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Accelerated sources in de Sitter spacetime and the insufficiency of retarded fields

Jiřı́ Bičák* and Pavel Krtousˇ†

Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, V Holesˇovičkách 2,
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The scalar and electromagnetic fields produced by the geodesic and uniformly accelerated discrete charges
in de Sitter spacetime are constructed by employing the conformal relation between de Sitter and Minkowski
space. Special attention is paid to new effects arising in spacetimes which, like de Sitter space, havespacelike
conformal infinities. Under the presence of particle and event horizons, purely retarded fields~appropriately
defined! become necessarily singular or even cannot be constructed at the ‘‘creation light cones’’—future light
cones of the ‘‘points’’ at which the sources ‘‘enter’’ the universe. We construct smooth~outside the sources!
fields involving both retarded and advanced effects, and analyze the fields in detail in case of~i! scalar
monopoles,~ii ! electromagnetic monopoles, and~iii ! electromagnetic rigid and geodesic dipoles.
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I. INTRODUCTION

The de Sitter 1917 solution of the vacuum Einstein eq
tions with a positive cosmological constantL, in which
freely moving test particles accelerate away from one
other, played a crucial role in the acceptance of expand
standard cosmological models at the end of the 1920s@1,2#.
It reappeared as the basic arena in steady-state cosmolo
the 1950s, and it has been resurrected in cosmology aga
the context of inflationary theory since the 1980s@2#. de
Sitter spacetime represents the ‘‘asymptotic state’’ of cosm
logical models withL.0 @3#.

Since de Sitter space shares with Minkowski space
property of being maximally symmetric but has a nonvani
ing constant positive curvature and nontrivial global prop
ties, it has been widely used in numerous works studying
effects of curvature in quantum field theory and parti
physics~see, e.g., Ref.@4# for references!. Recently, its coun-
terpart with a constant negative curvature, anti–de Si
space, has received much attention again from quantum
and string theorists~e.g., Ref.@5#!.

These three maximally symmetric spacetimes of cons
curvature also played a most important role in gaining ma
valuable insights in mathematical relativity. For examp
both the particle~cosmological! horizons and the event hor
zons for geodesic observers occur in de Sitter spacetime,
the Cauchy horizons in anti–de Sitter space~e.g., Ref.@6#!.
The existence of the past event horizons of the world line
sources producing fields on de Sitter background is of cru
significance for the structure of the fields.

The existence of the particle and event horizons is i
mately related to the fact that de Sitter spacetime has
contrast with Minkowski spacetime, twospacelike
infinities—past and future—at which all timelike and nu
worldlines start and end@6#. Since the pioneering work o
Penrose@7,8# it has been well known that Minkowski, d
Sitter, and anti–de Sitter spacetimes, being conformally
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can be represented as parts of the~conformally flat! Einstein
static universe. However, the causal structure of these t
spaces is globally very different. The causal character of
conformal boundaryI to the physical spacetime that repr
sents the endpoints at infinity reached by infinitely extend
null geodesics, depends on the sign ofL. In Minkowski
space, these arenull hypersurfaces—future and past null in
finity, I 1 andI 2. In de Sitter space, bothI 1 andI 2 are
spacelike; in anti–de Sitter space the conformal infinityI is
not the disjoint union of two hypersurfaces, and it is tim
like.

Towards the end of his 1963 Les Houches lectures@9#,
Penrose discusses briefly the zero rest-mass-free fields
spin s in cosmological ~not necessarily de Sitter! back-
grounds. At a given pointP, not too far fromI 2, say, the
field can be expressed as an integral over quantities defi
on the intersection of the past null cone ofP andI 2 ~ ‘‘free
incoming radiation field’’! plus contributions from source
whose worldlines intersect the past null cone. However,
concept of ‘‘incoming radiation field’’ atI 2 depends on the
position ofP if I 2 is spacelike@9,10#. If there should be no
incoming radiation atI 2 with respect to all ‘‘originsP,’’ all
components of the fields must vanish atI 2. Imagine that
spacelikeI 2 is met by the worldlines of discrete source
Then there will be pointsP nearI 2 whose past null cones
will not cross the worldlines—see Fig. 1. The field atP
should vanish if an incoming field is absent. This, howev
is not possible since the ‘‘Coulomb-type’’ part of the field
the sources cannot vanish there~as follows from Gauss’s
law!. Penrose@9# thus concludes that ‘‘if there is a particl
horizon, then purely retarded fields of spins. 1

2 do not exist
for general source distributions.’’1 ~The restriction ons fol-
lows from the number of arbitrarily specifiable initial da
for the field with spins—see Ref.@9#.! Penrose also empha
sized that the result depends on the definition of advan
and retarded fields, and ‘‘the application of the result to
tual physical models is not at all clear cut . . . . ’’ This o

1The corresponding result holds for spacelikeI 1 and advanced
fields.
©2001 The American Physical Society20-1
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servation was reported in somewhat more detail at the m
ing on ‘‘the nature of time’’ @11#, with an appended
discussion~in which, among others, Bondi, Feynman, a
Wheeler participated! but technically it was not develope
further since 1963. In a much later monograph Penrose
Rindler @10# discuss~see p. 363 in Vol. II! the fact that the
radiation field is ‘‘less invariantly’’ defined whenI is space-
like than when it is null, but no comments or references
given there on the absence of ‘‘purely retarded fields.’’

One of the purposes of this paper is to study the proper
of fields of pointlike sources ‘‘entering’’ the de Sitter un
verse across spacelikeI 2. We thus provide a specific phys
cal model on which Penrose’s observation can be dem
strated and analyzed. We assume the sources and their
to be weak enough so that they do not change the de S
background.

In de Sitter space we identify retarded~advanced! fields
of a source as those which are in general nonvanishing
in the future~past! domain of influence of the source. As
consequence, purely retarded~advanced! fields have to van-
ish at the past~future! infinity. Adopting this definition we
shall see that indeed purely retarded fields produced
pointlike sources cannot be smooth or even do not exist.
find this general conclusion to be true not only for charg
~monopoles and dipoles! producing electromagnetic field
(s51) but, to some degree, also for scalar fields (s50)
produced by scalar charges.

In general, purely retarded fields of monopoles and
poles become singular on the past horizons~‘‘creation light
cones’’! of the particle’s worldlines. A ‘‘shock-wave-type
singularity at the particle’s creation light cone can be und
stood similarly to a Cauchy horizon instability inside a bla
hole ~see, e.g., Ref.@12#!; an observer crossing the creatio
light cone sees an infinitely long history of the source in
finite interval of proper time. In the scalar field case~not
considered by Penrose! no ‘‘Gaussian-type’’ constraints exis
and retarded fields can be constructed. However, we shal
that the strength of the retarded field~the gradient of the

FIG. 1. Fields at spacelikeI 2. When past infinityI 2 is space-
like, and some discrete sources ‘‘enter’’ the spacetime, then inc
ing fields must necessarily be present atI 2 and also at such point
asP, the past null cones of which are not crossed by the worldli
of the sources. If this is not the case, inconsistencies arise. The
null cone ofP is shaded in light gray, whereas the future domain
influence of sources is shaded in dark gray.~Figure taken after
Penrose@9#.!
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field! of a scalar monopole has ad-function character on the
creation light cone so that, for example, its energ
momentum tensor cannot be evaluated there. In the elec
magnetic case it is not even posible to construct a pu
retarded field of a single monopole—one has to allow ad
tional sources on the creation light cone to find a consis
retarded solution vanishing outside the future domain of
fluence of the sources.

In both our somewhat different explanation of the none
istence of purely retarded fields of general sources, an
Penrose’s original discussion, the main cause of difficultie
the spacelike character ofI 2 and the consequential exis
tence of the past horizons, respectively, ‘‘creation lig
cones.’’

It was only after we constructed the various types of fie
produced by sources on de Sitter background and analy
their behavior that we noticed Penrose’s general consi
ations in Ref.@9#. Our original motivation has been to unde
stand fields of accelerated sources, and in particular, the e
tromagnetic field of uniformly accelerated charges in
Sitter spacetime. The question of electromagnetic field
its radiative properties produced by a charge with hyperb
motion in Minkowski spacetime has perhaps been one of
most discussed ‘‘perpetual problems’’ of classical electro
namics, if not of all classical physics in the 20th centu
Here let us only notice that the December 2000 issue
Annals of Physics contains the series of three papers~cover-
ing 80 pp.! by Eriksen and Grøn@13#, which study in depth
and detail various aspects of ‘‘electrodynamics of hyperb
cally accelerated charges’’; the papers also contain m
~though not all! references on the subject.

The electromagnetic field of a uniformly accelerat
charge along thez axis, say, is symmetrical not only with
respect to the rotations around the axis, but also with res
to the boosts along the axis. Now spacetimes with boo
rotation symmetry play an important role in full general re
tivity ~see, e.g., Ref.@14#, and references therein!. They rep-
resent the only explicitly known exact solutions of th
Einstein vacuum field equations, which describe mov
‘‘objects’’—accelerated singularities or black holes—
emitting gravitational waves, and which are asymptotica
flat in the sense that they admit global, though not compl
smooth null infinity I 2. Their radiative character is bes
manifested in a nonvanishing Bondi’s news function, whi
is an analog of the radiative part of the Poynting vector
electrodynamics. The general structure of all vacuum bo
rotation symmetric spacetimes with hypersurface orthogo
Killing vectors was analyzed in detail in Ref.@15#. One of
the best known examples is theC-metric, describing uni-
formly accelerated black holes attached to conical singul
ties ~‘‘cosmic strings’’ or ‘‘struts’’! along the axis of symme
try.

There exists also the generalization of theC-metric in-
cluding a nonvanishingL @16#. It has been used to study th
pair creation of black holes@17#; its interpretation as uni-
formly accelerating black holes in a de Sitter space has b
discussed recently@18#. However, no general framework i
available to analyze the whole class of boost-rotation sy
metric spacetimes, which are asymptotically approachin
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ACCELERATED SOURCES IN de SITTER SPACETIME . . . PHYSICAL REVIEW D 64 124020
de Sitter~or anti–de Sitter! spacetime as it is given in Re
@15# for L50. Before developing such a framework in fu
general relativity, we wish to gain an understanding of fie
produced by~uniformly! accelerated sources in a de Sitt
background. This has been our original motivation for t
work.

Although it has been widely known and used in vario
contexts that there exists a conformal transformation
tween de Sitter and Minkowski spacetimes, this fact does
seem to be employed for constructing the fields of spec
sources. In the following we make use of this conform
relation to find scalar and electromagnetic fields of the sc
and electric charges in de Sitter spacetime.

The plan of the paper is as follows. In Sec. II, we w
analyze the behavior of scalar and electromagnetic fi
equations with source terms under general conformal tra
formations. Few points contained here appear to be new,
the behavior of scalar sources in a general,n-dimensional
spacetime, but the main purpose of this section is to rev
results and introduce notation needed in subsequent par
Sec. III, the compactification of Minkowski and de Sitt
spacetimes and their conformal properties are discus
Again, all main ideas are known, especially from works
Penrose. But we need the detailed picture of the comp
compactification of both spaces and explicit formulas c
necting them in various coordinate systems, in order to
able to ‘‘translate’’ appropriate motion of the sources a
their fields from Minkowski into de Sitter spacetime. Th
worldlines of uniformly accelerated particles in de Sitt
space are defined, found, and their relation to the corresp
ing worldlines in Minkowski space under the conform
mapping is discussed in Sec. IV. In general, a single wo
line in Minkowski space gets transformed into two worl
lines in de Sitter space.

In Sec. V, by using the conformal transformation
simple boosted spherically symmetric fields of sources
Minkowski spacetime, we construct the fields of uniform
accelerated monopole sources in de Sitter spacetime. In
ticular, with both the scalar and electromagnetic fields,
obtain what we call ‘‘symmetric fields.’’ They are analyt
everywhere outside the sources and can be written as a l
combination of retarded and advanced fields from both p
ticles. From the symmetric fields we wish to construct pur
retarded fields that are nonvanishing only in the future
main of influence of particles’ worldlines. For the scal
field, this is accomplished in Sec. VI. We do find the retard
field, but its strength contains ad-function term located on
the particle’s past horizon~creation light cone!. In Sec. VII,
the retarded electromagnetic fields are analyzed for free~un-
accelerated! monopoles~Sec. VII A!, for ‘‘rigid dipoles’’
~Sec. VII C!, consisting of two close, uniformly accelerate
charges of opposite sign, and for ‘‘geodesic dipoles’’~Sec.
VII D !, made of two free opposite charges moving alo
geodesics. In Sec. VII B the role of the contraints, whi
electromagnetic fields and charges have to satisfy on
spacelike hypersurface, is emphasized. These constrain
de Sitter space with compact spatial slicings require the t
charge to be zero. As is well known, there can be no
charge in a closed universe~see, e.g., Ref.@19#!. However,
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we find out that the constraints imply evenlocal conditions
on the charge distribution ifI 2 is spacelike and purely re
tarded fields are only admitted. In the case of an unacce
ated electromagnetic monopole, we discover that the solu
resembling retarded field represents not only the monop
charge but also a spherical shell of charges moving with
velocity of light along the creation light cone of the mon
pole. The total charge of the shell is precisely opposite to t
of the monopole. Retarded fields of both rigid and geode
dipoles blow up along the creation light cone since, by
stricting ourselves to the fields nonvanishing in the futu
domain of influence, we ‘‘squeeze’’ the field lines produc
by the dipoles into their past horizon~creation light cone!.

We do not discuss the radiative character of the fie
obtained. The problem of radiation is not a straightforwa
issue since the conformal transformation does not map
infinity onto an infinity and, thus, one has to analyze ca
fully the falloff ~‘‘the peeling off’’! of the fields along appro-
priate null geodesics going to future, respectively, past spa
like infinity. A detailed discussion of the radiative properti
of the solutions found here and of some additional fields w
be given in a forthcoming publication@24#.

A brief discussion in Sec. VIII concludes the paper. So
details concerning coordinate systems on de Sitter space
relegated to the Appendix.

II. CONFORMAL INVARIANCE OF SCALAR AND
ELECTROMAGNETIC FIELD EQUATIONS

WITH SOURCES

Conformal rescaling of metric is given by a commo
spacetime dependent conformal factorV(x):

gab→ĝab5V2gab , gab→ĝab5V22gab. ~2.1!

An equation for a physical fieldC is called conformally
invariant if there exists a number—conformal weight—

pPR such thatĈ5VpC solves a field equation with metri
ĝ, if and only if C is a solution of the original equation with
metric g.

It is well known ~see, e.g., Ref.@20#! that ~i! the wave
equation for a scalar fieldF can be generalized in a confo
mally invariant way to curvedn-dimensional spacetime ge
ometry by a suitable coupling with the scalar curvatureR,
and ~ii ! the vacuum Maxwell’s equations are conforma
invariant in four dimensions with conformal weightp50 of
covariant components~2-form! of electromagnetic field
Fab , but they fail to be conformally invariant for dimen
sionsnÞ4.

The behavior of the above equations with sources is
so widely known~cf. Ref. @10,21# for the electromagnetic
case!. It is, however, easy to see that the wave equation
the scalar fieldF with the scalar charge sourceS,

@h2jR#F5S, ~2.2!

where inn dimensionsj5 1
4 (n22)/(n21), R is the scalar

curvature, andh5gab¹a¹b is the d’Alembertian con-
0-3
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structed from the covariant metric derivative¹a , under the
conformal rescaling Eq.~2.1! goes over into the equation o
the same form

@ĥ2jR̂#F̂5Ŝ, ~2.3!

provided that

F→F̂5V12(n/2)F, ~2.4!

S→Ŝ5V212(n/2)S, ~2.5!

and ¹̂a andR̂ are the metric covariant derivative and sca
curvature associated with the rescaled metricĝ @see, e.g.,
Eqs.~D.1!–~D.14! in Ref. @20##.

Next, it is easy to demonstrate that in four dimensio
Maxwell’s equations with a source given by a four-curre
Ja,

¹mFam5Ja,

¹ [aFbg]50 or Fab5¹aAb2¹bAa , ~2.6!

are conformally invariant if the vector potential does n
change, so that

Âa5Aa , F̂ab5Fab , F̂ab5V24Fab, ~2.7!

and the current behaves as follows:

Ĵa5V24Ja, Ĵa5V22Ja . ~2.8!

Since the Levi-Civita tensor transforms as

«̂abgd5V4«abgd , ~2.9!

the following quantities are conformally invariant:

* Ĵabg5 «̂abgmĴm5 * Jabg , ~2.10!

* F̂ab5
1

2!
«̂abmnF̂mn5 * Fab . ~2.11!

Therefore, Maxwell’s equations with a source can be writ
using the external derivative as

dF50, d * F522 * J, ~2.12!

where only conformally invariant quantities appear.
The continuity equation for the electromagnetic curren

also conformally invariant:

¹aJa50→¹̂aĴa5V24¹aJa50 ~2.13!

thanks to Eq.~2.8! and the conformal property of the fou
dimensional volume elementg1/25(2Detgab)1/2:

ĝ1/25V4g1/2. ~2.14!
12402
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It is interesting to notice, however, that as a consequenc
the invariance~2.7! of the electromagnetic potential under
conformal rescaling, the Lorentz gauge condition is not c
formally invariant:

¹aAa50 ~2.15!

implies

¹̂aÂa22Âada loguVu50. ~2.16!

A remarkable property arises in four-dimensional spa
times: in both the scalar and electromagnetic case the
charge distributed on a three-dimensional spacelike hy
surface is conformally~pseudo!invariant.2 This follows from
the conformal invariance of spatial charge distributions.

Denotingna , a future-oriented unit 1-form normal to th
hypersurfaceS, we get

n̂a5uVuna , n̂a5uVu21na. ~2.17!

The three-dimensional volume element is given
q1/25(Detqab)1/2, where three-metricqab is the restriction
of the four-metricgab to the hypersurfaceS. Under the con-
formal transformation,

q1/2→ q̂1/25uVu3q1/2. ~2.18!

A charge distribution is defined as a charge density mu
plied by this volume element. Hence, the scalar charge
tribution reads

s5Sq1/2, ~2.19!

and

s→ŝ5sign~V!s. ~2.20!

We see that it is conformal invariant except for a change
sign if the conformal factorV is negative. As seen from Eq
~2.5!, this fails to be true fornÞ4. In the following we
consider only the casen54.

The electromagnetic charge distribution is given by

r5na Jaq1/2. ~2.21!

Again, regarding Eqs.~2.8!, ~2.17!, and~2.18!, we get

r→ r̂5r. ~2.22!

Thus, the electromagnetic charge is invariant even un
conformal transformation with a negative conformal fac
V.

Similarly, we define the electric field with the three
dimensional volume element included:

E a5nmFmaq1/2, ~2.23!

2A quantity is a conformal pseudoinvariant if it is invariant und
conformal transformation, except for a change of sign if the con
mal factor is negative. See Eq.~2.20!.
0-4
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ACCELERATED SOURCES IN de SITTER SPACETIME . . . PHYSICAL REVIEW D 64 124020
which represents the momentum conjugated to the pote
Aa ~cf., e.g., Ref.@19#!. With the definition ~2.23!, E a is
conformally invariant. Gauss’s law simply reads

E
D

¹a
(3)E a5E

]D
E adSa , ~2.24!

where ¹ (3) is three-metric covariant derivative andD is a
region inS.

III. MINKOWSKI AND de SITTER SPACETIMES:
COMPACTIFICATION AND CONFORMAL RELATION

The conformal structure of Minkowski and de Sitt
spacetimes and their conformal relation to the regions of
Einstein static universe is well known and has been m
used~see, e.g., Refs.@6,20# for basic expositions!. However,
the complete compactified picture of both spaces and t
conformal structure do not appear to be described in deta
the literature, although all main ideas are contained in v
ous writings by Penrose~e.g., Refs.@9,10#!. Since we shall
need some details in explicit form when analyzing the ch
acter of the fields of sources in de Sitter spacetime and t
relation to their counterparts in Minkowski spacetime, w
shall now discuss the compactification and conformal pr
erties of these spaces.

Recall first that flat Euclidean planeE2 can be compacti-
fied by adding a point at infinity so that the resulting space
a two-sphereS2 with a regular homogenous metricgsph,
conformally related to the Euclidean metric:

gsph5a2~dq 21sin2q dw 2!

5V2~dr 21r 2dw 2!5V2gEucl, ~3.1!

where a is a constant parameter with the dimension
length,r 5a tan(q/2), andV511cosq. Notice thatgEucl is
not regular atr 5`, where the conformal factorV50. The
group of conformal transformations ofE2 acts on the com-
pact manifoldS2.

Analogously, one can construct compactified Minkows
spaceM# ~see Ref.@10#, Sec. 9.2 and references therein! on
which the 15-parameter conformal group acts. One st
with the standard Penrose diagram of Minkowski space
makes an identification ofI Mink

2 andI Mink
1 by identifying the

past and future endpoints of null geodesics as indicate
Fig. 2. The future and past timelike infinities,i Mink

6 , and the
spatial infinity, i Mink

0 , are also identified into one point. Th
topology ofM# is S33S1 ~this is not evident from first sight
but see Ref.@10#!.

Rescaled Minkowski space~without the identification!
can be drawn in a two-dimensional diagram as a part of
Einstein static universe, which is visualized by a cylindric
surface imbedded inE3—see, e.g., Refs.@6,20#. However, in
Fig. 3 we illustrate the compactified Minkowski spaceM# by
a three-dimensionaldiagram as a part of the Einstein un
verse represented by asolid cylinder in E3. This is achieved
in the following way: In Fig. 2 the Minkowski spacetim
~with one dimension suppressed! is illustrated as a region
bounded by two cones joined base to base. Now we ta
12402
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two-dimensional cutC and we compactify it by dividing it
into four regions, I–IV, as indicated in Fig. 2. We cut o
regions III and IV and place them ‘‘above’’ regions II and
so that they are joined along their corresponding null bou
aries~e.g., pointsB,B8 andA,A8 become identical!. Now the
segmentPO has to be identified withÕQ̃ and OQ with
P̃Õ—they correspond to a single segment in Fig. 2. Sim
larly, boundariesPP̃ andQQ̃ are identified, and as a result
compact manifold is formed. Consider then all posible c
C, i.e., ‘‘rotate’’ C around the ‘‘line’’ i Mink

2 OiMink
1 , and make

the same identifications as we just described. Now all ‘‘v
tical’’ boundary lines asPP̃ and QQ̃ have to be identified
~notice that all these points were on the segmenti Mink

2 O in
Fig. 2!. The resulting four-dimensional compact manifold
represented in the three-dimensional Fig. 3. From the c
struction described, it follows that the top and bottom ba
of the solid cylinder are identified and each of the circles
the cylindrical surface, as, e.g.,k, should be considered as
single point. The ‘‘disks’’ inside these circles are thus tw
spheres, i.e., without suppressing one dimension—th
spheres inM#.

Now it is important to realize that Fig. 3 can be unde
stood as a part of the Einstein static cylinder, which a

FIG. 2. Three-dimensional Penrose diagram of Minkow
space. The whole spacetime is mapped into the interior of
cones joined base to base along a spacelike~Cauchy! hypersurface
t50. The boundary of the two cones consists of past and future
infinities, I Mink

2 ,I Mink
1 , of the past and future timelike infinities

i Mink
2 ,i Mink

1 , and of the spacelike infinity,i Mink
0 . At these infinities,

the null, timelike, and spacelike geodesics start and end. A t
dimensional cutC going throughi Mink

2 , i Mink
1 , and P,QP i Mink

0 is
considered, with two null geodesicsA8XA andB8YB indicated. It
is divided into four separate regions, I–IV. Regions III and IV a
mapped into regions III’ and IV’ in the compactified Minkowsk
space illustrated in Fig. 3.
0-5
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represents thecompactified de Sitter space. In de Sitter space
two bases are future and past spacelike infinities. They
not usually identified in the standard two-dimensional P
rose diagram of de Sitter spacetime~see, e.g., Ref.@6#!, as
I Mink

1 and I Mink
2 are not identified in the standard Penro

diagram of Minkowski space.
Manifold M# represents the compactification of bo

Minkowski and de Sitter space. Similarly asS2, representing
the compactification ofE2, can be equipped with a regula
metric gsph mentioned above,M# can be equipped with the
regular metric

gEins5a2~2d t̃ 21dr̃ 21sin2 r̃ dv2!, ~3.2!

where dimensionless coordinatest̃ , r̃ P^0,p&, spacelike hy-
persurfacest̃ 50, and t̃ 5p are identified by means of nu
geodesics,dv25dq 21sin2 q dw2, and the constanta has
dimension of length. The metric~3.2! is the well-known met-
ric of the Einstein universe, in which case

a25
3

L
, ~3.3!

whereL is the cosmological constant.
In order to see this explicitly, write the Minkowski metri

in standard spherical coordinates,

FIG. 3. Compactified Minkowski and de Sitter spaces. The co
pactified Minkowski and de Sitter spaceM#, illustrated by the
three-dimensional diagram—a part of the Einstein universe re
sented here as a solid cylinder. The compactification is achieve
considering first the two-dimensional sectionC in Fig. 2, cutting out
regions III and IV and placing them ‘‘above’’ regions II and I so th

two-dimensional figurePOQQ̃ÕP̃ is formed.PO is identified with

ÕQ̃ ~e.g., pointX with X8), OQ with P̃Õ ~e.g.,Y with Y8), andPP̃

with QQ̃. All two-dimensional cutsC are identified in this way
with, in addition, all ‘‘vertical’’ boundary lines being identified s
that the circlek, for example, is considered as a point. The top a
bottom bases of the cylinder, representing the past and the fu
spacelike infinities of de Sitter space, are identified in the comp
manifold M#.
12402
re
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gMink52dt 21dr 21r 2dv2, ~3.4!

and introduce coordinatest̃ , r̃ P^0,p& by

t̃ 5arctan
2at

a22t21r 2
, r̃ 5arctan

2ar

a21t22r 2
, ~3.5!

inversely

t5
a sin t̃

cosr̃ 1cost̃
, r 5

a sin r̃

cosr̃ 1cost̃
, ~3.6!

so that

gMink5
a2

~cosr̃ 1cost̃ !2
~2d t̃ 21dr̃ 21sin2 r̃ dv2!.

~3.7!

Let us notice that by requiring the rangest̃ , r̃ P^0,p&, we fix
the branch of arctan in Eq.~3.5!. Further, observe that fo
t̃ 1 r̃ .p, relations~3.6! imply negativer—we shall return to
this point in a moment.

In the case of de Sitter space with the metric

gdS52dt 21a2 cosh2
t

a
~dx 21sin2 x dv2!, ~3.8!

we put

t̃ 52 arctanS exp
t

a D , r̃ 5x, ~3.9!

or

t5a logS tan
t̃

2D , x5 r̃ , ~3.10!

so that

gdS5
a2

sin2 t̃
~2d t̃ 21dr̃ 21sin2 r̃ dv2!. ~3.11!

In this way we obtain explicit forms of the conforma
rescaling of both spaces into the metric of the Einstein u
verse:

gEins5VMink
2 gMink , VMink5cosr̃ 1cost̃ , ~3.12!

gEins5VdS
2 gdS, VdS5sin t̃ , ~3.13!

wheregEins is given by Eq.~3.2!. As in the simple case o
conformal relation ofE2 to S2, the conformal factorsVMink
and VdS vanish at infinities of Minkowski, respectively
de Sitter space.

As a consequence of Eqs.~3.5!–~3.11! we also find the
conformal relation between Minkowski and de Sitter spac

gMink5V2gdS, V5VMink
21 VdS, ~3.14!
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whereVMink ,VdS are given by Eqs.~3.12! and ~3.13!. The
conformal factorV has the simplest form when expressed
terms of the Minkowski timet:

V5
sin t̃

cosr̃ 1cost̃
5

t

a
. ~3.15!

The conformal transformation is not regular at the infinity
Minkowski, respectively, de Sitter space becauseV diverges,
respectively, vanishes there. We shall return to this poin
the end of this section. First, however, we have to desc
the coordinate systems employed in relating particular
gions I–IV in Figs. 2 and 3.

Relations ~3.5! and ~3.6! can be used automatically i
region I only. In other regions, ranges of coordinates hav
be specified more carefully. In the following we always r
quire t̃ P^0,p&. Then, if r̃ P^0,p&, we find that relations
~3.5! and ~3.6! imply negativer in region IV. Also, if we
consider events witht,0, r .0 ~region III!, we notice that
as a consequence of Eqs.~3.5! and ~3.6! with t̃ P^0,p&, we
get r̃ ,0. Relations~3.5! and ~3.6! can be made meaningfu
in all regions I–IV if we allow negativer , r̃ and adopt the
following convention: at a fixed value of time coordinatet,
respectively,t̃ , the points symmetrical with respect to th
origin of spherical coordinates have opposite signs of
radial coordinate, i.e., points with given$t,r ,q,w%, respec-
tively $ t̃ , r̃ ,q,w%, are identical with$t,2r ,p2q,w1p%, re-
spectively$ t̃ ,2 r̃ ,p2q,w1p%. The way in which regions
I–IV are covered by the particular ranges of coordinates
explicitly illustrated in Figs. 5~a!–5~c! in the Appendix,
where our convention is described in more detail.

In the Appendix, various useful coordinate systems in
Sitter space are given. First, we shall frequently employ
ordinates$ t̃ , r̃ ,q,w% which are simply related@by Eqs.~3.9!
and ~3.10!# to the standard coordinates$t,x,q,w% covering
nicely the whole de Sitter hyperboloid. Next, relations~3.5!
and ~3.6! can be viewed as the definition of another coor
nate system$t,r ,q,w% on de Sitter space@with the metric
being given by Eq.~A6!#. Let us remind that for fixedq,w
valuesr̃ .0 ~commonly assumed in de Sitter space! corre-
spond to r .0 for t̃ 1 r̃ ,p ~region I! and to r ,0 for
t̃ 1 r̃ .p ~region IV!. Further, one frequently uses static c
ordinatesT,R associated with the static Killing vector o
de Sitter spacetime—Eqs.~A8! in the Appendix.

Finally, it will be useful to introduce the null coordinate
@cf. Eq. ~A12!#

u5t2r , v5t1r , ~3.16!

ũ5 t̃ 2 r̃ , ṽ5 t̃ 1 r̃ . ~3.17!

When employing null coordinates we shall consider o
r̃ .0 (ũ,ṽ would ‘‘exchange their role’’ ifr̃ ,0); the ranges
of ũ,ṽ andu,v are thus given by the choicet̃ , r̃ P^0,p&. This
leaves the standard~Minkowski! meaning ofu,v in region I;
however,u andv exchange their usual~Minkowski! role in
region IV (ṽ5 t̃ 1 r̃ .p) because herer ,0. With this
12402
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choice, the coordinatesũ, ṽ and u cover de Sitter space

continuously, in particular the horizonṽ5p @v→6` on this
horizon—see Fig. 5~e!#.

From Eqs.~3.5! and ~3.6! we get the simple relations

u5a tan
ũ

2
, v5a tan

ṽ
2

, ~3.18!

which explicitly verify that local null cones~local causal
structure! are unchanged under conformal mapping. Nev
theless, it is well known that the global causal structure
the Minkowski and de Sitter space is different. This is r
flected in the fact that, as mentioned above, the confor
transformation between the two spaces is not regular ev
where. In particular, relation~3.18! shows that points at nul
infinity with v→6` in Minkowski space go over into regu
lar points with ṽ→p in de Sitter space, whereas spaceli
hypersurfacet5 1

2 (u1v)50 goes into spacelike infinities
t̃ 50,p in de Sitter space.

In the next sections, when we shall generate solutions
the scalar and electromagnetic fields for given sources
de Sitter space by employing the conformal transformat
from Minkowski space, we have to check the behavior of
new solutions at points where the transformation is not re
lar.

Before turning to the construction of the fields produc
by specific sources, let us emphasize that in all the follow
expressions for fields in de Sitter spacetime only positivr̃
can be considered. However, the results contained in S
IV and V are valid also forr̃ ,0 provided that the convention
described above is used.3

IV. UNIFORMLY ACCELERATED PARTICLES
IN de SITTER SPACETIME

In this section we study the correspondence of the wo
lines of uniformly accelerated particles under the conform
mapping~3.5! and ~3.6! between Minkowski and de Sitte
spacetimes. Let a particle have four-velocityua,
umum521, so that its acceleration isaa5u̇a5um¹mua,
amum50. We say that the particle is uniformly accelerated
the projection ofȧa5um¹maa into the three surface or
thogonal toua vanishes:

Pm
a ȧm5ȧa2~amam!ua50. ~4.1!

Here the projection tensor Pn
m5dn

m1umun and

umȧm52amam. Multiplying Eq. ~4.1! by aa, we get
ȧmam50 so that

3In Sec. VII, we requirer̃ .0. The right-hand sides of expression
~7.1!, ~7.2!, ~7.12!, and ~7.19! would have to be multiplied by a
factor of sgnr̃ to be also valid forr̃ ,0. Similar changes would also
necessary be in other equations but these contain null coordin
that have not been defined forr̃ ,0.
0-7
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amam5constant. ~4.2!

This definition of uniform acceleration goes over into t
standard definition used in Minkowski space@22#. It implies
that the components of a particle’s acceleration in its inst
taneous rest frames remain constant. Of course, as a sp
case, a particle may have zero acceleration when it mo
along the geodesic.

Consider a particle moving with a constant velocity

Ro

a
5tanhb5constant ~4.3!

along the z axis (w50, q50) of the inertial frame in
Minkowski spacetime with coordinates$t,r ,q,w% so that it
passes throughr 50 at t50. Transformations~3.5! and~3.6!
map its worldline intotwo worldlines in de Sitter spacetime
given in terms of parameterlMink , its proper time in
Minkowski space, or in terms ofldS, its proper time in de
Sitter space, as follows:

t̃ 5arctanS 22a
lMink coshb

lMink
2 2a2 D

5arctanS 2
coshb

sinh@~ldS/a!coshb# D , ~4.4!

r̃ 5arctanS 2a
lMink sinhb

lMink
2 1a2 D

5arctanS 6
sinhb

cosh@~ldS/a!coshb# D .

In these expressions, the arctan has values in4 ^0,p&;
ldSPR, andlMinkP(0,̀ ) for the worldline starting and end

4r̃ P^2p,0& for b,0.

FIG. 4. Worldlines of particles in de Sitter spacetime. T
worldlines of geodesics and of uniformly accelerated particles in
Sitter spacetime, obtained by the conformal transformation of
propriate worldlines in Minkowski space: 1,18 from the worldline
of a particle moving uniformly through the origin, 2,28 from a par-
ticle at rest outside the origin, and 3,38 from two uniformly accel-
erated particles. In de Sitter space, the worldlines 1 and 18 describe
two uniformly accelerated particles; 2,28 and 3,38 are geodesics
Both particles in each pair are causally disconnected.
12402
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ing with r̃ 50 @denoted by 1 in Fig. 4; plus sign in the la
equation in~4.4!#, whereaslMinkP(2`,0) for the second
worldline, starting and ending withr̃ 5p @denoted by 18 in
Fig. 4; minus sign in~4.4!#. One thus gets two worldlines in
de Sitter space from two ‘‘halves’’ of one worldline i
Minkowski space.

These two worldlines are uniformly accelerated with t
constant magnitude of the acceleration equal~up to the sign!
to

ao52
1

a
sinhb. ~4.5!

An intuitive understanding of the acceleration is gained if
introduce standardstatic coordinates$T,R,q,w% in de Sitter
space~see the Appendix!. The two worldlines described by
Eq. ~4.4! in coordinatest̃ , r̃ are in the static coordinates sim
ply given byR5Ro5constant.@As seen from Eq.~A8!, for a
given t̃ , r̃ , the sameR corresponds tor̃ andp2 r̃ .# Owing to
the ‘‘cosmic repulsion’’ caused by the presence of a cosm
logical constant, fundamental geodesic observers with fi
r̃ ~i.e., fixedx) are ‘‘repelled’’ one from the other in propor
tion to their distance. Their initial implosion starting a
t̃ 50 (t52`) is stopped att̃ 5p/2 (t50—at the ‘‘neck’’
of the de Sitter hyperboloid! and changes into expansion.
particle having constantR5Ro , thus a constant proper dis
tance from an observer atr̃ 5R50 ~or at r̃ 5p, R50), has
to be accelerated towards that observer. The acceleratio
particle 1 points towards the observer atr̃ 50, whereas that
of particle 18 points towards the observer atr̃ 5p ~Fig. 4!.
Notice that the two uniformly accelerated worldlines a
causally disconnected; no retarded or advanced effects f
the particle 1 can reach the particle 18 and vice versa. This is
analogous to two particles symmetrically located along
posite parts of say thez axis and uniformly accelerated i
opposite directions in Minkowski space. The worldlines
uniformly accelerated particles in Minkowski space are
orbits of the boost Killing vector. Analogously, in de Sitte
space the Killing vector]/]T also has the character of
boost.

Another type of simple worldline in de Sitter space aris
from transforming the worldlines of a particle at rest
r 5r o (ur ou,a), q50, w50 in Minkowski space. It trans-
forms to two worldlines in de Sitter space given by

t̃ 5arctanS 2alMink

2lMink
2 1r o

21a2D , ~4.6!

r̃ 5arctanS 22ar o

2lMink
2 1r o

22a2D ,

q50, w50,

with t̃ P^0,p&, and r̃ signr oP^0,p& for lMink.0 and
r̃ signr oP^2p,0& for lMink,0. Thus, a geodesic in
Minkowski space goes over into two geodesics in de Si
space. In Fig. 4 these are the worldlines 2 and 28.
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As the last example, let us just mention that the wor
lines of two particles uniformly accelerated in Minkows
space get transformed into two geodesics 3,38 in de Sitter
space.

V. SCALAR AND ELECTROMAGNETIC FIELDS
FROM UNIFORMLY ACCELERATED PARTICLES:

THE SYMMETRIC SOLUTIONS

Two uniformly accelerated particles described by wor
lines ~4.4! were obtained by the conformal transformati
from the worldline of a particle moving with a uniform ve
locity Ro /a in Minkowski space. Hence, their fields can b
constructed by the conformal transformation of a sim
boosted spherically symmetric field. In the case of sca
field, Eqs.~2.4!, ~2.20!, and~3.15! then lead to the field

F5
s

4p

t

a

1

ur 8u
, ~5.1!

wherer 8 is spherical coordinate in an inertial frame in whic
the particle is at rest at the origin.

As emphasized earlier, we have to examine the field at
null hypersurfaceṽ5p, where the conformal transformatio
fails to be regular. We find that the field~5.1! is indeed not
smooth there. The limit ofF asṽ5p is approached from the
regionṽ,p differs from the limit fromṽ.p; F has a jump
at ṽ5p, although, as can be checked by a direct calculat
this discontinuous field satisfies the scalar wave equat
However, a field analytic everywhere outside the sources
be obtained by an analytic continuation of the field~5.1!
from the domainṽ,p to the domainṽ.p. We discover that
the new field inṽ.p differs from Eq.~5.1! just by a sign.
Therefore it simply corresponds to the charge of the part
in ṽ.p, which is opposite to that implied by conforma
transformation. It is easy to see that, due to the confor
transformation, the sign of the charge on the worldline w
ṽ.p is opposite to the original charges because the confor
mal factorV5t/a,0 for ṽ.p. Hence, the field which is
analytic represents the field of two uniformly accelera
particles with thesamescalar charges, which move along
two worldlines given by Eq.~4.4!. In Sec. VI we shall see
that this field can be written as a linear combination of
tarded and advanced fields from both particles. We call it
symmetric field. Regarding Eq.~5.1!, in which r 8 is first ex-
pressed in terms of the original Minkowski coordinat
$t,r ,q,w%, and then using the transformation~3.6!, we find
the field as a function of$ t̃ , r̃ ,q,w%:

Fsym5
s

4p

Aa22Ro
2

A~a22RRo cosq!22~a22R2!~a22Ro
2!

,

~5.2!

whereR5a(sin r̃/sin t̃) is the static radial de Sitter coord
nate~see the Appendix!. As could have been anticipated, th
field is static in the static coordinates since the accelera
particles are at rest atR5Ro , q5w50. ~Recall that we
need two sets of such coordinates to cover both worldli
but the coordinateR is well defined in the whole de Sitte
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spacetime—cf. the Appendix.! However, it is dynamical in
the coordinates$ t̃ , r̃ ,q,w%, or in the standard coordinate
$t,x,q,w%, covering—in contrast to the static coordinates
the whole de Sitter spacetime.

In order to construct the electromagnetic field produc
by uniformly accelerated particles in de Sitter spacetime,
start, analogously to the scalar field case, from the boo
Coulomb field in Minkowski space. The potential 1-form
thus simply

A52
e

4p

1

ur 8u
dt8, ~5.3!

where the prime again denotes the coordinates in an ine
frame in which the particle is at rest. Since electromagne
field described by its covariant component is conforma
invariant, the field~5.3! is automatically a solution of Max-
well’s equations in de Sitter space. However, like in the s
lar field case, we have to examine its character atṽ5p. We
discover that the potential~5.3! doesnot, in fact, solve Max-
well’s equations there@in contrast to the scalar field~5.1!,
which is discontinuous onṽ5p, but satisfies the scalar wav
equation#. This result can be understood when we realize t
by the conformal transformation the sign of the elect
charge—in contrast to the scalar charge—doesnot change at
the worldline with ṽ.p so that the total electric charge
2e. A nonzero total charge in de Sitter spacetime, howev
violates the constraint, as we shall see in Sec. VII B. In fa
it is well-known that in a closed universe the total elect
charge must be zero due to Gauss’s law~e.g., Ref.@19#!.

As with the scalar field, we still can construct a fie
smooth everywhere outside the sources by analytic cont
ation of the field obtained in the regionṽ,p acrossṽ5p
into whole spacetime. Similar to the scalar case, the resul
field in ṽ.p corresponds just to the opposite charge, so t
now, in the electromagnetic case, the total charge is ind
zero. The electromagnetic field can be written as a comb
tion of retarded and advanced fields from both charges
will be shown in Sec. VII. The potential describing thissym-
metric fieldhas a simple form in the static coordinates:

Asym52
e

4pX F S 12
RoR

a2
cosq D a dT

1
R2Ro cosq

12R2/a2
dR1RRo sinq dqG , ~5.4!

where5

X 25~a22RRo cosq!22~a22Ro
2!~a22R2!. ~5.5!

As noticed in Sec. II, the Lorentz gauge condition is n
conformally invariant, so that the potential~5.4! need
not satisfy the condition, although the original Coulom
field does. Expressing the static radial coordinate

5The positive rootX .0 is taken here—as in Eq.~5.2!.
0-9
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R5a(sin r̃/sin t̃), and similarlyT ~see the Appendix! we can
find the potential in global coordinates$ t̃ , r̃ ,q,w%, respec-
tively, $t,x,q,w%. Since the resulting form is not simple, w
do not write it here, but we give the electromagnetic fie
explicitly in both the static and global coordinates. In sta
coordinates it reads

F5dA52
e

4p

a~a22Ro
2!

X 3 F ~R2Ro cosq!dT∧dR

1S 12
R2

a2D RRo sinq dT∧dqG , ~5.6!

whereX is given by Eq.~5.5!. In $ t̃ , r̃ ,q,w% coordinates we
explicitly find

F52
e

4p

a22Ro
2

X 3

a3

sin3 t̃

3@~a sin r̃ 2Ro sin t̃ cosq!d t̃∧dr̃

1Ro sin t̃ cosr̃ sin r̃ sinq d t̃∧dq

2Ro cost̃ sin r̃ sin r̃ sinqdr̃∧dq#. ~5.7!

Summarizing, the field ~5.7! represents the time
dependent electromagnetic field of two particles with char
6e, uniformly accelerated along the worldlines~4.4! with
accelerations7a21sinhb57Ro /(aAa22Ro

2). The field is
analytic everywhere outside the charges. In the static coo
nates the charges are at rest atR5Ro and their static field is
given by Eq.~5.6!.

VI. SCALAR FIELD: THE RETARDED SOLUTIONS

The symmetric scalar field solution~5.2!, representing
two uniformly accelerated scalar charges, is nonvanishin
the whole de Sitter spacetime. As mentioned before, and
be proved at the end of this section@see Eqs.~6.6! and~6.7!#,
this field is a combination of retarded and advanced effe
from both charges. A retarded field of a point particle sho
in general be nonzero only in the future domain of influen
of a particle’s worldline, i.e., at those points from which pa
causal curves exist that intersect the worldline. Hence,
retarded field of the uniformly accelerated charge, wh
starts and ends atr̃ 50 ~see Fig. 4!, should be nonvanishing
only at ũ5 t̃ 2 r̃ .0. It is natural to try to construct such
field by restricting the symmetric field to this region, i.e.,
ask whether the field

F ret5Fsymu~ ũ!, ~6.1!

whereu is the usual Heaviside step function, is a solution
the field equation.

The field ~6.1! does, of course, satisfy the scalar fie
wave equation~2.2! at ũ.0 sinceFsym does, and also a
ũ,0 sinceF50 is a solution of Eq.~2.2! outside a source
Thus we have to examine the field~6.1! only at ũ50, i.e., at
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‘‘creation light cone’’ of the particle’s worldline, also re
ferred to as the past event horizon of the worldline@6#. The
field strength 1-form implied by Eq.~6.1! becomes

dF ret5~dFsym!u~ ũ!1Fsymd~ ũ!dũ. ~6.2!

An explicit calculation shows that

hF ret5~hFsym!u~ ũ!. ~6.3!

Therefore, the conformally invariant scalar wave equat
~2.2! ~with j51/6) has the form

@h2 1
6 R#F ret5~@h2 1

6 R#Fsym!u~ ũ!

5Ssymu~ ũ!5Smon 1, ~6.4!

whereSmon 1 denotes the monopole scalar charge starting
ending atr̃ 50. Hence, we proved that the field~6.1!, where
Fsym is given by Eq.~5.2!, satisfies the field Eq.~6.3! every-
where, including the past event horizon of the particle.

Analogously, we can make sure that

Fadv5Fsymu~2ũ! ~6.5!

has its support in the future domain of influence of the mo
pole particle 18, starting and ending atr̃ 5p, and is thus the
advanced field of sourceSmon 185Ssymu(2ũ).

From the results above, it is not difficult to conclude th
the symmetric field can be interpreted as arising from
combinations of retarded and advanced potentials due
both particles 1 and 18, in which the potentials due to on
particle can be taken with arbitrary weights, and the weig
due the other particle then determined by

Fsym5zF ret 11~12z!Fadv 11~12z!F ret 181zFadv 18 ,
~6.6!

where zPR is an arbitrary constant factor. In particula
choosingz51/2, the field

Fsym5 1
2 ~F ret1Fadv! ~6.7!

is the symmetric field from both particles. This freedom
the interpretation is exactly the same as with two uniform
accelerated scalar particles in Minkowski spacetime~see Ref.
@15#, Sec. IV B!.

A remarkable property of the retarded field~6.1! is that
the field strength~6.2! has a term proportional tod(ũ), i.e., it
is singular at the past horizon. Since the energy-momen
tensor of the scalar field is quadratic in the field strength
cannot be evaluated atũ50. The ‘‘shock wave’’ at the ‘‘cre-
ation light cone’’ can be understood on physical groun
similarly as the instability of Cauchy horizons inside bla
holes~e.g., Ref.@12#!; an observer crossing the pulse along
timelike worldline will see an infinitely long history of the
source within a finite proper time. The character of the sho
is given by the pointlike nature of the source. If, for examp
a scalar charge has typical extensionl at t̃ 5p/2, i.e., at the
moment of the minimal size of the de Sitter univer
(t50), and the extension of the charge in ther̃ coordinate
0-10
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would be roughly the same atI dS
2 , the corresponding shoc

would be smoothed aroundũ50 with a width; l . However,
theproperextension of the charge atI dS

2 would be infinite in
that case.

Let us note that the retarded field~6.1! could also be
computed by means of the retarded Green’s function. In
case of the conformally invariant equation for a scalar fie
the retarded Green’s function in de Sitter space is locali
on the future null cone, as it is in the ‘‘original’’ Minkowsk
space.~It is interesting to note that in the case of a minim
or more general coupling, the scalar field does not van
inside the null cone.! Thanks to this property we can unde
stand a ‘‘jump’’ in the field on the creation light cone: th
creation light cone is precisely the future light cone of t
point at which the source ‘‘enters’’ the spacetime, i.e., it
the boundary of a domain where we can obtain a contri
tion from the retarded Green’s function integrated ov
sources.

VII. ELECTROMAGNETIC FIELDS: THE RETARDED
SOLUTIONS

In this section we shall analyze the electromagnetic fie
of free or accelerated charges with monopole and also wi
dipole structure. We shall pay attention to the constra
which the electromagnetic field, in contrast to the sca
field, has to satisfy on any spacelike hypersurface.

A. Free monopole

Let us start with an unaccelerated monopole at rest at
origin of both coordinate systems used, i.e., atr̃ 5R50.
With Ro50, the potential~5.4! and the field~5.6! simplify to

Asym52
e

4p

sin t̃

cost̃ 1cosr̃
S 11cost̃ cosr̃

sin t̃ sin r̃
d t̃1dr̃ D

~7.1!

and

Fsym52
e

4p

1

sin2 r̃
d t̃∧dr̃. ~7.2!

Let us restrict the potential to the ‘‘creation light cone
and its interior by defining

Ao5Asymu~ ũ!. ~7.3!

The field in null coordinatesũ,ṽ then reads

Fo5dAo5Fsymu~ ũ!2
e

4p

1

sinṽ
d~ ũ!dũ∧dṽ, ~7.4!

so that the left-hand side of Maxwell’s equations become
12402
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¹mFo
am5Jmon

a

1
e

4pa4 F12cosṽ

11cosṽ

]a

]ũ
12~12cosṽ !

]a

] ṽ
Gd~ ũ!

2
e

4pa4

]a

] ṽ
d8~ ũ!. ~7.5!

Here Jmon
a 5(¹mFsym

am )u(ũ) is the current produced by th
charge atr̃ 50. Additional terms on the right-hand side o
Eq. ~7.5!, localized on the null hypersurfaceũ50, clearly
show that the restricted field~7.3! does not correspond to
single point source. The terms of this type did not arise in
case of the scalar field discussed in the previous section

We can try to add a field localized onũ50, which would
cancel the additional terms. Although we shall see in
following section that this cannot be achieved, it is instru
tive to add, for example, the field

A* 52
e

4p
lnS tan

ṽ
2D d~ ũ!dũ, ~7.6!

which cancels the second term on the right-hand side of
field ~7.4!. Thus, denoting

Amon5Ao1A* ,
~7.7!

Fmon5dAmon5Fsymu~ ũ!,

we find that withFmon, Maxwell’s equations become

¹mFmon
am 5Jmon

a 2
e

4pa4
~12cosṽ !d~ ũ!

]a

] ṽ
. ~7.8!

Hence, the fieldAmon does not represent only the unaccele
ated monopole charge but also a spherical shell of cha
moving outwards from the monopole with the velocity
light along the ‘‘creation light cone’’ũ50. The total charge
of the shell is precisely opposite to the monopole charge
that the total charge of the system is zero.

We shall return to this point in the following section; no
let us add yet two comments. It is interesting that, in contr
to the scalar field strength~6.2!, the electromagnetic field
Fmon is not singular atũ50. Apparently, the effects of the
monopole and the charged shell compensate alongũ50 in
such a way that even the energy-momentum tensor of
field is finite there.

Second, if the fieldAmon, corresponding to the retarde
field from the chargee at r̃ 50 and the outgoing charge
shell is superposed with the analogous field correspondin
the advanced field from the charge2e at r̃ 5p and the in-
going charged shell, the fields corresponding to char
shells localized onũ50 cancel each other and the fieldAsym
@Eq. ~5.4!# with Ro50 is obtained. The same compensati
occurs for two uniformly accelerated charges (RoÞ0) con-
sidered in Sec. V, as it follows from the symmetry. Therefo
the symmetric electromagnetic field~5.4! can be interpreted
as arising from the combinations of retarded and advan
0-11
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potentials due to both charges 1 and 18 in the same way as
was the case for the symmetric scalar field; relation~6.6!
remains true ifF ’s are replaced byA’s.

B. Constraints

The appearance of a shell with the total charge exa
opposite to that of the monopole discussed above has de
reasons. It is a consequence of the constraints, which
electromagnetic field and charge distributions have to sat
on a spatial hypersurface, and of the fact that spatial hy
surfaces, including past and future infinities, in de Sit
spacetime, are compact. Integrating the constraint equat

¹m
(3)E m5r ~7.9!

@see Eq.~2.23! for the definition of E a# over a compact
Cauchy hypersurfaceS, we convert the integral of the diver
gence on the left-hand side to the integral over a ‘‘bounda
which, however, does not exist for a compactS. Hence, as it
is well-known, the total charge on a compact hypersurf
~in any spacetime, not only de Sitter! must vanish:

Qtot50. ~7.10!

Therefore, the fieldFmon constructed in Eq.~7.7! represents
the monopole field plus the ‘‘simplest’’ additional source l
calized on the past horizon of the monopole that leads to
total zero charge. This enables the monopole electric-fi
lines to end on this horizon.

A stronger, evenlocal condition on the charge distributio
in de Sitter spacetime~or, indeed, in any spacetime wit
spacelike past infinityI 2) arises if we admit purely retarde
fields only. Here we definepurely retarded fieldsas those
that vanish atI 2. Then, however, the constraint~7.9! di-
rectly implies that atI 2 the charge distribution vanishes:

ru t̃ 5050. ~7.11!

In the Les Houches lectures in 1963 Penrose@9# gave a
general argument showing that ifI 2 is spacelike and the
charges meet it in a discrete set of points, then there wil
inconsistencies if an incoming field is absent~see in particu-
lar Fig. 16 in Ref.@9#, cf. Fig. 1, see also Ref.@11#!. Penrose
also remarked that an alternative definition of advanced
retarded fields might be found that leads to different resu
and that the application of the result to physical models is
clear. We found nothing more on this problem in the lite
ture since Penrose’s observation in 1963. Our work app
to give the first explicit model in which this issue can
analyzed.

C. Rigid dipole

As the first example of a simple source satisfying both
constraint~7.10! and the local condition~7.11! required by
the absence of incoming radiation, we consider a rigid
pole. To construct an elementary rigid dipole, we place po
chargese/« and2e/« on the worldlines withRo5

1
2 «a and

q50,p, fixed in the static coordinates, and take the lim
«→0. The constant dipole moment is thus given byp5ea.
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The resulting symmetric field can easily be deduced from
symmetric fields~5.4!–~5.7! of electric monopoles:6

Asym52
p

4pa

cosq

sin2 r̃
~sin t̃ cosr̃ d t̃2cost̃ sin r̃ d r̃ !,

Fsym52
p

4pa F2 cosq
sin t̃

sin3 r̃
d t̃∧dr̃

2
sinq

sin2 r̃
~sin t̃ cosr̃ dq∧d t̃

2cost̃ sin r̃ dq∧dr̃ !G . ~7.12!

As in Sec. V,Ro50 corresponds to two worldlines and th
symmetric solution~7.12! describes the fields oftwo dipoles,
one at rest atr̃ 50, the other atr̃ 5p.

To construct a purely retarded field of the dipole atr̃ 50,
we first restrict the symmetric field~7.12! to the inside of the
‘‘creation light cone’’ of the dipole, analogously as we d
with the monopole charge in Sec. VII A. Writing@cf. Eq.
~7.3!#

Ao5Asymu~ ũ!, ~7.13!

we now get

Fo5Fsymu~ ũ!, ~7.14!

so that no additional term like that in Eq.~7.4! arises; how-
ever, expressing the left-hand side of Maxwell’s equations
in Eq. ~7.5!, we find

¹mFo
am5Jrdip

a 2
p

4pa
2 cosq~12cosṽ !d~ ũ!

]a

] ṽ
.

~7.15!

HereJrdip
a 5(¹mFsym

am )u(ũ) is the current corresponding to th
rigid dipole at r̃ 50. Similarly to the case of the monopole
there is an additional term on the right-hand side of E
~7.15!, localized on the null coneũ50, indicating that the
field ~7.13! represents, in addition to the dipole, an addition
source located on the horizonũ50. In contrast to the mono
pole case, however, this source can be compensated by
ing to the potential~7.13! the term

A* 52
p

4pa
cosq d~ ũ!dũ. ~7.16!

In this way we finally obtain the purely retarded field of th
dipole with dipole momentp, located atr̃ 5R50, in the
form

6Here in the potential we ignore a trivial gauge term proportio
to d cosq.
0-12
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Ardip5Ao1A* ,

~7.17!

F rdip5Fsymu~ ũ!1
p

4pa
sinqd~ ũ!dq∧dũ,

whereAo , A* , Fsym are given by Eqs.~7.13!, ~7.16!, and
~7.12!. It is easy to check that¹mF rdip

am 5Jrdip
a is satisfied.

Regarding the retarded field~7.17!, we see that it is, in
contrast to the symmetric field~7.12!, singular on the ‘‘cre-
ation light cone’’~past event horizon! ũ50. This is not su-
prising; in order to obtain a purely retarded field, w
‘‘squeezed’’ the field lines produced by the dipole into t
horizon.

D. Geodesic dipole

Next we consider dipoles consisting of two free charg
moving along the geodesic7 r 5constant, q5constant,
w5constant in the Minkowski space which, as discussed
the end of Sec. IV@see Eq.~4.6! and the worldlines 2,28 in
Fig. 4# transforms into geodesics of the conformally relat
de Sitter space. We call two free opposite charges ageodesic
dipole.

We start again by constructing first the symmetric fie
Two elementary geodesic dipoles located atr̃ 50 and r̃ 5p
can be obtained by placing point charges6e/« on the world-
lines r 5 1

2 «a, q50,p and taking the limit«→0. As with
monopoles, to find the symmetric field we conformally tran
form the field of a standard rigid Minkowski dipole~bewar-
ing the signs fort.0 and t,0 so that the field is analytic
outside the sources!. The dipole moment in Minkowski spac
p̂5ea is constant, the corresponding value in de Sit
spacetime, however, depends now on time:

p5
a

t
p̂5

611cost̃

sin t̃
ea, ~7.18!

as it follows from the transformation relations~2.22! and
~3.6!. In terms ofp̂ we find the symmetric field of geodes
dipoles located atr̃ 50 and r̃ 5p to read

Asym52
p̂

4p

cosq

r 2
dt

52
p̂

4pa2

cosq

sin2r̃
@~11cost̃ cosr̃ !d t̃1sin t̃ sin r̃ d r̃#,

7Charges are called free in the sense that they are assumed
moving along geodesics. Of course, there is an electromagneti
teraction between them, which is neglected or has to be com
sated.
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Fsym52
p̂

4pa2 H 2
cosq

sin3r̃
~cost̃ 1cosr̃ !d t̃∧dr̃

2
sinq

sin2r̃
@~11cost̃ cosr̃ !dq∧d t̃

1sin t̃ sin r̃ dq∧dr̃#J . ~7.19!

Proceeding as with the rigid dipole, we generate the retar
field of only one geodesic dipole atr̃ 50 by restricting the
symmetric field by the step function:

Ao5Asymu~ ũ!,
~7.20!

Fo5Fsymu~ ũ!2
p̂

4pa2

2 cosq

12cosṽ
d~ ũ!dṽ∧dũ.

Since

¹mFo
am5Jgdip

a 1
2p̂

4pa6
d~ ũ!S 2sinq

]a

]q
1cosq sinṽ

]a

] ṽ
D

2
2p̂

4pa6
cosq~12cosṽ !d8~ ũ!

]a

] ṽ
, ~7.21!

whereJgdip
a 5(¹mFsym

am )u(ũ), an additional source is presen
at the horizonũ50; it can be compensated by adding
additional field with potential, for example, given by

A* 52
2p̂

4pa2
d~ ũ!S cosq

sinṽ

12cosṽ
dũ1sinqdq D .

~7.22!

The total retarded field of the geodesic dipole is then giv
as follows:

Agdip5Ao1A* ,

Fgdip5Fsymu~ ũ!1
2p̂

4pa2
d~ ũ!S 2 cosq

12cosṽ
dṽ∧dũ

1sinq
sinṽ

12cosṽ
dq∧dũD

2
2p̂

4pa2
sinqd8~ ũ!dq∧dũ. ~7.23!

It indeed satisfies Maxwell’s equations:

¹mFgdip
am 5Jgdip

a . ~7.24!

VIII. CONCLUSION

By using the conformal relation between de Sitter a
Minkowski space, we constructed various types of fields p

be
in-
n-
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duced by scalar and electromagnetic charges moving wi
uniform ~possibly zero! acceleration in de Sitter backgroun
One of our main conclusions has been the explicit confirm
tion and elucidation of the observation by Penrose tha
spacetimes with a spacelike past infinity, which implies
existence of a particle horizon, purely retarded fields do
exist for general source distributions.

In Sec. VII D we constructed the field~7.23! of the geo-
desic dipole which, at first sight, appears as being a pu
retarded field. Can thus purely retarded fields of, for
ample, two opposite monopoles, be constructed by distri
ing the elementary geodesic dipoles along a segmenr̃
P^0,a&, q5w50, so that neighboring opposite charg
cancel out, and only two monopoles, atr̃ 50 and r̃ 5a, re-
main? Then, however, the local constraint~7.11! on the
charge distribution would clearly be violated!

The solution of this paradox is in the fact that the fie
~7.23! is not a purelyretarded field; if we calculate~by using
distributions! the initial data leading to the field streng
~7.23!, we discover that the electric-field strength conta
terms proportional to thed-function att̃ 50, r̃ 50 so that the
field does not vanish atI 2. Hence the field of the dipole
distributed along the segment doesnot vanish atI 2 and thus
cannot be considered as a purely retarded field of the
monopoles atr̃ 50 and r̃ 5a.

We thus arrive at the conclusion that a purely retard
field of even two opposite charges~so that the global con
straint of a zero net chargeis satisfied! cannot be constructe
in the de Sitter spacetime unless the charges ‘‘enter’’
universe at the same point atI 2 and thelocal constraint
~7.11! is satisfied. If we allow nonvanishing initial data
I 2, the resulting fields can hardly be considered as ‘‘pur
retarded.’’

By applying the superposition principle we can conside
greater number of sources, and our arguments of the ins
ciency of purely retarded fields~based on the global an
local constraints! can clearly be generalized also to infinite
many discrete sources. Our discussion of the fields of dip
indicates that interesting situations may arise.

The absence of purely retarded fields in de Sitter spa
time or, in fact, in any spacetime with spacelikeI 2 is, of
course, to be expected to occur for higher-spin fields as w
In particular, there has been much interest in the primor
gravitational radiation. Since de Sitter spacetime is a s
dard arena for inflationary models, the generation of grav
tional waves by~test! sources in de Sitter spacetime has be
studied in recent literature~see Ref.@23#, and references
therein!. We plan to analyze the linearized gravity o
de Sitter background in light of the results described abo
The fact that particles are expected to have only posi
gravitational mass will apparently prevent any purely
tarded field to exist.

First, however, we shall present the generalization of
well-known Born solution for uniformly accelerated charg
in Minkowski spacetime to the generalized Born soluti
representing uniformly accelerated charges in de S
spacetime@24#. As demonstrated in the present paper, to
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‘‘born in de Sitter’’ is quite a different matter than to b
‘‘born in Minkowski.’’
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APPENDIX: COORDINATE SYSTEMS IN de SITTER
SPACE

We describe here coordinate systems employed in
main text. There exists extensive literature on various us
coordinates in de Sitter spacetime—for standard refere
see Ref.@6#, for more recent reviews, containing also ma
references, see, for example, Refs.@25,26#.

de Sitter spacetime has topologyS33R. It is best visual-
ized as the four-dimensional hyperboloid imbedded in
five-dimensional Minkowski space; it is the homogeneo
space of constant curvature spherically symmetric about
point. The following coordinate systems are construc
around any fixed~though arbitrary! point. Two of the coor-
dinates are just standard spherical angular coordin
qP^0,p& andwP^2p,p& on the orbits of the Killing vec-
tors of spherical symmetry with the homogeneous metric

dv25dq 21sin2u dw 2. ~A1!

In the transformations considered below, these coordin
remain unchanged and are thus are not written down.
axis is fixed byq50,p.

Next, we have to introduce time and radial coordina
labeling the orbits of spherical symmetry. The coordina
systems defined below differ only in these time and rad
coordinates and, therefore, we essentially work with a tw
dimensional system. Radial coordinates commonly take p
tive values and coordinate systems are degenerate for
value zero.

As discussed in Sec. III below Eq.~3.15!, the relations
between various regions I–IV of Minkowski and de Sitt
spaces are conveniently described if we allow radial coo
nates to attain negative values. We adopt the convention
at a fixed time the points symmetrical with respect to t
origin of spherical coordinates have the opposite sign of
radial coordinate. Hence, the points with$t,r ,q,w% are iden-
tical with $t,2r ,p2q,w1p%, analogously for the coordi-
nates$ t̃ , r̃ ,q,w% introduced below.

Let us characterize this convention in more detail. Ima
ine that on our manifold~either compactified Minkowski
space or de Sitter space! two coordinate maps
$t2 ,r 2 ,q2 ,w2% and $t1 ,r 1 ,q1 ,w1% are introduced,
which for any fixed point are connected by the relations
0-14
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t25t1 , r 252r 1 ,

~A2!
q25p2q1 , w25w11p mod 2p,

where r 1PR1 and r 2PR2. Both maps cover thewhole

FIG. 5. Coordinates in de Sitter space.~a! Regions I–IV are
specified. They correspond to the same regions as in the cutC in
Fig. 3. Coordinate lines of the conformally Einstein coordinates~b!,
of the conformally flat coordinates~c!, of the static coordinates~d!,
and of the null coordinates~e!, are indicated. For the definition o
all these coordinate systems, see Eqs.~A4!–~A14!. All the figures
describe the same cut of de Sitter space. The ranges of coordi
covering the cut, as well as directions in which they grow, can
seen from the figures.
12402
spacetime manifold. Now we consider a two-dimensional
given by q15qo , w15wo , with t1 , r 1 changing. This
represents the history of a half-linel 1 in Fig. 2, illustrated by
regions I and III, say. The history of a half-linel 2 , obtained
by the smooth extension ofl 1 through the origin, illustrated
by regions II and IV, is covered by the coordinat
$t2 ,r 2 ,q2 ,w2% with the same angular coordinates
q25qo , w25wo but r 2,0 ~which, in our convention, is
identical tor 1.0, q15p2qo , w15wo1p!.

In exactly the same way we may introduce coordina
$ t̃ 6 , r̃ 6 ,q,w%, with $ t̃ 1 , r̃ 1% covering regions I and IV in
Fig. 3, whereas$ t̃ 2 , r̃ 2% cover regions II and III. In Fig. 5,
the two-dimensional cuts~with angular coordinates fixed!
through de Sitter space~or through the compactified spac
M#) are illustrated. Both regions covered by$ t̃ 1 , r̃ 1% and by
$ t̃ 2 , r̃ 2% are included~the right and left parts of the dia
grams!. However, in the figures, as well as in the main te
we do not write down subscripts ‘‘1 ’’ and ‘‘ 2 ’’ at the coor-
dinates, since the sign of the radial coordinate speci
which map is used.

de Sitter spacetime can be covered bystandardcoordi-
natest, x (tPR, xPR1) in which the metric has the form
@6#:

g52dt 21a2 cosh2
t

a
~dx 21sin2 x dv2!. ~A3!

It is useful to rescale the coordinatet to obtainconformally
Einsteincoordinates$ t̃ , r̃ %:

t̃ 52 arctanS exp
t

a D , t̃ P^0,p&,

r̃ 5x, r̃ P^0,p&, ~A4!

g5
a2

sin2 t̃
~2d t̃ 21dr̃ 21sin2 r̃ dv2!. ~A5!

In these coordinates, de Sitter space is explicitly seen to
conformal to the part of the Einstein static universe. Coor
nate lines are drawn in Fig. 5~b!.

Another coordinate system used in our work are iner
coordinatest,r of conformally related Minkowski space. W
call themconformally flatcoordinates:

t5
a sin t̃

cosr̃ 1cost̃
, t̃ 5arctan

2ta

a22t21r 2
, tPR,

~A6!

r 5
a sin r̃

cosr̃ 1cost̃
, r̃ 5arctan

2ra

a21t22r 2
, r PR1,

g5
a2

t2
~2dt 21dr 21r 2dv2!. ~A7!

Coordinate lines are drawn in Fig. 5~c!.
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Commonly used arestaticcoordinatesT,R, related to the
timelike Killing vector ]/]T of de Sitter spacetime:

T5
a

2
log

t22r 2

a2
5

a

2
log

cosr̃ 2cost̃

cosr̃ 1cost̃
, TPR,

R5a
r

t
5a

sin r̃

sin t̃
, RP^0,a&, ~A8!

g52S 12
R2

a2D dT21S 12
R2

a2D 21

dR21R2dv2.

~A9!

As it is well known, these coordinates do not cover t
whole spacetime but only the domain witht̃ 1 r̃ ,p and
t̃ 2 r̃ .0. The boundary of this domain is the Killing hor
zon. The coordinateR can be extended smoothly to th
whole spacetime but it is not unique globally. It is also use
to rescale coordinateR to obtain theexpanded staticcoordi-
natest̄ , r̄ :

t̄ 5T, t̄ PR,

r̄ 5a arctanh
R

a
, r̄ PR, ~A10!

g5S cosh
r̄

a D 22S 2d t̄ 21dr̄ 21a2 sinh2
r̄

a
dv2D .

~A11!
g
.

d

f
n-

es
,

12402
l

Coordinate lines for the static coordinates are drawn in F
5~d!.

Finally, three sets ofnull coordinates$u,v%, $ū,v̄%, and
$ũ,ṽ% are defined by

u5t2r , ũ5 t̃ 2 r̃ , ū5 t̄ 2 r̄ ,
~A12!

v5t1r , ṽ5 t̃ 1 r̃ , v̄5 t̄ 1 r̄ .

From here we find

u5a tan
ũ

2
5a exp

ū

a
, v5a tan

ṽ
2

5a exp
v̄
a

.

~A13!

The metric in these coordinates reads

g5
a2

~u1v !2
@22 du∨dv1~u2v !2dv2#

5
a2

12cos~ ṽ1ũ!
@2dṽ∨dũ1„12cos~ ṽ2ũ!…dv2#

~A14!

5~eū/a1ev̄/a!22@22 e~ ū1 v̄ !/adū∨dv̄

1a2~eū/a2ev̄/a!2dv2#.

The corresponding coordinate lines are illustrated in F
5~e!.
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