3(x, y) = y2

is invariant in the rotations R,(
x′

y′

)
= R

(
x
y

)
,

1. R =

(
1 0
0 −1

)
2. R = 1

2

(
−1 −

√
3√

3 −1

)
3. R =

(
cosα − sinα
sinα cosα

)
.

Calculate the matrix form D(R) of the corresponding transformation operators
U(R) in the three-dimensional function space.

• Consider the point group D3 as a coordinate transformation in R2 (i.e., its irre-
ducible representation E). Find the two generators of the group, g1 and g2, and
construct the corresponding 2× 2 matrices DE(g1) and DE(g2).

1. Let the four-dimensional function V4 space be spanned by the following basis:

ψ1 = x3, ψ2 = x2y, ψ3 = xy2, ψ4 = y3.

Find the corresponding representation matrices of the generators g1 and g2.
Decompose this representation into the direct sum of irreducible represen-
tations of D3, and transform the basis functions such that the new basis
functions transform according to those irreducible representations (i.e., find
the respective invariant subspaces of V4).



Week 7: November 16rd

• symmetries in quantum mechanics

– symmetry group as a group of transformations leaving Hamiltonian of the
system invariant

H̃ = U(g)HU(g)† = H

– eigenfunctions of the Hamiltonian as a basis of an irreducible representation
of the symmetry group, degeneration of energy levels (normal and accidental,
hidden symmetries)

• matrix elements of invariant scalar operators

U(g)ΩU(g)† = Ω =⇒ 〈ψµk |Ω|ϕ
ν
l 〉 = hµδµνδkl

• decomposition of direct product representation – Clebsch-Gordan series

• basis of direct product representation – Clebsch-Gordan coefficients

• selection rules for matrix elements of invariant scalar operators

• irreducible tensor operators, Wigner-Eckart theorem

• molecular vibrations and optical transitions

– normal coordinates (vibrational modes) as bases of IRREPs of the sym-
metry group

– activity of vibrational modes in infrared spectrum and in Raman scattering

Tutorial

1. MO-LCAO for H2+
3 – the Hamiltonian

Suggested problems:

• Calculate the unitary similarity transformation matrix X for reducing the self-
direct product of the three-dimensional irreducible unitary representation ρT of
the point group T:

X−1
[
DT (g)⊗DT (g)

]
X =

⊕
σ

n(T⊗T )σ Dσ(g)

• Calculate the Clebsch-Gordan series and the Clebsch-Gordan coefficients in the
reduction of the direct product representation ρT1 ⊗ ρT2 of the point group I.

• Examine the selection rules for Raman scattering by a H2O molecule.

http://utf.mff.cuni.cz/~kolorenc/Grupy.2021/L7_Wigner_Eckart_2021.pdf
http://utf.mff.cuni.cz/~kolorenc/Grupy.2021/L6_symmetrization_induction_2021.pdf
http://utf.mff.cuni.cz/~kolorenc/Grupy.2021/L6T1_MOLCAO_H3_2021.pdf


Week 8: November 23th

• Symmetric (permutation) group Sn

– composition rule, decomposition into disjoint cycles, composition of cycles

– classes (elements with the same cycle structure)

– transpositions

– even permutations as invariant subgroup, generators of Sn
– irreducible representations of Sn: Young diagrams, Young tableau, hook rule

(dimensions of IRREPs)

– bases of IRREPs of Sn – subduction chain Sn ↓ Sn−1 ↓ · · · ↓ S1
– characters of IRREPs of Sn
– orthogonal matrix representation

Tutorial:

1. Character table of S4

Suggested problems:

• There are 52 pieces of playing cards in a set of poker. The order of cards is changed
in a shuffle according to the following rule: The deck is split into two parts in equal
number, then one card is picked from each part in order. The first and the last
cards thus do not change their positions, the remaining are rearranged. Find the
corresponding permutation, decompose it into a product of disjoint cycles, and
determine how many shuffles are needed to take the deck into its original order.

• Find the dimensions of irreducible representations of S7

• Find explicit form of the two-dimensional irreducible orthogonal matrix represen-
tation of S3.

• Calculate the representation matrices of the generators of S4 by induction from
the representation found in the previous task and reduce them into irreducible
representations.

• Implement a code that will generate the character table of an arbitrary permutation
group.

http://utf.mff.cuni.cz/~kolorenc/Grupy.2021/L8_Symmetric_group_2021.pdf
http://utf.mff.cuni.cz/~kolorenc/Grupy.2021/L8_Symmetric_group_2021.pdf#page=9


Self-study

• relations between representations of a group and its subgroups

– subduced and induced representations, decomposition to irreducible re-
presentations

– theorem (Frobenius reciprocity): αν↑Gµ = αµ↓Hν

Tutorial

1. Induced representations, Frobenius reciprocity

2. Optical transitions in CO2+
3 ion

3. Normal coordinates for diatomic molecule

Suggested problems:

• Show that induction from the trivial representation of the trivial subgroup {E}
gives the regular representation of a group G.

• Construct the induced representations of C3v from the A′ and A′′ irreducible re-
presentations of Cs and verify Frobenius reciprocity theorem.

• Consider the 5-dimensional representation l = 2 of SO(3) with characters given by
the general formula

χl(Cϕ) =
sin[(l + 1/2)ϕ]

sin(ϕ/2
).

Construct the subduced representations ρl=2
SO(3)↓O and ρl=2

SO(3)↓D4
and find their re-

duction to irreducible representations of the subgroupsO < SO(3) andD4 < SO(3).

• Show that ρµ↑G is irreducible if and only if the irreducible representation ρµ of H

appears in (ρµ↑G)↓H only once.

http://utf.mff.cuni.cz/~kolorenc/Grupy.2022/L_repre_subgroups.pdf
http://utf.mff.cuni.cz/~kolorenc/Grupy.2021/L6T2_induced_Frob_2021.pdf
http://utf.mff.cuni.cz/~kolorenc/Grupy.2021/L7T1_CO3_optical_transitions_2021.pdf
http://utf.mff.cuni.cz/~kolorenc/Grupy.2021/L7T2_diatomic_vib_2021.pdf


Week 9: November 30st

LIE GROUPS

• SO(3) as a group of orthogonal matrices 3× 3 with unit determinant

– linearization – antisymmetic matrices as generators of infinitezimal rotations

– general rotation as exponential of the generators

– group O(3) has the same generators but exponential mapping covers only the
connected subgroup SO(3)

– generators of rotations form Lie algebra so(3) with structure constants

[Ji, Jj ] = ickijJk, ckij = εijk

– (Ji)jk = −ickij is adjoing representation of the Lie algebra so(3)

• Review of differential geommetry

– topological space, open and closed sets, neighborhood of a point, continu-
ous mapping, homeomorphism

– connected, path-connected and simply-connected topological spaces,
compactness

– topological manifold, coordinate map, atlas, differentiable manifolds
(smooth, analytical)

• Lie groups as smooth manifolds

– smooth mapping between manifolds

– real Lie group, linear Lie group

– global topological properties of Lie groups – E(2), SO(2), SO(3), SU(2),
SL(2,R)

Week 10: December 8th

LIE ALGEBRAS – left-invariant vector fields on Lie groups

• tangent vectors as a class of equivalence of tangent curves, tangent space TpM ,
directional derivative, isomorphism of TpM and the space of derivatives
DpM , tangent bundle

• vector field, integral curve of a vect. field

• push-forward mapping

• Lie bracket

http://utf.mff.cuni.cz/~kolorenc/Grupy.2022/L9_Lie_intro.pdf
http://utf.mff.cuni.cz/~kolorenc/Grupy.2022/L10_Lie_algebra.pdf


• left-invariant vector field, isomorphism of TeG and the space L(G) of left-
invariant fields on a Lie group G

• push-forward of Lie bracket, commutator of vectors from TeG using Lie bracket of
the corresponding fields from L(G), TeG as Lie algebra of G

Exponential mapping

• one-parameter subgroup of a LG

• theorem: Every one-parameter subgroup of G is an integral curve of some left-
invariant vector field and every integral curve of a left-invariant vector field is
one-parameter subgroup.

• theorem: Left-invariant vector fields on G are complete.

• exponential mapping from LA G to LG G:

exp : G → G X 7→ exp(X) ≡ γX(1)

for γX(t) ⊂ G the one-parameter subgroup corresponding to X ∈ G.

• γX(t) = exp(tX)

• theorem: Exponential mapping is a local diffeomorphism between TeG and U(e) ⊂
G

• connected subgroup, theorem: Let G be compact LG, then every element of its
connected subgroup can be written as g = exp(X) for some X ∈ G.

• theorem: Every connected component of a LG is a right coset with respect to the
connected subgroup.

• theorem: Every point of the connected subgroup of G can be written as a finite
product of exponential elements.

• theorem: Every connected component of a Lie group is a right coset of its con-
nected subgroup.

Tutorial:

1. matrix groups and their algebras (left-invariant fields, structure constants and
commutator on TeG) – gl(n,R)

http://utf.mff.cuni.cz/~kolorenc/Grupy.2021/L10_Lie_algebra_2021.pdf#page=8


Week 11: December 14th

Relations between Lie groups and their Lie algebras

• homomorphism and isomorphism between LAs

• derived homomorphism of LAs, LA of a subgroup of G is sub-algebra of the LA of
G

• theorem: “Let Φ be isomorphism between two LGs. Then the derived homomor-
phism Φ∗ is an isomorphism between corresponding LAs.“

• discrete subgroup, theorem: ”If the kernel of a surjective homomorphism Φ be-
tween two LGs is discrete, then the derived homomorphism Φ∗ is an isomorphism
between corresponding LAs.“

• relation between non-isomorphic LGs with isomorphic LAs, universal covering
group

Killing-Cartan form – recovering the geometry of LG from LA

• representation of LA as a homomorphism G → End(V), adjoint representation

• Killing-Cartan form and metric, properties of K-C form

Tutorial:

1. Homomorphism (double covering) SL(2,C) → L↑+ and SU(2) → SO(3)

2. Killing-Cartan form on sl(2,R) – compact and non-compact generators

http://utf.mff.cuni.cz/~kolorenc/Grupy.2022/L11_LG_LA_2022.pdf
http://utf.mff.cuni.cz/~kolorenc/Grupy.2020/T7_SO3_double_cover.pdf
http://utf.mff.cuni.cz/~kolorenc/Grupy.2021/L12T1_SL2R_Cartan.pdf

