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Abstract
We characterize a general gravitational field near conformal infinity (null,
spacelike or timelike) in spacetimes of any dimension. This is based on an
explicit evaluation of the dependence of the radiative component of the Weyl
tensor on the null direction from which infinity is approached. Behaviour
similar to a peeling property is recovered, and it is shown that the directional
structure of radiation has a universal character that is determined by the
algebraic type of the spacetime. This is a natural generalization of analogous
results obtained previously in the four-dimensional case.

PACS numbers: 04.20.Ha, 04.50.+h, 98.80.Jk

1. Introduction

There has been a growing interest in studies of higher-dimensional spacetimes, mainly
motivated by finding particular models in the contexts of string theory and brane cosmology.
However, some fundamental questions, such as the mathematical classification of manifolds
based on the algebraic structure of the Riemann and Weyl tensor or investigation of the
asymptotic behaviour of fields in higher dimensions, have only recently been raised [1–6].

As a contribution to this topic, in the present work we study the asymptotic properties of
a gravitational field as represented by the Weyl tensor in an arbitrary dimension. In particular,
we analyse the directional structure at conformal infinity of the leading component of the field
which corresponds to radiation. In fact, this is a natural extension of our previous work [7–10]
in which we completely described the asymptotic directional structure of radiation in four-
dimensional spacetimes with conformal infinity of any character (null, spacelike or timelike).
We demonstrated that this directional structure has universal properties that are basically given
by the algebraic type of given spacetime, namely the degeneracy and orientation of principal
null directions of the Weyl tensor. In the present paper, we show that these results—which are
valid in standard n = 4 general relativity—can be directly generalized to higher-dimensional
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spacetimes. Below we prove that the asymptotic directional structure of gravitational radiation
in any dimension is given by the specific properties of Weyl-aligned null directions at conformal
infinity, i.e., by the algebraic type of spacetime at infinity.

The paper is organized as follows. In section 2, we introduce the necessary geometrical
concepts and objects, and we set up the notation. In section 3, we first summarize the algebraic
classification of the Weyl tensor in higher dimensions and then we derive the expression which
explicitly describes the behaviour of the field at conformal infinity. Subsequently, we discuss
the directional structure of radiation in the case of null, spacelike and timelike infinity, in
particular for the simplest algebraically special spacetimes. In the appendix, the relation
between the higher-dimensional formalism used and the standard NP formalism in n = 4 is
presented.

For brevity, we refer to equations of the review paper [9] directly as, e.g., (R2.13).

2. Geometrical preliminaries

2.1. Conformal infinity and null geodesics

First, we briefly review the context in which we study the asymptotic behaviour of the
gravitational field. For details see the introductory section 2 of [9], where the discussion was
not restricted to a particular number of dimensions.

We wish to study spacetimes with a conformal infinity. We therefore assume the existence
of an extension of the spacetime to an auxiliary manifold with metric g̃ to which the physical
metric g is (at least locally) conformally related by g̃ = �2g. In the physical spacetime, the
conformal factor � is positive; the hypersurface � = 0 corresponds to the spacetime infinity—
called conformal infinity I. We assume regularity of the conformal geometry across I, even
though it is known that in higher dimensions this is a more subtle issue than in the case n = 4,
cf [4, 5]. We will return to this question shortly in section 3.3.

We introduce a vector n normal to I, n ∝ d�, normalized using the physical metric1,
n · n = σ , where the constant factor σ indicates the character of infinity: σ = −1 for
spacelike I, σ = 0 for null I and σ = +1 for timelike I. From Einstein’s field equations,
assuming a vanishing trace of the energy–momentum tensor, it follows [9, 11] that the character
of infinity is correlated with the sign of cosmological constant, σ = −sign �.

By radiative component, we understand the leading component of the field measured with
respect to a specific frame along a future-oriented null geodesic z(η) approaching I. We
are interested in the dependence of such a component on a direction along which infinity is
approached. To compare the field along different geodesics, we have to fix the normalization
of the affine parameter of these geodesics. We require that the projection of the tangent vector
of the geodesic to n is independent of the direction of the geodesic. Using the relation to
conformal geometry, it can be shown (see (R2.13), (R2.14)) that near the infinity we have

d�

dη
≈ −ε�2. (2.1)

Here, the sign ε characterizes the orientation of the geodesic with respect to conformal infinity:

ε =
{

+1: for outgoing geodesics, η → +∞ on I,

−1: for ingoing geodesics, η → −∞ on I.
(2.2)

1 The dot ‘ · ’ denotes a scalar product defined by the physical metric g. Strictly speaking, at infinity we should
define a normal ñ normalized using conformal geometry to which the vector n is related by rescaling by � (which
degenerates on I). However, it is common to use formally the normal n—see the discussion in [9].
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From (2.1) it follows that

� = εη−1 + · · · . (2.3)

2.2. Null frames and their transformations

In four dimensions, it is convenient to introduce complex null tetrads (R3.1). In the case of
higher dimensions, we have to choose a slightly different normalization of the vectors of a
real frame. Following [3], we call the frame k, l, mi the null frame if k, l are future-oriented
null vectors and mi , i = 1, 2, . . . , n − 2, are spatial real vectors satisfying

k · l = −1, k · mi = 0, l · mi = 0, mi · mj = δij . (2.4)

We use indices a, b, c, . . . to refer to all spacetime dimensions and indices i, j, k, . . . =
1, 2, . . . , n − 2 to label spatial directions orthogonal to k, l. Thanks to the orthonormality
relation (2.4), components of any spatial vector V spanned on the vectors mi , i.e.
V = V imi , satisfy V i = Vi . We also use a standard shorthand for square of the magnitude
|V |2 = V · V = V iVi .

We denote the vectors of an associated orthonormal frame as t, q, mi , where

t = 1√
2
(k + l), q = 1√

2
(k − l). (2.5)

We will distinguish different null frames by an additional lower roman index. For
example, in section 2.3 we will introduce reference frame denoted as ko, lo, moi . General
transformations between different null frames can be composed from the following simple
Lorentz transformations:

• null rotation with k fixed (parametrized by a spatial vector L = Limi)2:

k = ko, l = lo +
√

2Limoi + |L|2ko, mi = moi +
√

2Liko, (2.6)

• null rotation with l fixed (parametrized by a vector K = Kimi):

k = ko +
√

2Kimoi + |K|2lo, l = lo, mi = moi +
√

2Ki lo, (2.7)

• boost in the k–l plane (parametrized by a real number B):

k = Bko, l = B−1lo, mi = moi , (2.8)

• spatial rotation in the space spanned on mi (parametrized by an orthogonal matrix �i
j ):

k = ko, l = lo, mi = �i
j moj , with �i

j�k
lδjl = δik . (2.9)

We say that a null frame is adjusted to conformal infinity I if the null vectors k and l on
I are coplanar with normal n to the conformal infinity, and they satisfy the relation

n = ε 1√
2
(−σk + l), where ε = ±1. (2.10)

It follows that for a spacelike infinity (σ = −1) n = εt, for a timelike I (σ = +1) n = −εq
and n = εl/

√
2 for null I (σ = 0). Clearly, the vectors mi of the adjusted frame are tangent

to I. If the null vector k is oriented along the null geodesic z(η), the parameter ε indicates
whether the geodesic is outgoing (ε = +1) or ingoing (ε = −1) (cf figure 2 of [9]).

2 Note that our parametrization of null rotations differs from that used in [3] by a factor of
√

2.
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2.3. The reference frame and parametrization of null directions

To parametrize a null direction along which I is approached, we fix at conformal infinity a
reference frame ko, lo, moi . We require that this is adjusted to infinity in the sense of (2.10)
and that it is smooth3 along I.

In view of (2.7), with respect to the reference frame, a null direction along a future-
oriented vector k can be parametrized by a spatial vector R = Rimoi which is orthogonal to
ko, lo:

k ∝ ko +
√

2R + |R|2lo. (2.11)

Consequently, the null direction k projected onto a space orthogonal to to (cf (R5.5)) can
be represented by a unit spatial vector q

q = 1

1 + |R|2 ((1 − |R|2)qo + 2R). (2.12)

The vector R is a thus a stereographic representation of the vector q and hence of k. Indeed,
if we introduce an angle θ between qo and q, and a unit direction e of the vector R, we obtain

q = cos θqo + sin θe, e = R/|R|, |R| = tan
θ

2
. (2.13)

Complementarily, a normalized projection t of the null direction k onto a timelike
hypersurface Ho orthogonal to qo (cf (R5.8)) is given by

t = 1

|1 − |R|2| ((1 + |R|2)to + 2R). (2.14)

In this case, the vector R is a pseudostereographic representation of the vector t. In contrast
to q, the vector t does not represent a null direction k uniquely—the null direction obtained by
reflection of k with respect to the hypersurface Ho leads to the same vector t. Therefore, we
introduce the sign ς = sign (1 − |R|2) which indicates if the vectors k and ko have the same
orientation with respect to Ho. Introducing a rapidity parameter ψ between to and t, we can
write

t = cosh ψto + sinh ψe, e = R/|R|, |R| =
(

tanh
ψ

2

)ς

. (2.15)

Clearly, parametrization of the null direction k using the vector q and angle θ is useful
for spacelike infinity I where n ∝ to while the parametrization using t, ψ and ς is more
appropriate for timelike I where n ∝ qo.

Finally, let us note that the null direction ka antipodal to k, which is defined by qa = −q,
is given by Ra = −R/|R|2 and that the mirrored direction km obtained from k by reflection
with respect to the hypersurface Ho is given by tm = t, ςm = −ς , so that R = R/|R|2.

2.4. The interpretation frame

By interpretation frame ki, li, mii we understand a null frame that is parallelly transported
along a null geodesic z(η) to infinity I with the vector ki tangent to the geodesic. As in [9],
we fix ki = 1√

2
Dz
dη

. Because we have already normalized the affine parameter η by (2.1), this
choice guarantees that both the geodesics and the interpretation frames approach infinity from
different directions in a comparable way.

The interpretation frame, however, is not uniquely fixed. One may perform
transformations which leave k unchanged, namely the null rotation (2.6) and the spatial rotation

3 Again, at infinity we should define the frame normalized in conformal geometry to which the frame ko, lo, moi is
related by isotropic rescaling by �—see the related discussion in [9].
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(2.9). This non-uniqueness corresponds to the freedom in a choice of initial conditions for the
frame.

A crucial observation which was first realized by Penrose is that the interpretation frame
(boosted by the conformal factor �) becomes adjusted to infinity I, independently of its initial
conditions.

This fact can be derived by comparing the boosted frame kb = �ki, lb = �−1li, mbi = mii

with a frame parallelly transported in the conformal geometry. Namely, we may define the
auxiliary frame ka, la, mai as a frame parallelly transported along the geodesic in the conformal
geometry, isotropically rescaled by � to become normalized in the physical geometry (see
[9] for a detailed discussion). In addition, we require that the auxiliary frame is adjusted to
infinity. Following the steps leading to (R3.22), we analogously obtain that these two frames
are related by

kb = ka, lb = la +
√

2Limai + |L|2ka, mbi = �i
j (maj +

√
2Lj ka), (2.16)

with parameters Li(η) and �i
j (η) for large affine parameter η given by

�i
j = �(0)i

j , Li = −εMi
(1)η

−1 ln|η| + εLi
(0)η

−1 + · · · . (2.17)

Here, Li
(0) and �(0)i

j are constants of integration exactly corresponding to the freedom in
the choice of initial conditions for the interpretation frame. The coefficients Mi

(1) follow
from the expansion of derivatives of � in the affine parameter η along the geodesic, see
equation (R3.20). Typically—in the vacuum case or for matter satisfying the asymptotic
Einstein condition (R2.20)—Mi

(1) vanish, cf equation (R3.23) and discussion therein.
In any case, we observe that the boosted interpretation frame kb, lb, mbi at infinity becomes

equal to the auxiliary frame, i.e., it becomes adjusted to I, independently of the parameter
Li

(0). However, the dependence on the spatial rotation �(0)i
j persists. Because (on the general

level) we are not able to fix the initial conditions for the interpretation frame uniquely, we
do not know a particular value of �(0)i

j and its dependence on the direction of the geodesic.
Therefore, we will extract only information about radiation which is independent of the choice
of spatial rotation. For this reason, in the following we may ignore any additional dependence
on the spatial rotation.

We wish to characterize the interpretation frame with respect to the reference frame.
Both the auxiliary and the reference frames are adjusted to infinity, i.e. they are related by a
transformation which leaves the normal (2.10) unchanged. If the direction ka ∝ ki is specified
by the parameters Ri via (2.11), the transformation from the reference to the auxiliary frame
can be obtained by consecutive application of the null rotation (2.6) with k fixed, the null
rotation (2.7) with l fixed, the boost (2.8), and the spatial rotation (2.9), given by parameters

Li = σRi , Ki = Ri

1 − σ |R|2 , B = εεo(1 − σ |R|2), (2.18)

and some orthonormal matrix �i
j , which can be ignored. The signs εo and ε indicate

orientations of the vectors ko and ka ∝ ki with respect to infinity I, cf equation (2.1). Finally,
the interpretation frame is simply obtained from the auxiliary one by the boost (2.8) with
B = �.

3. The gravitational field and its asymptotic structure

We want to analyse the asymptotic behaviour of the gravitational field. For this we need
to understand its algebraic structure. However, in a dimension higher than 4, it is quite
complicated. It was investigated only recently in [1, 3]. Fortunately, these studies analysed
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the structure of the Weyl tensor in the way which can immediately be used to generalize our
previous results [9]. We thus start with a short overview of the algebraic structure of the
Weyl tensor in higher dimensions. We will introduce notation for its components which is
convenient for our purposes.

3.1. Weyl tensor components and their transformation properties

We denote the frame components of the Weyl tensor as Co
abcd , with index ‘o’ indicating that

the reference frame is considered. Inspired by the notation of [3], we define the function
Co

abcd [Ki]l-fixed of the argument Ki as a Weyl tensor component Cabcd evaluated with respect
of the frame which is obtained from the reference frame by the null rotation (2.7) with the
parameters Ki . Thanks to (2.7) it is a polynomial in Ki of the fourth order. Similarly, we define
the polynomials Co

abcd [Li]k-fixed, Co
abcd [B]boost and Co

abcd

[
�i

j
]

rotation. The explicit form of these
functions can be easily obtained using equations (2.6)–(2.9), but some of the expressions are
rather cumbersome and we will not list them here. Some particular transformations can be
found in (3.1) and (3.5).

The Weyl tensor frame components can be separated into various groups according to
their transformation properties under the boost (2.8). Any component Cabcd changes under
the boost in a very simple way, namely,

Co
abcd [B]boost = Bw(abcd)Co

abcd , (3.1)

where the power w(abcd) is called the boost weight [3]. For each set of frame indices
a, b, c, d , it is simply the number of indices corresponding to the vector ko minus the number
of indices corresponding to the vector lo. For the Weyl tensor, the boost weights take the
values −2,−1, 0, 1, 2. Components with various boost weights w are the analogues of the
NP components �m of the Weyl tensor in four dimensions with m = w + 2. However, in a
higher dimension, for each weight there are more than two independent real components, so
they cannot be combined into suitable complex coefficients when n = 4. Nevertheless, we
may still introduce analogous convenient notation, and we distinguish different components
by additional indices4. We thus define real Weyl tensor components �m... grouped by their
boost weight w = m − 2 as

�0ij = Cabcdk
amb

i k
cmd

j , (3.2a)

�1ijk = Cabcdk
amb

i m
c
jm

d
k , �1Ti = Cabcdk

albkcmd
i , (3.2b)

�2ijkl = Cabcdm
a
i m

b
jm

c
km

d
l , �2S = 2Cabcdk

alblckd ,

�2ij = Cabcdk
albmc

i m
d
j , �2Tij = 2Cabcdk

amb
i l

cmd
j ,

(3.2c)

�3ijk = Cabcd l
amb

i m
c
jm

d
k , �3Ti = Cabcd l

akblcmd
i , (3.2d)

�4ij = Cabcd l
amb

i l
cmd

j . (3.2e)

All other components can be obtained with the help of the symmetries of the Weyl
tensor. Moreover, the listed components are mutually related. The components �0ij ,
�1ijk, �2ijkl, �2ij , �3ijk and �4ij are independent up to constraints following from the
properties of the Weyl tensor:

�0[ij ] = 0, �0k
k = 0, (3.3a)

�1i(kl) = 0, �1[ikl] = 0, (3.3b)

4 See the appendix for the relation to standard NP notation in the case n = 4.
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�2ijkl = �2klij , �2(ij)kl = �2ij (kl) = �2i[jkl] = 0, �2(ij) = 0, (3.3c)

�3i(kl) = 0, �3[ikl] = 0, (3.3d)

�4[ij ] = 0, �4k
k = 0. (3.3e)

The remaining components are not independent—they are given by

�1Ti = �1k
k
i , �2Tij = �2ikj

k + �2ij

�2S = �2Tk
k = �2kl

kl , �3Ti = �3k
k
i .

(3.4)

Below we will mainly need the following transformation property of the �4ij component
under the null rotation (2.6):

�4ij = �o
4ij [Lk]k-fixed = �o

4ij + 2
√

2
(−�o

3(ij)kL
k + �o

3T(iLj)

)
+

(
2�o

2ikj lL
kLl − 2�o

2Tk(iLj)L
k + �o

2T(ij)|L|2 − �o
2SLiLj − 4�o

2k(iLj)L
k
)

− 2
√

2
(
2�o

1kl(iLj)L
kLl + �o

1(ij)kL
k|L|2 + �o

1T(iLj)|L|2 − 2�o
1TkL

kLiLj

)
+

(
4�o

0klL
kLlLiLj − 4�o

0k(iLj)L
k|L|2 + �o

0ij |L|4). (3.5)

3.2. Weyl-aligned null directions and algebraic classification in higher dimensions

Following [1, 3], we call the null direction k for which all the components �0ij with respect
to the null frame k, l, mi vanish Weyl-aligned null direction (WAND). This definition is
independent of the choice of the normalization of k and of the choice of other vectors l, mi of
the frame because under transformations which leave the direction k unchanged, �0ij behave
as

�0ij [Lk]k-fixed = �0ij , �0ij [B]boost = B2�0ij ,

�0ij

[
�k

l
]

rotation = �i
k�j

l�0kl .
(3.6)

If, in addition, all the components �m..., m = 0, . . . , o − 1, with respect to the null frame
k, l, mi also vanish, WAND k is said to be of alignment order o. Again, such an order of the
alignment depends only on the direction of k.

If we parametrize the null vector k with respect to the reference frame using the parameters
Rk according to (2.11), the conditions that k is a WAND of alignment order o become

�o
mij [Rk]l-fixed = 0, for m = 0, . . . , o − 1, (3.7)

which are called aligment equations [3].
In four-dimensional spacetimes WANDs always exist and are exactly the principal null

directions of the standard algebraic classification. In higher dimensions, the alignment
equation (3.7) even of the first alignment order can be too restrictive and in a generic
situation no WAND exists. If the alignment equations admit solutions, the spacetime is
called algebraically special. Such spacetimes can naturally be classified according to the
maximum alignment order of WANDs. The highest alignment order o of the WAND k is
called the principal alignment type. For o = 0, 1, 2, 3, 4 and 5 we say that the spacetime is of
principal types G (general), I, II, III, N (null) and O (trivial), respectively.

Additionally, if we set the vector k of the null frame k, l, mi to be a WAND of the
maximal alignment order, the highest possible aligment order of the vector l is said to be
of secondary aligment type. We call the null frame with such chosen vectors k, l the frame
aligned with the algebraic structure of the Weyl tensor. From the duality between the vectors
k and l and the components �m and �4−m, we conclude that for a spacetime of principal and
secondary alignment types p and s the Weyl tensor components �m in the aligned null frame
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vanish for m = 0, . . . , p − 1 and m = 4 − s + 1, . . . , 4, and the components �p and �4−s are
nonvanishing.

Obviously, such a classification is a generalization of the standard algebraic classification
in four dimensions. The main difference is that WANDs may not exist (i.e., the principal and
secondary types can be zero). In other words, in four dimensions only those types that are
labelled by principal and secondary types (p, s) as (1, 1)—Petrov type I, (2, 1)—Petrov type II,
(2, 2)—Petrov type D, (3, 1)—Petrov type III, (4, 0)—Petrov type N and the trivial (5, 5)—
Petrov type O are allowed. In higher dimensions there are additional types (0, 0)—type G,
(1, 0), (2, 0) and (3, 0); see [3, 1] for more detailed discussion.

3.3. Asymptotic behaviour of the field components

Now we should specify behaviour of the gravitational field at conformal infinity. However, it is
not our goal here to study a specific ‘fall-off’ of the field in a general number of dimensions—
such a task goes far beyond the scope of this work. We are interested in the directional
structure of the ‘far’ field and it turns out that qualitatively this structure is not affected by a
specific fall-off property of the field. We will thus make a general assumption that the Weyl
tensor Cabcd behaves near infinity as �q−2, q being some constant depending on the dimension
(and maybe even on a particular solution)5, cf [6]. In n = 4, the well-known behaviour of the
Weyl tensor is characterized by q = 1. For higher number of dimensions, it is not clear if a
similar property holds in a general situation (see, e.g., [4, 5]). However, our assumption is
rather ‘weak’ and we expect it to be valid for a wide class of solutions.

Assuming the above fall-off of the Weyl tensor, we can write asymptotic behaviour of
its components. Combining (3.2), (2.3) and considering the normalization of the reference
frame6 as ko, lo, moi ∼ �, we get

�o
m... ≈ �̂o

m...η
−q−2, (3.8)

where �̂o
m... are constant finite coefficients. We may also define �̂o

m...[Lk]k-fixed in a similar
way as �o

m...[Lk]k-fixed. It is a polynomial in Lk with �̂o
m... being coefficients.

The relation between the interpretation and reference frames was described in section 2.4.
In particular, the interpretation tetrad can be obtained by the sequence of null rotations, boost
and spatial rotation with parameters (2.18) followed by the (asymptotically singular) boost
B = �. The field components with respect to the interpretation frame are thus

� i
m...

∗≈ �2−m�a
m..., (3.9)

since the interpretation frame is related to the adjusted auxiliary one by the boost. Here and
in the following, we ignore spatial rotations acting on indices i, j which can arise from the
non-uniqueness of the interpretation frame or from the relation to the reference frame. This
will be indicated by a star ‘*’ above the equality symbol. Because asymptotically � ∼ η−1,
cf (2.3), and the transformation from the auxiliary frame to the reference frame is regular,
we see that different components of the Weyl tensor peel off with different powers of the
affine parameter η according to their boost weights labelled by m. This is the analogue of the
well-known peeling-off theorem in four dimensions [11]—see also the recent analysis of this
topic [6] in higher dimensions.

5 Alternatively, we could say that the fall-off of the conformally related Weyl tensor is C̃abc
d ∼ �q .

6 At I, the conformally rescaled frame �−1ko, �
−1lo, �−1moi , normalized in the unphysical metric g̃, is regular.
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We will now study only the leading component of the gravitational field which is � i
4ij .

Performing the transformation (2.18) from the auxiliary frame to the reference frame, we
obtain

�a
4ij

∗≈ 1

(1 − σ |R|2)2
�o

4ij [σRk]k-fixed, (3.10)

where we parametrized the direction ki of the geodesic by Rk via (2.11). Using (3.9), (2.3)
and (3.8), we finally get

� i
4ij

∗≈ η−q

(1 − σ |R|2)2
�̂o

4ij [σRk]k-fixed. (3.11)

The explicit form of the expression �̂o
4ij [Lk]k-fixed is given in (3.5).

3.4. Directional structure of radiation

We have thus derived the asymptotic directional structure of gravitational radiation in higher
dimensions which is a generalization of the main result of [9]. It describes the dependence of
the leading field component on a direction along which the infinity is approached. Let us now
briefly discuss some properties of this dependence.

First, as we mentioned earlier, we have ignored an arbitrary rotation of the field (3.11) ‘in
indices ij ’. On the general level, we cannot control the spatial rotation (2.9) in these indices
and therefore the only physically relevant quantities are invariants which we can construct
from the matrix (3.11). Thanks to the properties of the Weyl tensor, the matrix of the radiative
field component � i

4ij is symmetric, cf (3.3e). Therefore, the invariants under spatial rotation
are real eigenvalues of the matrix. Alternative invariants are the traces of powers of the matrix.
Because � i

4ij is traceless, the independent invariants are

� i
4i

j� i
4j

k · · · � i
4l

i︸ ︷︷ ︸
m-times

for m = 2, . . . , n − 2. (3.12)

Substituting the relation (3.11) into (3.12), one obtains expressions which are polynomial in
the directional parameter Rk . Clearly, if all the invariants are zero, the complete leading term
also vanishes.

The location of the zeros of the directional pattern (3.11) follows from a simple argument.
The pattern is proportional to �a

4ij . Analogous to the alignment equations (3.7), the vanishing
of these Weyl tensor components means that the null vector la is asymptotically7 WAND.
However, the auxiliary frame is adjusted to infinity, i.e., the vectors ka and la are related by
(2.10). Hence, the direction of the geodesic ki ∝ ka along which the leading term of the field
vanishes has to be ‘opposite’ to a WAND la in the sense of the relation (2.10). If the direction
ki ∝ ka is given by the directional parameter Rk through (2.11), such a direction la is given by
the parameter σ−1Rk/|R|2.

For σ �= 0, it is also possible to reach the same conclusions using the identity

�̂o
4ij [Lp]k-fixed = |L|4(δk

i − 2LiL
k
/|L|2)(δl

j − 2LjL
l
/|L|2)�̂o

0kl[L
p/|L|2]l-fixed (3.13)

which relates transformations of the components �o
4ij and �o

0ij . Applying this identity to the
directional structure (3.11) and using the fact that matrix

(
δk
i − 2LiL

k/|L|2) is orthogonal, we
obtain

� i
4ij

∗≈ η−q |R|4
(1 − σ |R|2)2

�̂o
0ij [σ−1Rk/|R|2]l-fixed, for σ �= 0. (3.14)

7 The word ‘asymptotically’ refers to the fact that we define WANDs at conformal infinity using the components
�̂o

m... instead of �o
m..., i.e., using the Weyl tensor isotropically rescaled by a factor ∼ �−3. Such a definition of

asymptotic WANDs is justified by the observation that a finite isotropic rescaling of the Weyl tensor does not change
the notion of WANDs.
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Clearly, this vanishes iff the direction given by the parameter σ−1Rk/|R|2 is a WAND.
For σ = 0, equation (3.11) reduces to

� i
4ij

∗≈ η−q�̂o
4ij . (3.15)

Thus, �̂o
4ij vanishes if the vector lo is asymptotically WAND. However, lo is described by an

infinite value of directional parameter (2.11), so that the leading term � i
4ij vanishes again iff

the direction σ−1Rk/|R|2 = ∞ is a WAND.
Let us now discuss the directional structure of radiation separately for a different character

of the conformal infinity I. For null character of the infinity, σ = 0, we find that the leading
term (3.15) is independent of the direction of the null geodesic along which the infinity
is approached. It vanishes if the null direction lo tangent to the infinity (cf adjustment
condition (2.10) for σ = 0) is asymptotically a WAND. This fact may be used for an invariant
characterization of the presence of gravitational radiation in higher-dimensional spacetimes.

For a spacelike conformal infinity, σ = −1, it is natural to parametrize the null direction k
of the geodesic using its normalized projection q to I, cf equation (2.12). It can be expressed
in terms of the angle θ and of the complementary directional vector e = ekmok , see (2.13).
The directional structure (3.11) then reads

� i
4ij

∗≈ η−q cos4 θ

2
�̂o

4ij

[
−tan

θ

2
ek

]
k-fixed

. (3.16)

The leading term of the field vanishes if the direction ka antipodal to k is a WAND. Let us
recall that the antipodal direction has the opposite projection to I, qa = −q (see the end of
section 2.3).

For a timelike infinity I, σ = +1, we parametrize the null direction k of the geodesic
by its normalized projection t to I (unit timelike future-oriented vector, cf (2.14)) and by
the parameter ε = ±1 which describes to which side of infinity the vector k points (cf.
equation (2.2)). If we express the vector t through the rapidity ψ and the directional vector e,
see equation (2.15), we obtain

� i
4ij

∗≈ η−q 1

4
(cosh ψ + εεo)

2�̂o
4ij

[
tanhεεo

ψ

2
ek

]
k-fixed

. (3.17)

This vanishes if the mirror reflection km of the direction k with respect to the infinity is a
WAND (see again the end of section 2.3).

We conclude that all these results are direct generalizations of the analogous results of [9].
As in four dimensions, the directional structure of radiation is given by the algebraic structure
of the Weyl tensor. Also, the directions of vanishing radiation are determined by WANDs
which are generalizations of the principal null directions which are known from n = 4 general
relativity.

3.5. Algebraically special spacetimes

The general explicit form of the directional dependence of the radiative component is rather
cumbersome, cf equation (3.11) combined with (3.5). It simplifies for algebraically special
spacetimes, i.e., in spacetimes which possess some WANDs, see section 3.2. Let us emphasize,
however, that in higher dimensions the condition that the spacetime is algebraically special
can be rather restrictive—as we mentioned above, a generic spacetime has no WANDs. It
is also not clear if an algebraically special spacetime can admit a regular global infinity I.
Fortunately, our discussion requires only the local existence and regularity of the conformal
infinity and we restrict only to the cases when such an infinity exists.
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Although the directional structure of radiation simplifies for algebraically special
spacetimes, it is still parametrized by more independent components of the Weyl tensor
than in the case of four dimensions. The resulting expressions thus typically remain lengthy.
We will present them only in two most special cases—for spacetimes of type N and of
type III.

A substantial simplification of the directional structure (3.11) occurs only for maximally
special (nontrivial) spacetimes of type N. In this case, there exists a WAND of the alignment
order 4. If we choose the reference tetrad in such a way that ko is asymptotically this WAND,
the alignment equations tell us that only the components �̂o

4ij are nonvanishing. In view of
(3.5), the directional structure of the radiative field components thus takes a simple form

� i
4ij

∗≈ η−q

(1 − σ |R|2)2
�̂o

4ij

∗≈ η−q cos4 θ

2
�̂o

4ij

∗≈ η−q 1

4
(cosh ψ + εεo)

2�̂o
4ij . (3.18)

Here, �̂o
4ij are constants characterizing the ‘strength’ and ‘polarization’ of the field. In this

case, it is more convenient to choose as invariants (which ignore unknown polarization) the
eigenvalues of � i

4ij instead of the traces (3.12)—these are proportional to the eigenvalues of

�̂o
4ij with a common factor which can be read from equation (3.18).

The next simplest case is that of spacetimes of type III (we do not need to distinguish the
type according the secondary alignment type in our discussion). In this case, we may choose
the reference tetrad with ko pointing asymptotically along a WAND of alignment order 3. It
follows that the components �̂o

m..., m = 0, 1, 2, are vanishing and the leading field component
thus reads

� i
4ij

∗≈ η−q

(1 − σ |R|2)2

(
�̂o

4ij + σ2
√

2
(−�̂o

3(ij)kR
k + �̂o

3T(iRj)

))
. (3.19)

It would be possible to use a more detailed structure of the field components �̂o
4ij and �̂o

3ijk

to select a ‘canonical’ reference frame (e.g., �̂o
3Ti identifies an additional spatial direction,

etc) with respect to which (3.19) would have a slightly more specific form. However, such a
discussion would not bring any significant additional understanding of the directional structure
of the field and we will not enter it here.

4. Conclusion

In recent years, great effort has been devoted to the investigation of gravitational theories in
higher-dimensional spacetimes. Several exact solutions of (generalized) Einstein’s equations
with properties either analogous to the four-dimensional case or with completely new features
(such as, e.g., the existence of black rings) were found. However, many useful concepts and
methods known from the four-dimensional gravity still have not been generalized to higher
dimensions.

Our work is a contribution to such possible generalizations, namely to a discussion of
an asymptotic behaviour of the gravitational field in higher dimensions. It does not address
in detail such questions as what exactly radiation is or which part of the gravitational field is
relevant for physical observers (e.g., in braneworld scenarios we should restrict only to the
part of the conformal infinity near the brane). However, it demonstrates that the structure of
the leading field components—in the sense of the peeling theorem—can be described in an
analogous way as in four dimensions. It shows that the directional ambiguity of the leading
components in the case of a non-vanishing cosmological constant can again be characterized
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in terms of the asymptotic algebraic structure of the Weyl tensor. Due to the more complicated
algebraic properties of the Weyl tensor in higher dimensions, the directional structure of the
radiative components is, not surprisingly, more intricate.

Appendix. Relation to complex notation in n = 4

In standard n = 4 general relativity, it is convenient to introduce a complex null tetrad and
to parametrize the Weyl tensor by the corresponding five complex components. These NP
quantities are closely related to the real quantities introduced in our text. Here, we present a
‘dictionary’ relating these two notation.

In four dimensions, the transverse indices i, j, k, l run only over two values 1, 2 and we
can combine the real vectors mi into the complex vectors

m = 1√
2
(m1 − im2), m̄ = 1√

2
(m1 + im2). (A.1)

Any real vector V spanned on m1, m2 can be parametrized by a complex number V by the
relation

V = V 1m1 + V 2m2 = 1√
2
(V̄ m + V m̄). (A.2)

It follows that

V = V 1 − iV 2, |V |2 = (V 1)2 + (V 2)2 = V V̄ . (A.3)

The transformation properties of the null tetrad under, for example, a null rotation with k fixed
(2.6) then read

k = ko, l = lo + L̄mo + Lm̄o + |L|2ko, m = mo + Lko. (A.4)

This is the standard four-dimensional expression for a null rotation, see, e.g., [9].
Moreover, in four dimensions there are only two real independent components of the

Weyl tensor for each boost weight, namely

�011 = −�022, �012 = �021, (A.5a)

�1T1 = �1221 = −�1212, �1T2 = �1112 = −�1121, (A.5b)

�21212 = �22121 = −�22112 = −�21221 = �2T11 = �2T22 = 1
2�2S,

�212 = −�221 = �2T12 = −�2T21,
(A.5c)

�3T1 = �3221 = −�3212, �3T2 = �3112 = −�3121, (A.5d)

�411 = −�422, �412 = �421. (A.5e)

These can be combined into complex NP components defined by

�0 = Cabcdk
ambkcmd , (A.6a)

�1 = Cabcdk
albkcmd , (A.6b)

�2 = Cabcdk
ambm̄cld , (A.6c)

�3 = Cabcd l
akblcm̄d , (A.6d)

�4 = Cabcd l
am̄blcm̄d , (A.6e)
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via

�0 = �011 − i�012, (A.7a)

�1 = 1√
2
(�1T1 − i�1T2), (A.7b)

�2 = −(�21212 + i�212), (A.7c)

�3 = 1√
2
(�3T1 + i�3T2), (A.7d)

�4 = �411 + i�412. (A.7e)
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