APPROXIMATE METHODS

10.1 CLASSICAL CLUSTER EXPANSION

Many systems of physical interest can be treated classically. A large class of such
systems is described by a classical Hamiltonian for N particles of the form

N p?
W= = . 1
§1 - + Zv,j (10.1)

i i<j

where p; is the momentum of the ith particle and v;; = v(Jr, — r}|) is the
potential energy of interaction between the ith and the jth particle. If the system
occupies a volume V, the partition function is

1
Np3N

2
Oy (V,T) = fd3di3N’exP (—-B; % - BEUU‘) (10.2)

i<j

where each coordinate r; is integrated over the volume V. The integrations over
momenta can be immediately effected, leading to

1
Ou(V.T) = s /d3~rexp(—p§jv,,) (10.3)

where A = {27h?/mkT is the thermal wavelength. The integral in (10.3) is called
the configuration integral. For potentials v;; of the usual type between molecules,
a systematic method for the calculation of the configuration integral consists of
expanding the integrand in powers of exp (—Bv,;) — 1. This leads to the cluster
expansion of Ursell and Mayer.* As we shall see, this expansion is of practical
use if the system is a dilute gas.

*For original literature, see J. E. Mayer and M. G. Mayer, Staristical Mechanics (Wiley, New
York, 1940), Chapter 13.
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Fig. 10.1 Intermolecular potential v, and
the function f,,.

Let the configuration integral be denoted by Z, (V, T):

Zy(V,T) = fd3rl rNexp( ,BZUU) (10.4)

i<j

in terms of which the partition function may be written as
on(V,T) = voon Zn(V.T) (10.5)

and the grand partition function as

v z NZ'V(V’T)
2V, T)= ¥ (—) B (10.6)
P N!
Let f;; be defined by
e Pu=1+f, (10.7)

For the usual type of intermolecular potentials, v;; and f;; have the qualitative
forms shown in Fig. 10.1. Thus fi; is everywhere bounded and is negligibly small

when |r, — r/| is larger than the range of the intermolecular potential. In terms of
f;; the conﬁguranon integral may be represented by
= [@r - @, T1( + 1) (10.8)
i< _]

in which the integrand is a product of 1N(N — 1) terms, one for each distinct
pair of particles. Expanding this product we obtain

ZN(VaT)=/d3’1 e diry [T+ (fa+ fa+ o)

+(fiohis + frofra+ ) + ] (10.9)

A convenient way to enumerate all the terms in the expansion (10.9) is to
associate each term with a graph, defined as follows:

An N-particle graph is a collection of N distinct circles numbered 1,2,..., N,
with any number of lines joining the same number of distinct pairs of circles. If the
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distinct pairs joined by lines are the pairs a, B, ..., \, then the graph represents the
term

[air - dnfufy - f, (10.10)

appearing in the expansion (10.9).

If the set of distinct pairs {a, 8,..., v} is joined by lines in a given graph,
replacing this set by a set {a’, B,..., v’} that is not identical with {a,B,...,7}
gives rise to a graph that is counted as distinct from the original one (although
the integrals represented by the respective graphs have the same numerical value).
For example, for N = 3, the following graphs are distinct:

& &b

but the following graphs are identical:

>0 6 o0 0

We may regard a graph as a picturesque way of writing the integral (10.10).
For example, we may write, for N = 10,

OO0
=
1

With such a convention, we can state that

fd3’1 ds’lof12f39f67/28f8,10f6.10f78 (10-11)

Zy = (sum of all distinct N-particle graphs) (10.12)

The proof is obvious.
Any graph can in general be decomposed into smaller units. For example,
the graph (1@11) is a product of five factors, namely

®@ 6 O @

©—®
- (@) -10]-|0-0] [6-0) - o'"@

Each factor corresponds to a connected graph, in which every circle is attached to
at least one line, and every circle is joined directly or indirectly to all other circles
in the graph.

It would facilitate the analysis of Z, if we first defined the basic units out of
which an arbitrary graph can be composed. Accordingly we define an /-cluster to
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be an / particle connected graph. For example, the following is a 6-cluster:

0'8 ©,
= fd3’1 d3r6f12f23f14f46f56 (10-13)
B @®

We define a cluster integral b,(V, T ) by

1
b(V,T) = X (sum of all possible /-clusters) (10.14)

The normalization factor is so chosen that

(a) b,(V,T) is dimensionless;
(b) 5(T)= lim b,(V,T) is a finite number.
V—oo

The property (b) follows from the fact that f;; has a finite range, so that in an
I-cluster the only integration that gives rise to a factor V is the integration over
the “center of gravity” of the / particles. Some of the cluster integrals are

b, = %[@] = %}fd% =1 (10.15)

b2 = -Z'X!V[@_@] = A32Vfd3rl d3r2 fia = ﬁfd%,lz fia (1016)

b3=§%67/ z + )R‘ 4 3 + Zil(lo.m)

Any N-particle graph is a product of a number of clusters, of which m, are
I-clusters, with

N
Y im=N (10.18)
=1

A given set of integers {m,} satisfying (10.18), however, does not uniquely
specify a graph, because

(a) there are in general many ways to form an /-cluster, e.g.,

do &

(b) there are in general many ways to assign which particle belongs to which

cluster, e.g.,
(D
{o

Thus a set of integers { m,} specifies a collection of graphs. Let the sum of all the
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graphs corresponding to { m,} be denoted by S{m,}. Then
Zy= Y S{m,} (10.19)
}

{m,

where the summation extends over all sets {m,} satisfying (10.18).
By definition, S{m,} can be obtained as follows. First write down an
arbitrary N-particle graph that contains m, 1-clusters, m, 2-clusters, etc.; e.g.,

{[o] o]} {lo-o]-[o-0])

m, factors m, factors
" CZ Cﬁ) ﬁo Oi) oo e
O
m factors

There are exactly N circles appearing in (10.20), and these N circles are to be
filled in by the numbers 1,2,..., N in an arbitrary but definite order. We can
write down many more examples like (10.20); e.g., we may change the choice of
some of the 3-clusters (there being four distinct topological shapes for a 3-cluster).
Again we may permute the numbering of all the N circles in (10.20), and that
would lead to a distinct graph. If we add up all these possibilities, we obtain
S{m,}. Thus we may write

stm) =Z[0]"[00]"

&b A &I

The meaning of this formula is as follows. Each bracket contains the sum over all
I-clusters. If all the brackets [ - - - ]™ are expanded in multinomial expansions, the
summand of ) will itself be a sum of a large number of terms in which every

term contains Iéxactly N circles. The sum ) extends over all distinct ways of
numbering these circles from 1 to N. P

Now each graph is an integral whose value is independent of the way its
circles are numbered. Therefore S{m,} is equal to the number of terms in the

sum 3 times the value of any term in the sum. The number of terms in the sum Y
P P
can be found by observing that

(a) there are m, I-clusters, and a permutation of these m, things does not
lead to a new graph,; ~

(b) in the sum over all /~clusters, such as (10.17), a permutation of the /
particles within it does not lead to a new graph. Hence the number of
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terms in the sum Y, is*

3
N!
)™ Jimitmy! ] (1022
and the value of any term is
(1Wh,) ™ (2N, ) ™ (31Vb,) ™ - - - (10.23)

Therefore

N ( 3/—3bl)’”l N1V o\m
S{m,} =N!ET =N!A3AE m_,'(ﬁbl) (10.24)

From (10.5), (10.9), and (10.24) we obtain

Vawon. Pasct. I3 0 (V.T) = ¥ ﬁ_l_(Vbl)m' (10.25)

Q«wq (m,) =1 m,! ﬁ

This formula is complicated by the restriction (10.18). The grand partition
function is simpler in appearance:

GC V@n@ S 2(z,V,T) = f: f: [ 1 (A_I;zbl)mlm%!()\—zﬂbz)mz...]

!
m=0m,=0 my:

or

1 12
7 log 2(z,V,T) = % Y bz (10.26)
=1

from which we obtain the equation of state in parametric form:

P ] x

{
N4 (10.27)
1 1 fj/b ,
v nEer

This is known as the cluster expansion for the equation of state.”

What we have described is historically the first graphical representation of a
perturbation series. Graphs have become indispensable tools in the many-body
problem and in quantum field theory, in which the analog of (10.26), known
generally by the name of the linked cluster theorem, plays an important role.
Generally it states that the sum of all graphs is the exponential of the sum of all
connected graphs.

*To understand the method of counting the reader is advised to work out some simple

examples.
¥Compare this derivation with that outlined in Problem 7.6.
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If the system under consideration is a dilute gas, we may expand the
pressure in powers of 1/v and obtain the virial expansion. For this purpose we
may take the equation of state to be

P 1 =
TN L bz
=1
T = i - (10.28)
e .
v NS
where
5,(T) = l/lim b,(V,T) (10.29)
-0
The virial expansion of the equation of state is defined to be
Pv ® My
—_— = T S 1
T I=la,( )( ’ ) (10.30)

where a,(T) is called the /th virial coefficient. We can find the relationship
between the virial coefficients a, and the cluster integrals 5, by substituting
(10.30) into (10.28) and requiring that the resulting equation be satisfied for
every z:

[~ 2]
- &% -1 x bz
Za,( y nb,,z") ==L (10.31)
=1 n=1 E 15121
=1
This is equivalent to the condition
0 0 2
(12 + 28,22 + 3b,2° + - )| @, + ay| & nb,,z") +a3( Ympz"| + -
n=1 n=1
=byz+ bzl + b2+ - (10.32)
By equating the coefficient of each power of z we obtain
a=5b =1
a,= -b,
a, = 4b3 — 25, (10.33)

Each virial coefficient therefore involves only a straightforward computation of a
number of integrals.

Note that (10.28) differs from (10.27) in that the limit ¥ — oo is taken term
by term in (10.28). In so doing we have lost all information about possible phase
transitions, as we have remarked earlier in Section 9.3. The equation of state
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P(v)

l Fig. 10.2 Equation of state obtained by taking the

v o e .
vo virial expansion to be exact.

(10.30) of the gas phase cannot tell us if and when a phase transition will occur.
Mayer* has demonstrated that the equation of state (10.30) has the general form
shown in Fig. 10.2. The portion of the isotherm marked A is valid for v > v,, but
the value of v, is unrelated to v,, and cannot be obtained from (10.30). The
portion marked B is purely mathematical, and unrelated to how the isotherm
actually behaves in that region.

10.2 QUANTUM CLUSTER EXPANSION

Kahn and Uhlenbeck’ develop a cluster expansion in quantum statistical me-
chanics. The method they introduce applies equally well to classical statistical
mechanics.

Consider N identical particles enclosed in a volume V. Let the Hamiltonian
S of the system have the same form as (10.1) but be an operator instead of a
number. In the coordinate representation, p;= —ihv,, and v,; is the same
function of the number |r, — 1| as that shown in Fig. 10.1. The partition
function is

Qn(V,T) =Tre 8 = fd3Nr Y¥r(1,...,N)e B¥¥,(1,...,N) (10.34)

where { ¥,} is a complete set of orthonormal wave functions appropriate to the
system considered, and the set of coordinates {r,,...,ry} is denoted in abbrevia-
tion by {1,..., N}. It is important to use symmetric or antisymmetric wave
functions, as required by the statistics of the particles (see Problem 10.4). Let us
define

Wy(l,...,N)= NIW¥Y ¥*(1,...,N)e #*¥V¥,(1,...,N) (10.35)

The partition function can be written in the form
1
NINY

0y(V,T) = fd”Vr Wy(l,...,N) (10.36)

*See Mayer and Mayer, loc. cit.
*B. Kahn and G. E. Uhlenbeck, Physica 5, 399 (1938).



[ 5 amak ielle wg’ A&Q}L{@[@U{B bew( M,Ufo{b’;,( s bl @
+eO ~ < E .
L{//“(*‘) = NE: IR Yo lasly
Q -7 i < :
plpacbac By
%:Z;& t AL ()
= 4(/

)S /(/’/ C Tty
N>
= 7 & P
u=o ‘
/1:)

A oplhn) A
".,E Br. ‘
")

Rf) - - ny)
S5 @ - JC‘SNW // (/(\F(,{JJA) Jirolw J )‘ i wka(f/ 7(/(}‘ pro
A uj &
a1 bt

1 ot ) (b doda ) (bobin:
% [C\OJ [ &] [C{) 4?0»03 / C@C‘\

L4 TAY. Cex



LGl g kbl prliepekd
TR J e

/\//’/
IV _ [: .
(( > [Q-Oj " ¢ M=) c(n-2)" S
Ruce we  pesiondy ©
/ 4 A//’/

- = —

= Z°(M-9)! /

(JK {’T/Mg, patel }Odu}\elg/,/ o~ /.:aioa/(
AR _aQ PQ'QQO{«/ /Od/Q(?

% Cfﬂjn = C/ZIJVZ , (ﬁ’? &f?s & £ J;Z (/7,3 Z;S

[?Q (L/ 7)

Jof b~ 37/;'@ ZC*@O ' (ﬁ@ ) 01 ' O/E\oj

i v V.
JAFNCS {o/ 10§00 § )

GV\ \éﬁacé( '\‘ILV;(/\.J‘/LQ /ekblcg( \(C‘/ / » /CP’Q‘ i/
pree /U‘é)/lft 1/\ C/(\\C J’Q d_QA,\ /Z <

> /Zméc/ cAusler Hhastsceu -
S’&zmvf’&

oyma Y 9@(/;’ = IXP(W/%QQY/E>

/ |
s O (Pelisy)

cluwate ey’ o dgaed
Bj = ,{/é;o% ’of cF 07




C S (- eletery ) of ™
L/)(C F/\—"—Q-_f\/ %}8( 6

e

b, - fdidh<f(wn>= é%‘ﬁf¢§(w>

23 of v v ) 4 (1)
b o i [ g

%_@w%%fmmmwmum (i
AV

; Z(aa:;gé | 4%({63}‘(61, / (‘\/a(/ //X‘ d %A B 7‘1 Q/ wa 4*@/ aQ 4w(‘£7§/§‘vlc,?
# 0 ‘
: ' 4 5 74
=) ‘éé ij R e aadlwe i A

/



¢ bus Q&MB/ ,%LM@)‘
_PWWLC/ KB IC,Q

. Cp (y )Dmﬁ(}@zd.@w
o o7
5 . « C \/: - E,P
& ¢ o0 o2 Cod
/

< é\%i -2 a(ﬁ(ZMom‘f“) i

2 Eb{e Zé g:,/ Meq /[L(C(e/b("/k’% \Z

O=n
%8 20 05 -1 5 .
Cé’j?g:?Q (ZM[_@A;’“><Z/W/(%?>
d=n « A< g ’ =9

s b -alb =>/Cm by WE: b=
g 1 9 ~

Z
2% b, =da, b, + C?Z@a; N [92=gg,z +q, ->2QZ=~52 ,




7 73

T
B ZL’3 iﬁée + Gy

<
= Qst Q&Z‘%ng

5 plifigense Louce e = Gt o fpin ol
> P e NG Cd(ﬁ«a}@ o )
G211, B, @ b,
o4 : N (S-S v
52w fd i 190 R g ey Sl
Ko(R)
AR =3, 1 Ak ha
b@= =5 e e TAE Pt AN
s = =0y o
, X 3 33 - ~5 =
b (0 - T (o/g ol gy, of i # J0 § s (1q, 4451

=

A JO@ZO/X% 0 (- 1q,1) e 19:1)H(B- 15442 1)

=S =) G
s

14

28 . (0) : =

‘i A %(O ) r K]Z (%)

QL\/@%

s S, : 2y : ’ . L

S W_@ F}@ Vlzxa\ C]/Z d,p fc( 95 /;M{eglca/ fyygﬁ /D}m /(U(
7 ekl ks /MI be  p it Lec P Ao il 66 e K}fa( /
G, v<p




(&)






